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Introduction

In the theory of complex manifolds, there are two different extreme objects:

compact manifolds and holomorphically complete ones. We have a lot of good

knowledge about the fundamental properties of both classes of manifolds, con-

tributions to which have been made by many celebrated authors in this century.

In 1970, S. Nakano [18] succeeded in solving a problem on the inverse of

monoidal transformation by proving the vanishing of cohomology groups for

line bundles over a class of complex manifolds. This class includes the above

extremes and was called by him weakly 1-complete manifolds. The definition

is as follows; a complex manifold is said to be weakly 1-complete if it carries a
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C°° plurisubharmonic exhaustion function. It is trivial that a compact complex

manifold is weakly 1-complete. It follows immediately from the Remmert's

proper embedding theorem that holomorphically complete manifolds are weakly

1-complete.

From the definition, it is quite natural to expect that a weakly 1-complete

manifold is a nice intermediate object between compact complex manifolds

and holomorphically complete ones.

In the last decade, more or less inspired by this philosophy, several authors

have studied cohomological properties of weakly 1 -complete manifolds: [1],

[12], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]. The

following theorem is due to S. Nakano [21].

Theorem I. Let X be a weakly l-complete manifold and n: B-+X a

holomorphic line bundle. Assume that B has a metric along the fibers whose

curvature form is positive. Then,

H*(X, Q*(B)) = 0, p + q>dimX.

Here we denote by Hq(X, Qp(BJ) the q-th cohomology group of X with coeffici-

ents in the sheaf of the germs of B-valued holomorphic p-forms.

Let Xc be the sublevel set {x; <p(x)<c} of the exhaustion function (p. In

[24], the author has extended the above theorem as follows:

Theorem 2. Let X be a weakly [-complete manifold and n: B-^X a

holomorphic line bundle. Assume that B has a metric along the fibers whose

curvature form is positive outside a compact subset K of X. Then, the natural

restriction maps

pc : H*(X, Q'(B» - > H«(XC,

are bijective if XC^>K.

The purpose of the present article is to extend the methods employed in

[24] and show more explicitly how they unite each other to yield a fundamental

theorem on cohomology groups of weakly 1-complete manifolds; the results

including all the known ones will be deduced from the isomorphism theorem in

Chapter 2.

As a by-product we obtain simple proofs of results obtained by Andreotti-

Grauert [3], Andreotti-Vesentini [4], and Hormander [10]. Our viewpoint is

that of [4] and the argument is essentially included in [10] ; the use of complete
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metrics renders the derivation of the basic estimates very easy, and the argument

borrowed from [10] enables us to avoid the use of so called 'bumping lemma'.

Of course the advantage of our method lies in that we can prove the isomorphism

theorems on weakly 1-complete manifolds in the same way.

The author expresses his hearty thanks to Professor S. Nakano who led him

to this subject. He is also very grateful to Professor H. Grauert who allowed

him to stay in Gottingen during the preparation of this paper and gave him kind

advices. Last but not least he expresses many thanks to Mr. K. Takegoshi for

careful reading of the manuscript and to the referee for valuable criticisms.

Chapter 1. Preliminaries

§ 1. Hermitian Geometry

Let X be a paracompact complex manifold of dimension n and n: E-*X

a complex vector bundle. We denote by E*, E9 A £, and E(m), the dual, the

conjugate, ra-fold exterior power and w-fold symmetric power of E.

Definition 1.1. A section /? of Horn (E, E*) is called a hermitian metric

along the fibers of E if, for any point xeX and any two vectors u, weEx:

= *-'(*),

Hermitian metrics are assumed to be C°° unless otherwise stated. Let h

be a hermitian metric along the fibers of £. For two sections / and g of E,

we set

</, g> is called the pointwise inner product of/and g. Canonically, h induces

metrics along the fibers of £*, E, £(m), A E, and A E® A E. We also denote

by < , > the pointwise inner product with respect to the induced metrics.

Let Tx be the tangent bundle of X and TX@TX the splitting of T|®KC

into types (1, 0) and (0, 1) with respect to the complex structure of Tx. As a

complex vector bundle we always identify Tx (resp. Tf) with Tx (resp. T*).

Definition 1.2. A section of E® A T*® A Tx is called an E-valued

(p, q)-form. In particular, a section of A T^® A Tx is called a (p, q)-form.
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We can naturally identify A T'x® A Tx with a subbundle of PA*(TX®RC).

For simplicity we denote A(TX®RC) by Tr
x and the subbundle of Tr

x cor-

responding to A T'x® A Tx by T^'q. A section u of Tr
x is called an r-form.

We set deg u = r. We express i; e (£® T£' 5)JC as

(3) u=. S. tV»ipj i»**iiA ' "A*i ,A^iA" 'A^.>

where vir..ipJl...jqeEx and (Tl9..., rj is a basis of T'XtX.

Let Js2 be a hermitian metric along the fibers of Tx. We denote also by

</, #> the pointwise inner product of E- valued (p, g)-forms/and g with respect

to the metric induced by h and ds2. The length of/ is defined by |/| =x/</,/>.

Js2 is pointwise expressed as

(4) ^2=t iT,®f f ,

for a suitable choice of the basis (TI?..., rj. (Tl5..., TB) is called an orthonormal

basis with respect to ds2. We set

(5) Q) = V^Ti; iT lAf l .

co is called the fundamental form associated to ds2.

Let E! and £2 be two complex vector bundles over X provided with her-

mitian metrics along the fibers. Let £: E1-^E2 be a morphism or the conjugate

of a morphism. The adjoint £* of £ is defined by the following formula:

(6)

where /and g run the sections of E! and E2, respectively, and < , >£ denotes the

pointwise inner product of Et.

The conjugate star operator *£: E(S)T^'q-^E*®Tx~
p'n~q is defined to

be a conjugate linear operator satisfying

for any E- valued (p, q)-form / where

n

(8) dv = -^j-co A ••• ACO

and
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(9)

dv is called the volume form with respect to ds2. *£ is unique. In particular,

for the trivial bundle 1 with fiber C and with trivial metric along the fibers, we

denote*! by *. * operates naturally on E®T^q so that *(e®/) = e®*/ for

e®/eCE®T£'g)x. We have *£ = Ji®*. Let F be another complex vector

bundle over X. For a Horn (E, F)-valued (p9 #)-form /, we denote by

(10)

the left multiplication by /. We set

= e(co)
(U) ' ; for

L is called ffte Lefschetz9 operator with respect to (is2. A is the adjoint of L

with respect to the metrics induced by Js2. We set Cf=^(~l)q~pnpiqf.> for

/G T£, where we denote by np>q the projection from T^+q to T%q. By abuse of

notation we denote id£®L by L, and so on.

In what follows let E be a holomorphic vector bundle. We denote by

O«pC E) the set of E-valued (p, g)-forms of class C°°. We set C'(X, E)

= ^p>qC
p'q (X, E). The complex exterior differentiations d and B operate

naturally on C'(X, E) and on C'(X, E), respectively. We set

(12}^ }

where by abuse of notation we denote A® id by ft, and so on.

Theorem O* Let the notations be as above. Then there is a linear

operator T± (resp. T2) belonging to the algebra of operators generated

by e(dco) (resp. e(doj)), L, A9 *, and C"1 over the field of rational numbers,

satisfying

(resp. BA-A3=- J^l($ + T2)) ,
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for any vector bundle E and h. Furthermore Tt are linear with respect to

do and T1 = T2 = 0 if da> = Q.

Proof. See Appendix.

Theorem 1.4 (Extended Bochner-Calabi-Nakano formula).

(14)

-T2D'E-D'ET2.

