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Quantum Stochastic Processes

By

Luigi ACCARDI*, Alberto FRIGERIO** and John T. LEWIS***

Abstract

A class of non-commutative stochastic processes is defined. These processes are defined
up to equivalence by their multi-time correlation kernels. A reconstruction theorem, gener-
alizing the Kolmogorov theorem for classical processes, is proved. Markov processes and
their associated semigroups are studied, and some non-quasi free examples are constructed
on the Clifford algebra, with the use of a perturbation theory of Markov processes. The
connection with the Hepp-Lieb models is discussed.

§ 0. Introduction

We study a class of non-commutative stochastic processes which are deter-

mined up to equivalence by their multi-time correlations. They are analogues

of classical processes in the sense of Doob [1], Meyer [2]; indeed, those pro-

cesses are included as a special case.

We define a stochastic process over a C*-algebra ^7, indexed by a set T,

to consist of a C*-algebra j/, a family {jt: teT] of *-homomorphisms from 2$

into $0 and a state a> on 3$. This structure gives rise to a non-commutative

stochastic process in the sense of Accardi [3], with local algebras defined by

jtfj= v (jt(b): tel, b e &} for any subset / of T; observables which are "lo-

calized at different times" are not assumed to commute. We show (Proposition

1.1) that such a process is determined up to equivalence by its family of cor-

relation kernels o)(jtl(al)*---jtj[an)*jtn(bn)---jtl(bl))ithese are obtained by

polarization from the expressions co(jti(bi)*-~jtn(bn)*jtn(bn)'"jtl(bl))9 which are

positive real numbers, and are the analogues of the finite-dimensional joint

distributions of classical probability; they can, in principle, be determined by
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sequences of measurement operations [4,5,6], when f^^ = "' = *» (if T
represents time); the correlation kernels for arbitrary times can be deduced

from the time-ordered ones when the commutation relations are known.

We prove (Theorem 1.3) that a process can be reconstructed up to equi-

valence from a projective family of correlation kernels; this is a generalization

of Kolmogorov's theorem [7] (related results are given in Theorems 1.7.1,

1.7.2 and Corollary 1.8.2). Markov processes and their associated semigroups

are defined; we investigate the connections between them (Theorems 2.1 and

2.2.2), and we develop a perturbation theory of Markov processes, based on a

quantum Feynman-Kac formula [8, 9] (Theorems 2.3 and 2.4.4). We construct

some examples on the Clifford algebra. First we construct quasi-free processes

and we characterize the quasi-free Markov processes by means of an analogu

of Doob's theorem [10] (Theorems 3.2.1 to 3.3.2), then we perturb them

using the perturbation theory of Markov processes of Theorems 2.3 and 2.4.4.

We show that these processes satisfy a Langevin equation (Theorems 3.4.1 and

3.4.2) and we indicate (in §4) how they arise in the Hepp-Lieb models [11, 12].

§ 1. Stochastic Processes and the Reconstruction Theorem

I.I. Let 38 be a C*-algebra with identity and let T be a set; a stochastic

process over & indexed by T is a triple (j/, {jt: teT},CD) where s£ is a

C*-algebra with identity and, for each t in T, jt is a *-homomorphism of 38 into

sf with jt(l^) = l^, $£ is generated by the image algebras {<stft=jt(&): teT}

and co is a state on j&. Let (3F , n, Q) be the GNS triple associated with (jaf , co).

Two stochastic processes (jafa), {jr
(0}3 co(f))3 i = l, 2, over the same C*-algebra

& and indexed by the same set T, are said to be equivalent if there is a unitary

operator U: jrM-*jr™ such that UQM = Q™ and

for all b in & and t in T.

Proposition 1.1. Two stochastic processes (j3f(^5 [j ^}, co(i)), i = l, 2, over

indexed by T are equivalent if and only if

(1.1)

for all al5..., an, bl5..., bn in 3$, tl9...9 tn in T, and for all n.

Proof. Assume that (1.1) holds; then the map U given by
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extends to a unitary map of

onto tfW such that UQW = Q™ and Un^j(
t
1\b) = n^j(

t
2\b)U for all b in &

and £ in T. The converse is clear.

A stochastic process is said to be a W*-stochastic process if 38 is a PF*-

algebra and the maps n°jt are normal for all t in T.

1.2. Let T= U T" be the set of all n-tuples of elements of T, n = l,2,...;
neJ¥

an element t of T is in T" for some n = n(t) and can be written t = (f l5..., £„)•

For each t in T3 let ^t be the n(t)-fold Cartesian product of 3$ and denote an

element of ^t by b = (5l5...? fcn), and let jt be the map of 38 1 into s/ given by

JM=Jtn(bn)'"Jt1(bt)> tne correlation kernel Wt of the stochastic process
(X, {jt}9 co) over ^ indexed by T is the function on @tx£$t with values in

C given by

(1.2) w t(a;b) = Q)(jt(a)*jt(b)).

According to Proposition 1.1, a stochastic process is determined up to equi-

valence by the family {Wt: teT} of its correlation kernels.

Proposition 1.2. The family {Wt(> , •): teT} of correlation kernels of

a stochastic process over & indexed by T satisfies conditions CXI,..., CK6

below. For a W*-process, condition NCK also holds.

CKl (projectivity): For all t in T, for k such that l^fe^n(t), and

for a, b in ^t such that ak = bk=l, we have

wt(a; b) = W£ t(£aJ £b)

where /ct = (f1?..., f k _ l 9 ?fc, f fc+1,..., O, £a = (alv.., fifc,..., aj;

CK2 (positivity): For all t in T, /or alJ ./znife sequences {crEdr =

1,..., m}, {bP6^t: r = !,..., m}, w

CX3 (normalization): For all t in T3 we

1 is the element (1,..., 1)

CK4 (sesquilinearity): For all t in T, /or a/l a, b w ^t, the map fcfci->

w,(a; b) /rom & to C is linear and the map afci-»wt(a; b) is conjugate linear,

for each k such that l^
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CK5 (^-condition): For all t in T and for n = n(i), the map an, bn*-*

wt(a; b) of & x & to C factors through the map an, bn\-*a*bn of & x ^ to @l\

CK6 (multiplicativity): For all t in T such that tk = tk_1 we have

w t(a;b) = Wf t(fca; kb)

for all a, b in &„ where ka = (al9..., akak-ly ak+l,...,an) is in &Kl for a =

(«!,..., a f e _ l 5 ak, ak+1,..., an) in #t;

NCK (normality): For all t in T, all a in #t swc/7 f/ i f l f an = l, n = /i(t),

and for all b in ^t, J/ie map &wH->w t(a; b) of & to C is a normal map.

Proof. A straightforward verification.

1.3. Let ^ be a C*-algebra with identity and T a set: a projective system

of correlation kernels over &, indexed by T, is a family {wt: teT} of functions

w,:^ tx^ t->C such that conditions CKl to CK6 hold. If, in addition,

& is a W*-algebra and condition NCK holds, then the family is said to be a

projective system of normal correlation kernels. Notice that, for all t in T,

b in ^t, and a = (b1,..., fcn-i, 1) in ^t, the map 5MH-*wt(a; b) is a positive linear
functional on & by CK2, CK4 and CK5\ hence it is bounded.

Theorem 1.3 (Reconstruction Theorem). Let ^ be a C*-algebra with

identity, and let {wt: teT} be a projective system of correlation kernels over

38, indexed by T; then there exists a stochastic process (jtf, {jt: teT}, co)

over &, indexed by T, having {wt: teT} as its family of correlation kernels;

the process is unique up to equivalence. Moreover, if & is a W*-algebra and

{wt: t e T} satisfies the NCK condition, then the process is a W*-process.

Proof. We realize $0 as a concrete C*-algebra of operators on a Hilbert

space 3? with cyclic vector Q-, we use CKl, CK2 and CK3 to consruct 3? and

Q, and CK4, CK5 and CK6 to construct the maps jt and the algebra jtf'. First,

we construct a set X containing all the ^t and a positive-definite kernel w on

XxX. We define a partial ordering -< in T: put s-<t if n(s)gn(t) and s can

be obtained from t by deleting components of t = (tl9..., tn). Whenever s-<t

and s = (slv.., sm), t = (tl,..., tn) define 7C8>, to be the function from {!,..., m}

to {!,..., n} defined by

ic.it(m) = max{/; f, = sm}

icM(r) = max{/: /<ic. i t(r+l), tt = sr}, r<m,

and let/J be the embedding of ̂ 8 into ^t given by
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1 if l^Kst(r) for all r=l,..., m,6<=': «,.,;
Then /; is the identity map on ^t, and /?°/I=/? whenever s-<t-<ii. Let

X be the inductive limit lim {^g,/J: s-<t} in the category of sets; then there

exists maps it: &t-*X such that it°fl = iB for §-<t. By CXI we have w8(a;b)

= wt(/a a; / J b) for all s-<t, and a, b in ^g; hence there exists a kernel w on

X x X given by w(z t a; i tb) = wt(a; b) for all a, b in ,^t and for all t in T, and

by CX2 it is positive-definite. Then, by Theorem 1.9 of [13], there exists a

minimal Kolmogorov decomposition (jj?, v) of w so that v: X-+30', <*XX)»
v(y)y = w(x» )0 for all x, 3' in X, and ^f = v (v(x): xeX}.

