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Decomposition of Invariant States and
Nonseparable C*-Algebras

By

Rolf W. HEeNrRICHS*

Introduction

The main purpose of this paper is to give a proof of the following

Theorem. Let &7 be a C*-algebra of operators on a Hilbert space with
cyclic vector &, let o7 contain the identity operator and S(=) be the state space
of /. Then there exist a positive Radon measure u on S(sf) and for each
@ € S() an irreducible representation n® of & such that

a2 (" ne(ar)duo)

i.e. o is isomorphic to a direct integral of irreducible C*-algebras n*(sf)
with respect to p.

Actually, one can get u to be the orthogonal measure corresponding to the
vector state @ defined by ¢ and a maximal abelian subalgebra of the commutant
/' of /. (Such a measure is maximal with respect to the Choquet ordering
also in the nonseparable case, see [7], for a short proof).

It may be surprising that no separability condition on .7 is assumed. The
example given by J. L. Taylor in [15] shows that every state ¢ in the support of
such a measure may fail to be a pure state, contradicting an assertion in an earlier
paper of M. Tomita. Therefore in our theorem n? will not be the GNS re-
presentation 7, corresponding to ¢, in general.

The counterexample given by the author in [7], Theorem 2, tells, moreover,
that being interested in a decomposition into factor representations with respect
to a Radon measure on a locally compact space one cannot get a topological
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direct integral, in general (in the sense of R. Godement [3], with respect to
continuous fields of Hilbert spaces and operators). Therefore we use the more
general definition of direct integrals as introduced by W. Wils in [17].

Then the proof of the Theorem depends heavily on Tomita’s generalization
of known facts on decomposition of states to nonseparable C*-algebras in his
later 1959 paper [14].

Definition. For a state peS(s/) let N,={Tew/; o(T*T)=0} be the
corresponding left ideal. A state ¢ is said to be pure relative to Te .« if p(T)
=¢(T) for all states p such that N,oN,,.

By Kadison’s result, a state is pure if and only if it is pure relative to all
Te«.

Theorem (Tomita). Let o be a C*-algebra of operators on a Hilbert
space, I € o/, u be the orthogonal measure corresponding to a cyclic vector &
and a maximal abelian subalgebra of f'. Then for Te s/ u-almost all
@ € S(o) are pure relative to T.

The set of measure zero depends on the given operator Te o/, hence un-
countable many of them can occur in the nonseparable case. We shall show in
Section 2 that this doesn’t matter in the proof of our first theorem.

Tomita’s theorem seems not to be well known, in the proof fields of Hilbert
spaces and operators are used. In the appendix we shall give a shorter and more
straightforward proof of this theorem without using direct integral theory. The
main ideas, however, are the same as in Tomita’s original proof and ‘‘shorter
proof’” also means that we use without proof such methods and results which
are now well known and can be found also in recent monographs on C*-algebras.
For instance, the polar decomposition of functionals is introduced in that paper,
the noncommutative Lusin’s theorem has been proved and also the concept of
regular projections has been used to prove the theorem.

In Sections 3 and 4 we deal with the central decomposition of states and
decompositions of invariant states into ergodic states. We obtain

Theorem. Let of be a C*-algebra with identity, we S(«Z) and p be the
central measure associated with w. Then there is a map ¢—y, from o

into the set of factorial states of o such that

w(T)=Ssml//¢(T)dﬂ(<p) forall Test
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@
Moreover, nw(d)gg 7, ()du(®).

A similar result holds concerning decompositions of invariant states into
ergodic ones. We finish by discussing some uniqueness problems which arise
also in the case of the central decomposition and in the simplex case.

In Section 1 we show some aspects of the counterexample given in [7] in
the framework of C*-algebras in order to see to what extent we can expect
results for nonseparable algebras.

Theorem. There is a C*-Algebra & and a state w of o such that

1) The weak-+-closure of the smallest face containing w is disjoint from
the set P(&Z) of pure states.

2) There does not exist a regular Borel measure m on the topological
space P(s) such that

w(T)=S(p(T)dm(go) forall Tess.

Throughout this paper we use the following

Notation. For a C*-algebra 7 let be
S(2) the state space of o/
P(s) the set of pure states of &7
(ny, H,, £,) the GNS-representation for ¢ € S(=)

M(p)={y € S(=); Yy <r¢ for some r=0}
the face generated by ¢ € S(«)

N,={Teo; o(T*T)=0}

It

the left ideal corresponding to ¢ and
K,={yeS(«); NyoN,}
For Te sz T is defined as T(p)=q(T), ¢ € S(=)

[M] the closed subspace of a Hilbert space H generated by Mc H
' the commutant of a set .« of operators on H.
For a set X
%(X) the continuous functions on X
fly the restriction of a function f onto a subset Y = X.

supp u the support of a Radon measure u
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§1. The Counterexample

Let D=RRE denote the group of all functions f: R—R and let G be the

discrete group of all triangular matrices

1 fh
=019, f,9,heD, f—geZl.
001

Let L and R, resp., denote the left and right regular representation of G on I3(G),
resp. « =C*(L, R) is the C*-algebra generated by all operators L,, R,, xe G
where for ¢ € 13(G), ye G

L£(»)=C¢(x"1y), R.L()=E(yx).