Proof. Since 52 = 0 and (D'E)2 = 0,

(15) D2
E = (8 +

Hence,

(16) -J=T(DIA-

'jsA + D'EdA - AdD'E - AD'Ed)

l - AD'E) + (D'EA - AD'E)d

+ (3 A - A3)Df
E + D'E(dA - Ad))

-T2D'E-D'ET2. q.e.d.

We set

(17) (/,*) = < f , g > d v ,
}x

for /, g G Cp'q(X, E) such that supp / n supp g € X, where supp/ denotes the

support of/. Then, by Stokes' theorem,

fl8) (5/,flf)=(/,arf),
(Df

Ef9g) = (f,Bg)9

provided that supp/n supp gf is compact. We put

(19) Cg'%X, £) = {/e C*-*(X, £); supp/ is compact} .

C$'q(X, E) is provided with the structure of a pre-Hilbert space with a norm

||/||= >/(/,/)". When we need to be more preciese, we denote ||/|| by \\f\\h,ds2-

Combining Theorem 1.4 with arithmetic-geometric inequality we obtain

Theorem 1.5. Under the above notations,
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(20) -'

Here Tf denote the adjoints of T{.

T)\ is a multiplication of a Hom(£, £)-valued (1, l)-form. We set

(21) -Dl = e(0h\ 0heCl-*(X, Horn (£,£)).

0h is called the curvature form of E with respect to h. Then (20) becomes

(22) |- ( || 9Ef || 2 + 1| 8f || 2) ̂  V

7] and Tf are called £/ie torsions of ds2. In what follows we call ds2 a hermitian

metric on X, and if dco = Q we say that ds2 is (or simply JT is) Kdhlerian.

§2. L2 Estimates of 3

Let //! and //2 be two Hilbert spaces with norms || \\i9 i = l, 2 and T:

H1-*H2 a linear operator with a domain of definition Dr. Tis called a closed

operator if GT: = {(w, Tu); weD r} is a closed subspace of H1xH2. In what

follows every linear operator is assumed to be closed and with a dense domain.

T*: H2-»Hl9 the adjoint of T, is defined as follows;

(1) GT* = {(V, w); (M, w)1=(Tw, y)2 for any weD r},

where ( , )£ denote the inner products of Ht. We denote by RT (resp. NT) the

range (resp. the kernel) of T. The closure of R7 is denoted by LRr].

Assume that we are given another Hilbert space H 3 with a norm || || 3 and a

linear operator S: H2-+H3 such that

(2) SoT=0.

Then NS^>RT and JVT*iDjR5*. (2) implies that JRr and l?s* are orthogonal,

and the intersection of the orthogonal complements of these spaces is j>f?: = Ns

nNr*. Hence we have H2 =

Theorem 2.1 (cf. Theorem 1.1.3 in [10]). Assume that from every sequence

gkeDT*nDs with \\gk\\2 bounded and T*#fe-»0 in Hl9 Sgk->® in H3, one can
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select a strongly convergent subsequence. Then both RT and Rs are closed, and

3? is finite dimensional.

Elements of 3F are said to be harmonic.

Theorem 2.2 (cf. Theorem 1.1.4 in [10]). Lei F be a closed subspace of

H2 containing RT. Assume that

(3) \\f\\te\\T*f\\l + \\Sf\\l / e lVf lDsHF,

then we have

(4) If geNs n F, we can find ueDT so that Tu = g and ||w||i^ \\h\\2.

(5) I f v E R T * , we can choose feDT* so that T*f=v and | |/ | |2^IMIi-

Let the notations be as in Section 1. We denote by L^^(X, E) the space

of square integrable E-valued (p? ^)-forms on X with respect to the metrics h

and ds2. By Riesz-Fischer's theorem Lft<l(X, E) is naturally identified with

the completion of C$>q(X, E) with respect to the norm ||/||. When we need

to be more precise we denote Lp>q(X, E) by Lp>q(X, E, h, ds2). 5 and other

differential operators introduced in Section 1 are naturally extended to closed

linear operators on LP>*(X, E) with dense domains

Ds = {felP'«(X9 E); there is a geLP'«+1(X, E) such that

(/, $E<P) = (9, 9) for any <p e Cg>*+1(Z, £)} .

and so on. $£, so extended, is called the formal adjoint of d. When we

need to be more precise we denote D^, jR^, and N$ by Dp^q or Df>€(^, ds2),

and so on.

In general D§^D^E because of the presence of the boundary of X. To

avoid this technical difficulty we provide with X a complete hermitian metric.

This viewpoint is due to Andreotti-Vesentini [4],

Definition 2.3. We say a hermitian metric ds2 is complete if the distance

function on X with respect to ds2 provides X with a structure of a complete

metric space.

Theorem 2.4 (cf. Theorem 1.1 in [30] p. 22). // the hermitian metric

ds2 is complete, then

(6) C%>q(X, E) is dense in Df*« with respect to the norm (||/||2+1|5/||2)1/2.

(7) Cg'%3T, E) is dense in D*»* with respect to the norm (||/(|2+ \\&Ef\\2Y/2
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(8) Cfrq(X, E) is dense in Df>* fl Dfr* with respect to the norm

Corollary 2.5. If the hermitian metric ds2 is complete, then d* = BE

and D'j! = S.

Proof. Clearly Da-* cz D$E. Let /e D$E. Then? by Theorem 2.4, there is a

sequence/* in C%>q(X, E) such that \ \ f k - f \ \ + \\8Efk-9Ef\\-+Q. Hence, for

any q> e D$y we have

(9) (3J, 9) = lim (SB/t, <?) = lim (/„ 3<p) = (/, 5V) .
fc^oo fc->oo

Therefore, feDg* and &Ef=B*f. The proof of DE=§ is similar. q.e.d.

Let

9 = < P « . t i A • • • A TB A f S A - - - A fj,

where (T I?..., rn) is an orthonormal basis of T'x^x with respect to ds2. Then

we have

(11) <V"=Te(T,Af,M<p5^>=0 if f£{f l 3 . . . ,z p }

and

(12) < V77! .̂ A TiB[M9, <p> = <9, 9> for 1 ^ a ̂  P-

Hence, from (22) in Section 1, we obtain

Proposition 206. Suppose that the sums of q eigenvalues of dd<P with

respect to ds2 are bigger than a nonnegative function A. Then,

(13) -(||5*

-y

Similarly we have

Proposition 2.1. Suppose that the sums ofq eigenvalues ofd8$ with respect

to ds2 are less than a nonpositive function L Then,

(14)
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In view of Theorem 2.2 and Theorem 2.4, the meaning of these propositions

will be clear.

Chapter 2. Isomorphism Theorems for Pseudo-Runge Pairs

§ 1. Basic Estimates

Let X be an n-dimensional complex manifold with a complete hermitian

metric ds2, and let £ be a holomorphic vector bundle over X with a hermitian

metric h along the fibers.

Definition 1.1. We say that the basic estimate holds at bi-degree (p, q) if

there exist a compact subset KaX and a constant C0, satisfying

(1) ll

K is called an exceptional set and C0 is called a subellipticity constant.

Proposition 1.2. Assume that the basic estimate holds at bi-degree (p, q).

Then both Rt>q and Rp^q~l are closed, and dim #£•*/#?•* <oo.

Proof. In view of Theorem 2.1 in Chapter 1, we have only to show that

from any sequence gkED^qnD^q with \\gk\\ bounded and ||5*0J-»0 in

LP'i-^X, £), ||50fc||-*0 in LP>«+I(X, E), one can select a strongly convergent

subsequence.

By the completeness of the metric ds2, we can take a sequence fk e Cfrq(X, E)

so that

(2) 3/k->0 in ls.*+i(X,E),

d*fk-*Q in L?-*-\X,E)

(cf. Theorem 2.4 in Chapter 1).

