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On the G-Homotopy Types of G-ANR’s

By

Mitutaka MURAYAMA*

§0. Introduction

J. Milnor [3] pointed out that spaces have the homotopy types of separable
ANR’s iff they have the homotopy types of countable CW-complexes. We
study parallel properties of this for G-ANR’s (defined below).

Let G be a finite group throughout this paper. Let #°¢ denote the category
of G-spaces having the G-homotopy types of G-CW complexes and G-maps.
Let #°¢ denote the full subcategory of #°¢ whose objects have the G-homotopy
types of countable G-CW complexes.

The main results of this paper are the following theorems.

Theorem 1. The following restrictions on the G-space X are equivalent:
a) X belongs to #°C,

b) X is G-dominated by a G-CW complex,

¢) X has the G-homotopy type of a G-ANR.

Theorem 2. (An equivariant version of Milnor [3], Theorem 1) The

following restrictions on the G-space X are equivalent:
a) X belongs to w9,

b) X is G-dominated by a countable G-CW complex,
¢) X has the G-homotopy type of a separable G-ANR.

§1. G-ANR’s

Definition 1. A metrizable G-space X is called a G-ANR (a G-absolute
neighbourhood retract) iff X has the G-neighbourhood extension property for
all metrizable G-spaces, i.e., any G-map f:4—X of every closed G-subspace 4
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of every metrizable G-space Y can be extended equivariantly to an open G-
neighbourhood U of 4 in Y.

Definition 2. A Banach space B is called a Banach G-space iff G acts on B
linearly and the norm | || is G-invariant, i.e., ||gb| =] b|| for g€ G and be B.

From now on a metric d of a metrizable G-space X is assumed to be G-
invariant, i.e., d(gx, gy)=d(x, y) for ge G and x, y € X, since we can choose a
G-invariant metric by averaging any metric over G.

Proposition 1.1. For any metrizable G-space X there exists a Banach
G-space B(X) with a G-embedding

i: X — B(X)

such that i(X) is closed in the convex hull C(X) of i(X) in B(X). Then C(X)

becomes G-invariant.

Proof. Let B(X) be the set of all bounded continuous real-valued functions
on X. Define

F+O=DH ). (N @=r-1(x),
Ifl=sup f() and (a)()=F(g7"x),

for f, f e B(X),xe X,re Rand g€ G. Then we see easily that B(X) is a Banach
G-space. (Cf. [2], pp. 63-64.)

We choose a bounded metric d of X. (We can do it, for we can define a
bounded metric d from any metric d’ by d(x, y)=d'(x, y)/(1+d'(x, y)) for
x, ye X.) For xe X we define i(x) e B(X) by

i(x)(y)=d(x, y) for yeX.

Then i is an embedding by [2], Chapter II, Lemma 16.2, and i(X) is closed in
C(X) by [2], Chapter III, Theorem 2.1. Since d is G-invariant, i is a G-map:

i(gx) () =d(gx, y)=d(x, g™'y)=i(x)(g7'y)=(gi(x)) (V).
C(X) consists of the points of the form
toXo+ -+ 1,X, for xg,..., x, € i(X), i t;=1 and ¢;20.
j=0

For toxo+ -+ +t,x,€ C(X)

g(toxo + et tnxn):: togXxo+ -+ 19X,
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is contained in C(X), for i(X) is G-invariant. This shows that C(X) is G-
invariant. g.e.d.

Proposition 1.2. A convex G-set C in a Banach G-space is a G-ANR.

Proof. Let A be a closed G-subspace of a metrizable G-space Y. Let
f: A->C be a G-map. By [2], Chapter II, Corollary 14.2 there exists an ex-
tension f’ of fto Y. Define a G-extension F of f by

F(y)=ﬁ EG gf'(g~ty) for yeY.

Then F(y)e C, since gf'(g~'y)eC and ¥, 1/|G|=1. g.e.d.

Definition 3. A G-subspace X of a G-space Y is said a G-neighbourhood
retract of Y iff X is a G-retract of an open G-subspace U of Y (i.e., there is a
G-retraction r: U— X).