Let S denote the linear span of {v(x): xeX}', it is dense in jtf* and its ele-

ments are of the form u(it(b)) for some t in T and b in ^t. By CXI, the vector

f(z,(l)) is independent of t in T; denote the common value by Q; then <&, O> = 1

by CX3. For all b in ^ and f in T, define the linear operator jt(b) mapping

2 into itself by jt(b)v(ij(3i)) = v(ittt(a, b)) where s, * = ($!,..., sm, 0 and a, b =

(£!!,...,«„, b). We have

(1.3) i;(it(b))=./t(b)0 for all t in T and b in #t,

and jt(l) is the identity map of Of by CXI. So far, only conditions CXI, CX2,

CX3 have been used. Now we use CX2, CX4 and CX5 to conclude that

so that jt(b) extends by linearity and continuity to a bounded linear operator

jt(b) on je with || jt(b) \\ g || b \\. From CX4, CX5, CX6 it follows that j, is a

^-representation of & for each f in T. Let j^ be the C*-algebra generated by

(jt(b): be&, teT} and let co be the vector state on <$£ given by co(a) = <£2, aO>

for all a in J3^. Then, by (1.3), it follows that Q is cyclic for $g in 3F and

(jaf, {jf: f e T}, co) is a stochastic process over & satisfying

w(Jf(a)*/tOO) = wt(a; b) f°r a^ t in T and a, b in ^t.

By Proposition 1.1, the process is unique up to equivalence. It is clear from the

construction that condition JVCX ensures that the maps n°jt are normal.

1.4. Let (stf, {jj, co) be a stochastic process over J*, indexed by T, and let

G be a group which acts on T; the process is G-stationary if there is a group

{U : g 6 G} of unitaries on the GNS space $P of (jtf, co) such that
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S: 17,0 = 0 and Ugnjt(b) = njgt(b)Ug

for all g in G and b in 38. Define an action of G on T by #(tl5..., tn) =

(gtl9..., gQ. A family {wt: teT} of correlation kernels is said to be G-

invariant if we have

S':w,,(a;b) = w t(a;b)

for all g in G, t in T5 and a, b in ^t.

Proposition 1.4. A stochastic process is G-stationary if and only if its

family of correlation kernels is G-invariant.

Proof. Condition S' implies that the processes (j&, {jt}9 co) and (jtf,

{jgt}> w) are equivalent: the existence of unitaries satisfying S and the group
property then follows from Proposition 1.1. The converse implication is clear.

When a process is G-stationary with G=T=R and the action of R on R

given by s, t*-*s + t, we shall simply say that the process is stationary.

1.5. Let Sn denote the symmetric group on n objects; define the action of

Sn on Tn by t^pt with p(tl9..., tn) = (tp(1^..., tpW) and on #t by b^pb with

p(bl9...9 &B) = (&P(I),..., &j,(n))- A family {w t:teT} of correlation kernels is
said to be symmetric if we have wpt(pa; pb) = wt(a; b) for all t in T, all a, b in

^t and all p in 5n(t), such that p(k)<p(l) if k<l and fk = f/; the family is said

to be totally symmetric if wpt(pa; pb) = w,(a; b) holds for all p in Sn(t) without

restriction. A stochastic process is said to be (totally) symmetric if the family

of its correlation kernels is (totally) symmetric.

Proposition 1.5. A stochastic process is symmetric if and only if the

algebras njt(&) and njs(&) at distinct times commute: [njs(d)9 njt(bj] = 0 for

all a, b in & whenever s^t; it is totally symmetric if and only if the algebras

at distinct times commute and the algebras njt(&) at fixed times are abelian.

(The proof is straightforward.)

Commentary on Section 1 and Supplementary Results

1.6. The definition of stochastic process given in Section 1.1 was framed

with the quantum theory of open systems in mind; it may be thought of as a

non-commutative version of a classical stochastic process in the sense of Doob

[1] and of Meyer [2]. A classical stochastic process with values in a measurable

space (5, #), indexed by a set T, is determined by a family {Xt: teT} of meas-

urable functions defined on a probability space (I, ^9 fi) with values in S;
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two processes indexed by the same set, and with values in the same space, are

said to be equivalent if they have the same finite-dimensional joint distributions:

(2)
Jl'^^ti Jn'^^tn "t" \ Ji'^-^ti Jn ^^tn

 v"t™
£(!) J j C 2 )

for each finite sequence {/i,. ••»/«} in a set of generators of the FF*-algebra
L°°(S, cf), and each finite sequence {tl9...,tn} of elements of T. Each Xt

determines a normal identity-preserving *-homomorphism jt of L°°(S, &)

into L°°(r, J*") by jr(/) =/°^t for each / in L°°(S, &\ the probability measure

jj, determines a normal state co on L00^, ^) by co(0)=\ gd^ for each 0 in

L00^, J5"), and the GNS representation induced by co is the quotient map of

L00^, ^} onto L00^, J^", //). Thus a classical stochastic process in the sense

of Doob defines a W^-stochastic process (jaf, {j'J, co) over an abelian W*-

algebra ^, with $£ abelian.

Conversely, let (jaf, {j'J, co) be a W ̂ -stochastic process over an abelian

algebra 38 with n(j&) abelian; then, by the representation theorem for abelian

W*-algebras [14] there exists a measurable space (S, ff) and a probability space

(Z, fF, fj) such that ^ = L°°(S, £) and 7i(j^Y = Lco(Z, &, /z), the state co is

determined by the probability measure #, and there exists a family {Xt: tE T}

of measurable functions Xt: S-+S such that jt(f)=f°Xt for each / in 38 (cf.

Lemma 2.3 of [3]). In this case, the equivalence condition of Section 1.1

becomes the equality of finite-dimensional joint-distributions; thus we can define

a classical stochastic process to be a FF*-stochastic process for which 38 and n(jz?)

are abelian.

A stochastic process (j&, {jt}9 CD) determines a family of local algebras whose

union generates $0; for processes in the sense of Doob and their non-commutative

versions, local algebras j*/F can be associated to finite subsets F of the index

set T, by defining jafF to be the C*-algebra generated by {jt(b): be&, teF}.

Also generalized stochastic processes in the sense of Gelfand [15] and local field

theories in the sense of Haag and Kastler [4] give examples of stochastic pro-

cesses when the index set is chosen and the local algebras are defined

appropriately; in these cases, it might be useful to regard two stochastic processes

as equivalent if there is a unitary U of &(1) onto tff(2) such that f7O(1) = O(2)

and Un(1\jz?(
F

1}yf = 7i(2\£/(
F

2^yU for all local algebras j&F.

When applied to stochastic processes in the sense of Doob, such a definition

provides a classification of stochastic processes which is too coarse for our
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purposes. It would imply thai two stochastic processes (j^(£), {j(
t
l)}, co(l)),

/' = !, 2, over g$ are equivalent if there exists a family {af: tE T} of ^automor-

phisms of @ such that

v*\ft?(fitf-ft^

••v12KO*7l?(^A)--^fKfri))
for all al9...9 an9 bl9..., bn in ^, and all tl9...9tn in T. For example, let

{T['}: te T}, i=l, 2, be two groups of measurable maps of a measurable space

(S, cf) into itself, define r j f ) : J' = LCO(5, <f)->^ by ^(f)=foT(
t
i\ j*u> =

j3f(2) = 0Rj>? j j i>= j(2) the natural embedding of g$ as the f-th factor, for each

t in K. Let v be a probability measure on (S, ef ) and define states o> ( f ) on ja/(i)

by

<»('W (air- j^VJ^^u-jll^i))
^vCT^CflO^--^^^^^...!!;^^)), / = !, 2;

then the processes (j/(f), {J,0}, co(0) would be equivalent, with a, given by

iL2^0 for each t in K.

The correlation kernels defined in Section 1.2 are determined by their values

wt(b; b) on the diagonal of ^ tx^ t; these are positive numbers and can, in

principle, be determined by sequences of measurement operations [4, 5,6];

if the set T of indices represents time, then only the correlation kernels with

ti<"' = tn will be accessible to measurement, but those at arbitrary times can
be deduced from the time-ordered ones when the commutation relations among

observables at different times are known. From the mathematical point of

view, correlation kernels provide a substitute for the finite-dimensional joint

distributions of classical probability theory (joint distributions do not exist for

non-commuting observables in quantum theory [16]), which are the basic objects

in the well-known theorem of Kolmogorov [7], which provides the reconstruction

of a classical stochastic process given a projective family of finite-dimensional

joint distributions. Our Theorem 1.3 is a non-commutative version, which

shows that a stochastic process can be reconstructed from a projective family

of correlation kernels.