Let KI be any compact subset of X and K2 another compact subset of X

containing K^ in the interior. Let %: X^>R be a C°° function satisfying

X = l on K1 and / = 0 on X — K2. Since

is bounded,
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is also bounded. Since SBE + BEd is a strongly elliptic operator, in virtue of

Garding's inequality (cf. Theorem 6.5.1 in [16]) and Rellich's lemma (cf.

Theorem 3.4.4 in [16]), yjk has a strongly convergent subsequence.

Hence fk has a subsequence fik converging strongly on K. By the basic

estimate, fik converges strongly on X, hence so does g i } . q.e.d.

§ 2. Pseudo-Runge Pairs and an Approximation Theorem

We shall present here an abstract form of Proposition 6 in [24] (cf. also

Approximation theorem in [29]).

Let X be a complex manifold and E a holomorphic vector bundle over X.

Let Xl and X2 be two open subsets of X.

Definition 2.1. The pair (X^ , X2) is called a pseudo-Runge pair at bi-degree

(p, q) with respect to £, if X l c X2 and there exist a complete hermitian metric

ds$ on X}, a hermitian metric /10 along the fibers of E \ Xl, a sequence of complete

hermitian metrics dsl ( f c = l , 2,...) on AT2, and a sequence of hermitian metrics

/ife along the fibers of E \ x,, satisfying the following properties;

(*) dsl, hk, and their derivatives converge on every compact subset of Xl

uniformly to ds$, /TO, and to their derivatives, respectively.

(**) The basic estimates hold with respect to dsl and hk at bi-degree (p, q+l)

with a common subellipticity constant and a common exceptional set

contained in Xv.

(***) LP>«(X2, £, hk, dsk
2)c:LP>q(X2, £, A k + 1 , rfs^+1)and there is a constant C2

independent of /c such that

For simplicity we set

(1) Cg-«(X1 ,£) = Cr(X1,£|^1),

and so on.

Note that under the above conditions the basic estimate holds with respect

to h0 and dsg, too.

The following lemma is essentially the same as Proposition 3.4.5 in [10].

Lemma 2.2. Let (X 15 X2) be a pseudo-Runge pair at bi-degree (p, g) with
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respect to E. Let /i0, dsfi, hk, and dsl be chosen as above. Then there is an

integer k0 and a constant C4 such that for any k^k0,

(2) C4(||3*/P+|a/||2)^||/||25

for anyfeLP>«+i(X2, E, hk, dsl) satisfying f\XlLN^N^ .

Proof. Assume that the assertion is false. Then there is a sequence fk

satisfying

(3) fteLf'^(X2,E,hhdsl)

(4) II All = 1

(5) lim inf || 5% ||=0
;n-»oo fcj^m

(6) lim inf||3/t||=0
m-»oo fc^w

and

(7) fk\Xl±Ntr\N,..

Choosing a subsequence if necessary, we may assume that

(8) Ml<X

and

(9) lia/JK-fc-.

Then there is a subsequence of f k \ X l weakly convergent in LP>'1+1(X1, E) and
strongly convergent on a common exceptional set K of the basic estimates. Let

the weak limit be /. Then / must be zero. In fact, by (7) we have / J_ NQ n N^9

and the completeness of the metric ds$ implies that we have both 3/=0 and

r5*/=0.
On the other hand, combining (8) and (9) with the basic estimates,

(10) ( <fk,fk>d»k>-e---rr,
JK ^5 K

where C5 is a positive number and dvk denotes the volume form with respect to

dsk. From the strong convergence of fk on K9 we obtain

(11)
J K 5

where dv0 denotes the volume form for ds$. Therefore/ ^0. A contradiction !

q. e.d.
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Theorem 23 (Approximation theorem). Let (Xl9 X2) be a pseudo-

Runge pair at bi-degree (p, q) with respect to E. Let hQ9 ds%, hk9 and ds% be

chosen as above, and let feN^q(hQ9 dsg). Then, for any positive number E,

there exist an integer kQ and an J'EN^q(X2, E, hkQ9 dsk£) satisfying

(12) l l / l x , -/!!<£.

Proof. In virtue of Hahn-Banach's theorem, we have only to prove the

following assertion :

Letit£LP'q(Xl9 E) and

(13) ( u , g \ X i ) = 0, geN*e-*(hk,ds& fc=l,2,...,

then we have

(14) (M,/) = 0, /GJVf'*(Ji0, dsg).

To prove the assertion we observe first that by the assumption (***),

(15) \(ti,v\Xl)\£C2\\u\\. \\v\\.

Hence (M, - \ X i ) is continuous on Lp*q(X2, E, hk, ds%) and its norm does not

exceed C2||w||. From the Riesz representation theorem there is a ukeLp'q(X23

E, hk9 dsl) such that

(16)

Clearly uk = 0 on X2 — Xl9 so that uk are orthogonal to Nfyq(hk9 dsl). Fur-
thermore

(17)

In fact we have

(18) l (M k l ^

On the other hand, from (*) combined with (16), we have

(19) (Uklxi, 9) - Kw,9),

for any <p e Cg>€(Z l3 E). (19), combined with (16), implies that

(20) ( u k \ X l 9 f ) - >(u9f), for any f e L P - * ( X l 9 E ) .

Since uk are orthogonal to N^q(hk9 ds%)9

(21)
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Hence, in virtue of Lemma 2.2 and Theorem 2.2 in Chapter 1, there exist a

constant C3 and wkeLp>q+1(X2, £, hk, dsl) satisfying

(22)

Since

(23) IKUI

there is a subsequence of w k \ X l converging weakly in Lp>q+1(Xl, E). Let the

weak limit be w. Then

(24) (w, 5<p) = (u, <p), <peCg.«(*i, E}.

Therefore, in virtue of Corollary 2.5 in Chapter 1, we obtain

(25) 5*w = w.

Consequently,

(26) (n,/) = 0, for any feN£*(h0,ds®. q.e.d.

§ 3. Isomorphism Theorems

In this paragraph we shall prove isomorphism theorems for pseudo-Runge

pairs. First we recall a fundamental fact about cohomology groups. Notations

are as in Chapter 1 .

Let Hq(X, Qp(E)) be the q-ih cohomology group of X with coefficients in

the sheaf of holomorphic sections of E®^T'X. Let Lfaq(X, E) be the space

of locally square integrable £-valued (p, #)-forms on X. Lfa*(X, E) is naturally

identified with the completion of Cp'q(X, E) with respect to the semi-norms

9 teC'-*(X, E),

where K runs through the compact subsets of X.

Proposition 3.1.

(1) H*(X, Qp(E))

*{fEL&(X, £); 3f=0}/{g eL^(X, E): there is an

heLfct-^X, E) satisfying 3h = g} .

Here Su = v should read

(2) (11, 9E<p) = (v, 9) for
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Proof. Let ^ = {[/,-} be a locally finite open cover of X such that U{

are biholomorphic to a polydisc. By solving the 5-equation for the domains of

holomorphy in Cn (cf. [10] or [11]), we have

(3) {/6L?0'£?([/I,..,p,£);a/=0}

= {geL^(Uil..^ E)- there is an hEL^^(Ult...lp9 E)

satisfying Sh= g}, p^ l , q^\ .

Here we put Uir..ip = C/ / ( n ••• D Uip. It is easy to see that the equality (3) implies

the equivalence (2).

Theorem 3.2 (Weak isomorphism theorem). Let ( X 1 , X 2 ) be a pseudo-

Runge pair with respect to £, at bi-degrees (p, q) and (p, q + \). Then there

is an integer k0 such that the natural restriction maps

(4) pk: N^\h

are bijectiue.

Proof. Since the basic estimate holds at bi-degree (p, q+\ ), we have

(5) dim Ni-*^(h

Hence we have only to show that, for sufficiently large /c, pk is injective and the

image of pk is dense. The density of the images follows from Theorem 2.3.