There is a cyclic vector £, e 12(G) for .,

y=e

_ 1
ge(y)_{o y¢e

where ee G is the identity element. Let w be the corresponding vector state
on /. Then we have

Theorem 1.1. a) The weak-*-closure M(w) in S(&#) of the smallest face
M(w) containing w is disjoint from the set P(&/) of pure states of o (even from
the set F(«Z) of factorial states).

b) There is no regular Borel measure m on the topological space P(/)
such that

w(T)=SW) o(T)dm(p)  for all Tesf.

Proof. a) ([7], proof of Theorem2.) For heD the element

10h

z(h)= 010

001
belongs to the centre of G hence L, is in the centre of .« as L,R,=R,L, for
all x, yeG. If n is a factorial representation of .7, there is a character y of

D such that
(L) =x(WI, heD.

Because of the cardinality of D there exists ke D such that y(k)=1, k#0. Let
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1k0
x=/01k%k
001
If
1 fh
y=[01g|eG, f—g=nl,
001
then
10 nk
(1.1) yxyi=[{01 0 |x
001

hence n(L,L,)=x(k)"n(L.L,)=n(L.L,). Thus n(L,) is a unitary operator in the

centre of n(«2), say n(L,)=AI, |A]=1. Therefore we have shown that for every
1k0

factorial state ¢ of 7 there is an element x= (0 1 k), k+0 such that |o(L,)|
001

=1. We shall see that p(L,)=0 for all states p in the closure of the smallest

face M(w) generated by w.

Therefore let p e M(w), p<rw, 0<r, and for y e G let U, denote the unitary
operator L,R, on I[*(G). Then p((U,—D*(U,—D)=ro(U,—D*U,—1)
=r|(U,—DE[>=0 for yeG. Since Uf=U,-;, yeG, we get by the Cauchy-
Schwarz inequality for all T e o/

p(U,T)=p(T)=p(TU,)

in particular, for x, ye G
(12) p(Lx)=p(UnyUy“1)=p(Lyxy“)

(thus x—p(L,) is a positive definite class function on G). Finally, if x is as in
(1.1) and ifforne N

1n10
y,={0 1 0 |eqG,

0 01

10 nk

then by (1.1) the elements y,xy;t=(01 0 >x are mutually distinct (the
00 1

conjugacy class of x is infinite). It is known that then p(L,)=0. For com-
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pleteness we give a short proof by using the Cauchy-Schwarz inequality again.
Since {L, 4y-1¢.; ne N} is an orthonormal set in I*(G) for me N

m

IBul2=oE  where Bp=o- 3% Ly

1
m p=1
By (1.2), p(L,)=p(B,), hence

[p(L)I? < p()p(B}B,,) < ra(ByiB,,) =1 B,C.[1* = ;;—

for all meN, thus p(L,)=0. Consequently, no state pe M(w) is pure or
factorial.

b) Assume that m is a Borel measure on the space X = P(&7) (or X = F(%7))
such that

1) m is inner regular, i.e. for every Borel subset Y= X m(Y)=sup {m(K);
K<Y, K compact},

2) w(T)=S o(T)dm(p)  for all Te 2.
Then m is a ﬁnit}e( Radon measure on X in the sense of Definition R; in [10],
p. 13.  Let u be the positive Radon measure on the state space S(«/) defined by

W)= f@)im(p), fe#(S(s)).

Then by 2), u(T)=w(T), i.e. u has resultant w. It is well known that the support
of u is contained in M(w) which by a) does not contain any pure state (factorial
state). Hence X is contained in the open set 2=S(&/)\M(w). Let 1, denote
the characteristic function of 2 and let {f;},.;=%(S(«)) be an increasing
directed family of non-negative functions such that 1,=sup;.;f;. Then for
all ied

0=u(1)=u(f)={ f(o)im(g).

Since sup;; fi(¢)=1 for ¢ € X we get by [10], Proposition 5, p. 42,

m(X)=sup S Sf(@)dm(p)=0,
ieJ X

a contradiction.

§2. Orthogonal Measures and Direct Integrals

Let &z be a C*-algebra of operators on a Hilbert space H such that I € o/
and e H is a cyclic vector for /. Let € be an abelian von Neumann sub-
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algebra of o7’ and let Pe %’ be the projection of H onto [#¢]. Since ¢ is a
separating vector for &/’ € is isomorphic to ¥p. Hence %, is an abelian von
Neumann algebra with cyclic vector ¢ therefore

€p=(¥p)=C5r.
Thus for every Te €’ there is a unique operator ¢(T) in ¥ such that
2.1) PTP=9¢(T)P.
Then T— &(T) is a positive linear map from %’ onto ¥ satisfying

®(P)=d(I)=1
(2.2) &(ST)=SHT), Se ¥, Te ¢’

Let Q be the spectrum of ¢ and for yeQ define a state ¢, of & by
¢(T)=y(®(T)). Then the map y—¢, is weak-+ continuous and its transpose
@ is a *-homomorphism from #(S(/)) into €(Q)=% such that

O(hT)=0(h)&(T), he €(S()), Te A.
In particular, (T)=&(T) for Te «.
Definition 2.1. The measure u on S(«) defined as
u(h)y=(0(h)E, &), he €(S(=)

is called the orthogonal measure corresponding to ¥ and w, where @ is the
vector state on & defined by & ([12]). Then for he #(S(&)), Te &

(2.3) u(hT)=(O(nP(T)E, &)=(6(h)PH(T)PE, &)
=OMTE, &).

