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Decomposition of Invariant

Nonseparable C*-Algebras

By

Rolf W. HENRICHS*

Introduction

The main purpose of this paper is to give a proof of the following

Theorem* Let j/ be a C*-algebra of operators on a Hilbert space with

cyclic vector £, let s£ contain the identity operator and S(j^) be the state space

of $£ . Then there exist a positive Radon measure p on S(s/) and for each

an irreducible representation n* of ^ such that

i.e. ^ is isomorphic to a direct integral of irreducible C*-algebras

with respect to ^.

Actually, one can get u to be the orthogonal measure corresponding to the

vector state co defined by £ and a maximal abelian subalgebra of the commutant

£&' of j/. (Such a measure is maximal with respect to the Choquet ordering

also in the nonseparable case, see [7], for a short proof).

It may be surprising that no separability condition on jaf is assumed. The

example given by J. L. Taylor in [15] shows that every state cp in the support of

such a measure may fail to be a pure state, contradicting an assertion in an earlier

paper of M. Tomita. Therefore in our theorem n^ will not be the GNS re-

presentation n^ corresponding to <p, in general.

The counterexample given by the author in [7], Theorem 2, tells, moreover,

that being interested in a decomposition into factor representations with respect

to a Radon measure on a locally compact space one cannot get a topological
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direct integral, in general (in the sense of R. Godement [3], with respect to

continuous fields of Hilbert spaces and operators). Therefore we use the more

general definition of direct integrals as introduced by W. Wils in [17].

Then the proof of the Theorem depends heavily on Tomita's generalization

of known facts on decomposition of states to nonseparable C*-algebras in his

later 1959 paper [14].

Definition. For a state (pES(jtf) let N9 = \Tej* ; <p(T*T) = 0} be the

corresponding left ideal. A state cp is said to be pure relative to Te j& if p(T)

= <p(T) for all states p such that Np^N9.

By Kadison's result, a state is pure if and only if it is pure relative to all

Theorem (Tomita). Let ^ be a C*-algebra of operators on a Hilbert

space, IEJ&, p be the orthogonal measure corresponding to a cyclic vector £

and a maximal abelian subalgebra of jtf'. Then for TEJ& ^-almost all

(peS(jtf) are pure relative to T.

The set of measure zero depends on the given operator Te jtf, hence un-

countable many of them can occur in the nonseparable case. We shall show in

Section 2 that this doesn't matter in the proof of our first theorem.

Tomita's theorem seems not to be well known, in the proof fields of Hilbert

spaces and operators are used. In the appendix we shall give a shorter and more

straightforward proof of this theorem without using direct integral theory. The

main ideas, however, are the same as in Tomita's original proof and "shorter

proof" also means that we use without proof such methods and results which

are now well known and can be found also in recent monographs on C*-algebras.

For instance, the polar decomposition of functionals is introduced in that paper,

the noncommutative Lusin's theorem has been proved and also the concept of

regular projections has been used to prove the theorem.

In Sections 3 and 4 we deal with the central decomposition of states and

decompositions of invariant states into ergodic states. We obtain

Theorem. Let jtf be a C*-algebra with identity, ojeS(j&) and p. be the

central measure associated with co. Then there is a map <p-»^ from &?

into the set of factorial states of jtf such that

co(T) = (
JS(&)

for all Te j/
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Moreover, na

A similar result holds concerning decompositions of invariant states into

ergodic ones. We finish by discussing some uniqueness problems which arise

also in the case of the central decomposition and in the simplex case.

In Section I we show some aspects of the counterexample given in [7] in

the framework of C*-algebras in order to see to what extent we can expect

results for nonseparable algebras.

Theorem. There is a C*-Algebra stf and a state a* of j/ such that

1) The weak-*-closure of the smallest face containing CD is disjoint from

the set P(jtf) of pure states.

2) There does not exist a regular Bore] measure m on the topological

space P(jtf) such that

(D(T) = ((p(T)dm(cp) for all

Throughout this paper we use the following

Notation,, For a C*-algebra *$/ let be

the state space of $0

the set of pure states of tf

y, £<p) the GNS-representation for <p e S(jaf )

= {i/f e S(j3f); i/s^rcp for some r^O}

the face generated by cp e

the left ideal corresponding to cp and

For re j* t is defined as f(q>) = <p(T)9

[M] the closed subspace of a Hilbert space H generated by MaH

ja/' the commutant of a set j& of operators on H.

For a set X

&(X) the continuous functions on X

f\ Y the restriction of a function / onto a subset Y c X.

supp /i the support of a Radon measure \i
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§ 1. The Counterexample

Let D=RR denote the group of all functions /: R^>R and let G be the

discrete group of all triangular matrices

/ i / M
x= 0 1 g I f,g,heD, f-geZl.