In the classical case, the Kolmogorov construction does more : it shows that

every classical stochastic process over a given algebra Jf = L°°(S, £} and indexed

by a given set T can be realized by giving a state CD on a universal algebra j^,

with universal embeddingsj^ of 38 into j/ in such a way that all relations between

the image algebras j/s and jtft for s^f are given by the state alone; we
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state below (Theorem 1.7.1) a non-commutative version of this aspect of

Kolmogorov's theorem. In the classical case, the universal j/ can be taken to

be L°°(/7rS, 77T <f ) and the analytical content of Kolmogorov's theorem

asserts that, under weak topological assumptions on S, co induces a countably

additive measure on /7T(S, $)\ in other words, it gives a criterion for the

normality of the limit of a net of locally normal states. We shall not discuss

here a non-commutative version of this aspect of the theorem.

The first part of the proof of the reconstruction theorem, using little more

than Theorem 1.9 of [13] and the inductive limit in the category of sets, is very

general: it applies whenever & is a set with a distinguished element denoted by

1. In a sense it is the common part of all reconstruction theorems; for instance,

Wightman's reconstruction theorem [17] corresponds to the case in which T

is the test-function space y(R4) and 38 is the (non-normed) algebra of poly-

nomials in a single indeterminate <p: then jf(\)= 1 and jf((p
n) = </?(/)" f°r each/

in ^(jR4); of course, there is additional structure related to Poincare invariance

and local commutativity which is embodied in the additional Wightman axioms.

The Dubin-Sewell result [18] may be viewed as a reconstruction theorem and

proved by this procedure: there 38 is a normed *-algebra with identity which

is not closed (being the union of all local C*-algebras), T=R is the time-axis;

the additional axioms in this case ensure that the process is stationary and

deterministic: ]£&)"= J0(&Y for all t in JR.

1.7. If j*<0) is a C*-algebra and {./|0): te T} is a family of identity pre-

serving *-homomorphisms of 38 into jaf(0), it can be shown that a projective

family {wt: teT} of correlation kernels over 38 defines a state on jtf(0) if and

only if the algebraic relations of jaf(0) are respected by {wt: teT}. More

precisely, let (jaf, {jt}, to) be the stochastic process over 38 determined by

{wt: teT} through the reconstruction theorem; then there exists a state

on j& (0) such that

Wf(a . b) for all aj b in g^ t in T ,

if and only if

£jif(bt) = 0 implies Zjjbt) = 0
k k

for all finite sequences {tk: tkeT, fc=l,..., m} and {bfc: bke^ t fc, fe = l,..., m}.

In particular, if (cC/(0), {jf0)}, co(0)) is a stochastic process, then the process

(jaf, {jj, CD) obtained through the reconstruction theorem is such that jz/ is
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isomorphic to 7i(0)(j3f(0)); so all algebraic relations of j/(0) are preserved in jtf,

and further-statistical-relations may be introduced by the state co(0>, if 7i(°) is

not faithful.

We state without proof two theorems on the existence of a universal C*-

algebra for all stochastic processes (respectively, for all symmetric stochastic

processes) over a given C*-algebra ^, indexed by a set T; they are made plausible

by the considerations above. The proof of Theorem 1.7.1 is the same as in

Winnink [19].

Theorem 1.7.1. Let & be a C*-algebra with identity, and T a set. There

exists a C*-algebra with identity j/ and a family {]t: teT} of *-homomor-

phisms of 3$ into $0 such that any stochastic process (<%?, {jt}, CD) over &

indexed by T is equivalent to a stochastic process (j/, {jj, CD) where only CD

depends on (j/, {j,}, CD).

Theorem 1.782. A stochastic process (j/, {jt}, CD) over 3% indexed by T

is symmetric if and only if it is equivalent to a stochastic process (®T&,

{ij, CD), where ®T& is a C*-tensor product of isomorphic copies of £8 indexed

by teT, it is the natural embedding of & as the t-th component of the tensor

product, and CD is any state on ®T&.

The algebra $£ of Theorem 1.6 (cf. [19]) is a quotient of the free algebra

generated by the disjoint union of isomorphic copies of ^ indexed by teT;

the only algebraic relations imposed in $0 are those following from the re-

quirement that the {Jt:teT} are *-homomorphisms. The algebra ®T&

is obtained from j/ by quotienting out all commutators between observables

localized at different times. It is an analogue of the algebra Lm(IITS9 IIT(g))

of bounded measurable functions on the path space of a classical stochastic

process. Of course, all classical processes are symmetric, indeed, totally sym-

metric. Symmetric quantum stochastic processes over & = 38(31?) for some

Hilbert space 3F have been studied by Accardi in [3, 20].

1.8o For symmetric processes, the reconstruction theorem can be cast in

a form which is more similar to the original theorem of Kolmogorov [7]; first

we introduce some suitable notation. Let F(T) denote the collection of finite

subsets of T; for each E in F(T) let &E denote the functions from E to 3$

equipped with the operations of pointwise addition, multiplication and taking

of adjoints; for example, for /^ and /?2 in 88E we have (j81j82)(
s)=j8i(s)^2(s) for
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all s in E. For each t in T define an action of & on @E by (btfl)(t) =

(btfl) (s) = )8(s) for s ̂  r. For E, F in F(T) such that E g F let #£ be the embedding

of @E in @F defined for s in F by (glP) (s) = J8(s) for s in E, (0£0) (s) = 1 otherwise.

Let [•]: T-»F(T) be the map given by [t] = {f l9..., fj for each t = (f l v . . , fn)

in T, and let [•]: ^,->^[t] be the map given by [b](s) = ri{/c:fk=S} bk.
Let (j2/, {jj, co) be a symmetric stochastic process over a C*-algebra ^,

indexed by a set T; the family [<pE: EeF(T)} of functional given for each /?

in ^£ by <pjg(/0 = w( H 7S(^(S))) is called the family of expectations functional
seE

of the process.

Proposition 1.8.1. Tfte family {<pE: EeF(T)} o/ expectation functionah

of a symmetric stochastic process over 3$ satisfies conditions EF1,..., EF4\

if the process is a W*-process, condition NEF also holds:

EFl (projectivity): <pF(glf$) = <pE(P) for all E^F in F(T), j8 in @E\
EF2 (positivity): For all E in F(T), we have <pE(p*p)^Q for all f$ in @E\

EF3 (normalization): For all E in F(T), we have <pE(lE) = l where

lE(s) = l f o r all s in E i

EF4 (linearity): For all E in F(T) and all £ in @E, the map f}(s)*+

cpE(P) is linear for each s in E',

NEF (normality): For all E in F(T) and all ft in ^E, and t in E, the map

b*-*(pE(btp>) is a normal map.

Proof. A straightforward verification.

Let 3% be a C*-algebra with identity and T a set; a family {(pE: EeF(T)}

is said to be a projective system of expectation functionah over 3%, indexed

by T, if for each E in F(T), cpE is a functional on £%E with values in C such that

EFl to EF4 hold; it is said to be a normal projective system if & is a W*-

algebra and also NEF holds.

Corollary 1.8.2. Let & be a C*-algebra with identity, and T a set; let

{cpE: EeF(T)} be a projective system of expectation functionah over &, in-

dexed by T. Then there exists a symmetric stochastic process (&/, {jt}, CD)

over & indexed by T having {cpE: EeF(T)} as its family of expectation functi-

onals. The process is unique up to equivalence, and is a W*-process if & is

a W*-algebra and the system of expectation functionah is normal.

Proof. For each a, b in #t, t in T, put wf(a; b) = <p[t]([a*] [b*]*), we
check that if {(pE : E e F(T)} satisfies EFl to EF49 then {w t:teT} satisfies
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CKl to CK6 (and also NCK if NEF holds). Hence, by Theorem 1.3, there

exists a stochastic process (ja/, {jj, co) over ^, indexed by T, unique up to

equivalence, having {w t : tET} as its family of correlation kernels, so that

wt(a; b) = co(i/'t(a)*jr(b)). But [pt] = [t] and [/?b] = [b] for all permutations

p, so that the family {wt: teT} is symmetric, and

?[.](i>])=^(^
for all b = (^1,..., bn) in &t, t = (tl9...9 tn) in T, so that the expectation functional

are given by the process. Normality of the maps njt if NEF holds follows as

in Theorem 1.3.