In particular, 4 has resultant r(u) =ow.

Remarks 2.2. 1) By definition, heq,=y(68(h)), yeQ, he €(S(=)), hence
u is the image of the spectral measure defined by £ on Q under the map y—o,.

2) The map 6 can be extended to a *-isomorphism 6, of L*(u) onto
% such that

(2.4) O.0TE, ©={ho)e(T)dut), he L=

(see [13], Proposition 6.23).
3) That u is a maximal measure with respect to the Choquet ordering in
case ¥ is a maximal abelian subalgebra of &’ is proved in [7], Theorem 1.
4) For Teof let {re€],es(w) H, be the vector field defined by &x(e)
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=n,(T),. Then A={¢;; Te ./} is a fundamental family of continuous vector
fields in the sense of [3]. By (2.3), we have for T;e &, h;e €(S()), 1Zi<n,

13, b Erl*= T @@ (T3 T)dute)
=13, 0h) T,

Hence H is isomorphic to the topological integral S@Hq,du(ga).

Moreover, & is isomorphic to the topological direct integral of C*-algebras
n,(2) in the sense of Godement and Tomita. If & is separable and ¥ =/’
is maximal abelian, it is well known that p-almost all ¢ € S(«7) are pure states and
the so-called Godement-Mautner-Segal decomposition of .« is obtained ([3],

(8], [11D).

The counterexamples given by J. L. Taylor in [15] and by the author (see
§ 1) show that in the nonseparable case each state ¢, may fail to be pure, even
if € is maximal abelian. Moreover, it can be shown as in [7], proof of Theorem
2, that the C*-algebra .« in Section 1 cannot be decomposed as a topological
direct integral of irreducible C*-algebras.

In [14], M. Tomita has extended the Godement-Mautner-Segal Theorem
to nonseparable C*-algebras in the following way: For a state ¢ of &/ denote by
N,={Te«/; o(T*T)=0} the corresponding left ideal and let K,={y € S();
Ny,oN,}.

By Kadison’s theorem, K, ={¢} if and only if ¢ is pure.

Theorem 2.3 (Tomita [14], Theorem 7). Let u be the orthogonal measure
on S(sZ) corresponding to a maximal abelian subalgebra of «#'. Then for
Te o, u-almost everywhere

U(T)=¢(T) forall Yyek,.

A proof of Tomita’s theorem is given in the appendix.

In what follows we shall use the more general concept of direct integrals
of Hilbert spaces as introduced by W. Wils in [17]. In our applications,
however, the basic measure space X will be the state space of .« and the measure
will be a positive Radon measure, actually, the orthogonal measure corresponding
to abelian von Neumann subalgebras ¥ —.«#’. Let us recall the definition.

Definition 2.4 ([17]) Let {H?; pe X} be a field of Hilbert spaces on
X and let I'<]],.x H® be a subspace of vector fields such that
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1) ¢@—|n(p)|? is p-integrable for every nel’

2) Ifyerl and fis a bounded measurable function on X (fe M®(X, w)),
the vector field f-#5, o—f(@)n(¢e), belongs to I'

3) If for a vector field # there is " € I" such that

n(e)=n'(p) for almost all ¢,
thennel.
4) The seminormed space (I, | ||) where |7 =(S (@) |I2du(p))t/? is
complete.
The corresponding Hilbert space is called the direct integral of the spaces H¢,
denoted by Sr Hedu(p) or XGBH‘Pd,u((p).

Remarks 2.5. 1) In our applications, for every ¢@eX the set I'(p)
={n(p); ne '} will be dense in H®.

2) If I'y=IT,cx H? satisfies only 1) of Definition 2.4, there is a unique
smallest subspace I' such that 'y I and I satisfies 1)-4). In fact, let I', be
the vector space generated by all vector fields f-#, fe M®(X, u), nely, and let
I" be the space of vector fields which are limits of Cauchy-sequences in I'; with
respect to || || ([17], Corollary 2.3).

We can prove now

Theorem 2.6, Let p be the orthogonal measure on S(s&Z) corresponding
to a maximal abelian subalgebra of «£'. For ¢ e S(&/) let p, be a pure state
of o such that N, ,oN,, let H*=H, and n®=mn,,. Then o is a direct in-
tegral of irreducible algebras n®(<f) with respect to p.

Proof. For every ¢ € S(«) the set K, is a closed face in S(«¢), therefore
every extremal point of K, is a pure state. If pure states p, in K, ¢ € S(«),
have been chosen, for every Te .«

p(T)=0(T) for almost all ¢

by Tomita’s theorem. For Tes let nye]] H® be the vector field defined as

N(@)=7,,(T),,, peS(), and let TI'o={nr; Tex/}. Then ¢-|n ()l
=p,(T*T) is equal to the continuous function ¢—@(T*T) almost everywhere,
hence it is p-integrable. Moreover, for

n
ﬂ=i§1fi"1n€r1a fie M*(S(), ), nr,€l,
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it follows from formula (2.4) (Remark 2.2) that
e ={, 2 (O @pTITIduo)
S(«) i,j=1

=SS(~) 3 A DT Tdu(e)

i,j=1
=113 0.TEI

Since I'; is dense in I' by definition (Remark 2.5, 2)), the map T¢é—n, from /¢
into I'; can be extended to an isometric linear map U from H onto the Hilbert
space SFH‘Pdu(go).