(o o ij
Let L and R, resp., denote the left and right regular representation of G on P(G),

resp. J3/ = C*(L, K) is the C*-algebra generated by all operators Lx, Rx, xeG

where for £ e /2(G), y e G

There is a cyclic vector £e E 12(G) for $0,

y = e

where e E G is the identity element. Let co be the corresponding vector state

on jsf. Then we have

Theorem 1.1. a) The weak-*-closure M(co) in S(jaf) of the smallest face

M(co) containing co is disjoint from the set P(jaf) of pure states of j/ (even from

the set F(jtf) of factorial states).

b) There is no regular Borel measure m on the topological space

such that

co(T) = <p(T)dm(<p) for all

Proof, a) ([7], proof of Theorem 2.) For heD the element

I I 0 A 1

z(h)=\ 0 1 0

\0 0 1

belongs to the centre of G hence Lz(A) is in the centre of jtf as LxRy = RyLx for

all x, j; e G. If TT is a factorial representation of .«/, there is a character % of

D such that

n(LzW)=X(K)I, heD.

Because of the cardinality of D there exists fceD such that #(fc) = l, fc^O. Let
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If

0 1 g \eG, f-g=nl,

\0 0

then

(1.1)

hence n(LyLx) = x(k)nn(LxLy) = n(LxLy). Thus n(Lx) is a unitary operator in the

centre of n(j&), say n(Lx) = M, |/l| = 1. Therefore we have shown that for every
/I * 0\

factorial state 9 of stf there is an element x= 0 1 k]9 fc/0 such that \(p(Lx)\
\0 0 I/

= 1. We shall see that p(LJ = 0 for all states p in the closure of the smallest

face M(co) generated by CD.

Therefore let p e M(co), p ̂  rco, 0 < r, and for j e G let Uy denote the unitary

operator LyRy on 12(G). Then p((C7y- I)*(l/y-I))^ rfi}((l/y-J)*(t7,- 1))

= r||(Lry-I)^e||
2 = 0 for yeG. Since LT* = l7y-i, jeG, we get by the Cauehy-

Schwarz inequality for all T e s&

p(U,T)=p(T)=p(TUJ

in particular, for x, y e G

(1.2) p(Lx) = p(t7^, £7,- 0 =

(thus x-*p(Lx) is a positive definite class function on G). Finally, if x is as in

( l . l ) a n d i f f o r w e J V

/I 0 »fc\
then by (1.1) the elements ynxy^1 = \0 1 0 be are mutually distinct (the

\ 0 0 I J
conjugacy class of x is infinite). It is known that then p(LJC) = 0. For com-
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pleteness we give a short proof by using the Cauchy-Schwarz inequality again.

Since {LynXy~^e\ neN} is an orthonormal set in 12(G) for meN

1 1 m
IUUJ2=i where Bm=±^L^ .

By(1.2),p(LI)=p(JBm), hence

) = r ||5mU2 =

for all meN, thus p(Lx) = 0. Consequently, no state p e M(co) is pure or

factorial.

b) Assume that m is a Borel measure on the space X=P(jtf) (or X = F(jtf))

such that

1) m is inner regular, i.e. for every Borel subset YcX m(Y) = sup (m(K);

7, K compact},

2) 0}(T) = (p(T)dm(cp) foral
Jx

Then m is a finite Radon measure on X in the sense of Definition R3 in [10],

p. 13. Let ju be the positive Radon measure on the state space S(stf) defined by

M/) = ( f(9)dm(q>), fe »(S(a/)) .
)x

Then by 2), n(f) = a}(T), i.e. /* has resultant cy. It is well known that the support

of jU is contained in M(co) which by a) does not contain any pure state (factorial

state). Hence X is contained in the open set J = S(j3f)\M(co). Let 1^ denote

the characteristic function of J and let {fi}iej c ^(S(j^)) be an increasing

directed family of non-negative functions such that lj = sup£ej/|. Then for

all leJ

j x

Since supiejfi((p) = l for <peZ we get by [10], Proposition 5, p. 42,

a contradiction.

§ 2. Orthogonal Measures and Direct Integrals

Let stf be a C*-algebra of operators on a Hilbert space JEf such that

and £ e H is a cyclic vector for $0'. Let ^ be an abelian von Neumann sub-
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algebra of j/' and let Pe^' be the projection of H onto pff]. Since £ is a

separating vector for j/' ^ is isomorphic to ^P. Hence <% P is an abelian von
Neumann algebra with cyclic vector £ therefore

Thus for every Te #' there is a unique operator #(T) in ^ such that

(2.1) PTP = <f>(T)P.

Then T-*#(T) is a positive linear map from 9" onto <€ satisfying

<I>(P) = <*>(/) = /

(2.2)

Let 12 be the spectrum of ^ and for yeQ define a state cpy of a/ by

q>y(T) = y($(T)). Then the map y-><py is weak-* continuous and its transpose

9 is a *-homomorphism from ^(S(j^J) into ^(0) = ^ such that

), Te,s/.

In particular, 0(?) = $(T) for Te jaf.