§ 2. Markov Processes and Semigroups

2.1. In this section, "stochastic process" is to be taken to mean a triple

(j&9 {jt}9 co) as in the definition, where s& is identified with its GNS representation

n(jtf), so that jt — n°jt\ this is always possible up to equivalence. If ^ is a

W*-algebra and the maps jt are normal (W*-stochastic process), we shall take

jtf to be the FF*-algebra generated by {jt(b): be &, te T}; co is a normal state

on jtf. We shall also assume the indexing set Tto be totally ordered (for instance

N9 Z, R+9 jR), and we shall refer to it as to "time". For each t in T9 we

define the following C*-subalgebras of j& ( VF*-subalgebras, for a W*-stochastic

process) :

(2. la) ^^=

(2.1b) */< =v{jt(b):

(2.1c) j^ [ r=v {./„(&):

and for all £ < w we define

(2. Id) ^Ltit*=v{js(b

where vS denotes the C*-algebra (or the VP*-algebra) generated by a subset

5 of j/.

If j^ is a PF*-algebra and co is a faithful normal state on stf , a recent result

[21], which extends a well known theorem of Takesaki [22], shows that there

exists a family of canonical completely positive identity preserving maps £s>f of

j/fj into j/s], s-<f e T, compatible with co in the sense that
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(2.2) CD \ j* r] = a) [ j*afE8tt, s<teT',

they are faithful and normal, and satisfy the chain rule

(2.3) E,ttEtttt = E,iVis<t<ueT.

Such maps are conditional expectations if and only if each of the algebras

{ j/s] : s e T} is globally invariant under the modular automorphism group of $0

associated to co by the Tomita-Takesaki theory (in particular, when j/ is abelian).

Definition. A stochastic process (j&, {jt}, co), where ^ is a W*-algebra

and co is a faithful normal state on jtf, is said to be a Markov process if the

canonical maps {ESft: s<teT} compatible with co satisfy

M : EStt(s/lSin) g s/s for all 5 < t in T.

(This definition is a slight modification of the one in [23, 24, 3]).

Theorem 2.1. Let (jtf, {jt}, co) be a Markov process over & (38,jtf

W*-algebras, jt normal maps, co a faithful normal state on j/). Assume the

existence of the left inverse jf of jt, and let E^t be the identity map of J3ff].

Then

(2.4) ZStt=j*E,itjt,s£teT

defines a two-parameter family of completely positive identity preserving

normal maps of 38 into itself, satisfying

(2.5) ZSttZt>u = ZStU for all s^t^u in T.

Moreover, if the Est are conditional expectations, then

(2.6) £ro.JA,(«i)*--^n(fl»)*7jfr«)-"7r1(fci))

for all ^o = ^i = '" = ^i in T, a 19..., an, b j , . . . , bn in

Proof. For all s^t and all b in &, it follows from the Markov condition

M that ESttjt(b) is in &?s, so that j*ESttjt(b) makes sense, and Zst is well-defined

by (2.4); it is completely positive, identity preserving and normal, since it is

composed of maps having these properties. Using the chain rule (2.3) and

the fact that jtj* is the identity map on jtft9 we have

Zs.iZt,u = 7? Ea,tJtJf

proving (2.5). Again by (2.3), for t^t^-Zt,, we have
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Etn_l>tn; if the ESit are conditional expectations, the left hand side of (2.6) becomes

Then (2.6) follows from (2.4), the Markov property M and the fact that jfjt

is the identity map on #/t.

2,2* If the {ESit: s<teT} compatible with co are conditional expectations,

there is a projective family {Es] : s e T} of conditional expectations Es] of j/ onto

j/s], se T, compatible with co, such that ESjf = Es] |" jaff] for all s<t in T; and the

Markov property M is equivalent to

M':£s](j/[s)=j/s for all s in T.

We list some properties of the family {Es] : s e T} which we are going to use

in the following:

El: Esl(ab)=Es-l(a)b for all a in ,$?, b in ^ s in T ;

E2 : co = co r «^]°ES] for all s in T ;

E3: £s]£r]=EffAf] for all s, t in T;

and if T=R and the process is also stationary, with group of automorphisms

{ut=Ut(.)U.t:teR},

E4 : wfEs] = ES+ tfit for all s, t in R.

Conditions E1-E4 can be formulated also when $£ is only a C*-algebra and co

is not a faithful state. If maps satisfying El and E2 exist, they satisfy also E3

(and £4 in the stationary case) if the GNS representation of j/s] determined by

co I J3fs] is faithful for all s. We can use conditions El to E4 and M' to define

a version of the Markov property which makes sense also when j/ is not a

PF*~algebra and co is not faithful.

Definition. A stochastic process (jtf, { jj, co) is said to be a Markov process

with conditional expectations if there exists a family {£s]: s e T} of conditional

expectations £s] of jaf onto jafs], s e Tsatisfying El to E3 (and E4 in the stationary

case) and the Markov property M'. For a !^*-process, the {Es]: seT} are

required to be normal.

Theorem 2.1 holds for a Markov process with conditional expectations,

apart from normality of the maps ZSjf, which is only ensured for a W *-process.

Moreover, if T=R and the process is also stationary, the Zs>s+t is independent

of s for all £^0 by £4, so that, defining
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(2.7) Zt = ZStS+t for all s in R, t^Q,

{Zt : £ ̂  0} is a semigroup of completely positive identity preserving maps of @

into itself, leaving invariant the state co0 = co°j0 ( = a)°jt for all t in M).

The following is a straightforward consequence of Theorem 2.1.

Corollary 2.2.1. T/ie time-ordered correlation kernels wt, teT, t =

(t1,...,tn), ti^-'-^t^ of a Markov process with conditional expectations are

given by

(2.8) w^a;^

for all a = (al9..., art), b = (b l9...9 bn) in ^,; fn particular, if the process is also

stationary,

(2.9) w^aj^

The relations (2.8), (2.9) are known in the literature of physics [25, 26, 27]

as the "quantum regression theorem".

Definition. A stochastic process (jaf , {jj, co) over & indexed by T is said

to satisfy the regression relation if there is a family {ZSjf: s<£} of maps of &

into itself such that equation (2.8) holds.

Definition. We say that jtf is generated as a vector space by the time-

ordered products if, for each s in T, J3fs] (resp. j^j-s) is the closure, in the ap-

propriate topology, of the linear span of the products jtn(^n)'"Jt1(bi\ with

blv.., bn in @ and t^ — ̂ t^s (resp. s^^---^).

Theorem 28292e Le£ («£/, {jj, a?) be a stochastic process such that for each

s in T the GNS representation o/j2/s] determined by co [ ja/s] is faithful, and ^

is generated as a vector space by the time-ordered products. Then, if the

regression relation holds, (jtf, {jt}, co) is a Markov process with conditional

expectations.

Proof. We give the details of the argument for a W *-stochastic process;

the proof for the C*-case is an obvious modification. With the usual identi-

fication of J3f with 7i(j3f ), acting on 3F with cyclic vector Q, let ^fsj be the closed

subspace jafs]O of 3? , and Ps] the orthogonal projection of 3? onto 3?s^ for

each s in T. For x in ^(^), regard Ps]xPs] as an element of ^(^fs]), and

define 7is]: j/s]-»^(^s]) by 7is](a) = Ps]aPs] for a in J3fs]: then (3?^ TTS], Q) is

the GNS triple associated with (j3fs], co f j/s]), since Ps] commutes with all ele-
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ments of ja^s] and leaves Q invariant. The map 7isJ is normal, and faithful by

assumption, hence n~^ exists and is a normal * -isomorphism. It follows from

(2.8) and the assumption of the theorem that

for all w-tuples (f^..., tn) in T such that s^tl ^•••^=tn, and all ai9..., an, bl9..., bn

in 38.

We conclude from this and the assumption of the theorem that

(2. 1 0) PS^SPS} g

since the maps flH-»Ps]0Ps] and fli-»7rr](a) are bounded and normal, TTS] is a re-

presentation and &fs is a PK*-subalgebra of the H/*-algebra J3fs]. For all a in

j/[s and 6 in j^s], we find that P^abP^ lies in 7rs](jafs]) since

By assumption, $# is the closure of the linear span of {ab: a

hence Ps]^Ps] = 7r5](j2/5]). Now define £s]: ja/-*j^s] by

(2.11) £s](a) = 7is-]
1(Ps]flPs]) for all a in ^;

it is completely positive, identity preserving and normal, and by (2.10) it satisfies

the Markov property M'. For a in j/ and fr in j^s], we have

so that £s] satisfies £1 (that is, it is a conditional expectation of j/ onto J3fs]);

it satisfies the compatibility condition E2 since Ps]O = O. The projectivity con-

dition £3 follows from the fact that the {Es]: seT} are uniquely determined.

The same argument works for the C*-case, with the appropriate change of

topology.

2.3. In this and in the following sub-section we study a perturbation theory

for stationary Markov processes with conditional expectations, which is based

on a generalization [8, 9] of the ideas underlying the Feynman-Kac formula.

Definition. Let (jaf, [jt}9 CD) be a stationary Markov process indexed by

JR, with group of automorphisms {ut\ teR} and conditional expectations

{£r] : t € R} . A family [mt : t^. 0} of completely positive identity preserving maps

of j^ into itself is said to be a Markovian cocycle relative to (jtf , { jj, a>) if the

following conditions are satisfied
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MCI: m s+ f = m sw sm fw_ s for all s, r^O;

MC2: mr maps J2/[0 into itself for all t^O;

MC3: mr commutes with £fj for each rg:0.