Finally, for arbitrary operators R € o/ we see

n?(Rn(p)=mn,,(RT)¢,, =Nrr(¢), Te .

Hence ¢—n?(R) is a measurable operator field in the sense of [16], Definition
1.1, such that ||z®(R)|=||R|]. Therefore it defines a bounded operator

Srn‘P(R)du(q)) on SFH"’du(qJ) such that
URT) == m(R)du(o) (U(TD),

r
hence URU‘1=S n?(R)du(p) for every Re o/ as ¢ is a cyclic vector.

Remarks 2.7. 1) In the construction of Theorem 2.6 we even have I'(¢p)
to be all of H? as p,, is a pure state for all ¢ € S(=).

2) In[14], Theorem 7', such a map ¢—p,(€ K,) from S(«) into the pure
states P(«) has been used to define a measure v on P(«#). From Theorem 1.1 1in
Section 1 we know that such a measure cannot be a regular Borel measure on
P(s7), in general.

3) Using Theorem 2.6, one can show that every unitary representation of
an arbitrary locally compact group can be decomposed into irreducible re-
presentations as a direct integral with respect to a Radon measure on a locally
compact space.

For applications it would be useful to answer the following question.

Problem 2.8. Let m be a cyclic representation of a C*-algebra & and let

®
wan)=(  xe()duco)

be an integral decomposition as in Theorem 2.6 such that all #¢ are equivalent
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to a single irreducible representation nye.«/. Is m of type I?

§3. Central Decompositions

Let .7 be a C*-algebra with identity and for ¢ € S(.o7) let 3(¢) be the centre
of n,(&#)". If g, denotes the orthogonal measure on S(n,(«)) corresponding
to € =3(¢) and ¢, the image u=p, of ug,, under the map y—yon,, S(r,())
—S(«7), is called the central measure of . ILet Z(¢) be the set of all states i/
of o such that for some 0= Te 3(p)

WA =(n,(A)E,, TE,), Acof

Definition 3.1. Let o« be a C*-algebra of operators on a Hilbert space
H with I e &, #=C*(o, &) be the C*-algebra generated by .« and &’. For
a state ¢ of &/ define

S(p)= N K|t
feS(@), fla=¢

Remark 3.2. 1) S(¢)is a compact, convex subset of S(o/) containing ¢.
Moreover, € S(¢) if and only if for every extension fe S(#) of ¢ there is an
extension g € S(#) of ¢ such that N, N .

2) S(Y)=S(p) for all Y € S(p); for, let Y € S(p), pe S(Y) and f be an ex-
tension of @. Then there exist an extension g of ¥ with N> N, and an ex-
tension h of p with N,o> N, hence N,> N,.

Lemma 3.3. Let &« be a C*-algebra of operators on a Hilbert space
H,Iesf. Then for ¢ € S(<)
Z(p)=S(o)
holds.

Proof. Let Yy eZ(p) and fe S(#) be an extension of ¢. Since @(A)
=(n(A)y, {s), Ae o/, we may assume that {,=¢, and 7, is the restriction of
ny|o/ onto the invariant subspace H,=[n/(«),]. Let Feny o) be the
projection of H, onto H,. Then

no(H)' =n (L) and J(@)=(n(f) N n L))
Since ¥ € Z(¢p), there is an operator 0SS Ten (/)" Nn () such that Y(A4)

=(n Ay, Tr)=(n(A)y, TC;), Ac . Define g(B)=(n(B),, T¢,), Be &.
Since
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Ten (&) Nn) cn(L) Nnn (L)
='”5f(c*(-ﬂ, ")) =n(B)

g € M(f), in particular, N,o N, and g |« =, thus ¥ € S(p).
As a corollary we get

Theorem 3.4. Let o be a C*-algebra of operators on a Hilbert space
with [ e o/. Then for ¢ e S(«)

1) S(@) is a compact convex set such that the extremal points of S(¢)
are factorial states of <.

2) The support of the central measure p, is contained in S(@).

Proof. 1) Let ¢ be an extremal point of S(¢). By Lemma 3.3 and
Remark 3.2,

ZW)=SW)=S(e),
hence Z(Y)={y} as ¥ is an extremal point of S(¢), thus ¥ is factorial.

2) Let #(¢p)=C*(n, (), n,(£)) and feS(#(p)) be the state defined
by &,. Let v be the orthogonal measure on S(#(¢)) corresponding to
¢, and B(@) =n () N7, ()" =3(¢). Then suppv=M(f) and supppu,
c{gom,; g€ M(f)} because p, is the image of v under the map g—gem,. If
geM(f), g(B)=(B¢,, T¢,), Be #(p), for some 0= Te %(¢) =3(¢) hence

(gomy) (D) =(m,(4)E,, TE,), A€ A
thus geom, € Z(¢) = S(¢) by Lemma 3.3.