On the other hand, the injectivity follows at once from Lemma 2.2. q. e. d.

Given a pseudo-Runge pair (Xl9 X2), we set for simplicity

(6)

Theorem 3.3 (Isomorphism theorem). Let X be a complex manifold,

let E be a holomorphic vector bundle over X, and let D be an open subset of X.

Assume that there exist a family Xk(k=l, 2,...) of open subsets of X and a

family Dk of open subsets of D such that

fc^i

(9) Xl=Dl

(10) X2 = D
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(11) (Xk, Xk+2) is a pseudo-Runge pair at bi-degrees (p, q) and (p,

with respect to E.

(12) (Dk,Dk+l) is a pseudo-Runge pair at bi-degrees (p, q) and (p, q + 1)

with respect to E.

Then the natural restriction map

p: H«+l(X, QP(EJ) - > H«+1(D, Qp(E))

is bijective. Moreover, H^+l(X, Qp(E)) and H*+1(D, Qp(EJ) are finite di-

mensional.

Proof. Injectivity: Let /EL^+1(X,E\Sf=Qy and f\D = 3g for some

g E Lf0'c
€(D, £). By the pseudo-Rungeness of (Xl9 X3) and Theorem 3.2,

there is a gieL^(X39 E) satisfying Bg1=f\X3. Thus, inductively we obtain

gkeL^(Xk+2, E) satisfying dgk=f\Xk+2. By Theorem 2.3, there is a sequence
fheL^(Xk+ 3, E) satisfying

(13)

where we put/0 = 0, and the norm is taken with respect to a fixed metrics on

X and E. Hence we can define g e L^(X, E) by putting

00

(14) §=9k-fk-l+ Z (9k + m-9k + m-l+fk + m-2-fk + m-l)
m=l

on Xk + 2 . Clearly, Sg =/.
Note that by the same argument we can prove that, in the following triangle

of the natural restriction maps,

(15)

px and pD are injective, too. Hence by Proposition 1.2 dimHq+1(X, Qp(EJ)

<oo and dimH«+1(D, O'(£))<oo.

Surjectivity: Let feLf**+1(D,E) and 9/=0. By Theorem 2.2, for any

e>0, there is an/x eLf0'c
€+1(Z3, £) satisfying
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Thus, inductively we can choose fkeL&+1(Xk+29 E) satisfying

(17) n n f i[ \\Jkl Xk~Jk-l I Xk

where we put/0=/. Hence we can define feL^+1(X, E) by putting

/10\ f f I X"* / / f \ mn V
(Lo) /—Jfc + 2- Um+l"~Jm) On A f c+2-

Clearly, / satisfies

(3/-0

Therefore the image of px is dense in the image of pD. Combining this with

the injectivity of pD and the finite dimensionality of Hq+1(D, Qp(EJ), we obtain

the surjectivity of p. q. e. d.

§ 40 Examples of Pseiido-Renge Pairs

In accordance with Andreotti-Grauert [3], we adopt the following

Deinition 4.1. Let X be a complex manifold of dimension n, and let q

be a positive integer. X is said to be strongly g-pseudoconvex (resp. strongly

g-pseudoconcave) if there is a real-valued C°° function $ on X satisfying

(1) xc: ={x; $(x)<c}<QX or =X, for any c,

(2) the Levi form of 0 has at least n — q + \ positive (resp. n — q + i negative)

eigenvalues outside a compact subset K of X.

We call $ an exhaustion function and K an exceptional set.

Note that Xc is also strongly g-pseudoconvex (resp. strongly q-

pseudoconcave) if XC^K.

Theorem 4.2. Let X be a strongly q-pseudoconvex (resp. strongly q-

pseudoconcave) manifold of dimension n with an exhaustion function $ and an

exceptional set K9 and let E be a holomorphic vector bundle over X. Let

c<d, XC=>K9 and Xd<&X. Then, the pair (Xc, Xd) is a pseudo-Runge pair

with respect to E at bi-degrees (n, p), p^q — 1 (resp. at bi-degrees (0, p),

p^n-q-2).
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For the proof we need the following lemmas.

Lemma 4.3 (cf. Lemma 4.1 in [30] §12). Let X be a paracompact

complex manifold of dimension n, and let & be a real C°° (1, l)-form having

at least n — q + l positive eigenvalues. Then, for any positive integer N, there

is a hermitian metric ds2 on X such that with respect to ds2,

(3) at least n — q + l eigenvalues of 3? are bigger than N

and

(4) negative eigenvalues of ^ are bigger than — \ / N .

Proof. By the continuity of the eigenvalues it is clear that there is a con-

tinuous hermitian metric on X satisfying (3) and (4). Hence there is a C°°

hermitian metric satisfying (3) and (4). q. e. d.

Lemma 4.4. There is a sequence Ak(t)(k=l, 2,...) of C°° functions on

(—00, d), satisfying the following conditions.

(5) 4 ( 0 = - -- -— v - 2 + l l on (-00, c),

(6)

(D (d
J d— 1

(8) MO > 11, 4(0^0.
Proof. We put

(9)

1 -+11 on (-00, c]

ll on

-c)k3

on

It is clear that r\k(i) are differentiate and satisfy (5) to (8). Hence, approximating

rjk(t) by C°° functions, we obtain a sequence }.k(i) of C°° functions satisfying (5)

to (8). q.e.d.

Lemma 4.5.

L_ ?m f/ J__ \-« ^

;r, __ i ^ -__ __ r\ i
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where e = lim(l+k~1)k.
Jt-oc

Proof. Left to the reader.

Proof of Theorem 4.2: Let ds2 be a hermitian metric on X and h a her-
mitian metric along the fibers of E.

Pseudoconvex case: Let X be strongly g-pseudoconvex. We may assume

that outside Xc>, such that c' <c and XC.=>K, at least n — q + l eigenvalues of
are bigger than q and other eigenvalues are bigger than —1. We put

<ds2 = lk(®)ds2

I hk = he-A$*nf*

Here lk(t) is as in Lemma 4.4, and A is a positive number. By (7), ds2. is a

complete hermitian metric on Xd (cf. Proposition 1 in [18] or Proposition 3.1
in [25]). Let a>k be the fundamental form associated to ds% and let G> be as-
sociated to ds2. Then

( 1 2) dco k = 4(®}d<P A co + J.k($)dco .

In virtue of (6), e(do}k) is a bounded operator with respect to the pointwise norm

with respect to ds2,. Hence by Theorem 1.3 in Chapter 1,

Here, Tf and Tf * are the torsions of ds%, and C6 is a constant which is inde-
pendent of A. As for the curvature form of E with respect to hk, we have

(14) 0hk = 9h + A{^k(^)dM + A'k($)d<l> A 30} .

Since the eigenvalues of lk(<t>)d<l> A d$ are nonnegative and by the choice of
ds2 the sums of q eigenvalues of lk(<t>)dd<& with respect to dsl are bigger than

1 outside Xc,9 we deduce from Proposition 2.6 in Chapter 1 that

(15)

and whence, for suflSciently large A,

(16) ||d*(p
^

, for any <p e Cg-'(^ - X~., E), p ̂  q .
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Here, the inner products and the norms as well as the torsions T\ and the
adjoints Ak of the Lefschetz' operators are defined with respect to dsl and
hk. We fix such an A.

Let (5X be a positive number satisfying c'<c' + 5l<c — dl<c, and a a C°°
function on Xd satisfying

(17)
I 1 on Xc.dl .

Applying (16) to atp, where <peCfrf(Xd, E), we obtain the following estimate:

(18) ||3*<pp+||5pp + C7( <<P,<P>dvk
JXc-Si

2, <peC"0>?(Xd,E), p^q .