Theorem 2.3. Let {mt: f ^ O ] be # Markovian cocycle relative to a stati-

onary Markov process with conditional expectations (jaf, {jt}, co) over 38 .

Then

(2.12) 2t

defines a semigroup of completely positive identity preserving maps of ^ into

itself, and

(2.13) E0](^17V1(fli)*---wJJflB)*/MjJW..-m f iy<1(fri))

/or a// Ogr t ^ • • • rg f , , in R, a^..., an, bl9..., bn in 3$, and for all n.

Proof ([8, 9]). For all b in 0, mrjf(b) is in j^[0, by MC2, so that E^mtjt(b)

is in jaf0 by the Markov property M', and Zr is well-defined; it is completely

positive and identity preserving by construction. Moreover, for all s, £^0,

we have

0]mfMr jo (since j0;g is the identity map of jaf0)

snitutj0 (by £4)

=j$E0iE8fn8u8mtutj0 (by MC3)

=j$Erfn8uamtutj0 (by £3)

=;§£0]ms+rws+ J0 (by MCI)
=='2,s+r

Equation (2.13) is obtained by replacing £0] in the left-hand side by £0]£f l]---

£,„_,], which is permissible by £3, and by using El, MC3 and (2.12) (cf. the

proof of Theorem 2.1).

2 A Consider a stationary Markov process whose group of automorphisms

{ut: teR} is strongly continuous with infinitesimal generator 6. Then also

(Z,=jg£0]wJ0: f^O} is strongly continuous, with infinitesimal generator L.

Let v be a self-adjoint element of &9 and let { ut : re R} be the strongly continuous

group of *-automorphisms of jaf whose infinitesimal generator is

o = d + ilJ0(v),--] on 0(5).
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Lemma 2.4.1. The family {mt: t^O} defined by

(2.14) mt = utu_

is a Markovian cocycle. The corresponding semigroup {Zt = j J£0]m j, : t^

is strongly continuous, with infinitesimal generator

(2.15) I=L + i[t;, •] on

Proof. For all am ^ and t^O, we have (see e.g. [28]),

(2.16) mt(a)=a + Ei» ( - ( [jtl(v)9 [..., [./,», «]
n=l J J

O^tl^-^tn^t

= MtaM*,

where

(2.17) Mt = l+f,i

Then it is clear that {mt: r^O} satisfies MC2 and MC3, and it satisfies MCI

since both {ut} and {ut} are groups. Finally, for any b in ^ we have

It follows from the explicit expression (2.16) of mf that the second term of the

right-hand side tends to the limit i[v9 b] as £-»0, then (2.15) follows.

Lemma 2A2. Define jt = utj0, teR, and let

(2.18) j/t=jt&, J3^= v {s/s: s^t}, j/Lt= v {j/u: t^u} .

Then

(2.19) «^] = ̂ ] /or ^0 and <s/lt = jtflt for ^0.

Proo/. From the proof of Lemma 2.4.1 it is clear that j^,i=^] f°r a^
^0. By interchanging the roles of ut and ut9 the converse inclusion follows.

The second half of (2.19) is shown in the same way, considering the perturbative
series for utu^t and utu,t for negative times (cf. [28]).

Lemma 2A3. There exists at least one state CD on jtf which is invariant

under ut and compatible with £0]. Then also Zt has at least one stationary

state, namely c5° j0.

Proof. Let co be a weak* limit point as f->oo of the net <—\ a)°usds:
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t ^ o[, the integrals being weak* Riemann integrals. Such a limit point always

exists by the weak* compactness of the set of states on a C*-algebra with identity.

Then co is invariant under ut by construction. Since, for all s^O,

(2.20) wsE0] = mswsE0] = msE^us=E^msus=Es^us

and co is compatible with all Es], co is also compatible with £0]. Finally,

a>ajQoZt = co°E0]w J0 = 00° j0 .

Theorem 2.44 Under the assumptions and with the notations introduced

above, (stf , {jt}9 co) is a new stationary Markov process over &, with associated

group of automorphisms {ut: teR} of <&?, semigroup [Zt: t^Q} of &, and

conditional expectations {En: j^~>j/f]; t eU} which coincide with Ef] for

Proof. By Lemma 2.3, (jaf , {jt}y co) is a stationary process with group of

automorphisms {ut}9 and co is compatible with the maps

(2.21) E^HtEop-,, teR,

which are conditional expectations onto j^-j = ut jaf0-j, teR, and satisfy the

covariance condition £4 with respect to {ut}. Moreover, we have

£f] ̂ 4 = Mt^O]^EO = "r^0]̂ [0 = "t-^0 =^

by Lemma 2.2 and the Markov property of the original process. Similarly,

for s^r in IS, we have, by (2.20),

so that the projectivity condition £3 holds. Then (jaf, {Jr}, co) is a stationary

Markov process with conditional expectations. The semigroup associated to

it is {Zr} given by (2.12), since jB0] = £0]. We have also, by (2.20), Er] =

utEolu_t = Et]U_tut = En for all t^O.

Comments and Remarks

To 2.1: In the classical case (j^, ^ abelian IF*-algebras, co a faithful

normal state) the canonical maps Es>t are always conditional expectations, and our

definition of the Markov property is equivalent to the usual one for processes

in the sense of Doob, indexed by a totally ordered set. However, it should be

mentioned that the Markov property is of interest also for stochastic processes

indexed by a set T which is not totally ordered (multi-dimensional Markov
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property); in particular, it is relevant for those classical generalized stochastic

processes which are the Euclidean version of quantum field theories (see e.g.

[29, 30]). For a non-commutative formulation of the multi-dimensional

Markov property, see [23].

To 2.2: By Corollary 2.2.1 and Theorem 2.2.2, the regression relation

(2.8), or (2.9) in the stationary case, is characteristic of Markov processes with

conditional expectations, under some conditions on the commutation relation

in j^. In particular, (2.8) holds for all classical Markov processes, ensuring

that a classical Markov process is uniquely determined by its associated evolution

{ZSit: s^tG T} on ^ and initial distribution co0 = a)°j0 (0 = min T), or stationary

distribution in the stationary case. This is no more the case for non-com-

mutative Markov processes; see for instance [3, 20] for the structure of symmetric

quantum Markov processes and the formula replacing (2.8) in that situation.

However, non-commutative stochastic processes satisfying the regression

relation have an obvious interest. Lindblad [31] takes the regression relation

as a definition of the Markov property, in the framework of a theory of sto-

chastic processes whose basic objects are the time-ordered correlation kernels.

It is worth mentioning the fact that the regression relation (2.9) is a strictly

stronger propcrcy than the semigroup property for the reduced dynamics :

SG: There exists a semigroup (Zr: t^O} and an invariant state co0 on ^

such that

for all al9 a2, bl9 b2 in £% and t1^t2 in R.

This was already known for classical stochastic processes [32]; Lindblad

[33] has provided a quantum-mechanical example of a process satisfying SG,

and not the regression relation, which retains a perfect memory of the initial

state; it is non-Markovian also with our definition of a Markov process. A

version of Lindblad 's example is given in the Appendix.

It is an interesting question whether it is possible to construct a stationary

Markov process (with conditional expectations) over ^, indexed by R, given

a semigroup {Zt: t^O} of completely positive identity preserving maps of ^,

with an invariant state o>0, in such a way that the regression relation (2.9) holds.

This is known to be the case for classical stochastic processes (Kolmogorov-

Daniell construction): the semigroup and the stationary state give the time-

ordered correlation kernels, and all the correlation kernels are obtained by
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permutation symmetry. More generally, Theorem 2.2.2 suggests that a

construction is possible if some commutation relations in jtf are given in advance,

so that all the correlation kernels can be constructed from the time-ordered ones,

and s0 is generated as a vector space by the time-ordered products of jt(b),

b e &, teR. In the following section we perform this construction for a class

of processes on the Clifford algebra, which we call quasi-free. A similar con-

struction for non-commutative Gaussian processes on the CCR algebra can be

found in [34].

To 2.3 : For other work on quantum versions of the Feynman-Kac formula,

see [35, 36, 20, 31, 38]. We refer to [8] for a detailed discussion of the structure

presented in Theorem 2.3.

Markovian cocycles consisting of maps which do not preserve the identity

could also be considered [8, 9], then the semigroup Z, of Theorem 2.3 would

not be identity preserving.

To 2.4: Lemmas 2.4.1 and 2.4.2 have an obvious W*-version under the

condition that {ut: teR} is continuous in the !4/*-topology. Then also un-

bounded self-adjoint i/s affiliated to ja^0 could be considered. The convergence

of the right-hand side of (2.16) is all that is needed in order to define the Mar-

kovian cocycle mt, and hence the weakly* continuous semigroup Zf; then the

generator L of Zf can be taken as a definition of the sum of L and i[y, • ] (cf.

