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On the G-Homotopy Types of G~ANR3s

By

Mitutaka MURAYAMA*

§ 0o Introduction

J. Milnor [3] pointed out that spaces have the homotopy types of separable

ANR9s iff they have the homotopy types of countable CW-complexes. We

study parallel properties of this for G-ANR's (defined below).

Let G be a finite group throughout this paper. Let i^G denote the category

of G-spaces having the G-homotopy types of G-CW complexes and G-maps.

Let if** denote the full subcategory of H^G whose objects have the G-homotopy

types of countable G-CW complexes.

The main results of this paper are the following theorems.

Theorem 1. The following restrictions on the G-space X are equivalent:

a) X belongs to i^G,

b) X is G-dominated by a G-CW complex,

c) X has the G-homotopy type of a G-ANR.

Theorem 2e (An equivariant version of Milnor [3], Theorem 1.) The

following restrictions on the G-space X are equivalent:

a) X belongs to ^G
c,

b) X is G-dominated by a countable G-CW complex,

c) X has the G-homotopy type of a separable G-ANR.

Definition 1. A metrizable G-space X is called a G-ANR (a G-absolute

neighbourhood retract) iff X has the G-neighbourhood extension property for

all metrizable G-spaces, i.e., any G-map f:A-*X of every closed G-subspace A
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of every metrizable G-space Y can be extended equivariantly to an open G-

neighbourhood 17 of A in Y.

Definition 2. A Banach space B is called a Banach G-space iff G acts on B

linearly and the norm || || is G-invariant, i.e., ||0&|| = ||fe|| for #eG and beB.

From now on a metric d of a metrizable G-space X is assumed to be G-

invariant, i.e., d(gx, gy) = d(x, v) for g e G and x, y e X, since we can choose a

G-invariant metric by averaging any metric over G.

Proposition 1.1. For any metrizable G-space X there exists a Banach

G-space B(X) with a G-embedding

i:X - >B(X)

such that i(X) is closed in the convex hull C(X) of i(X) in B(X). Then C(X)

becomes G-invariant.

Proof. Let B(X) be the set of all bounded continuous real-valued functions

on X . Define

(/+/') 00 =/(x) +/'(x), (r/) (x) = r ./(x) ,

H / l l =sup|/(x)| and (gf)(x)=f(g-ix),
xeX

for /, /' E B(X), x e X, r e R and g e G. Then we see easily that B(X) is a Banach

G-space. (Cf. [2], pp. 63-64.)

We choose a bounded metric d of X. (We can do it, for we can define a

bounded metric d from any metric d' by d(x, y) = d'(x, y)/(l+d'(x, yj) for

x, y e X.) For x e X we define /(x) e B(X) by

i(x)<j>) = d ( x 9 y ) for yeX.

Then / is an embedding by [2], Chapter II, Lemma 16.2, and i(X) is closed in

C(X) by [2], Chapter III, Theorem 2.1. Since d is G-invariant, / is a G-map:

C(X) consists of the points of the form

x0,...,xMe/(X), £ ^ = 1 and r^O.

For r0^o + • • • + tnxn e C(X)

+ ••• + tnxn) = tQgx0 + - + tngxn
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is contained in C(X), for i(X) is G-invariant. This shows that C(X) is G-

invariant. q.e.d.

Proposition 1.2. A convex G-set C in a Banach G-space is a G-ANR,

Proof. Let A be a closed G-subspace of a metrizable G-space Y. Let

/: A-*C be a G-map. By [2], Chapter II, Corollary 14.2 there exists an ex-

tension/' of /to Y. Define a G-extension F of /by

r'jO for yzY.

Then F(>') 6 C, since #/'(<T ] v) 6 C and £,6G 1/|G| = 1 . q. e. d.

Definition 3. A G-subspace X of a G-space Y is said a G-neighbourhood

retract of 7 iff X is a G-retract of an open G-subspace 17 of Y (i.e., there is a

G-retraction r: (7->X).

Proposition 1.3. Every G-neighbourhood retract X of a G-ANR Y is a

G-ANR.

Proof. Let A be a closed G-subspace of a metrizable G-space Z and / :

A-*X a G-map. Let r: U-*X be a G-neighbourhood retraction. We regard

/ as a G-map to Y. Then there is a G-extension /': V-+Y of / to a

G-neighbourhood V of y4 in Z, for 7 is a G-ANR. Let V=f'-1(U). Define

a G-map F: V-+X by

F = ro/' |F: J/-ILU U -=-> X .

Then Fis a G-neighbourhood of A in Z and F is a G-extension of/. q.e.d.

Proposition 1.4. /4 metrizable G-space X is a G-ANR iff every G-

Iwmeomorphic image of X as a closed G-subspace in any metrizable G-space

Y is a G-neighbourhood retract.

Proof. Let X be a G-ANR G-embedded as a closed G-subspace in a

metrizable G-space Y. Consider the identity map of X. Then the map is a

G-map and has a G-extension to a G-neighbourhood of X. This shows the

"only if" part.

Putting y=C(X), the converse follows from Propositions 1.1, 1.2 and 1.3.

q.e.d.
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§ 2* Simplicial ̂ -Complexes

A simplicial G-complex K is a simplicial complex endowed with a group G

of automorphisms of its simplicial structure. Then its geometric realization

Km (resp. Kw) with the metric (resp. weak) topology is a G-space. (Cf., [1],

p. 206.)

Proposition 2.1. Every G-subcomplex L of any simplicial G-complex K

with the metric topology is a G-neighbourhood retract.

Proof. The regular neighbourhood of L is G-invariant and the retraction

is a G-map. q.e.d.

A simplicial G-complex K is said to be f u l l iff every finite set of its vertices

spans a simplex of K. Any simplicial G-complex K can be G-embedded in a full

simplicial G-complex F(K) with the same vertices.