Theorem 3.5. Let o be a C*-algebra of operators on a Hilbert space H
with cyclic vector &, ||E||=1, and identity I € o#. Let u be the central measure
of the vector state we S(of) defined by & If Tess, then for u-almost all
peS()

o(T)=y(T)  forall YeS(e).

Proof. Let #=C*(«, &'), then &'=/' N " is the centre of o7’. Let
A be the orthogonal measure on S(#) corresponding to #’ and £&. Then u is
the image of A under the restriction map f—f|<, S(%)—S(&). If Tew,
&¢>0, there is a compact K =supp 4 such that A(K)=1—¢ and f is pure relative
to Tfor all fe K, by Tomita’s theorem. If ¢p=f|. for some fe K and € S(¢p),
there is an extension g € S(#) of ¥ such that N,o N, hence

9(T)=f(T)
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thus Y(T)=¢(T) as Te o/. Since
p{flet; feK}zl—¢

the assertion follows.

Corollary 3.6. Let o be asin Theorem 3.5. Ifin addition o is separable,
the central measure is supported by factorial states.

Proof. 1If o is separable, for almost all ¢ € S(2)

S(p)={o}

hence by Theorem 3.4, ¢ is factorial almost everywhere.

Remark 3.7. 1) In this proof of the well known fact stated in Corollary
3.6 #=C*(«/, &) may be nonseparable.

2) If in Theorem 3.5 & is a von Neumann algebra, ¥ =%’ is contained
in«. Hencey— @, is a homeomorphism from the spectrum £ of & onto supp /.
Moreover, if @ esupp u, ¢=¢,, there is a unique extension @ esupp i of ¢,
namely

@(B)=y(®(B)), Be & .

Hence the assertion in Theorem 3.5 can be sharpened in the following way:
If Te =, then for u-almost all ¢ € supp u

Y(T)=¢(T) forall Y eS(p)=K;|.«.

Every extremal point of S(¢)’ > S(¢) is factorial because it is the restriction
of an extremal point of K; which is a pure state of & =C*(«/, &) (see proof
of Lemma 3.3).

Theorem 3.8. Let o/ be u C*-algebra with identity, we S(&) and u be
the central measure of w. Then there is a map @—y,, from S() into F(£)
(the set of factorial states of <) such that for every Te s -y ,(T) is p-
measurable and

oM={ ¥(Ddu(o).

Proof. We may assume that .« is a C*-algebra of operators on a Hilbert
space and w is the vector state defined by a cyclic vector é.  If for every ¢ € S(«)
an extremal point ¥, of S(¢) has been chosen, the assertion follows from
Theorems 3.4 and 3.5.
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Remark 3.9. Such a map ¢—y, may fail to be Lusinmeasurable (see
[7], Theorem 2).

As in Section 2, proof of Theorem 2.6, we can show

Theorem 3.10. Let w be a state of a C*-algebra </ with identity and p
the central measure. Then the cyclic representation m,, of &/ can be written
as a direct integral of factor representations m,, with respect to u. In parti-

cular, H, is isometric isomorphic to \ H, du(®).

§4. Ergodic Decompositions of Invariant States
Let 1 e.o# be a C*-algebra of operators on a Hilbert space H with cyclic
vector &, ||£]|=1, and U be a group of unitary operators on H such that
UodgU 'cey and UéE=E forall Uel.
Let
S(, W={peS(¥); g(UAU V)=¢p(A), Ac o, Uel]}
denote the set of G-invariant states, the extremal points of S(«7, U) are called
G-ergodic states where G is the group of automorphisms of & induced by .
Let & =C*(o, U) be the C*-algebra generated by .« and U and let
Sy(B)={peS(A); p(U)=1, UelU}.
Su(&) is a closed, convex subset of S(#) such that
K,=Sy(#) if peSy#).
For, a state p is in Sy(#) if and only if p((U—-D*(U—1))=0 for all Uell.

Hence

Remark 4.1. Sy(&) is a closed face in S(#) and p—p|& is a homeo-
morphism of S;(#) onto S(«, ), it is also an order isomorphism. Hence
peSy(A) is a pure state iff p|.o is G-ergodic.

Definition 4.2. For ¢eS(«, U) let Sy(p)={p|=; N,oN;} where ¢
is the unique extension of ¢ in Sy(%).

Remark 4.3. a) Sy(p) is a compact convex subset of {yeS(«,N):
NyoN,}.

b) Clearly, N,oN, if N3N for ¢, ¥ € S(=, U), but the converse does
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not hold, in general. For example, let U be the group of all unitary elements
of & and ¢, ¥ two ergodic states (factorial traces) such that N,=N, (see [4],
§ 3, proof of Proposition 2). Then ¢ and lz are different pure states of & hence
neither N; > Ny nor Nyo Nj.

Therefore the inclusion in a) may be proper. Nevertheless, we have always

¢) The extremal points of Sy(¢) are G-ergodic. For, if i is an extremal
point of Sy(¢)=Kj|.«, there is an extremal point p of K such that p| o/ =y.
Hence p=¢7 is a pure state of & thus ¥ is ergodic.