Definition 2.1, The measure ^ on S(jaf ) defined as

is called the orthogonal measure corresponding to ^ and co, where co is the

vector state on jaf defined by f ([12]). Then for h

(2.3) rthT) = (0(K)#(T)t, «) = (fl(fc)P*(r)P{, 0

In particular, ju has resultant r(/x) = co.

Remarks 2.2. 1) By definition, h°q>7 = y(0(h))9 yeQ, he<V(S(j*))9 hence

/* is the image of the spectral measure defined by £ on Q under the map y-+<pr

2) The map 9 can be extended to a ^-isomorphism 6^ of L°°(^) onto

<T such that

(2.4) (0,007?, 0 =

(see [13], Proposition 6.23).

3) That ft is a maximal measure with respect to the Choquet ordering in

case ^ is a maximal abelian subalgebra of j/' is proved in [7], Theorem 1.

4) For Te jaf let £T e n<pes(^) ̂  be the vector field defined by £T((p)
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Then A = {{r; TE jtf] is a fundamental family of continuous vector
fields in the sense of [3]. By (2.3), we have for Tt

I t *r frJI2=( Z
i=l J i,j

r©
Hence H is isomorphic to the topological integral \ H^

Moreover, stf is isomorphic to the topological direct integral of C*-algebras

n^jtf ) in the sense of Godement and Tomita. If stf is separable and ^ c tf'

is maximal abelian, it is well known that ^-almost all q> e S(jtf) are pure states and

the so-called Godement-Mautner-Segal decomposition of &? is obtained ([3],

[8], [11]).

The counterexamples given by J. L. Taylor in [15] and by the author (see
§ 1) show that in the nonseparable case each state cpy may fail to be pure, even

if ^ is maximal abelian. Moreover, it can be shown as in [7], proof of Theorem

2, that the C*-algebra $£ in Section 1 cannot be decomposed as a topological
direct integral of irreducible C*-algebras.

In [14], M. Tomita has extended the Godement-Mautner-Segal Theorem

to nonseparable C*-algebras in the following way: For a state cp of j/ denote by

; (p(T*T) = Q} the corresponding left ideal and let K(p =

By Kadison's theorem, K(p = {cp} if and only if <p is pure.

Theorem 2.3 (Tomita [14], Theorem?). Let \JL be the orthogonal measure

on S(jaf) corresponding to a maximal abelian subalgebra of <&' . Then for

, fjL-almost everywhere

for all

A proof of Tomita's theorem is given in the appendix.

In what follows we shall use the more general concept of direct integrals
of Hilbert spaces as introduced by W. Wils in [17]. In our applications,

however, the basic measure space X will be the state space of s# and the measure
will be a positive Radon measure, actually, the orthogonal measure corresponding

to abelian von Neumann subalgebras ^cj/'. Let us recall the definition.

Definition 2,4 ([17]) Let {H*;q>EX} be a field of Hilbert spaces on

X and let r^Yl^x^9 be a subspace of vector fields such that
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1) (p-> || rj((p) ||2 is /j-integrable for every r\ e F

2) If rjeF and /is a bounded measurable function on X (feMco(X, //)),

the vector field f-rj, <p-»/(<pM<p), belongs to F

3) If for a vector field r\ there is r\' e F such that

r}((p) = rjf(<p) for almost all cp ,

then r\ e F.

4) The seminormed space (F, || ||) where \\rj\\ =(( ||^)||2^(^))1/2 is

complete.

The corresponding Hilbert space is called the direct integral of the spaces H*9

denoted by (* H^d^cp) or ( H*dii((p).

Remarks 2.5. 1) In our applications, for every <p e X the set F((p)

= {rj((p)i rjEF} will be dense in H*.

2) If FQdYlvexH9 satisfies only 1) of Definition 2.4, there is a unique

smallest subspace F such that F0c=F and F satisfies l)-4). In fact, let F\ be

the vector space generated by all vector fields f-rj5feM<x(X, /i), r j e F 0 , and let

F be the space of vector fields which are limits of Cauchy-sequences in Fx with

respect to || || ([17], Corollary 2.3).

We can prove now

Theorem 2,6, Let \JL be the orthogonal measure on S(jtf) corresponding

to a maximal abelian subalgebra of jtf'. For (peS(jtf) let p9 be a pure state

of $£ such that Np^^N^ let H(p = Hpv and n(p = nf)(p. Then j/ is a direct in-

tegral of irreducible algebras ^(jtf) with respect to \JL.