Proposition 282B Every simplicial G-complex with the metric topology

is a G-ANR.

Proof. Let {t?A | A 6 A} be the set of all vertices of a simplicial G-complex

K with the metric topology. We define a G-action on A by vg^ = gv^. Consider

the Banach G-space 5 which consists of all real-valued functions s: A-*R such

that

£ «A)|
JLeA

is convergent. The norm of s e 5 is defined by

The G-action on S is defined by (gs)(X) = s(g~lX). Define a G-map h: F(K)~+S

as follows: Let xeF(K). Let {x^\leA} denote the barycentric coordinates

of x. Then h(x) is given by

A(x)(A) = xA for AeA

This h is isometric and one can easily see that h is a G-embedding. h(F(KJ)

is a convex G-set in the Banach G-space S, for F(K) is full. The proposition

follows from Propositions 1.2, 1.3 and 2.1. q.e.d.



ON THE (r-HOMOTOPY TYPES OF G-ANR'S 187

§3e ^-Domination

As to the definitions of a G-covering and a G-partition of unity we refer to

[1], p. 208.

Proposition 3.1. Let X be a G-ANR. Then X is G-dominated by a

G-CW complex K.

Proof. X is a G-neighbourhood retract of C(X) with a G-retraction r:

U-*X by Propositions 1.1 and 1.4. Since C(X) is convex and B(X) is locally

convex, C(X) is locally convex and we can find a G-covering i/" = {V/^\leA}

of X by open convex sets V'x in U. Put

Since X is metrizable, X is paracompact and fully normal

Assertion. For any open G-covering V of X there exists a locally finite

open G-covering W = {Ud\d e A} with points {xd} in X which satisfies

i) gxd = xgd for any be A and

ii) for any point xzX both the star S(x, #)= U {l/Jxe Ude<&} of x

with respect to ^r and the points xa with xeUd are contained in a certain

Proof. Since X is fully normal, there is a G-covering £f = {Sx = a. slice at

x |xeX} which is an open star-refinement of ^. (Slices are open, for G is

finite.) Choose a locally finite open G-covering W = {Ud\5eA} which is a re-

finement of £?. For each <5ezl we choose x5eX such that Ud<^SX6E^ and

gxd = xf)$. These ^ and {xd} satisfy i) and ii). (For detail, see [1], Theorem

2.3.) q.e.d.

Proof of Proposition 3.1. We choose a G-partition of unity { p d \ d E A }

subordinate to ^. Let K denote the geometric nerve with the weak topology.

The barycentric subdivision of K is a G-CW complex. Define

P:X - >K

by letting P(x) be the point in K with barycentric coordinates { pd(x)} for x e X,

Then P is a well-defined G-map.

Define a map q: K-+B(X) by

deA
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where yd denotes the (5-th barycentric coordinate of y e K. Then q is a well-

defined G-map. Let ydo,..., ydn be the non-zero barycentric coordinates of y.

Then x^.'s are contained in some FAc=F^. Since V\ is convex, q(y) =

Z?=o ydixdt is contained in V^aU. Thus q(K)c:U and we regard q as a G-map

q: K > U

to U. Put

s = r°q: K > X.

Define a G-homotopy ht: lx~s°P by
G

ht(x) = r((l-t)x + t-q°P(x)) for xe*.

Note that (l — i)x + t-q°P(x) is contained in £7; Because, if S(x, #)= W?=0 I/a,

and the points xdi (/ = 0, I , . . . , / ? ) are contained in KAc=FA , then both x and

q°P(x) = ̂ 'l=0pd.(x)xd. are contained in the convex set V^aU, and so is

(l—t)x + t-q°P(x). Thus ht is a well-defined G-map. With G-maps P, s and

a G-homotopy /7f, X is G-dominated by the G-CW complex K. q.e.d.

Corollary 3.2. Every separable G-ANR is G-dominated by a countable

G-CW complex.

Proof. Since a separable metrizable space has the Lindelof property,

we can choose <% to be countable. Then the nerve K is countable. q. e. d.

§ 4. Proof of Theorems

Theorem 1 follows from Propositions 2.2, 3.1 and [1], Theorem 2.1.

Proof of Theorem 2. The implication c)=>b) follows from Corollary 3.2,

and a)=>c) follows from Proposition 2.2 and [2], Chapter III, Lemma 11.4.

We show b)=>a) similar to [4], Theorem 24. Let X be G-dominated by a

countable G-CW complex K with G-maps /: X-+K and /': K-+X such that

f'of~lx. By the same argument as [3], p. 275, there is a G-map k: K-+\S(X)\

such that k' = kof is a G-homotopy inverse to j: \S(X)\^>X. (Cf. [1], Pro-

positions 1.5-1.7 and Theorem 2.1.)

Since G is finite and closed G-cells Ge are compact, k(Ge) are contained in

finite G-subcomplexes. Thus k(K) is contained in a countable G-subcomplex

L0 of \S(X)\, for K is countable. Let ht: \S(X)\-+\S(X)\ be a G-homotopy of

h0 = k'°j into hi = ljs(X)|- Then there is a countable G-subcomplex Ll of
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such that /?r(L0)c:L1, for the same reason that k(K)dLQ. By repeating this

argument, we have a sequence of countable G-subcomplexes

L0c:L1c:L2c:...c:Lrtc=...

of \S(X)\ such that ht(Ln)c:Ln+1. The union L — \jLn is a countable G-
n

subcomplex such that k'(X)<=:L and /?r(L)c=L. Therefore j'=j\L is a G-

homotopy equivalence of L to X, for /?f \ L: k'°j'~\L and jf°k'=jok'~l
G G X-

q.e.d.
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