[39] in the classical case).

Lemma 2.4.3 is proved using the M/*-compactness of the set of states on a

C*-algebra and the strong continuity of {ut: re I?} hence it has no obvious FF*-

version; thus also Theorem 2.4.4 has no obvious W*-version.

An analogue of Lemma 2.4.1 still holds if one allows an explicit time

dependence of v e&. If 1 1-> v(t) = v(f)* is a continuous function on R, with
values in ^, we can put

for s ̂  t in it ,

for

Then mSff is completely positive, identity preserving, and

"V*mM = ms,« for s^t^u in JR;
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mSit maps j/[s into itself and commutes with £f] for each s^ t in R. Proceeding

in analogy with Theorem 2.3, Lemma 2.4.1, we can put

Z8tt=JfE8jm8ttjt9 s^t in K;

then

_jLzSjf(6) = ZSjr(L(b) + i[>(0, &]) for all 6 in 0(L),

and

ZSttZtfU = ZSiU for all s^t^u in H.

Letting Jf = w0jj? = m0jfwJ0, we find also in analogy to (2.13)

for all Og^g- ' -g^ in I?, al9..., an, &13..., bn in ^, and for all n. The process

(j^5 {JJ, co) is neither stationary nor Markov, in general, but conditional

expectations onto j/t^ which are compatible with a> exist for tgrO, since ^ =
ja^ for f^O. Since {ut = m0itut: teR} is not a group of automorphisms of

jaf , there will be no choice of a state c5 on j^ which makes (j^, { JJ, CD) a stationary

process, moreover, a limit point of <— \ coousds> need not be invariant under

{ut: teR}. So there is no analogue of Theorem 2.4.4 for time-dependent
perturbations.

§38 Processes on the Clifford Algebra

3.1. We recall some preliminary information about the Clifford algebra

and the quasi-free states and quasi-free maps on it [40,..., 45].
The Clifford algebra A(H) over a real Hilbert space H is the (unique up to

*-isomorphism) C*-algebra generated by the identity 1 and the self-adjoint

elements B(ti), linear in heH9 satisfying the canonical anticommutation rela-

tions

(3.1) B(h)B(k) + B(k)B(h) = 2(h,k)l for all fc, fc in H.

The map h\-+B(h) is continuous and ||5(ft)|| = ||ft|| for all h in H.

Let M, If be real Hilbert spaces. For any isometry X of M into H there
is a unique *-isomorphism, denoted by A(X\ of A(M) into A(H), such that

(3.2) A(X)(B(ml)..-B(m1J)=B(Xrn1y'B(XmJ for all m l5...s mn in M.
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A state co on A(H) is said to be quasi-free if

(3.3a) co(B(hi)-"B(h2n+1)) = Q for all n = 0,1,... and all /zl3..., h2n+1 inff,

(3.3V) co(B(h^B(h2n)) = E (sBnp)flo)(B(hp(2r_^B(hp(2r$
pe&n r=l

for all n = l, 2,... and all ftlv.., h2n in HI

where £Pn is the set of those permutations p of {!,..., 2n} such that p(2r — l)<

p(2r) and p(2r — 1) < p(2r + i) for all r=l,..., H, and sgn/7 is the parity of/?.

There is a one-to-one correspondence between quasi-free states CD on

4(H) and skew-adjoint contractions Q on H, given by

(3.4) co(B(h)B(k)) = (DQ(B(h)B(k)) = (h, k) + i(Qh, k).

Notice that a skew-symmetric bilinear form g ( « , - ) on H is given by q(h, k) =

(Qh, fc), Q being a skew-adjoint contraction on If, if and only if

(3.5) g ctcjl(ht9 hj) + iq(ht, lift ^0,

for all finite sequences {qeC: z = l,..., n} and {hteH: z = l,..., n}.

The GNS representation of ^(JT) determined by a quasi-free state CL>Q is

faithful, since COQ is a product state of a faithful state and a state on a simple

C*-algebra [42].

The following Lemma is a rephrasing of results due to Evans [43, 44],

Fannes and Rocca [45].

Leniina 3.1. If Z is a completely positive identity preserving map of A(H)

into itself satisfying

(3.6a) Z(B(h)) = B(Th) for all h in H,

where T is a linear operator on H and

(3.6b) a}Q°Z = a)Q

where COQ is a quasi-free state on A(H), then

(3.7) g cfjMt, hj) - (Thi9 Thj) + i(Qht, hj) - i(QTh» Thft * 0

for all finite sequences {ct} in C and {ht} in H, which in particular implies

that T is a contraction. Conversely [43, 44, 45], given a contraction T and a

skew-adjoint contraction Q on H satisfying (3.7), there is a canonical com-

pletely positive identity preserving map of A(H) into itself, satisfying (3.6a),

(3.6b).
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Proof. Z maps the linear span of (B(h): heH} into itself and is a con-

traction with respect to the semi-norm :

\\X\\% = COQ(X*X\ xe\mc{B(h): heH}

since

o>Q(Z(x)*Z(x)) g coQ(Z(x*x)) = a>Q(x*x)

by the Kadison-Schwarz inequality. This fact is expressed by (3.7). Conversely,

if (3.7) holds, then Tis a contraction and

(3.8a) coZWhJ. - *B(hk)) = co^Dh,)- • -B(Dhk))

where D = (l-r*!T)1/2. Hence a completely positive identity preserving map

Z can be constructed by letting [43, 44, 45]

(3.8b)
partitions

where &>Q(-) is defined by (3.8a), the summation extends to the partitions of

{!,..., n} into two sets {i'i <•••</„,}, {/m+1 < • • • < / „ } and sgn/? is the parity of

the permutation {!,..., n}*-*{il9...9 /„}.

Definition. A map defined by equations (3.8a), (3.8b) is said to be a quasi-

free completely positive map, and denoted by AQ(T).

Notice that AQ(Q) = O)Q(-)II if Tis an isometry commuting with Q then

AQ(T) coincides with A(T) defined by (3.2), and AQ(T) is a conditional expect-

ation, compatible with COQ, if and only if T is an orthogonal projection com-

muting with Q. The set ^Q of contractions T on H satisfying (3.7) is a

semigroup, and T^AQ(T) is a homomorphism of &*Q into the set of completely

positive identity preserving maps on A(H).

3.2. Let {Xt: teR} be a family of isometrics from a real Hilbert space

M into a real Hilbert space H, such that H= v{Xtm: reH, meM} and let

Q be a skew-adjoint contraction on H. Let jtf = A(H), and let

(3.9) Jt = A(Xt): A(M) - > A(H\ CO = COQ.

The stochastic process (jtf, [jt}9 co) over A(M), indexed by H, is said to be a

quasi-free process. Notice that t*-+jt is strongly continuous if and only if

t^Xt is.

Theorem 3.2.1. A quasi-free process over A(M) is determined up to equi-

valence by its covariance function

(3.10) a}(jtB(m)jt.B(m')) = (m, K(t, t')m')+i(m9 K°-(t, t') m'), m, m' E M, r, t'eR,
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where K(t, t') and KQ(t, t') in &(M) satisfy

K(t, t)=\ for all t in R,

(3.11 a) K(t, t')* = K(t\ r), &Q(t, t')*=-K<*(t', t) for all t, t' in R,

(3.11 b) Z cicjL(mh Ktib tj)mj} + i(m

for all finite sequences {q) in C, {t,-] in R and {mt} in M.

Proof. If (j^, {jj, co) is a quasi-free process over A(M), then K(r, t')

= X*Xt> and KG(f , r ')= -X*QXt, satisfy all the above properties. Conversely,

given K( •, •) and K°-( •. •) satisfying the above properties, K( •, •) is a positive

definite kernel on RxR, and has a minimal Kolmogorov decomposition [13]

Xt: Af->//, each Xt being isometric. Then KQ defines a skew-symmetric form

q on H via

for all finite sequences {/??,-], {m}} in M, {cf], {c}], {rf}, {f}) in M. By (3. l ib ) ,

cf. (3.5), q is given by a skew-adjoint contraction Q on //. Then H, {Xt} and

0 can be used to construct the quasi-free process; they determine all the cor-

relation kernels, hence the quasi-free process is determined up to equivalence.

Theorem 3.2.2. A quasi-free process is stationary if and only if there

exists a group {Tt: teR] of unitaries on H such that

(3.12a) TtXs = Xs+t for all t, s in «,

(3.1 2b) T(Q = QTt for all t in R,

and

(3.12c) ut = A(Tt) for all t in R.