Proof. For every (p e S(^/ ) the set K^ is a closed face in S(j3f ), therefore

every extremal point of K9 is a pure state. If pure states pv in K9, <p E

have been chosen, for every Te stf

for almost all (p

by Tomita's theorem. For Te &$ let r\T e O H* be the vector field defined as

*?r(<P) = ̂ (T)^, <peS(X), and let F0 = 0?r; Test}. Then q>-*\\r\T(9)\\2

= p<p(T*T) is equal to the continuous function <p-»<p(T*F) almost everywhere,

hence it is /z-integrable. Moreover, for

.
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it follows from formula (2.4) (Remark 2.2) that

n

«?- - •
n

.'?=!

t=l ^

Since Tj is dense in F by definition (Remark 2.5, 2)), the map T£-+rjT from

into F1 can be extended to an isometric linear map U from H onto the Hilbert
rr

space \ Hvdn(cp).

Finally, for arbitrary operators REJ&WQ see

Hence cp-^n^K) is a measurable operator field in the sense of [16], Definition

1.1, such that ||7c*(K)||^||K||. Therefore it defines a bounded operator

$ r rr
n*(R)dij((p) on \ Hvd^((p) such that

rr
hence URU~l = \ ntp(R)d^(cp) for every REJ& as t; is a cyclic vector.

Remarks 2.7. 1) In the construction of Theorem 2.6 we even have F0((p)

to be all of H* as p^ is a pure state for all q> e S(jaf ).

2) In [14], Theorem 7', such a map (p-^p^ e K9) from S(jaf) into the pure

states P(jaO has been used to define a measure v on P(j^). From Theorem 1.1 in

Section I we know that such a measure cannot be a regular Borel measure on

P(j2/), in general.

3) Using Theorem 2.6, one can show that every unitary representation of

an arbitrary locally compact group can be decomposed into irreducible re-

presentations as a direct integral with respect to a Radon measure on a locally

compact space.

For applications it would be useful to answer the following question.

Problem 2.8e Let n be a cyclic representation of a C*-algebra jaf and let

be an integral decomposition as in Theorem 2.6 such that all nv are equivalent
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to a single irreducible representation TTO e j& . Is n of type /?

§ 3. Central Decompositions

Let s/ be a C*-algebra with identity and for (p e S(jtf) let 3(<p) be the centre

of Tt^jaf )". If M3((p) denotes the orthogonal measure on S(n9(jtf )) corresponding

to #=3((p) and <^, the image n = ̂  of /xg(<p) under the map ̂ -n/^, S(TT^(J^))

-^S(jaf), is called the central measure of <p. Let Z((p) be the set of all states \j/

of aaf such that for some 0 ^

Definition 3.1. Let stf be a C*-algebra of operators on a Hilbert space

H with 16^,^ = C*(jaf , jaf') be the C*-algebra generated by $£ and j/'. For

a state cp of jaf dejBne

n A:f|j^.

Remark 3.2. 1) S(cp) is a compact, convex subset of S(j2/) containing <p.

Moreover, ij/ e S((p) if and only if for every extension /e S(^) of cp there is an

extension g e S(^) of \I/ such that Ng^Nj.

2) S(\l/)cS(<p) for all ^ 6 S(<p); for
? let ^ e S(^), p e S(^) and / be an ex-

tension of (p. Then there exist an extension g of \// with NgiDNf and an ex-

tension h of p with Nhi=>Ng hence Nh^Nf.

Lemma 3.3. Let jtf be a C*-algebra of operators on a Hilbert space

H,!EJ/. Then for cp G S(j/)

Z(q>)

holds.

Proof. Let \l/eZ(q>) and /eS(^) be an extension of cp. Since

= (^(^4)^, Cy), ^lej^, we may assume that ^(p = ̂ f and rc^ is the restriction of

nf\j& onto the invariant subspace H<p = [7r/(j^)^/]. Let Fenf(j^y be the

projection of //y onto H^. Then

and
Since \]/eZ((p), there is an operator OgTeTt/jaO" n n^js/)' such that

=(«XX){/, r^/)=(7T/(^/, T^.^e^. Define ff(B)=(«XB){/, I?r), Be*.

Since
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Te nf(^y n Tr/GO' cn/jO' n %0/y

g e M ( f ) , in particular, Ng^>Nf and g\jtf = il/9 thus \l/eS(cp).

As a corollary we get

Theorem 3.4. Le£ <stf be a C*-algebra of operators on a Hilbert space

with I e jsf . TTzerc /or ^ e S(X)

1) 5"(<^) /s a compact convex set such that the extremal points of S(cp)

are factorial states of <$/.

2) The support of the central measure fi9 is contained in S((p).

Proof. 1) Let ^ be an extremal point of S((p). By Lemma 3.3 and

Remark 3.2,

hence Z(\f/) = {^} as \l/ is an extremal point of S(cp)9 thus i// is factorial.

2) Let ^((p) = C*(ntp(j^)9ntp(j^)r) and feS(&(<p)) be the state defined
by ^ Let v be the orthogonal measure on S(&(q>)) corresponding to

C^ and &(9y = ntp(jS)'f}n9(j*y=3(<P)' Then suppvcM(7) and

c={gfo7r<p; g e M ( f ) } because ^ is the image of v under the map g-^g^n^. If

<7eM(/), g(B) = (B£99 TSJ, B E 0(<p), for some Og TE^((p)' =3(<p) hence

thus go-tip eZ(<p)ciS((p) by Lemma 3.3.

