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Introduction

In the theory of complex manifolds, there are two different extreme objects:

compact manifolds and holomorphically complete ones. We have a lot of good

knowledge about the fundamental properties of both classes of manifolds, con-

tributions to which have been made by many celebrated authors in this century.

In 1970, S. Nakano [18] succeeded in solving a problem on the inverse of

monoidal transformation by proving the vanishing of cohomology groups for

line bundles over a class of complex manifolds. This class includes the above

extremes and was called by him weakly 1-complete manifolds. The definition

is as follows; a complex manifold is said to be weakly 1-complete if it carries a
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C* plurisubharmonic exhaustion function. It is trivial that a compact complex
manifold is weakly !-complete. It follows immediately from the Remmert’s
proper embedding theorem that holomorphically complete manifolds are weakly
1-complete.

From the definition, it is quite natural to expect that a weakly I-complete
manifold is a nice intermediate object between compact complex manifolds
and holomorphically complete ones.

In the last decade, more or less inspired by this philosophy, several authors
have studied cohomological properties of weakly I-complete manifolds: [1],
[12], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]. The
following theorem is due to S. Nakano [21].

Theorem 1. Let X be a weakly 1-complete manifold and n: B—»X a
holomorphic line bundle. Assume that B has a metric along the fibers whose

curvature form is positive. Then,
HYX, Qr(B))=0, p+g>dimX.

Here we denote by Hi(X, QP(B)) the g-th cohomology group of X with coeffici-
ents in the sheaf of the germs of B-valued holomorphic p-forms.

Let X, be the sublevel set {x; ¢(x)<c} of the exhaustion function ¢. In
[24], the author has extended the above theorem as follows:

Theorem 2. Let X be a weakly l-complete manifold and n: B—»X a
holomorphic line bundle. Assume that B has a metric along the fibers whose
curvature form is positive outside a compact subset K of X. Then, the natural

restriction maps
p.: HUX, Q?(B)) — HYX,, Q*(B)), p+g>dimX,
are bijective if X .o K.

The purpose of the present article is to extend the methods employed in
[24] and show more explicitly how they unite each other to yield a fundamental
theorem on cohomology groups of weakly l-complete manifolds; the results
including all the known ones will be deduced from the isomorphism theorem in
Chapter 2.

As a by-product we obtain simple proofs of results obtained by Andreotti-
Grauert [3], Andreotti-Vesentini [4], and Hormander [10]. Our viewpoint is
that of [4] and the argument is essentially included in [10]; the use of complete
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metrics renders the derivation of the basic estimates very easy, and the argument
borrowed from [10] enables us to avoid the use of so called ‘bumping lemma’.
Of course the advantage of our method lies in that we can prove the isomorphism
theorems on weakly 1-complete manifolds in the same way.

The author expresses his hearty thanks to Professor S. Nakano who led him
to this subject. He is also very grateful to Professor H. Grauert who allowed
him to stay in Gottingen during the preparation of this paper and gave him kind
advices. Last but not least he expresses many thanks to Mr. K. Takegoshi for
careful reading of the manuscript and to the referee for valuable criticisms.

Chapter 1. Preliminaries

§1. Hermitian Geometry

Let X be a paracompact complex manifold of dimension n and n: E—»X
a complex vector bundle. We denote by E* E, AE, and E™, the dual, the
conjugate, m-fold exterior power and m-fold symmetric power of E.

Definition 1.1. A section 1 of Hom (E, E*) is called a hermitian metric
along the fibers of E if, for any point xe X and any two vectors v, we E,:
=n"1(x),

) { (h(x) (W) () = (h(x) (1)) (W)
(h(x)(v))(0)>0, v=0.
Hermitian metrics are assumed to be C* unless otherwise stated. Let h
be a hermitian metric along the fibers of E. For two sections f and g of E,
we set

2 <f 9>=h(f)).

{f, g is called the pointwise inner product of f and g. Canonically, h induces
metrics along the fibers of E*, E, E™, AE, and AE® AE. We also denote
by ¢ , > the pointwise inner product with respect to the induced metrics.

Let Ty be the tangent bundle of X and Tx@® T% the splitting of T}®gC
into types (1, 0) and (0, 1) with respect to the complex structure of Ty. As a

complex vector bundle we always identify Ty (resp. T%) with T (resp. TY).

Definition 1.2. A section of EQ® R Tx® A % is called an E-valued
(p, q)-form. In particular, a section of A T4 ® A % 1s called a (p, g)-form.
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We can naturally identify R Tx® A T% with a subbundle of Xq(TX®RC).
For simplicity we denote A (Ty®gC) by T% and the subbundle of T% cor-
responding to A T%® A T% by T%? A section u of T% is called an r-form.
We set degu=r. We express ve(EQTEY), as

(3) v= il<;<ip Uil."il’jl"'thil AREA Tip A Ti A A Tfu ?
J1<<jq
where v;,...;,5,...5, € Ex and (zy,..., 7,) is a basis of T ,.

Let ds? be a hermitian metric along the fibers of Ty. We denote also by
{f, g> the pointwise inner product of E-valued (p, g)-forms f and g with respect
to the metric induced by h and ds®. The length of f is defined by | f|=/{f, /).
ds? is pointwise expressed as

@ ds?= 3. @7,

for a suitable choice of the basis (74,..., 7,). (T1,..., T,) is called an orthonormal
basis with respect to ds?. We set

n

® a)=\/—1z,lri/\f,..

w is called the fundamental form associated to ds2.

Let E, and E, be two complex vector bundles over X provided with her-
mitian metrics along the fibers. Let &: E,—E, be a morphism or the conjugate
of a morphism. The adjoint £* of £ is defined by the following formula:

©) &S 922=LL. &)1,

where f and g run the sections of E, and E,, respectively, and { , »; denotes the
pointwise inner product of E,.

The conjugate star operator %p: EQT%?—>E*®@T%P»~1 is defined to
be a conjugate linear operator satisfying

fawpf=<f, frdv
() pf=(=1)"f

for any E-valued (p, q)-form f, where

© {

®) dv=nl—!a)/\---/\w

and
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) (e:®91) A (eI ®gr)=e3(e)g1 A g2,

el EEx! e;‘ EESkI’ g1 € T;’,iy gZ € ij(,&q .

dv is called the volume form with respect to ds?. % is unique. In particular,
for the trivial bundle 1 with fiber C and with trivial metric along the fibers, we
denote ¥, by *. * operates naturally on EQ T%? so that *(e® f)=e®3xf for
e@fe(EQT%9), We have »;=hQ®%. Let F be another complex vector
bundle over X. For a Hom (E, F)-valued (p, q)-form f, we denote by

(10) e(f): EQTS —> FRTE P14
the left multiplication by f. We set

L=e(w)

(1) {Af=(—1)dezf;L;f, for feTy.,

L is called the Lefschetz’ operator with respect to ds?. A is the adjoint of L
with respect to the metrics induced by ds?.. We set Cf=3 (—1)¢7?n, f, for
feT¥%, where we denote by =, , the projection from T4*? to T%%. By abuse of
notation we denote id;®L by L, and so on.

In what follows let E be a holomorphic vector bundle. We denote by
Cr-9(X, E) the set of E-valued (p, g)-forms of class C*. We set C'(X, E)
=3 ,,C7%(X, E). The complex exterior differentiations ¢ and 0 operate
naturally on C'(X, E) and on C'(X, E), respectively. We set

Dp=0+h"10h
Dy =h"18h

(12 5= —#p:0% x(= —%h~10h%)
§=—%0%,

where by abuse of notation we denote h®id by h, and so on.

Theorem 1.3, Let the notations be as above. Then there is a linear
operator T, (resp. T,) belonging to the algebra of operators generated
by e(0w) (resp. e(dw)), L, A, ¥, and C~! over the field of rational numbers,
satisfying

DyA—AD}y = =1(8;+T,)
(resp. 0A—A0=—/—=1(3+Ty)),

(13)
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for any vector bundle E and h. Furthermore T; are linear with respect to
dw and T,=T,=0 if do=0.
Proof. See Appendix.
Theorem 1.4 (Extended Bochner-Calabi-Nakano formula).
(14) —/—1(D34—AD})
=095 +950— (3D + D 9)+ 0T, + T, 0
—T,D;—D:T,.

Proof. Since 62=0 and (D%)*=0,

15) D%=(0+D%)(0+Dy)=0D;+ D0 .
Hence,
(16) —/—1(D34—AD})

= —/=1(3DyA + DydA— ABD; — AD;d)
= —/=1(8(DyA—AD})+ (DA — AD})d
+(8A— A3)Dy + Dy(8A— AD))
=095 +950—(8D;+D;9)+0T, + T,0
—T,D5—D5T,. q.e.d.

We set
(17) (5, = <, 9>,

for f, g e CP-9(X, E) such that supp f nsuppg € X, where supp f denotes the
support of f. Then, by Stokes’ theorem,

(of, 9)=(f, 9&9),
(D,Ef; g) =(f’ gg) )

provided that supp f N supp g is compact. We put

(18)

(19) C54UX, E)={feCr9X, E); suppfis compact}.