Here C7 is a constant and the norms are with respect to hk and dsl.
Hence we obtain

(19) C8{||3*/ll2+llW + ( <f,f>dvk\
( JXc-6i >

for some constant CR. Therefore the basic estimates hold for dsl and h^ with
common exceptional set Xc_dlc:Xc and common subellipticity constant C8.

By the definition of dsl an(^ hk> they converge with their derivatives to
hermitian metrics

and

respectively. The completeness of dsg is clear. So it remains to show that
(***) is true. That Ln'P(X2, E, hk9 dsl)c:Ln>P(X2, E9 hk+l9 ds2

k+1) is clear.
we note that

(20) O, 9>h,dS
2
0^<9, 9yh,dsl on XC9

snce
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(21) l l + - _ 2 - > ^ ( / ) on (-

Hence, by Lemma 4.5,

(22) <<?,
on Zc, for <p G O t (Xd, E), s ̂  0, t^ 0 .

Thus (*), (**), and (***) have been verified for the corresponding bi-degrees.

Pseud oconcave case : Assume thai X is strongly g-pseudoconcave. We set

(23)

where 5 is a positive number.

By (7), dsl are complete on J£d. Let cok and co be as above. Then

(24) <tok = dcD + lk(@)dd® A (54> + 5^) .

Hence the pointwise norms of Tf and Tf*? z = l, 2, with respect to dsl, are

bounded by C10>/Ak(#) for some constant C10. We may assume that outside

some XC' with c'<c and XC,-=>K, at least ?z — q + l eigenvalues of dd<l> with

respect to ds2 are less than —q — 3 and other eigenvalues are less than 1. Let

xeXd — Xc, be any point, let y1^.-~*zyn be the eigenvalues of dd$ at x with

respect to ds2, and let y i " ^ - - - ^ y £ be the eigenvalues of dd<$> with respect to dsl

at x. Since the rank of Ak($)d<P A 5$ is gl, by the minimum-maximum

principle*) we have

i 5; max

Hence

(26) yj^-s

As for the curvature form, we have

(27) 0hk-

By (6) and (8),

(28)

The reader is referred to Courant-Hilbert's book 'Metoden der Mathematischen Physik I,
Springer-Verlag, Berlin-Heidelbsrg-New York', Erstes Kapitel, Paragraph 4.
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Hence, if r^'"^rn are the eigenvalues of Xk($)dd$ + )Jk($)d$ A M at x with
respect to ds% , we have

(29)

Therefore, for sufficiently large 6, the sums of q + 1 eigenvalues of B(Xk($)dd<P

A 5$) are less than

at any point xeXd— Xc-. Hence, for sufficiently large B, we deduce from
Proposition 2.7 in Chapter 1 that, for any (peC^P(Xll-Xc,, E) (P^n-q-l),

(30) 3{Prf»||2+J|«}
V(0*)<?>, <p)k + B(lk($)<p, <p\}-4C\0(^(<I>)<p, <p\

, (p)k

Here we denote by 9k, \\ \\k, Ak, and ( , )fc the formal adjoint of S, the norm,

the adjoint of the Lefschetz' operator, and the inner product with respect to
ds% and hk. Hence similarly as in pseudoconvex case, we obtain

(31) C

^ \\f\\\ feD$'(hk, dsl) n D°g?(hk, dsfi, p^n-q-l ,

with a common exceptional set Xc_d2 contained in Xc and a common subellipti-
city constant Cn.

Now dsl and hk converge to

and

respectively. Clearly dsg is complete. Thus (*) and (**) have verified. The
verification of (***) is the same as in the pseudoconvex case. q. e. d.

Theorem 4.6. Let the situations be as in Theorem 4.2, and let ds2 and h

be a hermitian metric on X and a hermitian metric along the fibers of E, re-

spectively.
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(32) // X is strongly q-pseudoconvex and XC=>K, then the natural restriction

maps

Pl : Hp(X, fl»(£)) - > Hp(Xc, fl"(£)), p^q,

are bijective. Furthermore, if p^q, Hp(X, Qn(E)) are finite dimensional and

every cohomology class of HP(XC, Qn(EJ) is represented uniquely by a harmonic

form with respect to the following metrics:

l = h-e~~^W, a»0.

(33) If X is strongly q-pseudoconcave and XC^K, then the natural restriction

maps

p2 : Hp(X, E) - > H'(X& E), p £ n - q - 1

are bijective. Furthermore, if p^n — q — l, HP(X, E) are finite dimensional

and every cohomology class ofHp(Xc, E) is represented uniquely by a harmonic

form with resepect to the following metrics:

2 — h-e~~^ , a»0.

Proof. Combining Theorem 4.2 with Theorem 3.3, we obtain the former

parts of (32) and (33). The latter parts follow from the proof of Theorem 4.2,

since the two metrics Ak($)ds2 (resp. ds2 + Xk($)d$®d$) and akk(<P)ds2 (resp.

ds2 + odfc(<P)d$(x)5$) are equivalent if a>0, so the closedness of the range of

d is also valid for the above metrics. q. e. d.

Letting K = 0 and c = inf <P— 1 in the above theorem, we have

Corollary 4.7. Let X be a strongly q-pseudoconvex manifold with empty

exceptional set. Then,

for any holomorphic vector bundle E over X. Moreover, if XC^X, then for

any fEL">p(Xc, E, ds2
}, fcj, p^q, with Bf=Q, there is a g E Ln^~l(Xc, E,

ds\, /Zj) with Sg=f and \\g\\^C\\f\\, where C is a constant independent off.

A new feature of Theorem 4.6 is that the harmonic forms representing the

cohomology classes need not satisfy any kind of boundary conditions, which
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was not the case in Hormander's work [10]. In fact, in virtue of Stampacchia

Inequality (cf. Theorem 1.2 in [30]), the completeness of the herrnitian metric

implies that / is harmonic if and only if (dBE + QEd)f=Q in the sense described

in (2), Section 3.

The advantage of using extended Bochner-Calabi-Nakano formula will

be shown in the next chapter.

Chapter 3. Isomorphism Theorems on Weekly 1-CorapIete Manifolds

In this chapter we shall present several extensions and variations of so

called 'vanishing theorems' on weakly 1-complete manifolds. Contrary to

Theorem 4.6 in Chapter 2, the working hypothesis is the positivity of the cur-

vature forms of the metrics along the fibers of holomorphic vector bundles.

Two different notions of positivity are well known; one is due to S. Nakano

[17] and the other is due to P. A. Griffiths [8], [9]. Both of these shall be

examined here.

§ 1. Coarse Isomorphism Theorems

Let X be a complex manifold of dimension n. For a vector space V9 S-<i V

shall mean that S is a subspace of V.

Definition 1.1. A holomorphic vector bundle E-*X with a herrnitian metric

h along the fibers, in short a herrnitian vector bundle (£, h), is said to be q-

positive (resp. q-negative) if, for any point xeX, there is a subspace Sx-*3TXtX

of dimension n — q + 1 such that (h®id)(@h\Sx) is a positive definite (resp.

negative definite) herrnitian form on EX®SX.

Note that if £ is a line bundle, i.e. if the rank of £ is 1, then (£, h) is q-

positive (resp. q-negative) if and only if the curvature form 0h has everywhere

at least n~q + l positive eigenvalues (resp. negative eigenvalues). It follows

from the definition of strongly q-pseudoconvex manifolds (resp. strongly q-

pseudoconcave manifolds) that every holomorphic vector bundle over them is

q-positive (resp. q-negative) outside a compact subset.

The following definition is due to Nakano [19],

Definition 1.2. X is said to be weakly 1-complete if there is a C°° plu-

risubharmonic function ^>: X-+R such that Xc: ={x; $(x)<c} £X for any c.