Theorem 3.5. Let ^ be a C*-algebra of operators on a Hilbert space H

with cyclic vector £, ||̂ || = 1, and identity le&f. Let \JL be the central measure

of the vector state ajeS(jz?) defined by £. If Tejsf, then for fi-almost all

for all \l/ES(<p).

Proof. Let ^ = C*(j/, j/'), then &' = j*' n s#" is the centre of jaf'. Let

A be the orthogonal measure on S(^) corresponding to ^7 and ^. Then jU is

the image of A under the restriction map /~»/|j/, S(^)--»S(X). If Tejaf,

8>0, there is a compact Kcsupp A such that A(K)^ 1 — e and / is pure relative

to Tfor all/e X, by Tomita's theorem. If cp =f\ sf for some/e K and ^ e S(cp)9

there is an extension g e S(&) of \l/ such that Ng^Nf, hence
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thus \I/(T) = cp(T) as Te st . Since

/4/|^;/eiQ^l-e

the assertion follows.

Corollary 3.6. Let $# be as in Theorem 3.5. If in addition stf is separable,

the central measure is supported by factorial states.

Proof. If stf is separable, for almost all <p e S(j/)

hence by Theorem 3.4, cp is factorial almost everywhere.

Remark 3.7. 1) In this proof of the well known fact stated in Corollary

3.6 ^ = C*(j^, jaf' ) may be nonseparable.

2) If in Theorem 3.5 j^ is a von Neumann algebra, ^ = ̂ ' is contained

in j&. Hence y-*<py is a homeomorphism from the spectrum Q of <% onto supp \JL.

Moreover, if <p E supp p, <p = <py, there is a unique extension q> e supp A of q>,

namely

Hence the assertion in Theorem 3.5 can be sharpened in the following way:

If Te j/, then for jU-almost all q> E supp ju

for all ^

Every extremal point of 5(9)' =3 S(<p) is factorial because it is the restriction

of an extremal point of K$ which is a pure state of ^ = C*(j/? jaf' ) (see proof

of Lemma 3.3).

Theorem 3.8. Let jtf be a C* -algebra with identity, coeS(j</) and \JL be

the central measure of w. Then there is a map (p-Hl/^from S(j&) into F(j&)

(the set of factorial stales of stf ) such that for every TEJZ? <p-»$9(T) is im-

measurable and

Proof. We may assume that j/ is a C*-algebra of operators on a Hilbert

space and co is the vector state defined by a cyclic vector £. If for every (p E S(ĵ )

an extremal point \l/9 of S(<cp) has been chosen, the assertion follows from

Theorems 3.4 and 3.5.
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Remark 3.9. Such a map <p->^ may fail to be Lusinmeasurable (see

[7], Theorem 2).

As in Section 2, proof of Theorem 2.6, we can show

Theorem 3.10. Let a> be a state of a C*-algebra st with identity and \JL

the central measure. Then the cyclic representation TTW of jtf can be written

as a direct integral of factor representations n^ with respect to p. In parti-
es *

cular, Hm is isometric isomorphic to \ H^^d^cp).

§ 4. Ergodic Decompositions of Invariant States

Let / e 3$ be a C*-algebra of operators on a Hilbert space H with cyclic

vector %, || £ || = 1, and U be a group of unitary operators on H such that

U^U-tcijtf and [/{ = { for all [/ell.

Let

, U ell}

denote the set of G-invariant states, the extremal points of S(X, U) are called

G-ergodic states where G is the group of automorphisms of $# induced by U.

Let # = C*(X, U) be the C*-algebra generated by j/ and U and let

=l, 17 e U}.

5U( J1) is a closed, convex subset of S(^) such that

if

For, a state p is in Su(#) if and only if p((L/-/)*(L/~/)) = 0 for all {/ell.

Hence

Remark 4.1. Su(^) is a closed face in S(^) and p-»p|ja^ is a homeo-

morphism of Su(^) onto S(j^, H), it is also an order isomorphism. Hence

p e Su(^) is a pure state iff p | stf is G-ergodic.

Definition 4.2. For cpeS(jaf, U) let Su(<P) = {pl ̂  ; Np^N^} where
is the unique extension of ^ in Su(

Remark 4.3. a) Su(<p) is a compact convex subset of {if/ e 5(j2/, U):

>N,}.
b) Clearly, N+=>NV if N$=>N$ for tp, ̂  e S(jaf, U), but the converse does
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not hold, in general. For example, let U be the group of all unitary elements

of jaf and (p, \l/ two ergodic states (factorial traces) such that Ng> = Ntj, (see [4],

§ 3, proof of Proposition 2). Then <p and 4/ are different pure states of ^ hence

neither N$ ID N$ nor N^nN-.