Proof. If the process is stationary, K(s, s') = K(s + t, s' + f) for all 5, s', t

in R. By the uniqueness of the minimal Kolmogorov decomposition of a

positive definite kernel [13], there are unitaries {Tt: teR] on H such that (3.12a)

holds. The group property is checked in a straightforward way. Moreover,

also KQ(s, s') = KQ(s + t, s' + t) for all 5, s;, t in R, hence T~lQTt = Q for all t

in JR, and (3.12b) holds. Then for all s l 5 . . . , sn, t in R, / 7 7 l 5 . . . , mn in M, we have

so that (3.12c) holds. Conversely, if (3.12a) and (3.12b) hold, define ut by
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(3.12c) and check that utjs=js+t for all 5, t in R, wQ°ut = o}Q for all t in R.

33. Now we study Markov processes with conditional expectations.
Since A = A(H) is generated as a vector space by the time-ordered products, such
processes are exactly those for which the regression relation (2.8) holds, by
Corollary 2.2.1 and Theorem 2.2.2. If COQ is a separating state (equivalently,
if Ker(l-g*Q) = {0}), it is possible to show that conditional expectations
Eft onto sfft=A(Hft), compatible with a)Q, exist if and only if Pf] commutes with
Q, in which case Et-] = AQ(Pn) for each t in R (use Takesaki's theorem [22] and
the explicit form of the modular automorphism group associated to a separating
quasi-free state [46]). In the general case (Ker(l — Q*Q) arbitrary), for the
sake of brevity we make the following

Definition. A quasi-free process (jtf, { jj, CD) is said to be a quasi-free
Markov process if it is a Markov process with conditional expectations given by

(3.13) En = AQ(Ptj) for all t in JR.

Theorem 33.1. A quasi-free process is quasi-free Markov if and only if

(3.14a) K(s,t)K(t,u) = K(s,u) for all s^t^u in R

and

(3.14V) KQ(s,i)=-QsK(s,t) for all s, t in R,

Qs being a skew-adjoint contraction on M.

Proof. Suppose that the process is quasi-free Markov. Then Q commutes
with all Pf], and AQ(Pt^A(HLt) = A(Ht) implies PtJHLt = Ht, where HLt= v {XUM:
t^u} and Ht = XtM. Then H can be decomposed as H = D~@Ht@D+, where
D~ = HtliQHt, D+=HLteHt. Hence ((l-Pr)Xsm, (l~Pt)Xum') = 0 for all m, m'
in M, s rg t^w in R, where Pt = XtX* is the orthogonal projection of H onto
Ht. But this can be re-written as

(m, (jK(s, u) - K(s, t)K(t, u)) m1) = 0 for all m, m' in M ,

which is (3.14a). Moreover, for s^t,

s, 0= -*?G*,= -^S*PS]Q^S= -X?QPs,Xt= -XfQXsXfXt ,

since PslXt=PsXt for s^t by the Markov property, which proves (3.14b)3 with
Qs=XfQXs.

The argument can also be reversed: (3.14a) implies that Pf]JF/[t = Hf, and
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(3.14b) implies that

(QX.m9 (l-P,)XX) = (Q.ro, K(s, u)m')-(Qsm, K(s, t)K(t, u)m'),

which vanishes by (3.14a)? for all m, mr in M and s^t^u in R; so that QHt^ is
orthogonal to Df, Q maps H^ into itself, and commutes with Pt], being skew-

adjoint. Then AQ(Pt$ exists and A(Pt^)A(Hlt) = A(Ht).

In the special case of a stationary quasi-free Markov process, the semigroup

Zt=j$E0iJt is given by

where St = X$Xt9 which is a semigroup by Equation (3.1 4a), and where Q0

= X*QX09 which is clearly a skew-adjoint contraction. Condition (3.7) holds

by construction.
We prove a converse result.

Theorem 3.3.2. Let {Zt = AQo(St): t^O} be a semigroup of quasi-free

completely positive maps of A(M). Then there is a stationary quasi-free

Markov process over A(M) such that {Zt: ^0} is the semigroup associated to

it, and the process is unique up to equivalence within the class of quasi-free

Markov processes.

Proof. Define a covariance function by

(3.15a) f
X(s,0 =

(3.15b) (

and

(3-15c) f
K<*(s,t) = \

(3.15d) I

Clearly K(s, t) and K<*(s9 i) satisfy conditions (3.11a), (3.14a), (3.14b). We
prove that (3. lib) holds. We have

(3.16) E W&m* K(ti9 tj)mj) + i(mi9

From the proof of Lemma 3.1, we know that {Zr: ^0} is a semigroup of con-
tractions on linc{jB(m): meM} with respect to the semi-norm \\X\\Q = CQQ(X*X).
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A semigroup of contractions on a Hilbert space determines a positive definite

function [47] hence the expression (3.16) is non-negative. It follows that the

covariance function defined by Equations (3.15a-d) determines (up to equiv-

alence) a quasi-free Markov process, which is also stationary by the proof of

Theorem 3.2.2. The semigroup {Z't: t^Q] associated to the process satisfies

Z'tB(m) = B(Stm) for all m in M and a)Q°Zf
r = a)Q for all f ^ O ; and it is not

difficult to see that it is indeed Z't = AQo(St) = Zt. Conversely, any quasi-free

Markov process such that the associated semigroup is AQo(St) has (3.15a-d)

as its covariance function, which proves uniqueness up to equivalence.

3.4. We characterize the class of those quasi-free Markov processes which

satisfy a quantum Langevin equation.

Theorem 3.4.1. Let (jtf, {jj, COQ) be a stationary quasi-free Markov

process, with associated semigroup {AQo(St): ^0}; let {St} be strongly con-

tinuous with infinitesimal generator G. Then the following are equivalent:

(i) lim||^Qo(Sr)(fc)-a;Qo(6)1||=0 for all b in A(M);
f-»oc

(ii) there is a family {£p: teR} of linear operators from &(G) into H such

that

(£pm, <^m') = (* A*')(-(Gm, m')-(m, Gm'))

for all f, t' in R, m, m' in &(G),

H=v{tfm: teR, roe^(G)}

and {jt} satisfies the following Langevin equal ion:

(3.17) jt(B( m)) -js(B(m)) = ju(B(Gm))du +
Js

for all s^t in R, m in ®(G).

Proof. From the explicit form (3.8a, b) of AQo(St)9 we see that (i) holds

if and only if lim ||Srm || =0 for all m in M. By [48] Theorem 4.2, [13] Theorem
r-»oo

3.15, this is equivalent to

Xtm - Xsm = T XuGm du + (tf - ^)m
)s

for all s^t in R, m in ^(G), where {cp: teR} is a family as described in (ii);

the conclusion of the theorem follows since B: H-*A(H) is linear and isometric.

Notice that {AQo(St): £^0} is strongly continuous; if we denote its infini-

tesimal generator by L we have B(m) e @(L) if and only if m e ^(G) and



QUANTUM STOCHASTIC PROCESSES 125

LB(m) = B(Gm), so that Equation (3.17) can be re-written as

jf(B(m)) -js(B(m)) = { jvL(B(m))du + J3((ff -

We can produce non-trivial examples of stationary Markov processes which are

not quasi-free by applying to a stationary quasi-free Markov process the per-

turbation theory which we have developed in Theorems 2.3 and 2.4.4. Then

we have the following

Theorem 3.4.2. // {jt} satisfies the Langevin equation (3.17) and the

operator v = v* defining the perturbation is an even element of A(M)9 then the

perturbed process {]t} satisfies the following Langevin equation:

(3.18) ]t(B(m)) -]0(B(m)) = (' ]u(B(Gm) + /[>, B(m}~]}du
Jo

for all m in @(G) and t ̂ 0, L being the infinitesimal generator of the perturbed

semigroup {Zt: ^0].

Proof. We use the notation of Lemma 2.4. 1 . By standard perturbation

theory, we have

(3.19) UB(m)) = utj0(B(my) = ut

=jt(B(m)) + as(lij0(v), j,-sJo

We use the Langevin equation (3.17) to compute jt(B(m)), jt_s(B(m)). Since

j0(v) is an even element of A(H0) ^A(H0^) and (cf — <^o)w i§ m tne orthogonal

complement of //0] [13, 4$],j0(u) commutes with B((£f — £$)m). Remembering

that J0 =j o we are left with

)) -J0(fl(w)) = (' ju(B(Gm))du

OJiliJo(»)> j0(B(m))~])ds + \ \ Ma([y'o(iO, j«(B(mm)duds .
o JoJo

The first and the last term on the right-hand side can be combined together as

in equation (3.19), to give \ ]u(B(Gm))du, and the third term on the right-hand
Jo

side is \ [iju(v)9 Ju(B(m)y]du. This proves (3.18).
Jo
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Remarks

To 3.2: Quasi-free processes are an analogue of classical Gaussian pro-

cesses, in that they are completely determined by a Hilbert space structure.

For analogous ideas for processes on the CCR algebra, see Lindblad [49], and

[34].

To 3. 3: Theorem 3.3.1 is an analogue of Doob's theorem [10]. Sta-

tionary quasi-free Markov processes have been constructed from a semigroup

{Zt: t^O} by Schrader and Uhlenbrock [36], in the special case Zt = AQ(St).