CB4(X, E) is provided with the structure of a pre-Hilbert space with a norm
I 1=V, f). When we need to be more preciese, we denote | f|| by [|.f 545
Combining Theorem 1.4 with arithmetic-geometric inequality we obtain

Theorem 1.5. Under the above notations,
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(20) %(MSEf I>+1of1%)
2(—/~1UD32A—-ADYHYf, f)
- ‘é’(ll T fIP+HITH IP+ITA P+ ITE1?), feCoUX, E).

Here T¥ denote the adjoints of T,.
D% is a multiplication of a Hom (E, E)-valued (1, 1)-form. We set
21 —D%=e(0,), 0,eCH{(X, Hom (E, E)).

@, is called the curvature form of E with respect to h. Then (20) becomes
(22) %(H\%f 124101122/ = 1(e(©)A— Ae(OW) f, f)

—%(II T IPHITI P+ I A 1P+ 1 TSI

T;and T¥ are called the torsions of ds>. In what follows we call ds? a hermitian
metric on X, and if dw=0 we say that ds? is (or simply X is) Kdhlerian.

§2. L2 Estimates of §

Let H, and H, be two Hilbert spaces with norms || |;, i=1,2 and T:
H,—H, a linear operator with a domain of definition D;. T is called a closed
operator if Gy:={(u, Tu); ue Dy} is a closed subspace of H; x H,. In what
follows every linear operator is assumed to be closed and with a dense domain.
T*: Hy—H,, the adjoint of T, is defined as follows;

(1 Gro={(v, w); (u, w); =(Tu, v),  forany wueDq},
where ( , ); denote the inner products of H;. We denote by Ry (resp. Ny) the
range (resp. the kernel) of 7. The closure of R; is denoted by [Rr].

Assume that we are given another Hilbert space H; with a norm || ||; and a
linear operator S: H,— H such that

)] SoT=0.
Then NgoR; and N> Rg.. (2) implies that R; and Rg. are orthogonal,

and the intersection of the orthogonal complements of these spaces is s#:=Ng
N Nr.. Hence we have H,=s#@[Rr]®[Rs:].

Theorem 2.1 (cf. Theorem 1.1.3in [10]). Assume that from every sequence
91 € D1« 0 Dg with ||g,ll, bounded and T*g,—0 in H,, Sg,—0 in H,, one can
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select a strongly convergent subsequence. Then both Ry and Rg are closed, and
A is finite dimensional.

Elements of s# are said to be harmonic.

Theorem 2.2 (cf. Theorem 1.1.4 in [10]). Let F be a closed subspace of

H, containing Ry. Assume that

3 IFIBSIT* I3 +1Sf113, feDr.NDsNF,

then we have

G)) If ge Ngn F, we can find ue Dy so that Tu=g and |ul|, = |h],.
&) If ve Ry, we can choose fe€ Dy. so that T*f=v and | f|,=Z|v|,.

Let the notations be as in Section 1. We denote by L?:9(X, E) the space
of square integrable E-valued (p, q)-forms on X with respect to the metrics h
and ds?. By Riesz-Fischer’s theorem L?-4(X, E) is naturally identified with
the completion of C%-4(X, E) with respect to the norm [|f|. When we need
to be more precise we denote LP-4(X, E) by L?-4(X, E, h, ds?). 0 and other
differential operators introduced in Section 1 are naturally extended to closed
linear operators on LP-4(X, E) with dense domains

Ds={fe Lr-9(X, E); there is a g € L?-7*1(X, E) such that
(fs 9x9)=(9, @) for any ¢ € C5-2*!(X, E)}.

and so on. 9, so extended, is called the formal adjoint of 6. When we
need to be more precise we denote Dz, Ry, and N; by D%? or D%4(h, ds?),
and so on.

In general DsuS Dy, because of the presence of the boundary of X. To
avoid this technical difficulty we provide with X a complete hermitian metric.
This viewpoint is due to Andreotti-Vesentini [4].

Definition 2.3. We say a hermitian metric ds? is complete if the distance
function on X with respect to ds? provides X with a structure of a complete
metric space.

Theorem 2.4 (cf. Theorem 1.1 in [30] p.22). If the hermitian metric
ds? is complete, then

(6) CBUX, E)is dense in D% with respect to the norm (|| f||2+[|0f|?)!/2.

(7) CBUX, E) is dense in D%;? with respect to the norm (|| |2+ [|9gf[2)*/?
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(8) CBUX, E) is dense in D% n D§,7 with respect to the norm
(LFIZ+ NS 1+ 18 f 122,

Corollary 2.5. If the hermitian metric ds® is complete, then 0*=395
and Dy =3.

Proof. Clearly Do Dy,. Let feDgy,.. Then, by Theorem 2.4, there is a
sequence f, in C§%(X, E) such that [f,—fll+[8zfi—9cf—0. Hence, for
any ¢ € D3, we have

® Of, 9)=1lm (3zfi, ¢)=lim (fio 00)=(f, 09).

Therefore, fe Ds. and 95 f=0%f. The proof of Dif =3 is similar. g.e.d.
Let

(10) P=Qi i, TAN AT AT A AT,

where (t4,..., 7,) is an orthonormal basis of T% , with respect to ds?. Then
we have

(11) =Te(t;AT)Ap, 9y =0 if i {iy..., i}
and
(12) J=le(r, AT ), 9y =<0, 9>  for 1=ZaZp.

Hence, from (22) in Section 1, we obtain

Proposition 2.6. Suppose that the sums of q eigenvalues of 009 with
respect to ds? are bigger than a nonnegative function A. Then,

13) %(IIE’“J’II2 +10f1D 2/ = 1(e(OAS, f)+Cf, [)
*”12—(“ LfIP+ITEH IR+ I T 12+ 1T F1%), feCyP(X, E), p24.
Similarly we have

Propesition 2.7. Suppose that the sums of q eigenvalues of 0D with respect
to ds? are less than a nonpositive function A. Then,

(14) %(Ilé*f I2+16f13Z =/ = 1400 f, )~ S, )

——%—(II TfIP+HITE P+ I T AP+ TE 1),
fE Cg’p(Xa E): pén_q .
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In view of Theorem 2.2 and Theorem 2.4, the meaning of these propositions
will be clear.

Chapter 2. Isomorphism Theorems for Pseudo-Runge Pairs

§1. Basic Estimates

Let X be an n-dimensional complex manifold with a complete hermitian
metric ds2, and let E be a holomorphic vector bundle over X with a hermitian
metric h along the fibers.

Definition 1.1. We say that the basic estimate holds at bi-degree (p, q) if
there exist a compact subset K< X and a constant C,, satisfying

) 112 Colllo*f 12+ 10 112+ SK fofodvy,  feDRInDEA

K is called an exceptional set and C, is called a subellipticity constant.

Proposition 1.2, Assume that the basic estimate holds at bi-degree (p, q).
Then both R%‘ and R5%"! are closed, and dim N%%/R%‘ < o0.

Proof. 1In view of Theorem 2.1 in Chapter 1, we have only to show that
from any sequence g,€D%?nD%? with |g,| bounded and |d*g,/—-0 in
L»a=Y(X, E), |0g,]l—-0 in Lr-9*1(X, E), one can select a strongly convergent
subsequence.

By the completeness of the metric ds2, we can take a sequence f, € C5 %X, E)
so that

I fe—grll <1/k,
2) of,—0 in Lr1*Y(X, E),
0*f,, = 0 in Lr-97Y(X, E)
(cf. Theorem 2.4 in Chapter 1).
Let K, be any compact subset of X and K, another compact subset of X

containing K, in the interior. Let yx: X—»R be a C® function satisfying
x=1on K, and y=0o0n X—K,. Since

(69 +9£0) fio f) + (fio fi)

is bounded,

(095 +93£0) (X0, x/)+fo 1)
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is also bounded. Since 09+ 9.0 is a strongly elliptic operator, in virtue of
Garding’s inequality (cf. Theorem 6.5.1 in [16]) and Rellich’s lemma (cf.
Theorem 3.4.4 in [16]), yf, has a strongly convergent subsequence.

Hence f, has a subsequence f; converging strongly on K. By the basic
estimate, f; converges strongly on X, hence so does g, . g.e.d.

§2. Pseudo-Runge Pairs and an Approximation Theorem

We shall present here an abstract form of Proposition 6 in [24] (cf. also
Approximation theorem in [29]).

Let X be a complex manifold and E a holomorphic vector bundle over X.
Let X, and X, be two open subsets of X.

Definition 2.1. The pair (X, X,) is called a pseudo-Runge pair at bi-degree
(p, q) with respect to E, if X, < X, and there exist a complete hermitian metric
ds} on X, a hermitian metric h, along the fibers of E| y,, a sequence of complete
hermitian metrics ds? (k=1, 2,...) on X,, and a sequence of hermitian metrics
h, along the fibers of E| y,, satisfying the following properties;
(%) ds2, hy, and their derivatives converge on every compact subset of X,
uniformly to ds3, hy, and to their derivatives, respectively.