Therefore the inclusion in a) may be proper. Nevertheless, we have always

c) The extremal points of Sn(cp) are G-ergodic. For, if \]/ is an extremal

point of Sn((p) = K$ | jaf , there is an extremal point p of K$ such that p\j/ — \l/.

Hence p = i^ is a pure state of ^ thus \j/ is ergodic.

Theorem 4 A Lei o> e S(ja/, H) be the vector state defined by £. Then

there is a maximal measure \JL on S(jaf, H) with resultant at such that for Te jtf,

for almost all cp e S(j/5 U)

Proof. Let v be a maximal orthogonal measure on S(^) corresponding

to <5, then v is maximal ([7], Theorem 1) and supp vcSu(^). Hence v can

be considered as a maximal measure on Su(^). The image \JL of v under the

restriction map p-*p\jtf is a maximal measure on S(j&9 U) (Actually, the or-

thogonal measure corresponding to a maximal abelian subalgebra ^ of £$' = $£'

n U'). For TG jaf, and v-almost all /e Sn(^) we have by Tomita's theorem,

g(T)=f(T) for

hence for /^-almost all (p e S(j/, H)

for all if/ e

By Remark 4.3, c), we can choose ergodic states i/^ e Su(<p) for every (p

thus using the GNS-construction for states co of arbitrary C*-algebras we get

Corollary 45. Let ^ be a C*-algebra with identity, G be a group of

^^automorphisms of jtf and let S(jaf, G) be the set of G-invariant states. Then

for o>eS(j3f, G) there exist a maximal measure \JL on S(j3f9 G) with resultant

CD and a map cp-^p^of S(j/, G) into the set of G-ergodic states such that

for all TejaT^

Remark 4.6. Let a> 6 S(jtf, H) be as in Theorem 4.4. Then co is the

resultant of a unique normalized maximal measure \JL on S(jaf , U) if and only if

jaf ' n U' is abelian ([1], Proposition 4.33, [12], see also [6], Satz 1). But,
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even if S(stf , H) is a simplex, each cp e supp \JL may fail to be ergodic.

Example ([5]). Let G be the discrete group in Section 1, jaf0 = C*(L) the
C*-algebra generated by the left regular representation of G on 12(G) (the group
C*-aglebra as G is amenable). Let U = {Ux = LxRxi xeG}, then S(X0, U) is

the set of all normalized traces on jaf0. Moreover, g§ = C*(j/Q,U) is the

C*-algebra which is denoted by $0 in Section 1. Then a)eSu(^), let coe

= co\j^0ES(j^0, 11). Since the restriction map defines an order isomorphism

of Su(^) onto S(stf o, H) no state cp E M(coe) is ergodic (factorial) by Theorem 1.1.
The unique maximal measure \JL on S(jtf 0, U) with resultant coe is also the central

measure of coe on S(jaf 0)- Therefore for every cp E supp # the convex, compact
sets

Sn(cp) and S(cp)9 resp. ,

do not consist of a single point {9}, by Remark 4.3, c) and Theorem 3.4, resp.

Therefore, different selections of ergodic states p^, p'9 E Sn(cp), i.e.

PV^PV f°r aU 9 e SUPP fa giye the same integral

for all Te ^0 -

Therefore one may ask the following questions.

Problem 4,7. a) Is there a canonical way to distinguish certain ergodic
states p9 E Sn(cp), at least in the case that the measure is unique?

b) Can non-uniqueness described in 4.6 be given any physical interpreta-
tion? For instance, let observables be selfadjoint operators in a possibly non
separable C*-algebra jtf which are measured at a state a>. Does failure of uni-
queness mean that one cannot get information about ergodic states (factorial
states) decomposing CD, but only about the sets Sn((p) (S((p))l

§§» Appendix

All results presented in this appendix are due to M. Tomita. The main

purpose is to give a proof of Theorem 2.3 without using fields of Hilbert spaces.

Lemma 5.1 ([14], p. 88, 2.1). Let ^ be a C*-algebra of operators on a

Hilbert space H and ^ be its weak closure. For every TE^, projection

and every set {<?!,..., £„} in H there exist a projection F^E in

and AES& such that
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\\(T-A)F\\£*,\\A\\£\\TE\\ and \\(E-F)tk\\ ge, l^k^n .

Remark. For a short proof of this Lemma see [9], Lemma 2.7.2. In

[14], the Lemma has been stated in a slightly stronger version, namely one can

even have \\A\\ ^ \\TF\\. This can be easily seen by denning A = A0\\ TF \\I\\TE\\

if A0 is as in Lemma 5.1 . But this is not needed for the proof of the following

Noncommutative Lusin's Theorem as given in [13], Theorem 4.15.

Theorem 502 ([14], Theorem 6). Let ^ be a C*-algebra of operators on

a Hilbert space H and ^ be its "weak closure. For every Te^, projection

and every strong neighbourhood U of E in ^ there exist a projection

in U and AEJZ? such that

TF = AF and \\A\\ ^ ||TF||(l + e).