$ is called an exhaustion function.
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In what follows, let X be a weakly 1-complete manifold of dimension n

with an exhaustion function cP and a hermitian metric ds2.

Theorem 1.3. Let X be a weakly l-complete manifold and let (B, a) be a

hermitian line bundle over X. Assume that (B, a) is q-positive outside a

compact subset KaXc. Then, for any holomorphic vector bundle E over X,

there is an integer m0 such that HP(XC, E®Bm\ m>m0 , are finite dimensional

and the natural restriction maps

> H*(Xd9 E®B™\ m>m 0 , od,

are bijective, if Xd^>K and p^q.

As a special case, we have

Corollary 1.4. Let the situations be as above. If K = 0, then for any

holomorphic vector bundle E-*X, there is an integer m0 such that

HP(XC, E®Bm) = Q, for p^q and m > m 0 .

For the proof we need the following

Lemma 1.5. Let H1 and H2 be two hermitian matrices of rank n, and let

7i^ '"=^7n be the eigenvalues of H1. Assume that 7 i^-"^7 n_g- t - i^e>0
and H2 is positive semi-definite. Let viy...,vn_q+1 be the eigenvectors of H^

with H^v—yiV^ and set

n-a+i
(1) V={veC";v= £ c,»bc«6C}.

i=l

Then,

(2) >vHlV + s>vH2v ^£; fof vev_{0}>

Z \v'\2 + 'vH2v
a=l

where we put v = t(v1,..., vn).

Proof. Trivial.

Proof of Theorem 1.3: We have to verify that for sufficiently large m,

(Xd9 Xc) is a pseudo-Runge pair at bi-degrees (n, p), p^q-i, with respect to
K$®E®Bm, where Kx denotes the canonical bundle of X. Let ds2 be so chosen

that at any point x E X — Xd_d the eigenvalues y± ̂  ••• ^yn of 0a satisfy
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where d is fixed so that KczXd-dc:Xd, and let h be a hermitian metric along the

fibers of K$®E.

We set

where we put

(5)
Jinftf

letting A& be as in Lemma 4.4 in Chapter 2 except that c and d are interchanged,

and where we regard ddxk($) naturally as a section of T'X®T'X.

We have

(6) 0hkm = m0a

Since #fc(r) is a convex increasing function, d3xk($) is a positive semi-definite form.

Hence by Lemma 1.5, at any point xeXc — Xd_d, the eigenvalues r j^ - - -^r j

of 0a + qdd%k(<I>) with respect to dsj satisfy

(7)

Clearly, we have

(8)

On the other hand, letting a* and cok be the fundamental forms associated to

ds2 and dsf , respectively, we have

(9) dcok = dco,

so e(da)k) is bounded. Hence similarly as in the pseudoconvex case of Theorem

4.2 in Chapter 2, we conclude that, for sufficiently large m, (Xd9 Xc) is a pseudo-

Runge pair with respect to K$®E®Bm at bi-degrees (w, p), p^q— 1, whence

follows the theorem. q. e. d.

The following definition is essentially due to Griffiths [8].

Definition 1.6. A hermitian vector bundle (£, h) over a complex manifold

X of dimension n is said to be weakly q-positive if, for any point x E X and for

any #££,,-{0}, h(0hv)(v) is a hermitian form on Tx,x having at least n-q + \

positive eigenvalues. Here we put h(0hv)(v) = e(h(e(0h)v))v for simplicity.

Let n: P(E)-*X be the bundle of projective spaces associated to E^X.

Over P(£) there is a tautological line bundle L(E) whose fiber L(E)^ (c e P(JB))
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is the line [^]-^E7lUS). By Leray's theorem, we have a canonical isomorphism

(10) HP(X, &®EW)^HP(P(E*)9 7r*^®L'"), m ^ O ,

where L = (L(£*))* and £f is any locally free coherent analytic sheaf over X.

Proposition 1.7. // (£, /?) is weakly q-positive, then L~>P(£*), with the

induced metric, is q-positive.

Proof. See (2.36) in [9].

From Proposition 1.7, combined with the canonical isomorphism (10),

we obtain the following corollaries to Theorem 1.3.

Corollary 1.8. Let (E, h) be a hermitian vector bundle over a weakly 1-

coniplete manifold X. Assume that (E, h) is weakly q-positive outside a com-

pact subset KaXc. Then, for any holomorphic vector bundle F over X, there

is an integer m0 such that Hp(Xc, F®£(m)), ra>ni0, are finite dimensional

and the natural restriction map

HP(XC, F® £<"'>) - > HP(Xd, F® £<'">) , od, m > m 0

is bijective, if p^q and Xd^K.

Corollary 1.9. Let the situations be as above. If moreover K = 0, then

for any holomorphic vector bundle F over X, there is an integer m0 such that

HP(XC, F®^'")) = 0, for p^q, m>m0.

Remark. Corollary 1.9, which is along the line of Nakano-Hironaka (cf.

[19]), is a generalization of the coarse vanishing theorems for compact complex

manifolds obtained by Andreotti-Grauert [3] and Griffiths [8], whose original

form is found in Kodaira [13].

As a generalization of the dual of Corollary 1.9 for compact manifolds,

we obtain the following

Theorem 1.10. Let (£, a) be a hermitian vector bundle of rank s over a

weakly \-complete manifold X. Assume that (£, a) is q-negative outside a

compact subset KaXd and that the rank of dS(e0) is everywhere ?gr. Then,

for any ceR with Xc^>Xd, and for any vector bundle F over X, there is an

integer mQ such that the natural restriction maps

are bijective and HP(XC, F®E(m}) are finite dimensional, if Xd-*K, m>m 0 ,

and p^n — r — q — s+{.



218 TAKEO OHSAWA

Proof. By (2.36) in [9], L = (L(£*))* is q + s-1 negative outside K.

Hence by the isomorphism (10), we may assume that £ is a line bundle.

Let xk be as before. By hypothesis, the rank of ddxk(<$>) is ^ r. We put

hk>m =

where ds2 is so chosen that at least n — q + 1 eigenvalues of 0a are less than

— 2(q + r) and other eigenvalues are less than 1, both outside a fixed Xd-d such

that KcXd_8<=:Xd, and /? is a hermitian metric along the fibers of F. Then, at

any point xeXc — Xd-d9 the eigenvalues FJ^-'^F* of 0a + ddxk(^) with

respect to ds% satisfy

The rest of the proof is the same as in the proof of Theorem 1.3. q. e. d.

In particular, if K = 0, then we have a vanishing theorem as Corollary 1.9.

Remark 1. By the same argument we can prove the corresponding coarse

vanishing theorems (see Corollary 1.4) for semi-positive bundles (resp. semi-

negative bundles) of type q (for the definition see the next chapter) over strongly

g-pseudoconvex (resp. strongly g-pseudoconcave) manifolds.

Remark 2. It will be interesting to know whether

dim jff'CX^ F®£<m>), p^q ,

are at most of polynomial growth of degree n with respect to m, where E is as in

Theorem 1.3. The corresponding result for strongly g-pseudoeonvex manifolds

and strongly g-pseudoconcave manifolds has already been obtained by D.

Leistner [14].