(xx) The basic estimates hold with respect to ds? and h, at bi-degree (p, g+ 1)
with a common subellipticity constant and a common exceptional set
contained in X .

(sxx) LP-9(X,, E, hy, ds,?)=L?%X,, E, hy,,, ds?,,) and there is a constant C,
independent of k such that

@1 %, no.as2 = Call@llny a5 »
@eChiti(X,, E| x,), 1=0.1.

For simplicity we set
(1 CoU(Xy, E)y=CgUXy, Elx,),

and so on.
Note that under the above conditions the basic estimate holds with respect
to hy and ds3, too.

The following lemma is essentially the same as Proposition 3.4.5 in [10].

Lemma 2.2. Let (X,, X,) be a pseudo-Runge pair at bi-degree (p, q) with
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respect to E. Let hy, ds, Iy, and ds? be chosen as above. Then there is an
integer ko and a constant C, such that for any k=k,

@ Cylo*f12+ 1S 1Dz f 117,

for any fe Lp-a*(X,, E, h,, ds?) satisfying flx, LNsN Nj..

Proof. Assume that the assertion is false. Then there is a sequence f

satisfying

A3) fr€ LpamY(X,, E, Iy, ds?)
4 I fill =1

(5) iig:o ;gf 0*f:ll =0

(6) lim kigi 18] =0

and " i

(7 Sl x, LNsn Ng.

Choosing a subsequence if necessary, we may assume that

®) 1% <
and
©) EARS =

Then there is a subsequence of f, |y, weakly convergent in L?-4*1(X,, E) and
strongly convergent on a common exceptional set K of the basic estimates. Let
the weak limit be f. Then f must be zero. In fact, by (7) we have f L N30 N,
and the completeness of the metric dsg implies that we have both df=0 and
0% =0.

On the other hand, combining (8) and (9) with the basic estimates,

(10) [ oroan>d—F

where Cs is a positive number and dv, denotes the volume form with respect to
ds?. From the strong convergence of f, on K, we obtain

(1) [ s vz,

where dv, denotes the volume form for ds3. Therefore f #0. A contradiction!
q.e.d.
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Theorem 2.3 (Approximation theorem). Let (X,, X,) be a pseudo-
Runge pair at bi-degree (p, q) with respect to E. Let hq, ds3, hy, and ds be
chosen as above, and let f€ N%%hy, ds§). Then, for any positive number e,
there exist an integer ko, and an fe N2UX,, E, hy,, ds;2) satisfying

(12) Iflx,~fli<e.

Proof. In virtue of Hahn-Banach’s theorem, we have only to prove the
following assertion:

Let ue L»%X,, E) and
(13) (u,g1x)=0, geNZih,dsp), k=1,2,..,
then we have
(14) (u, )=0, feN%1(ho, dsj).
To prove the assertion we observe first that by the assumption (xs#x),
(15) I(r, 0] x )= Collull - [o]l.

Hence (u, -|,) is continuous on L?-4(X,, E, h, ds?) and its norm does not
exceed C,|u||. From the Riesz representation theorem there is a u, e L?9(X,,
E, hy, ds?) such that

(16) { (uk, ')=(u7 '[Xx)

ull = Collull-

Clearly u;=0 on X,—X,, so that u, are orthogonal to N%(h, ds?). Fur-
thermore

17 i ] x, 1l < C3llul] -
In fact we have
(18) (el x,o WIS Collu]l - Iwl S C3llul - [l -

On the other hand, from (*) combined with (16), we have
(19) (Ul x,» @) — (u, ),
for any o e C5%(X,, E). (19), combined with (16), implies that
(20) (ulxp f)— (u, f), forany felLr4X, E).
Since u,, are orthogonal to N&(h,, ds?),

1) uy € [RE:A(hy, ds)].



204 TAKEO OHSAWA

Hence, in virtue of Lemma 2.2 and Theorem 2.2 in Chapter 1, there exist a
constant C5 and w, e L?-9%1(X,, E, h,, ds?) satisfying

0*w,=u
(22) k=Ug
{ [wiell < Csllugl -
Since
(23) Wil %, I (£ C,lwell £ C,Csllu ) = C3C,ull,

there is a subsequence of w, |y, converging weakly in Lr-7*1(X,, E). Let the
weak limit be w. Then

24 (w, 09)=(u, ),  @eChYX,, E).

Therefore, in virtue of Corollary 2.5 in Chapter 1, we obtain

(25) F*w=u.
Consequently,
(26) (u, f)=0, for any fe N2(hy, dsj). g.e.d.

§3. Isomorphism Theorems

In this paragraph we shall prove isomorphism theorems for pseudo-Runge
pairs. First we recall a fundamental fact about cohomology groups. Notations
are as in Chapter 1.

Let HY(X, QP(E)) be the g-th cohomology group of X with coefficients in
the sheaf of holomorphic sections of EQ A T. Let Li:4(X, E) be the space
of locally square integrable E-valued (p, g)-forms on X. L{;4( X, E) is naturally
identified with the completion of C?-1(X, E) with respect to the semi-norms

) =({, <o wyav) ", wecrux, b,

where K runs through the compact subsets of X.

Proposition 3.1.
(1) HY(X, Qv(E))
~{fe LB4(X, E); 3f=0}/{g € LE:4(X, E): there is an
he L%3~Y(X, E) satisfying 0h=g} .
Here du=v should read

(2) (u, 3p@)=(v, @) for any ¢ € C§-%(X, E), p20, g=20.
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Proof. Let #={U;} be a locally finite open cover of X such that U;
are biholomorphic to a polydisc. By solving the d-equation for the domains of
holomorphy in C” (cf. [10] or [11]), we have

(3) {fe L¥I(U,,...,, E); 0f=0}
={g e Ly4(U; E); there is an he L~ (U;,..;,, E)
satisfying dh=g}, p=1, g=1.

1erip?

Here we put U;,..;,=U; n---nU;,. Itiseasy tosee that the equality (3) implies

1ip
the equivalence (2).

Theorem 3.2 (Weak isomorphism theorem). Let (X,, X,) be a pseudo-
Runge pair with respect to E, at bi-degrees (p, q) and (p, q+1). Then there
is an integer kg such that the natural restriction maps

4) pi: N29*1(hy, dsz)/RE*1(h,, dsi) —
N2+ hg, dsg)/RE2"*1(he, ds3), k=k,
are bijective.
Proof. Since the basic estimate holds at bi-degree (p, g+ 1), we have
&) dim N2%1(hy, ds3)/R%4*1(hy, dsg)< o .

Hence we have only to show that, for sufficiently large k, p, is injective and the
image of p, is dense. The density of the images follows from Theorem 2.3.
On the other hand, the injectivity follows at once from Lemma 2.2. q.e.d.

Given a pseudo-Runge pair (X, X,), we set for simplicity

NPA(X )= N5 (ho, ds})

6
(6) { R?:4(X )=R2(h,, ds3).

Theorem 3.3 (Isomorphism theorem). Let X be a complex manifold,
let E be a holomorphic vector bundle over X, and let D be an open subset of X.
Assume that there exist a family X (k=1, 2,...) of open subsets of X and a
family D, of open subsets of D such that

@) X=\ X, Xy € Xyiq
k21

(3) D=\ D, D, € Dy 4
kz1

9 X,=D,

(10) X,=D
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(11) (Xi, Xy+2) is a pseudo-Runge pair at bi-degrees (p, q) and (p, q+1)
with respect to E.

(12) (Dy, Di4,) is a pseudo-Runge pair at bi-degrees (p, q) and (p, q+1)
with respect to E.

Then the natural restriction map

p: H* (X, Q»(E)) — H**'(D, Q¥(E))
is bijective. Moreover, Hi1t\(X, QP(E)) and HI*Y(D, QP(E)) are finite di-
mensional.

Proof. Injectivity: Let fe LE3*Y(X, E), 0f=0, and f|,=0g for some

ge Ly XD, E). By the pseudo-Rungeness of (X;, X3) and Theorem 3.2,
there is a g, € L};4(X 5, E) satisfying 0g,=f|x,. Thus, inductively we obtain
91 € LEX( X+, E) satisfying 0g,=flx,,,- By Theorem 2.3, there is a sequence
Ji€ L (X 43, E) satisfying

gfk=0
(13)

1
I9k+1 1 xe= G e Ffim1 L =S il <5

where we put f,=0, and the norm is taken with respect to a fixed metrics on
X and E. Hence we can define § € L 3(X, E) by putting

(14) G=9x—Ji-1+ m§1 Grsm—Gkrm—1tferm—2—Fesm-1)

on X,.,. Clearly, 6§=f.
Note that by the same argument we can prove that, in the following triangle

of the natural restriction maps,

H (X, Q°(E))

(15) lﬂ T NP-a*+1(X,) [ RP4*1(X,)
H*(D, Qr(E)) oP

p¥ and p? are injective, too. Hence by Proposition 1.2 dim H9*(X, Q?(E))
< oo and dim H?*(D, Q?(E))< 0.