Remark. Since || TF|| ̂  || TE\\ one can always have \\A\\ ^ || TF|| + e, but the

weaker estimate ||^4|| rg ||T.E|| +8 as in [9], Theorem 2.7.3 is not sufficient for

the proof of the next Theorem 5.4.

Definition 5.3. Let stf be a C*-algebra of operators on a Hilbert space If

and £8 a C*-subalgebra of j^ '. A projection E in the strong closure ^ of jaf

is said to be regular relative to & if

||B£||= inf \\B + A\\ for every BE @
AeN(E)

where N(E) is the left ideal N(E) = {A e j* ; AE = 0}.

Theorem 5.4 ([14], Theorem 5). Let ^ be a separable C*-subalgebra of

jtf and E a projection in the weak closure ^ of jtf. Then every strong neigh-

bourhood ofE in ̂  contains a projection F^E which is regular relative to &.

Proof. Let {Tj}jeNc:& be a sequence of operators which is uniformly

dense in 0, let £15..., £n be in H and <S>0.

a) It is sufficient to show: There is a projection F^E in J£ such that

\\TjF\\=mf {\\A\\; AEjtf,TjF = AF} for all j.

For, if Be& and s>0, there exist 1} and Ae<s/ such that

hence (B-Tj + A)F=BF and \\B + (A-Tj)\\£e+ \\TjF\\ +e£3e+ \\BF\\ thus F
is regular relative to ^.
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b) Let 0<e<<5 and F0=E. By Theorem 5.2, for keN we can find

projections Fke^f, Akej& and vectors r ] k e H , 11̂ 11 = 1, such that

2) F^Ft_I,||(Flk_1-Ft)«l||^2-*e for l £ i£« ,

\\(Fk_l-Fk)r,J\\^2-"s(\ + \\TjFj_t\\)-1 for }£j£

and

TkFk = 4^,117^112:11^11 -8.

Let F be the limit of the F'k,, then

= 7}F,

, l = i = n,

and

|| TjF\\

II -2e= I

Corollary 5.5. ([14], p. 92). Let ^ be a C*-algebra of operators on a

Hilbert space H with cyclic vector £ such that l e j t f and ^ — ̂ ' is abelian.

Let Pe^" = ̂  be the projection onto [j/'f] and $'. J? = <£'-*<£ the pro-

jection map onto ^ (as introduced in §2) such that

= <P(T)P, Te^f (see 2.1).

Then for every Tejtf, e>0 there exist a projection £e^f, EgP and

such that

and E is regular relative to the C*-algebra & = C*(T, B9 /)cja^ generated by

T, B, I.

Proof. By Theorem 5.2, there exist a projection F^P in ^ and

such that <P(T)F = BF and ||(P - F)^ || ̂  e/2. Then ^ = C*(T9 B,I)c^ and by

Theorem 5.4, there is a projection £gF in Jt regular relative to ^ with

Then



DECOMPOSITION OF INVARIANT STATES AND NONSEPARABLE C*-ALGEBRAS 177

ETE = EPTPE = $(T)E = $(T)FE = BE

and ||(P-

Remark 5.6. In the following we use the notation introduced in Section 2.

For y e Q let /v be the state of #' defined as

Then/y is pure. For, if qeS(V) and Nq^Nfy, then ^ |^f=/ y | « '=y since

N^r^Ny. Moreover, <?(/ — P) = 0 as /y(/ — P) = 0 hence by the Cauchy-Schwarz

inequality

Q = q(T(I-P) = q((I-P)T) for all Te <T ,

thus

Assume, for a moment, that j&' is abelian and <% = £#'<=:$# (the C*-algebra

^ = C*(j/, ^) has these properties, if # is an arbitrary maximal abelian sub-

algebra of jaf7). Then $g is weakly dense in ^' = ̂ ". If the restriction cp of

fy onto «^ is not a pure state, there is a state ^ e S(j^) such that \l/^(p9 ty^rtp

for some r>0, which has no extension qeS(j/") such that ^(P)=l (Nq^Nf).

Conversely, if for every \l/eM(<p), (p=fy\jtf, there is a continuous linear

functional / on a?" extending ^ such that f(TP)=f(T) for all Tejaf" (but not

necessarily /(PT)=/(T) for all Te J3^")? one has to use a polar decomposition of

/to find an extension q of ^ such that q(TP) = q(PT) = q(T), TEJZ?". Then it

follows

) = q(PTP) = q(0(T)P) = ̂ (^(T)) = y(9(T)) = cp(T)

hence (p is a pure state of j^.

Therefore the next lemma will be the key for the proof of Tomita's theorem.

Lemma 507 ([14], Lemma 2.2, p. 90). Let &? be a C*-algebra of operators

on a Hilbert space H, 38 be a C*-subalgebra of j/ with I E& and

a projection regular relative to @ . Then for every state cp of s£ with (p(A) = Q

for AeN(E), i.e. AE = Q, there is a state q of ^ such that

q(E)=\ and q\& = <p\&.