Theorem 4.4. Let we S(«oZ, U) be the vector state defined by &. Then
there is a maximal measure u on S(oZ, W) with resultant o such that for Te o,
for almost all ¢ e S(«Z, U)

WT)=¢(T), YeSye).

Proof. Let v be a maximal orthogonal measure on S(#) corresponding
to @, then v is maximal ([7], Theorem 1) and supp ve Sy(#). Hence v can
be considered as a maximal measure on Sy(#). The image u of v under the
restriction map p—p|2 is a maximal measure on S(s7, ) (Actually, the or-
thogonal measure corresponding to a maximal abelian subalgebra € of #'=.7’
nU). For Te.or, and v-almost all fe Sy(#) we have by Tomita’s theorem,

g(T)=f(T) for gekK;,
hence for p-almost all ¢ € S(«7, U)
W(T)=¢(T) forall YeSy(p)=K;|«.

By Remark 4.3, c), we can choose ergodic states ¥, € Sy(¢@) for every ¢
thus using the GNS-construction for states w of arbitrary C*-algebras we get

Corollary 4.5. Let o be a C*-algebra with identity, G be a group of
x-automorphisms of o and let S(oZ, G) be the set of G-invariant states. Then

for weS(, G) there exist a maximal measure u on S(oZ, G) with resultant
o and a map ¢—p,of S(&, G) into the set of G-ergodic states such that

w(T)=S , PoT)u(@)  forall Tess.

S(«,

Remark 4.6. Let weS(«, U) be as in Theorem 44. Then w is the
resultant of a unique normalized maximal measure u on S(«, M) if and only if
&' NW is abelian ([1], Proposition 4.3.3, [12], see also [6], Satz 1). But,



174 RoLr W. HENRICHS

even if S(«z, W) is a simplex, each ¢ e supp x4 may fail to be ergodic.

Example ([5]). Let G be the discrete group in Section 1, «7,=C*(L) the
C*-algebra generated by the left regular representation of G on I2(G) (the group
C*-aglebra as G is amenable). Let U={U,=L.R,; x€ G}, then S(sZg, N) is
the set of all normalized traces on &,. Moreover, & =C*(,, U) is the
C*-algebra which is denoted by « in Section 1. Then weSy(%), let w,
=w| e S(Ly, W). Since the restriction map defines an order isomorphism
of (%) onto S(sZ,, W) no state ¢ € M(w,) is ergodic (factorial) by Theorem 1.1.
The unique maximal measure u on S(s,, ) with resultant w, is also the central
measure of w, on S(«f,). Therefore for every ¢ e supp u the convex, compact
sets

Su(p) and S(@), resp.,

do not consist of a single point {¢}, by Remark 4.3, ¢) and Theorem 3.4, resp.
Therefore, different selections of ergodic states p,, p, € Sy(p), ie.
p,# P, for all ¢ esupp p, give the same integral

wdT)={ p(T)du()={ p(Diute) ~ forall Tews,.

Therefore one may ask the following questions.

Problem 4.7. a) Is there a canonical way to distinguish certain ergodic
states p, € Sy(¢), at least in the case that the measure is unique?

b) Can non-uniqueness described in 4.6 be given any physical interpreta-
tion? For instance, let observables be selfadjoint operators in a possibly non
separable C*-algebra .« which are measured at a state w. Does failure of uni-
queness mean that one cannot get information about ergodic states (factorial
states) decomposing w, but only about the sets S;(¢) (S(p))?

§5. Appendix

All results presented in this appendix are due to M. Tomita. The main
purpose is to give a proof of Theorem 2.3 without using fields of Hilbert spaces.

Lemma 5.1 ([14], p. 88, 2.1). Let o be a C*-algebra of operators on a
Hilbert space H and 4 be its weak closure. For every Te.#, projection
Ee#,e>0 and every set {{,,...,&¢,} in H there exist a projection FXE in
A and A e such that
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[(T-A)F| <e, |[AIS|TE| and [(E—F)[<e 1<k=n.

Remark. For a short proof of this Lemma see [9], Lemma 2.7.2. In
[14], the Lemma has been stated in a slightly stronger version, namely one can
even have |A|| < ||TF|. This can be easily seen by defining A=A,|| TF| /| TE|
if Ay is as in Lemma 5.1. But this is not needed for the proof of the following
Noncommutative Lusin’s Theorem as given in [13], Theorem 4.15.

Theorem 5.2 ([14], Theorem 6). Let o be a C*-algebra of operators on
a Hilbert space H and A be its weak closure. For every Te .#, projection
Ee # and every strong neighbourhood U of E in .# there exist a projection
FZE in U and Ae.<f such that

TF=AF and ||A|Z|TF|(1+¢).
Remark. Since |TF|| = | TE| one can always have |A|| < || TF|| +¢, but the

weaker estimate ||A|| <|TE]|+e¢ as in [9], Theorem 2.7.3 is not sufficient for
the proof of the next Theorem 5.4.

Definition 5.3. Let .o be a C*-algebra of operators on a Hilbert space H
and # a C*-subalgebra of «#. A projection E in the strong closure .# of o7
is said to be regular relative to # if

|BE||= inf |B+A]| for every Be %
AeN(E)

where N(E) is the left ideal N(E)={4 e« ; AE=0}.