Surjectivity: Let fe L& 4+*Y(D, E) and 0f=0. By Theorem 2.2, for any
£>0, there is an f; € L{;2*1(X 3, E) satisfying

{5f1=0

16
1o ”f1|x,—flxl|l<—;—.
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Thus, inductively we can choose f, € Li; 271X, . ,, E) satisfying
{ 0f,=0
€
il e = Sre=1 L xiel <75,

(17)

where we put fy=f. Hence we can define fe LL:4+1(X, E) by putting

(18) F=fit T Unsi=fu)  on Xpsa
Clearly, f satisfies

57=0
@ { IFlx=f 1l < X, e =¢.

Therefore the image of pX is dense in the image of p?. Combining this with
the injectivity of p? and the finite dimensionality of H4*1(D, Qr(E)), we obtain
the surjectivity of p. q.e.d.

§4. Examples of Pseudo-Runge Pairs

In accordance with Andreotti-Grauert [3], we adopt the following

Definition 4.1. Let X be a complex manifold of dimension n, and let g
be a positive integer. X is said to be strongly g-pseudoconvex (resp. strongly
g-pseudoconcave) if there is a real-valued C® function @ on X satisfying

1) X, ={x; d(x)<c}€eX or =X, for any v,

(2) the Levi form of @ has at least n—q+ 1 positive (resp. n—q+1 negative)
eigenvalues outside a compact subset K of X.

We call @ an exhaustion function and K an exceptional set.

Note that X, is also strongly g-pseudoconvex (resp. strongly g-
pseudoconcave) if X.o K.

Theorem 4.2. Let X be a strongly g-pseudoconvex (resp. strongly gq-
pseudoconcave) manifold of dimension n with an exhaustion function ® and an
exceptional set K, and let E be a holomorphic vector bundle over X. Let
c<d, X.oK, and X,;€X. Then, the pair (X_ X,) is a pseudo-Runge pair
with respect to E at bi-degrees (n, p), p=q—1 (resp. at bi-degrees (0, p),
psn—q-—2).
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For the proof we need the following lemmas.

Lemma 4.3 (cf. Lemma 4.1 in [30] §12). Let X be a paracompact
complex manifold of dimension n, and let & be a real C* (1, 1)-form having
at least n—q+1 positive eigenvalues. Then, for any positive integer N, there

is a hermitian metric ds? on X such that with respect to ds?,

(3) at least n—q+1 eigenvalues of & are bigger than N
and
(4) negative eigenvalues of &% are bigger than —1|N.

Proof. By the continuity of the eigenvalues it is clear that there is a con-
tinuous hermitian metric on X satisfying (3) and (4). Hence there is a C®

hermitian metric satisfying (3) and (4). g.e.d.

Lemma 4.4, There is a sequence A(t)(k=1,2,...) of C® functions on
(— o0, d), satisfying the following conditions.

1

(5) (@)= —<_c—+—%:;>i +11 on (—o0,c),
©) GO <110},

™) [\ Vh@di=c,

®) A(H>11, A(1)=0.

Proof. We put

———11——2+11 on (—oo,c]
=

k
) M= 2k3(t—c)+k2+11 on <c, c";dJ
(d—c)3k3 | (d—c)k?3 c+d
8(d—1)? + 3 +k24+11 on (-2—, d>-

It is clear that u,(t) are differentiable and satisfy (5) to (8). Hence, approximating

n(t) by C* functions, we obtain a sequence 4,(t) of C* functions satisfying (5)

to (8). q.e.d.
Lemma 4.5.

-m 1
(10) (c—1) e <2"'m!(c+%—t> s =

k=1,2,..., m=0,1,..., t<c,
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where e=lim (1 +k~1)+
k—o
Proof. Left to the reader.

Proof of Theorem 4.2: Let ds? be a hermitian metric on X and h a her-
mitian metric along the fibers of E.

Pseudoconvex case: Let X be strongly g-pseudoconvex. We may assume
that outside X, such that ¢'<c and X_.>K, at least n—q+ 1 eigenvalues of
00 are bigger than g and other eigenvalues are bigger than —1. We put

ds? =), (P)ds?

D
h,= he=Afinrotetndr

(11) {

Here 1,(1) is as in Lemma 4.4, and A is a positive number. By (7), ds? is a
complete hermitian metric on X, (cf. Proposition 1 in [18] or Proposition 3.1
in [25]). Let w, be the fundamental form associated to ds? and let w be as-
sociated to ds2. Then

(12) dw,=1(P)dD A 0+ A (P)dw .
In virtue of (6), e(dw,) is a bounded operator with respect to the pointwise norm

with respect to ds?. Hence by Theorem 1.3 in Chapter 1,

13 {1720t S Cel e
IT¥* @l a2 < Coll @l st
i=1,2, k=1,2,...,0eCt?(X,, E), p=0.
Here, T% and T** are the torsions of dsZ, and C, is a constant which is inde-
pendent of A. As for the curvature form of E with respect to h,, we have

(14) O}, = O+ A (D)ID + A (B)OD A 5D} .

Since the eigenvalues of A,(®)0P A JP are nonnegative and by the choice of
ds? the sums of q eigenvalues of 1,(P)00® with respect to ds? are bigger than
1 outside X ., we deduce from Proposition 2.6 in Chapter 1 that

(15) 3{llo*o|12+ |1 00l12}
22{/ —(e(@) 4,0, @)+ AP, 0)}
—{ITseI2+ [ T¥*@ >+ | TA0|* + | T*¢|*}
and whence, for sufficiently large 4,
(16) 0%+ [[0p|12
2|lp|2, forany ¢eCy?(X,—X,., E),p2q.
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Here, the inner products and the norms as well as the torsions T¥ and the
adjoints A, of the Lefschetz’ operators are defined with respect to ds? and
h,. We fix such an 4.

Let 6, be a positive number satisfying ¢’ <c¢'+d,<c—38,<c, and ¢ a C®
function on X, satisfying

17 a={ 0 on Xew,

1 on X, ;.

Applying (16) to o, where ¢ € C3?(X,, E), we obtain the following estimate:

(18) 18012 +1301+C; { <o, oddv,

c—6

zlel? oeeCypr(Xy, E), p2q.

Here C, is a constant and the norms are with respect to h, and ds2.

Hence we obtain

(19 cs{ierir+iari+{  <hpran

|12, feDy?(h, dsp) n DRP(hy, dsp), p=4,

c=d1

for some constant Cg. Therefore the basic estimates hold for ds? and h, with
common exceptional set X,_,; < X, and common subellipticity constant Cg.

By the definition of dsZ and h,, they converge with their derivatives to
hermitian metrics

2
ds%=(c‘_‘1;¢)z+1lds2

and

_ _ 4 A _ .
ho-hexp( c—d5+c—inf¢ 114(® mf@)),

respectively. The completeness of ds3 is clear. So it remains to show that
(#xx) is true. That L™?P(X,, E, hy, ds)cL"P(X,, E, h,,, ds?,,) is clear.
we note that

(20) <¢7 (D>h,dsé é <¢’ q’)h,dsi on Xc,
(pECs,t(Xd, E)a S;O’ tgoa

since
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1) 11+(C—_1t)2—>,1k(t) on (—o,c).

Hence, by Lemma 4.5,

(22) Py PV 10,4300 £22"(21) 1 P, QD a2V
on X, for peC>Y(X, E), s=0,:=0.

Thus (%), (%), and (x*%) have been verified for the corresponding bi-degrees.
Pseudoconcave case: Assume that X is strongly g-pseudoconcave. We set

23) { dst=ds?+ A (P)0PROP

hy=h- e Bl farotrdt |

where B is a positive number.

By (7), ds are complete on X,;. Let w, and w be as above. Then
(24) dw,=dw+ A (D)0 A (0D + 0P) .

Hence the pointwise norms of T¥ and T¥*, i=1, 2, with respect to ds?, are
bounded by C;./4(®) for some constant C;,. We may assume that outside
some X, with ¢’<c and X,>oK, at least n—q+1 eigenvalues of 0@ with
respect to ds? are less than — g —3 and other eigenvalues are less than 1. Let
xe X,— X, be any point, let y;=---2y, be the eigenvalues of 40P at x with
respect to ds?, and let y5=--- =7k be the eigenvalues of 009 with respect to ds?
at x. Since the rank of A (®)0PA 0P is <1, by the minimum-maximum
principle® we have

25) { ISV S Y1 S Z7E<0
PF< max {y;, 0} <1, i<gq.

Hence

(26) PSSk <—q-3.