Proposition 1.3. Every G-neighbourhood retract X of a G-ANR Y is a
G-ANR.

Proof. Let A be a closed G-subspace of a metrizable G-space Z and f:
A—X a G-map. Let r: U-X be a G-neighbourhood retraction. We regard
f as a G-map to Y. Then there is a G-extension f': V'->Y of f to a
G-neighbourhood V' of 4 in Z, for Y is a G-ANR. Let V=f'"}(U). Define
a G-map F: V—-X by

F=rof' |, VLLU £, X.
Then Vis a G-neighbourhood of A4 in Z and F is a G-extension of f. g.e.d.
Proposition 1.4. A metrizable G-space X is a G-ANR iff every G-

homeomorphic image of X as a closed G-subspace in any metrizable G-space
Y is a G-neighbourhood retract.

Proof. Let X be a G-ANR G-embedded as a closed G-subspace in a
metrizable G-space Y. Consider the identity map of X. Then the map is a
G-map and has a G-extension to a G-neighbourhood of X. This shows the
“only if”’ part.

Putting Y=C(X), the converse follows from Propositions 1.1, 1.2 and 1.3.

g.e.d.
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§2. Simplicial G-Complexes

A simplicial G-complex K is a simplicial complex endowed with a group G
of automorphisms of its simplicial structure. Then its geometric realization
K,, (resp. K,,) with the metric (resp. weak) topology is a G-space. (Cf., [1],
p- 206.)

Proposition 2.1. Every G-subcomplex L of any simplicial G-complex K
with the metric topology is a G-neighbourhood retract.

Proof. The regular neighbourhood of L is G-invariant and the retraction
is a G-map. qg.e.d.

A simplicial G-complex K is said to be full iff every finite set of its vertices
spans a simplex of K. Any simplicial G-complex K can be G-embedded in a full
simplicial G-complex F(K) with the same vertices.

Proposition 2.2. Every simplicial G-complex with the metric topology
is a G-ANR.

Proof. Let {v;|Ae A} be the set of all vertices of a simplicial G-complex
K with the metric topology. We define a G-action on 4 by v,;=gv,;. Consider
the Banach G-space S which consists of all real-valued functions s: 4A—R such
that

> Is(Al
ied
is convergent. The norm of se S is defined by
lIsll= 2 Is(A)] .
AeA

The G-action on S is defined by (gs)(A)=s(g~*4). Define a G-map h: F(K)—S
as follows: Let xe F(K). Let {x;|1€ A4} denote the barycentric coordinates
of x. Then h(x) is given by

hx)(D)=x, for LeA.
This & is isometric and one can easily see that h is a G-embedding. h(F(K))

is a convex G-set in the Banach G-space S, for F(K) is full. The proposition
follows from Propositions 1.2, 1.3 and 2.1. g.e.d.
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§3. G-Domination

As to the definitions of a G-covering and a G-partition of unity we refer to
[1], p. 208.

Proposition 3.1. Let X be a G-ANR. Then X is G-dominated by a
G-CW complex K.

Proof. X is a G-neighbourhood retract of C(X) with a G-retraction r:
U—X by Propositions 1.1 and 1.4. Since C(X) is convex and B(X) is locally
convex, C(X) is locally convex and we can find a G-covering "' ={V’|1e A}
of X by open convex sets V) in U. Put

v ={V,=VinX|ieAd}.
Since X is metrizable, X is paracompact and fully normal.

Assertion. For any open G-covering ¥~ of X there exists a locally finite
open G-covering % ={U;|d € A} with points {x;} in X which satisfies

i) gxs=x, foranydedand

ii) for any point xe X both the star S(x, #)= U {Us;|xeUse#} of x
with respect to % and the points x; with x € U are contained in a certain V, € .