Theorem 5.4 ([14], Theorem 5). Let # be a separable C*-subalgebra of
& and E a projection in the weak closure .# of o/. Then every strong neigh-
bourhood of E in # contains a projection F<E which is regular relative to 4.

Proof. Let {T;};,n=% be a sequence of operators which is uniformly
dense in 4, let &,,..., £, be in H and 6>0.

a) It is sufficient to show: There is a projection F<E in .# such that
I(E-F)l <6, 1si<n, and

|T;F||=inf {|A|l; Ac s, T;F=AF}  forall j.
For, if Be # and £>0, there exist T; and A€ .« such that
|T;— Bl Se, T,F =AF, |A| S| T)F| +¢

hence (B—T;+A)F=BF and |B+(4—T)|<e+|T;F|+&<3e+|BF| thus F
is regular relative to 4.
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b) Let O0<e<d and Foy=E. By Theorem 5.2, for ke N we can find
projections F, e #, A, € o/ and vectors n, € H, |/l =1, such that

D N TFe- 1l 2 | TiFie- 1 |l —¢,
2) FySFyq, [(Feoy —F)EIS27%e for 1<i<Zn,
[(Fr-1—Fm;l £27%e(1+ | T;F;_,|)"* for 15j=k

IIA
IIA

and
TiFy = A Fy, | TFill 2 || Aill —e.

Let F be the limit of the Fjs, then
WE=F)Gll= 2 I(Fi-y —F)Gll se<d, Lsisn,

“Fj—lﬂj—F"jHékgj”Fkrlj_Fk—lr’j”§3(1+“T}Fj—-1”)_la
and

NTFN 2 | TiFn;ll 2 W TGF sl = N T3F ;- 1(F - 1n;— Fn )|
ZTiF -1l - 262 | TiF ;-1 Fjl| —2e= | T;F j| = 2e 2 | 4] — 3e.

Corollary 5.5. ([14], p. 92). Let o be a C*-algebra of operators on a
Hilbert space H with cyclic vector & such that I €.« and € =" is abelian.
Let Pes"=.# be the projection onto [Z'E] and &: #=%'—¥% the pro-

Jjection map onto € (as introduced in §2) such that
PTP=¢(T)P, Te # (see 2.1).
Then for every Te «/, e>0 there exist a projection Ec #, ESP and Be o/
such that
I(P—E)| <e, ETE=BE

and E is regular relative to the C*-algebra # =C*(T, B, I)c o/ generated by
T, B, I

Proof. By Theorem 5.2, there exist a projection FXP in .# and Be &/
such that @(T)F =BF and ||(P—F)¢||<¢/2. Then #=C*(T, B, )=« and by
Theorem 5.4, there is a projection ESF in .# regular relative to # with

I(F—E)| <e/2.
Then



DECOMPOSITION OF INVARIANT STATES AND NONSEPARABLE C*-ALGEBRAS 177

ETE=EPTPE=®(T)E=®T)FE=BE
and [[(P—E)¢| <e.

Remark 5.6. In the following we use the notation introduced in Section 2.
For ye Q let f, be the state of €’ defined as

fT)=n(HT)), Te ¥’

Then f, is pure. For, if geS(¥’) and N, >N, , then q|%¥=f,|% = since
N,«>N,. Moreover, q(I—P)=0 as f,(I — P)=0 hence by the Cauchy-Schwarz
inequality

0=q(T(I—P)=q((I-P)T) forall Te¥’,
thus

q(T)=q(PTP)=q(¥(T)P)=q(&(T))=p(H(T))=£(T).

Assume, for a moment, that </’ is abelian and ¥ =’ <.« (the C*-algebra
R =C*(o, €) has these properties, if € is an arbitrary maximal abelian sub-
algebra of &#’). Then « is weakly dense in ¥'=«". If the restriction ¢ of
f, onto 7 is not a pure state, there is a state ¥ € S(«7) such that y#¢, y<ro
for some >0, which has no extension g € S(«/") such that ¢g(P)=1 (N,oN )

Conversely, if for every e M(p), ¢=f,|«, there is a continuous linear
functional f on " extending { such that f(TP)=f(T) for all Te o” (but not
necessarily f(PT)=f(T) for all Te 2/"), one has to use a polar decomposition of
f to find an extension g of ¥ such that q(TP)=q(PT)=q(T), Te &#". Then it
follows

Y(T)=q(PTP)=q((T)P)=Y((T)) =nP(T))=(T)

hence ¢ is a pure state of 7.
Therefore the next lemma will be the key for the proof of Tomita’s theorem.

Lemma 5.7 ([14], Lemma 2.2, p.90). Let & be a C*-algebra of operators
on a Hilbert space H, # be a C*-subalgebra of <« with € # and Ec # ="
a projection regular relative to #. Then for every state ¢ of o with ¢(A)=0
for Ae N(E), i.e. AE=0, there is a state q of .# such that

q(E)=1 and q|#Z=0¢|%.