A similar construction has been used by Evans [43, 44] in his study of dilations

of quasi-free semigroups satisfying \_Qg, SJ = 0.

It is conceivable that there are quasi-free processes which are Markov

without conditional expectations; we do not investigate this problem here.

To 3.4: The Langevin equation (3.17) bears no reference to the state a>Q

in (X, {jj, COQ); given ^ and jaf, it determines {jt: teR} but different choices

of coQ could make the resulting process Markovian or not, according to whether

or not Q commutes with the projections {Pf]: teR}.

The automorphism group of the perturbed process described in Theorem 4.2

is quasi-free if and only if the map B(m)*-*i[y, 5(m)] is quasi-free.

§4. Examples

We sketch how model systems of the Hepp and Lieb type [11, 12] can be

regarded as perturbations of quasi-free processes.

4.1. The elementary building block of this class of models is a fermion

coupled to two infinite fermion reservoirs in the Fock vacuum state (O0, • Q0)

with a total Hamiltonian [12]

(4.1) H° = £a*a

where a*, a are the creation and annihilation operators of the fermion, and

B(co)*, C(co)s are the creation and annihilation improper operators of the

fermion reservoirs. The above Hamiltonian is formal, but the evolution gen-
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crated by it can be defined rigorously as a limit of evolutions generated by

regularized Hamiltonians. The reduced dynamics of the fermion is given by a

dynamical semigroup {Zt: t^O} satisfying [12]

(4.2) Zt(d) = e-^-v'a, Zt(a*d) = e~2^ a*

where

Via a Bogoliubov transformation

^(^^(^^^^^

the coupling between system and reservoir becomes

and the algebra generated by {«*, A(a})*: coeR} is globally invariant under

the evolution generated by the Hamiltonian (4.1). This algebra can be regarded

as the Clifford algebra over the real Hilbert space

H= [U0LlOR)e J(JR0Li(JR))] ,

(that is, €©L£(I?) regarded as a real Hilbert space).

The algebra generated by a, a* is the Clifford algebra over H0=R@JR

which is generated by two independent normalized vectors h0, Jh0; then we have

Q) = ia* - la .

Let Q = J(l— 2rj)\ then Q commutes with the projection P0 of H onto H0 and

Qo = PoQPo has the same form. The quasi-free state a)Q on A(H) is coQo®

(Q0, • QO) T v {A(co)* icoeR}. We have

where {St = exp(Jef — yf): t^Q} is a semigroup of contractions on H0 com-

muting with Q0.

The evolution generated by the Hamiltonian (4.1) is of the form A(Tt),

where {Tt: teR} acting on H is a minimal unitary dilation of {St: ̂ 0} which

commutes with J3 hence with Q. Also the projections Pf] of ff onto Hf] =

v {TSH0: s^t} commute with Q for all t in R. Hence the quasi-free state COQ

on A(H) is invariant under A(Tt) and compatible with conditional expectations

AQ(Pt^)9 and Pr]ff[f = Hf for each t since {Sf = P0TfP0: £^0} is a semigroup.
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By Theorems 3.2.2. and 3.3.1, we conclude thai (A(H), {A(TtPo)}9 COQ) is a

stationary quasi-free Markov process over A(H0); moreover, it is the unique

(up to equivalence) reconstruction of a quasi-free Markov process from the

semigroup (4.2), by Theorem 3.3.2. It satisfies the Langevin equation (3.17)

if and only if y is strictly positive.

4.2. There is no additional difficulty in considering a finite or infinite

collection of non-interacting elementary fermion systems as above; in any case

we have a stationary quasi-free Markov process, satisfying the Langevin equation

(3.17) if and only if all the damping constants yk of the elementary fermion

systems are strictly positive.

Then an interaction among the fermions can be introduced, in finite volume,

to begin with. Let v be an even self-adjoint polynomial in the creation and

annihilation operators af, ak, or equivalently in the B(h(
0
k}), B(Jh(

Q
k)), k

= \,...,N being the index which labels the elementary fermion systems. By

Theorem 2.4.4, there is a perturbed stationary Markov process whose associated

semigroups {Zt: f ̂ 0} has the form

(4.3) Zr fc=i

Lk being the infinitesimal generator of the semigroup {Z[fc)^0} for the /c-th

fermion, given by

(4.4) Lk(ak) = (-isk-yk)ak, Lk(afak) = -2yk(afak-tik\) .

By Theorem 3.4.2, the perturbed process satisfies the Langevin equation (3.18)

if and only if all yk are strictly positive.

4.3. Also the thermodynamic limit N-+OO of interacting open fermion

systems can be studied. This is somewhat outside the main scope of this paper,

so we confine ourselves to a few remarks. If the interaction is of finite range and

translationally invariant, the techniques of Robinson [50], Streater and Wilde

[51] can be used to prove that there is a limit evolution for the infinite system;

it can also be shown that there are a limit stationary state and a limit stationary

Markov process. If the interaction is of mean field type, the works of Hepp

and Lieb [11, 12] give a description of the limit evolution of intensive observables

in "classical" states. Then one could employ the technique of Bogoliubov

Jr. [52, 53] to obtain the thermodynamic limit of multi-time correlation functions

in these states. They define a limiting process; however we expect this limiting
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process to be neither stationary nor Markov in general, but rather to exhibit the

structure with time-dependent Hamiltonians described in the notes to Section 2.4

(cf. van Hemmen [54] Appendix).

The general problem of limits of non-commutative stochastic processes

(thermodynamic limit, and scaling limits which might make a process Markovian)

is of obvious interest. Some rigorous results and open problems for scaling

limits of classical processes are described by Spohn in [55]; we cannot but expect

that the analogous non-commutative problems are at least as hard as those.

Appendix

Example A.I (Lindblad [33], rephrased). Let & be the algebra of all

complex 2x2 matrices. For each x in R, let [af: fell} be the group of

^-automorphisms of ̂  given by

a*(b) = eixt**be-ixt**9 be&, teR.

Define a stochastic process over ^7, indexed by U, by giving its correlation

kernels as

wt(a; 5 ) = - - ^ ^ - trace [of1(fl1)*-afB(£ill)*oefil(ftll)...af1(fti)]

where x0eR, y>0, for all t = (^,..., tn) in T, a = (a1,...,aB), b = (bl9...,b^in &t.

The explicit form of (sf, {jj, co) is not needed; we only notice that stf can be

chosen to be a W*-algebra, the jt are normal maps of 38 into j^, co is a faithful

normal trace on s& , and the process is stationary.

For all 0,, a2, bl9 b2 in ^, tl^t2 in H, we have

w,,,,2(fli, a2\ bl9 bJ^c

where co0(-) = 2~1 trace (•), and {Zr: t^O} is the semigroup with infinitesimal

generator L given by

L(b)=- |-[(J3, [cr3, &]] + /x0[>3, bl be@,

satisfying lim HZ^i)!! =0. Since the modular automorphism group associated
f-*OC

to co is trivial, the canonical maps £sf are conditional expectations; hence, if the

process were Markov, the regression relation would hold, and w0,fj2t(^o? fli> 1;

^o» bt, (7,) would vanish in the limit as t->oo for all a0, at, b0, fc, in ^. How-

ever, it is clear that
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for a11 «o» k0

since o^ exp (7x^73)0^= exp( — Dcfc73) and <71=(or1)
3. This contradicts the

regression relation, hence the process is not Markov.

Example A.2. Let ^ = #({ — 1, 1}), the algebra of functions on the two-

point set { — 1, 1}, spanned by the identity 1 and the function/, such that/(±l)

= ±1. Let o)0 be the state on & given by o)0(/) = 2-1(/(l) +/(-!)), and let
{Zt: t^Q} be the semigroup of maps determined by

for all r^O.

Then Z, preserves positivity and the identity, and co0oZ£ = co0. By the

Kolmogorov-Daniell construction, there is a classical stationary Markov process

over {% such that the regression relation (2.9) holds. However, g% may also be

identified with the Clifford algebra A(R), spanned by the identity 1 and a self-

adjoint unitary B(e) (e being a unit vector in R) which corresponds to /. If this

identification is made, co0 is the quasi-free state corresponding to 2 = 0, and

{ZJ is the quasi-free semigroup given by Zt=A0(e~yt). Let {Xt: R-»H; teR}

be a minimal Kolmogorov decomposition of the positive definite kernel s, t

h-»exp(-yi*-s|), for instance, H = L\R\ Xtr = (2yyf2exp(-y\t-s\)X(-^s)r9

re If [13]. Let jt(B(rJ) = B(Xtr)eA(H), and let co0 be the quasi-free state

on A(H) determined by Q = 0 on H; then (A(H)9 {jj, o>0) is a stationary quasi-

free Markov process with conditional expectations, by Theorem 3.3.1; hence

the regression relation (2.9) holds. Obviously, A(H) cannot be isomorphic

to an abelian algebra.
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