§ 20 Precise Isomorphism Theorems

Let (E, h) be a hermitian vector bundle over a complex manifold X of

dimension n. (E, h) is said to be semi-positive (resp. semi-negative) if, for any

point xeX, (h®id)0h is a positive semi-definite (resp. negative semi-definite)

hermitian form on (E® Tx)x. (E, h) is said to be semi-positive of type q (resp.

semi-negative of type q\ if (£, h) is both semi-positive (resp. semi-negative)

and ^-positive (resp. ^-negative).
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Proposition 2.1. Let (E, h) be a semi-positive hermitian vector bundle

of type q over a complex manifold X with a hermitian metric ds2. Then, at
any point XE X,

(1) V^T<e(0ftM/,/>^r(x)</,/> for feC"-"(X,E), p^q ,

where

(2) ,(*):= max min
SX<TX,X feEx®S

ditnSx=n-q + l

Proof. Let (if,..., T*) be an orthonormal basis of TXiX with respect to ds2

such that, if Sx is the linear subspace of TXtX spanned by if,..., t*-q-ri9 we nave

(3) y(.v)= min

By direct computation, we have

(4) ^/ — \(e(ljo[ A Ip)All A - • • A Tn A Tji A • • • A fy

where (T l5..., TW) denotes the dual basis of (T?,..., T*). We set

(5) N/^T<e(0,M^, <p> = Z M^> ^) '
1 ^ a , /? 5| f j

where

(6) 9= Z ^ « T i A . . . A T n A f a , ^ a6£X 5
l ^a^n

and 0^ is the coefficient of T a A f / s in ^/ — lOh. For any multi-index

J = (Ji, — JP) ^it^Ji<"'<jp and for any J' = ( j 1 , . . . , J ! X , . . . J p ) ) we put

(7) /j^Tj A ..- ATM A lji A ..- A f7a A ... A fyp A f^

where {/„...,;';} = (j l5 . ..Ja,..., ;p, j5} and

(8) f=j^<jffjr..jSi*'-'**n

Then, by (4),

(9) J=l<e(Oh)Af,fy

- Z Z OM-
|J'|=j?-l lga ,^^»

= Z Z
|J'|=p-l l^a,/?^n-p
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^ Z Z etf(fr,,frf)|J'|=p-l l^<x,p£n-p + l

/n-P+l H-P+1

£?(*) Z I /,..®T*, Z

Hence,

(10)

The following theorem has been proved by Ohsawa [23] and by Nakano-

Rhai [22] for q = \ ( rank£=l is assumed in [23]). The original form where

K = 0 and q = i was proved by Nakano [17], [19], [20], [21] and Kazama [12],

and reproved by Suzuki [27].

Theorem 2.2. Let X be a weakly \-complete manifold, and let (E, h) be

a hermitian vector bundle over X. Assume that (E, /?) is semi-positive of type

q outside a compact subset KaXd and ds2 is Kdhlerian outside K. Then

Hp(X, Q"(E)) are finite dimensional and the natural restriction maps

H'(X,

are bijective, if p^.q. In particular, if K = 0,

Hp(X, O"(£)) = 0, for p^q .

Proof. For any od, (Xd, Xc) is a pseudo-Runge pair with respect to E

at bi-degrees (n, p), p^q — \. In fact we have only to put

(11)

Then, in virtue of Proposition 2.1, we can prove the basic estimates. The rest

of the proof is the same as in the proof of Theorem 1.3.

Proposition 2.3. Let (E, h) be a semi-negative vector bundle of type q

over a complex manifold X of dimension n "with a hermitian metric ds2. Then,

at any point xe^T,

(12) -v^T<^e(0,,)/,/>^«5

feC°-'(X,E), p^n-q.

Here,
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(13) *(,):- -mm max
sx<Tx,x fe£x®sx \ y » y /

dimSx=n-q+l

Proof. Similar to Proposition 2.1.

As a dual of Theorem 2.2, we obtain

Theorem 2.4. Lef X be a weakly {-complete manifold and let (£, h) be

a hermitian vector bundle over X. Assume that (£, /i) is semi-negative of type

q outside a compact subset Kc=Xd, X is Kdhlerian outside K, and that dS(e0)

is of rank ^r. Then HP(X, E) are finite dimensional and the natural re-

striction maps

, E) - > HP(Xd, E)

are bijective, if p^n — q — r. In particular, if K = 0, then

HP(X,E) = Q, for p^n-q-r.

Proof. Similar to Theorem 2.2.

The original form of the following theorem has been proved by Akizuki-

Nakano [2] and Girbau [7]. The present form has been partially proved by

Nakano [20], Abdelkader [I], Ohsawa [24], and Takegoshi-Ohsawa [29].

Theorem 2.5. Let (B, a) be a hermitian line bundle over a weakly l-

complete manifold X. Assume that (B, a) is semi-positive of type q outside a

compact subset KaXd and that X is Kahlerian outside K. Then H'(X, QS(B))

are finite dimensional and the natural restriction maps

H'(X, Q°(B)) > H<(Xd,

are bijective, if s+t^n + q. In particular, if K = 0, then

H'(X,Q*(B)) = Q, for

Proof. Let c>d and

(14) { dsl = ^
( ak = ae

where e is a positive number which is determined later. We have to prove that

(Xd9 Xc) is a pseudo-Runge pair with respect to the above metrics.

It is clear that (*) is satisfied.

Let xeXc-Xd.d be any point (Xd=>Xd_d-=>K). We set
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(15) i=l
n

k== JL_< (fi T-/ f / ' ^ iQy '^ i at X.i=l

Let r^'-^r^^O be the eigenvalues of 0a at x with respect to ds2. Then

we have

(16)
Let

(17) / = . . U s J r

Then, (cf. [7])

(18) J
/ s rk t= y ( y »'« + y

i,<^<£, \..i rf.+e A

If s + f^n + g, then

Hence, if 2ns < inf Fn _ q + x ,
xeXc— Xd-6

(20) V"

</;/>' if

where the inner products are with respect to ds% and ak. Therefore, similarly

as before, we obtain the corresponding basic estimates. The verification of

(*##) is the same as in the proof of Theorem 1.3. q. e. d.

Similarly we obtain

Theorem 2B60 Let (B, a) be a hermitian line bundle over a weakly 1-

complete manifold X. Assume that (B, a) is semi-negative of type q outside a
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compact subset KaXd, X is Kdhlerian outside K, and the rank of dd(e®) is

gr. Then Hl(X, QS(B)) are finite dimensional and the natural restriction

maps

H'(X, ®*(B)} > H'(Xd, Q*(B))

are bijective, if s + t^n — q — r. In particular, if K = 0,

Ht(X,Qs(B)) = Q, for s + t^n-q-r.

Proof. Let od and

where e is a positive number which is determined later. We shall show that
(Xd, Xc) is a pseudo-Runge pair with respect to the above metrics. It is clear
that (*) is satisfied. Let xeXc — Xd_6 be any point, where a positive number
d is so chosen that Xd^>Xd.di^K. We have

(22) 0ak =
=

jc9 then

(23) <J

= < V - 1(- e(ds*)Ak

k - Ake(eds2

= (n-s-t) </, f\ + < V

at

Here we denote by < , >fc the pointwise inner product with respect to ds\ and
ak. We put

(24)
ds2

k= ;

at x.

Here yf(e) are the eigenvalues of 0a + &dd%k($) with respect to ds2, and we
arrange them as follows :

(25)

It is easily seen that 7 J(e) ̂  e and that

(26) - l^yfOO^-l + Ce for l^i^n-q + l-r,
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where C is a constant which does not depend on k or x. Hence,

(27) ± ( l + y l ( e ) ) + ± ( l+ 7) (fi))- ± (l+y*(e))
«=1 0=1 ' 11=1

(=s+t-n+ ± Jl(s) + ± y),(e)- f
a=l 0=1 «=1

g+1 -r-{C(n — g+1 -

Combining (23) with (27), we obtain the basic estimate for s + t^n — q — r. The

rest of the proof is the same as in the proof of Theorem 1 .3. q. e. d.

A hermitian vector bundle (E, h) over a complex manifold X of dimension

n is said to be weakly semi-positive if, for any point x e X and for any v e Ex— {0},

h(0h(v)) (v) is a positive semi-definite hermitian form on Tx%x. If the rank of

h(0h(v))(v) is at least n — q + l, then (£, h) is said to be weakly semi-positive

of type q. This definition is originally due to Griffiths [8] (cf. also Skoda [26]).