Proof. Since X is fully normal, there is a G-covering & ={S.=a slice at
x|xe X} which is an open star-refinement of ¥°. (Slices are open, for G is
finite.) Choose a locally finite open G-covering # ={U,;|d € 4} which is a re-
finement of &. For each §e4 we choose x;€ X such that U;=S,, e% and
gx;=x,5. These % and {x,} satisfy i) and ii). (For detail, see [1], Theorem
2.3) g.e.d.

Proof of Proposition 3.1. We choose a G-partition of unity {p;|de 4}
subordinate to . Let K denote the geometric nerve with the weak topology.
The barycentric subdivision of K is a G-CW complex. Define

P.X—K

by letting P(x) be the point in K with barycentric coordinates {ps;(x)} for xe X.
Then P is a well-defined G-map.
Define a map g: K—B(X) by

q)= 2 ysXs,
ded
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where y; denotes the d-th barycentric coordinate of ye K. Then g is a well-
defined G-map. Let y,,..., y;, be the non-zero barycentric coordinates of y.
Then x;’s are contained in some V,cV). Since V) is convex, q(y)=
> ¥-0 Vs.X5, is contained in V3 U. Thus g(K)c U and we regard g as a G-map

qg: K— U
to U. Put
s=roq: K— X.
Define a G-homotopy h,: 1 X%soP by
h(x)=r((1—1t)x+t-q-P(x)) for xeX.

Note that (1 —#)x+1-g-P(x) is contained in U; Because, if S(x, )=\l U,,
and the points x; (i=0, 1,..., n) are contained in ¥V, V), then both x and
geP(x)=72 %o ps(x)x;, are contained in the convex set V;<U, and so is
(1—t)x+t-qoP(x). Thus h, is a well-defined G-map. With G-maps P, s and
a G-homotopy h,, X is G-dominated by the G-CW complex K. g.e.d.

Corollary 3.2. Every separable G-ANR is G-dominated by a countable
G-CW complex.

Proof. Since a separable metrizable space has the Lindel6f property,
we can choose % to be countable. Then the nerve K is countable. g.e.d.

§4. Proof of Theorems

Theorem 1 follows from Propositions 2.2, 3.1 and [1], Theorem 2.1.

Proof of Theorem 2. The implication c)=-b) follows from Corollary 3.2,
and a)=c) follows from Proposition 2.2 and [2], Chapter III, Lemma 11.4.

We show b)=>a) similar to [4], Theorem 24. Let X be G-dominated by a
countable G-CW complex K with G-maps f: X—K and f': K—»X such that
f’of% 1y. By the same argument as [3], p. 275, there is a G-map k: K—|S(X)|
such that k'=kof is a G-homotopy inverse to j: [S(X)|—-X. (Cf. [1], Pro-
positions 1.5-1.7 and Theorem 2.1.)

Since G is finite and closed G-cells Ge are compact, k(Ge) are contained in
finite G-subcomplexes. Thus k(K) is contained in a countable G-subcomplex
Ly of |S(X)|, for K is countable. Let h,: |S(X)|—|S(X)| be a G-homotopy of
ho=Kk'ojinto h;=15). Then there is a countable G-subcomplex L, of [S(X)|
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such that h(Ly)<L,, for the same reason that k(K)<L,. By repeating this
argument, we have a sequence of countable G-subcomplexes

LOCLICLZC'“CLIIC”'

of |S(X)| such that h(L,)=L,,;. The union L=\U L, is a countable G-
subcomplex such that k'(X)cL and h(L)c L. Therefore j'=j|, is a G-
homotopy equivalence of L to X, for h,|: k’oj’%lL and j'ok’ =jok’%:lx.

g.e.d.

References

[1] Araki, S. and Murayama, M., G-homotopy types of G-complexes and representation
of G-cohomology theories, Publ. RIMS, Kyoto Univ., 14 (1978), 203-222.

[2] Hu, S.T., Theory of retracts, Wayne State Univ., 1965.

[3] Milnor, J., On spaces having the homotopy type of a CW-complex, Trans. Amer.
Math. Soc., 90 (1959), 272-280.

[4] Whitehead, J. H. C., A certain exact sequence, Ann. of Math., 52 (1950), 51-110.