As for the curvature form, we have
27) 0,,,= 0+ B(4,(P)00D + A1 (P)OD A 0D).
By (6) and (8),

(28) ﬁigg <T@ <20)

*) The reader is referred to Courant-Hilbert’s book ‘Metoden der Mathematischen Physik I,
Springer-Verlag, Berlin-Heidelberg-New York’, Erstes Kapitel, Paragraph 4.
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Hence, if 'y =--- 2T, are the eigenvalues of A,(®)30®D + 2,(D)dP A 0P at x with
respect to ds?, we have

FW=T, = 2T, < —(q+ 24 P(x))
(29) L= 2T <2(9(x))

'y <2M(9(x)).
Therefore, for sufficiently large B, the sums of g+ 1 eigenvalues of B(1,(®)00P
+ 2,(D)0P A OP) are less than

—BA(P(x)),

at any point xe€ X;—X_.. Hence, for sufficiently large B, we deduce from
Proposition 2.7 in Chapter 1 that, for any ¢ e C3»(X,— X, E) (PSn—q—1),

(30)  3{I%lE+100lZ}
22{— \/ —1(4,(0,)0, 9)+ BP0, )} — 4C3o(A(P)@, @)
Z B(A(D)o, @)
Zlolf.

Here we denote by 9y, || llx, 4 and (, ), the formal adjoint of &, the norm,
the adjoint of the Lefschetz’ operator, and the inner product with respect to
ds? and h,. Hence similarly as in pseudoconvex case, we obtain

60 Ca(1ByP+1ar+] < prdn,)
2SI, feD$o(hy, dsp)n Dy (hy, dsB), pSn—q—1,

c~-d2

with a common exceptional set X ._;, contained in X, and a common subellipti-
city constant C,,.
Now ds? and h, converge to

0P ROP

ds}=ds*+

and

_ _ B B _ .
ho—hexp< e T qu>)>,

respectively. Clearly ds3 is complete. Thus (*) and (**) have verified. The
verification of (##x) is the same as in the pseudoconvex case. q.e.d.

Theorem 4.6. Let the situations be as in Theorem 4.2, and let ds? and h
be a hermitian metric on X and a hermitian metric along the fibers of E, re-

spectively.
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(32) If X is strongly q-pseudoconvex and X > K, then the natural restriction
maps
Pt HP(X’ Q"(E)) I HP(XL" 'Q"(E))’ Péq,

are bijective. Furthermore, if p=q, H?(X, Q"(E)) are finite dimensional and
every cohomology class of HP(X ., Q*(E)) is represented uniquely by a harmonic
form with respect to the following metrics:

ds?

2 —
A1= =y

hi=h-e o, a»0.

(33) If X is strongly q-pseudoconcave and X .o K, then the natural restriction

maps
p,: H(X, E)y—> H?(X_, E), pSn—q—1

are bijective. Furthermore, if p<n—q—1, H?(X, E) are finite dimensional
and every cohomology class of H?(X ., E) is represented uniquely by a harmonic
form with resepect to the following metrics:

0P R0P

2_ Jge2 i
ds3=ds*+ =)

a
hy=he <o, a>»0.

Proof. Combining Theorem 4.2 with Theorem 3.3, we obtain the former
parts of (32) and (33). The latter parts follow from the proof of Theorem 4.2,
since the two metrics A (P)ds? (resp. ds?+A(P)0PR®0OP) and aly(P)ds? (resp.
ds?+al(P)0P®OP) are equivalent if a>0, so the closedness of the range of
0 is also valid for the above metrics. q.e.d.

Letting K=¢ and c=inf ¢ —1 in the above theorem, we have

Corollary 4.7. Let X be a strongly g-pseudoconvex manifold with empty
exceptional set. Then,

HA(X, Q(E))=0, pzg,

for any holomorphic vector bundle E over X. Moreover, if X.€X, then for
any felL"?(X_ E,ds? h)), p2q, with 0f=0, there is a geL"?" (X, E,
ds?, h,) with og=f and |g| S C| fll, where C is a constant independent of f.

A new feature of Theorem 4.6 is that the harmonic forms representing the
cohomology classes need not satisfy any kind of boundary conditions, which
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was not the case in Hérmander’s work [10]. In fact, in virtue of Stampacchia
Inequality (cf. Theorem 1.2 in [30]), the completeness of the hermitian metric
implies that f is harmonic if and only if (895 + 3;0)f=0 in the sense described
in (2), Section 3.

The advantage of using extended Bochner-Calabi-Nakano formula will
be shown in the next chapter.

Chapter 3. Isomorphism Theorems en Weakly 1-Complete Manifolds

In this chapter we shall present several extensions and variations of so
called ‘vanishing theorems’ on weakly 1-complete manifolds. Contrary to
Theorem 4.6 in Chapter 2, the working hypothesis is the positivity of the cur-
vature forms of the metrics along the fibers of holomorphic vector bundles.
Two different notions of positivity are well known; one is due to S. Nakano
[17] and the other is due to P. A. Griffiths [8], [9]. Both of these shall be
examined here.

§1. Coarse Isomorphism Theorems

Let X be a complex manifold of dimension n. For a vector space V, S<aV
shall mean that S is a subspace of V.

Definition 1.1. A holomorphic vector bundle E— X with a hermitian metric
h along the fibers, in short a hermitian vector bundle (E, h), is said to be g-
positive (resp. g-negative) if, for any point x € X, there is a subspace S,<1Ty .
of dimension n—g+1 such that (h®id)(O,|s,) is a positive definite (resp.
negative definite) hermitian form on E,®S,.

Note that if E is a line bundle, i.e. if the rank of E is 1, then (E, h) is g-
positive (resp. g-negative) if and only if the curvature form O, has everywhere
at least n—qg+1 positive eigenvalues (resp. negative eigenvalues). It follows
from the definition of strongly g-pseudoconvex manifolds (resp. strongly g-
pseudoconcave manifolds) that every holomorphic vector bundle over them is
g-positive (resp. q-negative) outside a compact subset.

The following definition is due to Nakano [19].

Definition 1.2. X is said to be weakly 1-complete if there is a C*® plu-
risubharmonic function @: X—R such that X : ={x; &(x)<c} € X for any c.
@ is called an exhaustion function.
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In what follows, let X be a weakly 1-complete manifold of dimension n
with an exhaustion function @ and a hermitian metric ds2.

Theorem 1.3. Let X be a weakly 1-complete manifold and let (B, a) be a
hermitian line bundle over X. Assume that (B, a) is g-positive outside a
compact subset K< X,.. Then, for any holomorphic vector bundle E over X,
there is an integer mgy such that H*(X ., EQ B™), m>m,, are finite dimensional

and the natural restriction maps
Hr(X,, EQB™) — HP(X,, EQB™), m>mg, c>d,
are bijective, if X,o K and p=gq.
As a special case, we have

Corollary 1.4. Let the situations be as above. If K=g, then for any
holomorphic vector bundle E— X, there is an integer m, such that

Hr(X,, EQB™)=0, for p=gq and m>my.
For the proof we need the following

Lemma 1.5. Let H, and H, be two hermitian matrices of rank n, and let
P12+ 27, be the eigenvalues of H,. Assume that y;Z-Z9,_,.126>0
and H, is positive semi-definite. Let vy,...,0,_,., be the eigenvectors of H,
with H,v;=y;v;, and set

n—q+1
€))] V={veC";v= Y ¢, c;eC}.
i=1
Then,
@) ‘wH v+ e'vHv >e, for veV—{0},

Zn [v*|2+ v H,p
a=1
where we put v="*(vl,..., v").
Proof. Trivial.

Proof of Theorem 1.3: We have to verify that for sufficiently large m,
(X,, X,) is a pseudo-Runge pair at bi-degrees (n, p), p=q—1, with respect to
K¥®E®Bm™, where Ky denotes the canonical bundle of X. Let ds? be so chosen
that at any point x € X — X, _; the eigenvalues y, =-.- =7, of O, satisfy

{vi>q, Isisn—qg+1
y>—1, n—q+1<i=Z=n,

3)
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where 9 is fixed so that K< X,_;= X, and let h be a hermitian metric along the
fibers of K¥®E.
We set
(4) { dsk=ds2+agxk(¢),
hew=h-am- e~ maxk(®) |
where we put
t
(5) w®=\" s,
inf®
letting 4, be as in Lemma 4.4 in Chapter 2 except that ¢ and d are interchanged,
and where we regard 90y, (®) naturally as a section of Tx® T%.
We have

(6) Oy,.,.,=mO,+ 0, +mqddy(P).
Since y,(?) is a convex increasing function, 00y,(®) is a positive semi-definite form.

Hence by Lemma 1.5, at any point xe X,— X,_;, the eigenvalues I'¥>..- 2T%
of ©,+ qddy,(P) with respect to ds? satisfy

) I't>q, 15ign—q+1.

Clearly, we have

(8) Ir'k>—1, n—q+1<iZn.