Proof. Let F={fe#*; |fI=1, f(T(I—E)=0 for all Te.#}, then

& is a convex, o(.#*, #)-compact and balanced set. For Be %, Ae N(E)

lp(B)l=lp(B+A)| = B+ 4]
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hence, because E is regular relative to #
lp(B)| < inf |[B+A|
AeN(E)

=[BE|= _ sup _|(BEE, n)| < sup |f(B)|
Igli=1,linll=1 few

But then there is fe § such that f|#=¢|#. Otherwise, by using the geometric
form of the Hahn-Banach theorem, ¢ | % could be strictly separated from the
convex, o(#*, #)-compact set F,={f| Z; feF} by the real part of a o(F*, %)-
continuous linear functional. Since &, is balanced, multiplying by an
appropriate zeC, |z| £1, we could find an element B € & such that

lo(B)| >sup | f(B)|
feF

which is impossible.

Let g=|f/|f]l| be the absolute value of f/| f||. Since f is not necessarily
ultraweakly continuous, we use the enveloping polar decomposition of f, .#
considered as C*-algebra. As |[f||<1 we get for Be &#

@ =1 @< | 1B <qe*B)

hence ¢ | #Z=q| % since ¢ is a state ([2], Proposition 12.2.9). Finally, there
is an element v in the universal enveloping von Neumann algebra M of M
such that =v-f/|lf|| hence (I —E)=(f]| f1) (vI —E))=0 as f(.#(I—E))={0}
f being the ultraweakly continuous extension of f onto .#.

Theorem 5.8 (Tomita). Let o/ be a C*-algebra of operators on a Hilbert
space H with I e o and cyclic vector &, & =1. Let w be the corresponding
vector state and p a maximal orthogonal measure on S(&7) with resultant w.
Then if Te o, almost all ¢ € S(Z) are pure relative to T.

Proof. 1) Assume first that o/’ = is abelian, let Te o/ and 6>0. Then
Pew"=.# and by Corollary 5.5 there exist a projection EXP in .# and
Bes such that E is regular relative to #=C*(T, B, I), |[(P—E){|*<¢ and

ETE=BE=®(T)E.

Thus E=PEP=®(E)P where Q=®(E) is a projection in ¥ =.7". Let v be the
spectral measure on Q defined by é.  Since 1 —w(Q)=((I—Q)P¢, &)=||(P—E)¢|?
<e and p is the image of v under the continuous map y—¢,, the assertion will
follow in this case, if we have shown that ¢, is pure relative to T for all ye Q
with p(Q)=1.
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If Ae &, AE=0, then
0=(PEA*AEP¢, §)=(QPA*APE, §)=(QP(A*A), &)
= Qa0
hence ¢,(A*4)=0if y(Q)=1. Thus
(5.1) N(E)eN,, if yQ)=1.
Let D=B—¢,(T)I, then
(5.2) DeN,, if yQ)=1.
For, if y(Q)=1, f(E)=7(®(E))=7(@)=1 hence
@(D*D)=f(D*D)=f(ED*DE)
=f,(BE—¢,(T)E)*(BE—¢,(T)E))
=f((A(T)E—f(TEY(S(T)E—f(T)E))

=H(@(T)=£(DD*(&(T)—f(T)D)
=(@(T)—f(T)DI>=|f(T)—-f(D)*=0.

Consequently, let y(Q)=1 and let € S(«) such that NyoN, . From (5.2)
we see

(5.3) 0=y(D*D)=y(D)=¥(B)—(T).

By (5.1), N(E)= N, hence by Lemma 5.7, there is a state g of .# such that

q|#B=y|# and q(E)=1. Therefore
Y(T)=q(T)=q(ETE)=q(BE)=q(B)=y(B),

thus Y(T)=¢(T) by (5.3).

2) Let % be a maximal abelian subalgebra of &’ and let #=C*(«, %)
be the C*-algebra generated by o and ¥. Then #'='N¥% =% is abelian,
let A be the orthogonal measure on S(#) corresponding to € and &. Then u
is the image of A under the restriction map g—g|<. For gesupp there is
a y e Q such that for Te #

g(T)=y(®(T)) (see Remark 2.2).

Thus for Ae s, Te¥

gAT)=y(P(AT))=y(P(A)T)=g(A)y(T)
therefore

(5.4) T (%)=, (L) for gesuppi
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Let ¢ esupp 4, and g esupp 4 with g | & = ¢.
If y is a state of & with N,o N, we define a state  of # (depending on the
extension g of @) as follows. For Te# put Y(T)=y(A), if n(T)=m,(A4)
for Ae.s (see 5.4). If n,(A4)=0, then g(4*4)=0=¢(A*A) hence
Y(A*A)=0=y(4) as N,oN,.
It is easily seen that i is a state of 2, moreover,
Nlp ] Ng
holds. For, if g(T*T)=0 and
n(T)=n,(4),
then
Y(T*T)=y(4*4)=0
because
P(A*A)=g(A*A) =(n(A*A)E,, L) =(my(T*T)E, &)
=g(T*T)=0.

3) Finally, let Te.« and £é>0. By the proof in I, there is a compact set
Kcsupp 4 such that A(K)=1—¢ and all ge K are pure relative to 7, then
u(S,)=1—¢ where S,={g|«; geK} is compact. Let ¢€S,, say p=g|«,
g€k, and let € S(«) such that N,oN,. Then by 2),

N|[7 o Ng
therefore
WD) =Y(T)=g(T)=o(T)

hence all ¢ € S, are pure relative to T.
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