Proof. Let gf = {/euf*; ||/||gl,/(T(/-£)) = 0 for all Te^f}, then

J5 is a convex, cr(«^*, ^f)-compact and balanced set. For Be&9AeN(E)
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hence, because E is regular relative to

inf
AeN(E)

= \\BE\\ = sup |(BE&if)|^ sup

But then there is /e gf such that f\& = (p\&. Otherwise, by using the geometric

form of the Hahn-Banach theorem, cp \ & could be strictly separated from the

convex, <7(^*, ^-compact set 8f* = {/| &\fe%} by the real part of a <7(^*, ^)-
continuous linear functional. Since g^ is balanced, multiplying by an

appropriate z e CJ, |z| ^ 1, we could find an element B e 3$ such that

which is impossible.

Let # = |//||/|| | be the absolute value of //||/||. Since / is not necessarily
ultraweakly continuous, we use the enveloping polar decomposition of /, ^

considered as C*-algebra. As ||/|| ^ 1 we get for B e &

11/11

hence <p\@ = q\& since (p is a state ([2], Proposition 12.2.9). Finally, there

is an element v in the universal enveloping von Neumann algebra Ji of Jg

such that «=i;.//ll/ll ^nce q(I-E) = (f/\\f\\)(v(I-E)) = Q as /(uT(/-E)) = {0}
/ being the ultraweakly continuous extension of / onto Jl.

Theorem 5o8 (Tomita). Let ^ be a C*-algebra of operators on a Hilbert

space H with l e j t f and cyclic vector £, ||^|| = 1. Let co be the corresponding

vector state and \JL a maximal orthogonal measure on S(jtf) with resultant co.

Then if TEJ&, almost all <peS(X) are pure relative to T.

Proof. 1) Assume first that &' = tf is abelian, let Te j* and s > 0. Then

" = ̂  and by Corollary 5.5 there exist a projection E^P in Jt and

such that E is regular relative to ^ = C*(T, B, /), ||(P-EX||2^s and

Thus E = PEP = $(E)P where g = ̂ (£) is a projection in % = ,&'. Let v be the

spectral measure on Q defined by f. Since 1 - v(Q) = ((I - g)P£, 0 = || (F - E){ || 2

^e and \JL is the image of v under the continuous map y-+q>y, the assertion will

follow in this case, if we have shown that cpy is pure relative to T for all y e Q

withy(G) = l.
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, ,4E = 0, then

hence <?>y(^*^) = 0 if y(Q) = 1 . Thus

(5.1) N(E)cN9v if

Let D = B-cpy(T)I, then

(5.2) DeJV^ if 7(6) = 1.

For, if y(Q) = lJv(E) = y(<P(E» = y(Q) = l hence

) =fy(ED*DE)

=fy((BE - <pJT)E)*(BE - <p7(T)E))

= \fy(T) -/y(T)P = 0 .

Consequently, let y(Q) = l and let i^eS(j^) such that N^^N^^ From (5.2)

we see

(5.3) 0

By (5.1), N(E)dNl}/ hence by Lemma 5.7, there is a state g of ^ such that

q \ @ = \l/ 1 ^ and ^(£) = 1 . Therefore

) = q(ETE) = q(BE) = q(B) =

2) Let ^ be a maximal abelian subalgebra of j^' and let ^ = C*(jaf, ^)

be the C*-algebra generated by j/ and ^. Then &' = #£' n ̂ " = ̂  is abelian,
let /I be the orthogonal measure on S(&) corresponding to ^ and ^. Then £i

is the image of A under the restriction map g-*g \ j&. For 5f e supp A there is
a y e (2 such that for Te ^

^(T) = y(4>(T)) (see Remark 2.2) .

Thus for 4 e jaf , Te ^

therefore

(5.4) ng(@) = ng(jtf) for
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Let cp e supp //, and g e supp A with g \ stf — <p.

If ^ is a state of stf with N^N^ we define a state $ of ^ (depending on the

extension g of cp) as follows. For Te& put \I/(T) = \l/(A), if ng(T) = ng(A)

for Aejtf (see 5.4). If ng(A) = 0, then 0G4*,4) = 0 = cp(A*A) hence

as

It is easily seen that $ is a state of ̂ , moreover,

holds. For, if g(T*T) = Q and

then

because

3) Finally, let Te J3f and s>Q. By the proof in /, there is a compact set

JCcsuppA such that A(X)^1 — e and all geK are pure relative to T, then

ju(S£)^l— e where S£ = {# | J/ ; fif eK} is compact. Let <peS£ , say (^ = gf|j/ ,

g E K, and let ^ e S(^) such that N^N^. Then by 2),

N,=*N,

therefore

hence all cp e S£ are pure relative to T.
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