On the other hand, letting w and w, be the fundamental forms associated to
ds? and ds2, respectively, we have

)] do,=dw,

so e(dw,) is bounded. Hence similarly as in the pseudoconvex case of Theorem
4.2 in Chapter 2, we conclude that, for sufficiently large m, (X,, X.) is a pseudo-
Runge pair with respect to K¥®E®B™ at bi-degrees (n, p), p=q—1, whence
follows the theorem. g.e.d.

The following definition is essentially due to Griffiths [8].

Definition 1.6. A hermitian vector bundle (E, h) over a complex manifold
X of dimension n is said to be weakly g-positive if, for any point x € X and for
any ve E,— {0}, h(®,v) (D) is a hermitian form on Ty , having at least n—q+1
positive eigenvalues. Here we put h(@,v) (7)=e(h(e(@,)v))s for simplicity.

Let n: P(E)—X be the bundle of projective spaces associated to E—X.
Over P(E) there is a tautological line bundle L(E) whose fiber L(E), (¢ € P(E))
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is the line [¢(]—E By Leray’s theorem, we have a canonical isomorphism

(&)
(10) Hr(X, #QE™)~ HP(P(E¥), n*®L"™), mz0,
where L=(L(E*))* and & is any locally free coherent analytic sheaf over X.

Proposition 1.7. If (E, h) is weakly g-positive, then L— P(E*), with the
induced metric, is g-positive.

Proof. See (2.36) in [9].

From Proposition 1.7, combined with the canonical isomorphism (10),
we obtain the following corollaries to Theorem 1.3.

Corollary 1.8. Let (E, h) be a hermitian vector bundle over a weakly 1-
complete manifold X. Assume that (E, h) is weakly g-positive outside a com-
pact subset K< X_.. Then, for any holomorphic vector bundle F over X, there
is an integer my such that HP(X_. FQEM™), m>m,, are finite dimensional

and the natural restriction map
H*(X,, FRE™)— HP(X, FRE™), c¢>d, m>m,
is bijective, if p=q and X,o K.

Corollary 1.9. Let the situations be as above. If moreover K=g, then

Jor any holomorphic vector bundle F over X, there is an integer mgy such that
Hr(X,., FRE"™)=0, for p=q, m>m,.

Remark. Corollary 1.9, which is along the line of Nakano-Hironaka (cf.
[19]), is a generalization of the coarse vanishing theorems for compact complex
manifolds obtained by Andreotti-Grauert [3] and Griffiths [8], whose original
form is found in Kodaira [13].

As a generalization of the dual of Corollary 1.9 for compact manifolds,
we obtain the following

Theorem 1.10. Let (E, a) be a hermitian vector bundle of rank s over a
weakly 1-complete manifold X. Assume that (E, a) is q-negative outside a
compact subset K< X, and that the rank of 00(e®) is everywhere <r. Then,
for any ceR with X_.> X,, and for any vector bundle F over X, there is an

integer mq such that the natural restriction maps
Hr(X,, FRE™) — H?(X, FRE™),

are bijective and HP(X . FQE'™) are finite dimensional, if X;—»K, m>m,,
and pSn—r—q—s+1.
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Proof. By (2.36) in [9], L=(L(E*))* is g+s—1 negative outside K.
Hence by the isomorphism (10), we may assume that E is a line bundle.
Let y, be as before. By hypothesis, the rank of 80y, (P) is <r. We put

{ ds?=ds?+ 80y (D)

hk.m= h ame—m;:k(di) E)

(1)

where ds? is so chosen that at least n—qg+1 eigenvalues of @, are less than
—2(q+r) and other eigenvalues are less than 1, both outside a fixed X,_; such
that Kc X, ;= X,, and h is a hermitian metric along the fibers of F. Then, at
any point xeX,—X,_,, the eigenvalues I'*>.--=T% of 0,400y (P) with
respect to ds? satisfy

(12) {F’;§2, 1fisg+r—1
re<-2(q+r), g+r—1<i=Zn.
The rest of the proof is the same as in the proof of Theorem 1.3. q.e.d.

In particular, if K=g, then we have a vanishing theorem as Corollary 1.9.

Remark 1. By the same argument we can prove the corresponding coarse
vanishing theorems (see Corollary 1.4) for semi-positive bundles (resp. semi-
negative bundles) of type g (for the definition see the next chapter) over strongly
g-pseudoconvex (resp. strongly g-pseudoconcave) manifolds.

Remark 2. Tt will be interesting to know whether
dim H?(X,, FREM™), p=q,

are at most of polynomial growth of degree n with respect to m, where E is as in
Theorem 1.3. The corresponding result for strongly g-pseudoconvex manifolds
and strongly g-pseudoconcave manifolds has already been obtained by D.
Leistner [14].

§2. Precise Isomorphism Theorems

Let (E, h) be a hermitian vector bundle over a complex manifold X of
dimension n. (E, h) is said to be semi-positive (resp. semi-negative) if, for any
point xe X, (h®id)®, is a positive semi-definite (resp. negative semi-definite)
hermitian form on (E®Ty),. (E, h) is said to be semi-positive of type q (resp.
semi-negative of type q), if (E, h) is both semi-positive (resp. semi-negative)

and g-positive (resp. g-negative).
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Proposition 2.1. Let (E, h) be a semi-positive hermitian vector bundle

of type q over a complex manifold X with a hermitian metric ds®>. Then, at
any point xe X,

M V- KeOAS, f>29x)<f, /> for feCm (X, E), pzq,

where

o - ((A®1d)(0,1))(f)
) V)= SyaTwox  [eEA@Sx Sy fh P )
dimSx=n—gqg+1 f#0

Proof. Let (t%,..., T¥) be an orthonormal basis of Ty, with respect to ds?
such that, if S, is the linear subspace of Ty, spanned by ¥,..., t%_ ., we have

- ((h®id)(0,/))(f)
3 7(x) f%%sx P .

By direct computation, we have

4 VIt ATYAT A AT AT A AT
TIN AT AT A AT

=1, pz1,

e NTpAT; /\-u/\rjp>

Ja+1

where (t4,..., T,) denotes the dual basis of (%,..., 7). We set

) V=KelO)10,0>= | T 0.0 0y,

where

(6) o= Z (p“'l'l/\"'/\‘f"/\fa, (PmEExa
1=sa=n

and O, is the coefficient of t,A7, in /—10, For any multi-index
J=(j1yeeer Jp) With jy <--< j, and for any J' =(jy,..., jg--., j,), We put

@) fmfl/\---/\'c,,/\fh/\-~-A%jz/\---/\fjp/\f,,
A -

vy - _ ., .
=[BT A AT AT LA AT, Ji<e< i,
where {ji,...s Jjp} = {J1s--es Jar---s Jpr B} and

(8) f= J'1<Z:<j‘7 fjl"'jp‘cl A AT A ffx ARRA fjp’ fjl"'fp €E,.

Then, by (4),

9 V= Ke(OAS,
= Z Z @aﬂ(f.)"us fJ'/I)

17" |=p—1 15a,f=n

= 3 > . @i,iﬁ(fJ’i,’ fJ'iﬁ)

|J'|=p—1 1Sa,B<n—p
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2 T Y Ou(fra fr)
n—p+1 n—p+1
290 ¥ ("2 fr.0 S fr.@11).
|J'|=p=1 a=1 a=1
Hence,
(10) J=Ke@)AS, [
210 % (T S
290 f S - g.c.d.

The following theorem has been proved by Ohsawa [23] and by Nakano-
Rhai [22] for g=1 (rank E=1 is assumed in [23]). The original form where
K =g and g=1 was proved by Nakano [17], [19], [20], [21] and Kazama [12],
and reproved by Suzuki [27].

Theorem 2.2. Let X be a weakly |-complete manifold, and let (E, h) be
a hermitian vector bundle over X. Assume that (E, h) is semi-positive of type
q outside a compact subset K< X, and ds* is Kéhlerian outside K. Then
H?(X, Q"(E)) are finite dimensional and the natural restriction maps

Hr(X, Q"E)) — HP(X,, Q"(E))
are bijective, if p=q. In particular, if K=4g,
Hr(X, QUE)=0, for p=2q.

Proof. For any c>d, (X, X.) is a pseudo-Runge pair with respect to E
at bi-degrees (n, p), p=q—1. In fact we have only to put

{ ds}=ds?*+ 00y P)
hy=he xx(®)

(11)

Then, in virtue of Proposition 2.1, we can prove the basic estimates. The rest
of the proof is the same as in the proof of Theorem 1.3.

Proposition 2.3. Let (E, h) be a semi-negative vector bundle of type q
over a complex manifold X of dimension n with a hermitian metric ds®>. Then,

at any point xe X,

(12) —V —IKAe(Oy) f, f>20(x){f, [,
feC%(X,E), p<n—q.

Here,
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i ((r®id) (@, /) (S)
(13) o(x):= SeTar  reBods. S fl> )
dimSx=n—gq+1 =0

Proof. Similar to Proposition 2.1.