Let P(E*) and L be as in Section 1. Then we have the following iso-

morphism (cf. Le Potier, C. R. Acad. Sc. Paris, 276 (1973) pp. 535-537).

(28) H*(X9 QS(E)) - > H'(P(£*), Q-(L)) .

From (2.36) in [9], L is semi-positive of type q if E is weakly semi-positive of

type q. Thus combining the isomorphism (21) with Theorem 2.5, we obtain

Theorem 2.7. Let (E, /?) be a hermitian vector bundle of rank r over a

weakly \-complete manifold X. Assume that (£, h) is weakly semi-positive

of type q outside a compact subset KaXd and there is a Kahler metric on

X — K. Then H*(X, QS(E)) are finite dimensional and the natural restriction

maps

H'(X, fl-(E)) - > H'(Xd, Q*(E))

are bijective, if s + t^n + r + q—l. In particular, if K = 0,

H*(X9 0S(E)) = 0, for s + t^n + r + q-\.

The counterpart of Theorem 2.6 is left to the reader.

The relation between semi-positivity and weak semi-positivity, except for

the trivial implication, has been first revealed by Demailly and Skoda [5]. We

restate here their theorem as follows.

Theorem 2.8. // (£, /i) is weakly semi-positive (resp. weakly \-positive),

then ((det£)®£, (det /?)®/i) is semi-positive (resp. l-positive).
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It follows trivially from their inequality

]C ajklmxjl*km+ 2 ajjlmxklxkm = X ajjlmXjl*jm
j,k,l,m j,k,l,m j, I,m

(cf. p. 307 in [5]) that if (£, h) is weakly semi-positive of type q, then ((det E)® £,

(det /i)®/i) is semi-positive of type q.

Remark I. In the above theorems we have proved also approximation

theorems and harmonic representation theorems. From the harmonic represen-

tation theorem, we can deduce cohomology vanishing theorems under somewhat

weaker assumptions on the curvature form of (£, /?) (cf. Takegoshi [28]).

Remark 2. Let n: X-+CN be a proper holomorphic map from a weakly

I-complete manifold X of dimension n. Assume that X is embeddable into

PN' as a locally closed analytic submanifold, and that dim n~^(x)^n-r for x^O.

Then the latter part of Theorem 2.5 (Nakano's vanishing theorem), combined

with Hodge-Lieberman-Rossi-Fujiki's decomposition theorem for strongly

pseudoconvex manifolds, (cf. [6], [15]) implies that the decomposition of

H*(X, C) into the direct sum of Hr(X, Qs) and the symmetry dim H*(X, Os)

= dim HS(X, Q*) are valid for degrees s-M, p^2n — r+1. Therefore the

topology of the degenerate set of a holomorphic map from a projective variety

is very restricted. Such phenomenon can be observed on Kahler manifolds,

too (cf. [25]), which may suggest a further meaning of our isomorphism theorems.

Appendix

Let the notations be as in Chapter 1. We shall prove here Theorem 1.3

following [31] and [32]. We have to deal with operators on Tr
x rather than

those on Tfyq, so we regard L, A, and so on, as operators on Tr
x.

Definition 1. An r-form u is said to be primitive if An = 0.

From now on r-forms (resp. primitive r-forms) are denoted by fr (resp.

w(r)), unless otherwise stated. For the proofs of Theorem 2 to Theorem 6,

the reader is referred to [31] and [32].

Theorem 2. i) I f n ( r ) is a nonzero primitive form, then rrgrc.

ii) / /w ( r ) is primitive with r rgw, then

( L"-r+1i*<r> = 0

(1) 1 AkTk t,) k\(n — r)\ (r) r i^AkLku(r) = -—^ =Vr-w(r) for k<n — r.1 (n — r — k)\ ~
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Theorem 3. i) For any fr with r^n,

(2) fr =

ii) For any fr with r>n,

(3) Jr _ Jj-nu(2n-r) _j_ £r-n+lM(2n-i-2) _j _____ |_ £r-n+fcM

Furthermore the decompositions i) and ii) are unique.

Corollary 4. If Ln~r+kfr = Q, n-r + k^Q, then u^ = Q, i<^r-2k, where

M ( £ ) are as in i) or ii).

Corollary 5« There is an operator P(n, r, 0 belonging to the algebra gen-

erated by A and L over the field of rational numbers, satisfying

(4) P(n,r, 0/' = H ( i ) ,

where u^ are as in i) or ii).

Theorem 6, For any u^r\

(5)

03 k>n-r.

From these theorems we can deduce

Proposition 70 For any u^ of class C°°,

(6)

-l-n + p))e(d(D}Lk~2Ak

(A)

(n-p+l)(n-p-k)\
3lkl(n-p)l

= (n-p-k}\

(Q cm,ptk =-(-!)-

we put m! = 0 and Lm = 0/or negative m.



ISOMORPHISM THEOREMS 227

(7) (e(d$)A -

where <$ is a (complex valued) C°° function.

Admitting Proposition 7, Theorem 1.3 is proved as follows:

Proof of Theorem 1.3. Combining (6) with Theorem 3 and Corollary 5,

for any fr of class C°°,

(8) (dA - Ad)fr = - C-1*d*C/> + Tf ,

where T is a linear operator belonging to the algebra over the field of rational

numbers generated by L, A, e(dco), C"1, and *. Similarly we have

(9) (e(d$)A -

Decomposing (8) and (9) into types, we have

(10) dA-Ad=- V^

(11) SA-Ad = /=T(¥d* + T2)

(12) e(d$)A -

and

(13) e(d$)A -

where Tt and T2 are the components of T.

Thus in particular we have proved the latter part of (13) in Theorem 1.3.

By (12), we have

(14) e(h

On the other hand,

(15)

Combining these equalities we obtain Theorem 1.3. q.e.d.

Proof of Proposition 1. We prove only (6). The proof of (7) is similar.

First we note that

kf n-p+l1,(p)(16) Ln~P+2duM = dLn~P+2uM -(n-
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From Theorem 2 ii), the right hand side of (16) is zero, so that by Corollary 4,

we have the primitive decomposition

(17)

Hence we have

(18)

By Theorem 2 ii),

(19)

(20)

(21)

and

(22) £*+ Vp~3) = ~ (k + 2) (k - 2 -

Hence,

(23)

Combining (18) with (23), we obtain

(24)

- (kAe(dco)Lk~l + k(k - 1) (fe - 1 - n + p)e(do})Lk~2u^

/ - t t(K i)-(n p) .

On the other hand, by Theorem 6, we have
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(25) -

-7 - —
(n-k-p)\

—
(n k p) .

Applying Theorem 6 again, we have

(26) -

(n-k -p)

-k-p + 2)(n-k-p+l)
K ~r I

p(p-l) jL|
~~~~ -- _ -

(n k p I) .

_
C"1

P-3)

Therefore,

(27)

+ bntptk{AL + (fc - 1) (fe - 1 - n + p)}e(dco)Lk-2AkLku(r '

where
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(A') a>n>p,k - ?

rm h - (n-p-k)\(B) *„.,.*-- (k_lY(n_p}{ ,

and

p(p-l) „ n—lr

(Q c.lf.t=-(-l)-T-^jf.

It remains to express ?^^"3) in terms of Lku(p). In virtue of Theorem 3 and

Corollary 4, we can put

(28)

Since

(29)

= -(n-

we have

(30) L

By the uniqueness of the primitive decomposition,

(31) ^-

On the other hand,

(32) '™-

Thus,

(33) 1,0-3)= -

Putting (33) into (27), we obtain the proposition. q. e. d.
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