As a dual of Theorem 2.2, we obtain

Theorem 2.4. Let X be a weakly |-complete manifold and let (E, h) be
a hermitian vector bundle over X. Assume that (E, h) is semi-negative of type
q outside a compact subset K<=X,, X is Kéhlerian outside K, and that 00(e®)
is of rank <r. Then HP(X, E) are finite dimensional and the natural ie-
striction maps

Hr(X, E) — HP(X,, E)
are bijective, if pS<n—q—r. In particular, if K=g, then
HP(X, E)=0, for p=n—qg-r.
Proof. Similar to Theorem 2.2.

The original form of the following theorem has been proved by Akizuki-
Nakano [2] and Girbau [7]. The present form has been partially proved by
Nakano [20], Abdelkader [1], Ohsawa [24], and Takegoshi-Ohsawa [29].

Theorem 2.5. Let (B, a) be a hermitian line bundle over a weakly 1-
complete manifold X. Assume that (B, a) is semi-positive of type q outside a
compact subset K< X, and that X is Kdhlerian outside K. Then HY(X, Q%B))

are finite dimensional and the natural restriction maps
H'(X, Q%(B)) — H'(X,, Q%(B)),
are bijective, if s+t=n+q. In particular, if K=g, then
H'(X, Q%B))=0, for s+t=n+gq.
Proof. Let ¢>d and

2 ode2 1 A3
(14) { dsz=eds?*+ 00y, (P)+ 6O,

a,= ae’lk(d’) s

where ¢ is a positive number which is determined later. We have to prove that
(X4 X.)is a pseudo-Runge pair with respect to the above metrics.

It is clear that (#) is satisfied.

Let xe X.— X,_; be any point (X;o X,_;2K). We set
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ds?= Y Ts@7
(15) l:l
= (e+T'¥)tk@71k at x.
=1

Let I'y=.--=T,20 be the eigenvalues of @, at x with respect to ds?. Then
we have

k
(16) rs=r,
Let
= k KA. ATk ATE Tk
17 f= i1<;<i St g TSN ATEATE A A TE
s
J1<<e
k
l'x"'iij"'i:EBx .

Then, (cf. [7])
(18) V=0, )4, — 4,6(0,)) f

_ s F{c“ Jﬁ _ n )
;1<Z<1s <a§1 Fli‘a+6 +zl Fk e }Z Fk+8

J1<:<jt

s 1
1_=I F"+s ,,I;Il F'}ﬁ+£

.fil"'isjl"'jtTiI A AT AT AR Tjer

If s+t=n+gq, then

rk : Ik n Tk
Tt +¢ +21 rs + & F"+s

w

(n g+ gy &1 rk
Iy gi1te ,,‘:‘1 Tk +e (cf. [29]) .

Hence, if 2ne<  inf  I,_,4y,
xeXc~Xa-6

(20) V= 1K(e(O,)4,— 4O )], f>
> "2*,'1‘11 ify, if s+t=n+q,

where the inner products are with respect to dsz and a,. Therefore, similarly
as before, we obtain the corresponding basic estimates. The verification of
(*#%) is the same as in the proof of Theorem 1.3. q.e.d.

Similarly we obtain

Theorem 2.6. Let (B, a) be a hermitian line bundle over a weakly 1-
complete manifold X. Assume that (B, a) is semi-negative of type q outside a
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compact subset K< X,, X is Kédhlerian outside K, and the rank of 00(e®) is
<r. Then H' (X, Q5(B)) are finite dimensional and the natural restriction
maps

H'(X, Q(B)) — H'(X,, 2%(B))

are bijective, if s+t<n—q—r. In particular, if K=g,
H«(X, Q5(B))=0, for s+tZ<n—q-—r.
Proof. Let ¢c>d and

ds?=eds?+ 00y (P)— @,
21) { Sy=¢&as 1i(P)

ak — ae‘ﬂlk(‘p) .

where ¢ is a positive number which is determined later. We shall show that
(X4 X, is a pseudo-Runge pair with respect to the above metrics. It is clear
that (%) is satisfied. Let xe X,— X,_; be any point, where a positive number
0 is so chosen that X;,> X, ;oK. We have

(22) @ak = @a + aan(q))
= —ds} +eds? +(1 +¢€)ddy(P).
Let fe (B®Tg1),, then
(23) <= U(&O ) A — MO ) ], [
=/ —W(—eldsp A+ Ae(ds) f, f i
+ (/= Leleds? + (1 + €)001,( D)) Ay — Are(eds? + (1 + )08 D) f, f D

=(n—s—10){f, for+<{J/ — Le(eds® + (1 +&)0dy (D)) 4
— Ape(eds? + (1 +)00x (P, Dk » at x.

Here we denote by { , D, the pointwise inner product with respect to ds? and

a,. We put

dsz= 3 @
(24) = )
eds?+ (14 )00y (@)= 21 (I +y4e)rt®T,  at x.

Here y¥(e) are the eigenvalues of O,+¢ddy,(P) with respect to ds?, and we
arrange them as follows:

25) A S7E).

It is easily seen that y¥(¢)<¢ and that

(26) —1=yMe)=—1+Ce for 1Zign—qg+1-—r,
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where C is a constant which does not depend on k or x. Hence,

@) Z 0+ Z (147,@) ~ 3 (1+74e)

S t n
(=sti=nt+ 3 vi@+ X vj,(e) = X 7i(e))
Zs+t—n—s—t+n—q+1—r—{Cn—qg+1—r)+qg+r—1}e
=—q—r+1-{C(n—qg+1—-r)+q+r—1}e.

Combining (23) with (27), we obtain the basic estimate for s+t<n—q—r. The
rest of the proof is the same as in the proof of Theorem 1.3. g.e.d.

A hermitian vector bundle (E, h) over a complex manifold X of dimension
n is said to be weakly semi-positive if, for any point x € X and for any ve E,— {0},
h(@,(v)) (D) is a positive semi-definite hermitian form on Ty .. If the rank of
h(@,(v))(D) is at least n—q+1, then (E, h) is said to be weakly semi-positive
of type gq. This definition is originally due to Griffiths [8] (cf. also Skoda [26]).

Let P(E*) and L be as in Section I. Then we have the following iso-
morphism (cf. Le Potier, C. R. Acad. Sc. Paris, 276 (1973) pp. 535-537).

(28) H'(X, Q(E)) — H'(P(E*), Q*(L)).

From (2.36) in [9], L is semi-positive of type g if E is weakly semi-positive of
type q. Thus combining the isomorphism (21) with Theorem 2.5, we obtain

Theorem 2.7. Let (E, h) be a hermitian vector bundle of rank r over a
weakly 1-complete manifold X. Assume that (E, h) is weakly semi-positive
of type q outside a compact subset K< X, and there is a Kdhler metric on
X—K. Then H' (X, QE)) are finite dimensional and the natural restriction
maps

H'(X, Q%(E)) — H'(X,, Q(E))
are bijective, if s+t=n+r+q—1. In particular, if K=g,
H' (X, Q%(E))=0, for s+tz=zn+r+q-—1.

The counterpart of Theorem 2.6 is left to the reader.

The relation between semi-positivity and weak semi-positivity, except for
the trivial implication, has been first revealed by Demailly and Skoda [5]. We
restate here their theorem as follows.

Theorem 2.8. If (E, h) is weakly semi-positive (resp. weakly 1-positive),
then ((det E)Y®E, (det h)®h) is semi-positive (resp. 1-positive).
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It follows trivially from their inequality

> AjanX Xt > a5 jimX X om = Z A jimX j1X jm
Jok,lm gk l,m J.lim

(cf. p. 307 in [5]) that if (E, h) is weakly semi-positive of type ¢, then ((det E)®E,
(det h)®h) is semi-positive of type g.

Remark 1. In the above theorems we have proved also approximation
theorems and harmonic representation theorems. From the harmonic represen-
tation theorem, we can deduce cohomology vanishing theorems under somewhat
weaker assumptions on the curvature form of (E, h) (cf. Takegoshi [28]).

Remark 2. Let n: X—CN be a proper holomorphic map from a weakly
1-complete manifold X of dimension n. Assume that X is embeddable into
PV as a locally closed analytic submanifold, and that dim n=!(x)<n —r for x#0.
Then the latter part of Theorem 2.5 (Nakano’s vanishing theorem), combined
with Hodge-Lieberman-Rossi-Fujiki’s decomposition theorem for strongly
pseudoconvex manifolds, (cf. [6], [15]) implies that the decomposition of
H?(X, C) into the direct sum of H'(X, Q%) and the symmetry dim H!(X, Q%)
=dim H%(X, Q") are valid for degrees s+t, p=2n—r+1. Therefore the
topology of the degeunerate set of a holomorphic map from a projective variety
is very restricted. Such phenomenon can be observed on Kéhler manifolds,

too (cf. [25]), which may suggest a further meaning of our isomorphism theorems.

Appendix

Let the notations be as in Chapter . We shall prove here Theorem 1.3
following [31] and [32]. We have to deal with operators on T% rather than
those on T4, so we regard L, A, and so on, as operators on T%.

Definition 1. An r-form u is said to be primitive if Au=0.

From now on r-forms (resp. primitive r-forms) are denoted by f" (resp.
u®), unless otherwise stated. For the proofs of Theorem 2 to Theorem 6,
the reader is referred to [31] and [32].

Theorem 2. i) If u") is a nonzero primitive form, then r <n.
i) If u™ is primitive with r<n, then

Ln—r+l u(r) f— 0

1 —
(1) A"Lku(”=(—1:1!_(nr_—rk))!,u(r) for k=n—r.
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Theorem 3. i) For any fr with r<n,
2 Sr=uM+ Lut=2 ... 4 Lry(r=20 k<[r/2].
i) For any fr with r>n,
3) fr=Lrmy@n=n 4 [r-nt1y(2n=r=2) 4 ... 4 [r=ntky@n-r-2k)
k<[n—(r/2)].
Furthermore the decompositions i) and ii) are unique.
Corollary 4. If L*"tkfr=0,n—r+k=0, then u®=0, i<r—2k, where
u® are as in i) or ii).

Corollary 5. There is an operator P(n, r, i) belonging to the algebra gen-
erated by A and L over the field of rational numbers, satisfying

@ P(n, r, )fr=u®,
where u() are as in i) or ii).
Theorem 6. For any u®,

1 r(r+1) !
) FLky®) = (=1) (n—r—k")
0, k>n—r.

LrrkCy™ | kZn—r

From these theorems we can deduce
Proposition 7. For any u® of class C*,
(6) (dA— Ad)Lku®
={—=C'%d*C+a, ;L1 A3e(dw)A*
+ by pi(AL+(k—1) (k—1—n+ p))e(dw)L*~2A*
+Cp puCe(d) LR P AR LA

where
(A) an,p,k={2n—2p—k+4+ (n—k_p+lg)_'f’ll_k_p+l)}
w (n=p+1)(n—p—k)!
3k (n—p)!
—__(n—p—-K)!
(B) brn= = oy
p(r=1) y_p—k
O e T

and we put m!=0 and L™=0 for negative m.
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@) (e(d®)A — Ae(dP))Lru(»
=—C %e(d®)+CL*u®
where @ is a (complex valued) C® function.
Admitting Proposition 7, Theorem 1.3 is proved as follows:

Proof of Theorem 1.3. Combining (6) with Theorem 3 and Corollary 5,
for any f* of class C®,

(8) (dA— Ad)fr = — C-%dxCfr + Tf"

where T is a linear operator belonging to the algebra over the field of rational
numbers generated by L, A, e(dw), C™%, and *. Similarly we have

) (e(dD)A— Ae(dD)) fr = — Cxe(dD)*Cf .

Decomposing (8) and (9) into types, we have

(10 0A—Ad=—/—1(*0%+T),

1y 0A—No=/—1(x0%+ Ty)
=J/=10+T),

12) e(0P)A — Ae(0P)= —/ — 1%e(0B)* ,

and

(13) e(0P)A— Ae(0P) =/ — 1xe(0D)=,

where T, and T, are the components of T.
Thus in particular we have proved the latter part of (13) in Theorem 1.3.
By (12), we have

(14) e(h=Y(0h))A — Ae(h=(0h))
= —/—Txe(h~1(Oh))* .
On the other hand,
(15) 9= —%h13kx
= —%0% —*h~le(Oh)* .
Combining these equalities we obtain Theorem 1.3. q.e.d.

Proof of Proposition 7. We prove only (6). The proof of (7) is similar.
First we note that

(16) Lrr+2dy(® = dLr=r+2y(® — (n — p+ 2)e(dw)Lrr+ 1y @ .
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From Theorem 2 ii), the right hand side of (16) is zero, so that by Corollary 4,
we have the primitive decomposition
17) du(® =p@+D) 4 [ (=1 4 [25(=3) |
Hence we have
(18) (dA— Ad)L*u®

=dAL*u® — ALkdu® — kAe(dw)L*'u(P

= dALku(P) — ALk(rl(P'*‘l) + Ln(ﬂ_l) + LZrI(P“3))

—kAe(dw) L¥u® |

By Theorem 2 ii),

(19) AL*u® = — k(k—1—n + p)LE=1u(» |
(20) ALkg®* D) = — k(k—n+ p)L¥~1ne+1) |

@D AL+ =D = — (k1) (k— | —n + p)Lkgte=1)
and

(22) Lk 2(p=3) = — (k +2) (k— 2 —n+ p)L+1pe=3) .
Hence,

(23) dAL*u(®

=—k(k—1—n+ p)dL+ ty»
= —k(k—1—n+p) {L¥"1(n®*D 4 Lyp~1) 4 [2y(r=3))
+(k—De(dw)L¥2u»} |

Combining (18) with (23), we obtain

(24) (dA—Ad)Lku®»
— kLk-—ln(p+1) —(n—p—k+ I)Lkr’(p—l)
—(2n—2p—k+4)L¥+1y@=3
—(kAe(dw)L¥~' + k(k—1) (k—1—n+ p)e(dw)L¥~2utP)
=kL*¥1p®*) —(n—p—k+1)L*ne~1
—(@2n—2p—k+4)L*+1ine=3

- (—]f%mu(k— 1) (k—1—n+ p)}e(dw)L¥=2A* iy .

On the other hand, by Theorem 6, we have
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(25)  —C '%dsCL'u®
= —C Y%d*L*Cu®
p(p2+1) B k!
(n—k—p)!
p(p—1) k!
(n—k—p)!
p(p—1) k!
Y ey = 1)
+L2y=3) + (n—k—p)e(dw)L"*"r~1y @)

= —C'5d#(—1) ®Lnk=py (@)

= —C'%d(—1) Lr=k=py

C-1%Lrk=p(n(r+D) 4 Lyr=1

Applying Theorem 6 again, we have

(26) — C V%d*CLkyP)
( 1) P(P—l) k! —_ ( )(p+1)2(p+2)
AT (n—k—p)! { B .
e e
+(_1) P(P 1) (n (z;l{;"z) LkC"(p_l)
+(~1)M_31~(1%€))i'7)_”+1@7(p—3)

+ (n——k——p)Ie(dw)L”“"‘P'lu(P’}
=kLk Iyt — (p—p—k+1)Léyr-D

(" k—p+2)(n—k—p+1) Li+1p@=3)
k+1

p(p—1) k!
— (= 2
D" k=p-nr
=kL*IpPt) — (n—p—k+1)Lpr~1

(n k—=p+2)(n—k—p+1) L<+1y(e=3)
k+1

C se(dw) Lk p~1y (P

" C-tve(dw) PP K prtnmt gr iy

~n” (n—p)!

Therefore,
(27) (dA—Ad)L¥u®
= —C %dxCL*u'?) +a, , L**1n(®=3
+ by pil AL+ (k—1)(k—1—n+ p)}e(dw)L*2 A* L*u'r:
+ ¢, puC 1 re(dw) L=k ~P=1 AR Lky () |

where

229
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(n—k—p+2)(n—k—p+1)

(A" @y p=—2n+2p+k—4-— i1
—__ (r—p—kK)!

®) brpk= = =D I=p) T

and

p(p—-1) n—p—k
= —(— 2 "
(C) cn,p,k ( 1) (n _P)! .

It remains to express #»~3 in terms of L*u®. In virtue of Theorem 3 and
Corollary 4, we can put

(28) e(dw)u® =pP+3) 4 Lp+1) 4 [2p(p~1) 4 [3p(p=3),

Since

(29) Lr=ptidy® =(Lr—p+1d — dLrp+ )y @
=—(n—p+1)L* Pe(dw)u'? ,

we have

(30) Ln—p+lr,(p+1) +Ln—p+2n(p—1) +Ln—p+3r’(p-3)

— __(n __p+ 1) (Lu—pv(p+3) + Ln—p+lv(p+1) +Ln-p+2v(p~1)
+ Lr=p+3pe=3) |

By the uniqueness of the primitive decomposition,
(€3] pP=N=—(m—p+1o@-3,
On the other hand,

- (=D  4373,0-3)
(32) = ST VL
~_ (n=p)! 3 ()
Sin—p+3)1 1 e(d@)ut
_ (n=p—=K)! .3 k] Ky (p)
3 n=p13)] Ale(dw) AxLFu®) |
Thus,
-3 _ (n=p+D(m=—p=Kk)! kT kg, ()
(33) n'e 3 n—p—3) k] Ade(dw) A*L*u® |

Putting (33) into (27), we obtain the proposition. g.e.d.
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Added in proof: O. Abdelkader has proved in “Un théoréme d’approximation pour les

formes a valeurs dans un fibré semi-positif, C. R. Acad. Sci. 293 (1981), 513-515" the result
H(X, 2°(E))=0 in our Theorem 2.7 by a different method, but still using the approximation
argument as in [12].



