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Prepositional Dynamic Logic for
Concurrent Programs

By

Hirokazu NISHIMURA*

Abstract

We give a nice Gentzen-typc axiomatization of prepositional dynamic logic (PDL) with
the shuffle operator a HP (cobegin...coend)

§ 1. Introduction

One of the most significant topics that were recommended by Harel [3]

for further research is to develop a theoretical framework for concurrent pro-

grams in the spirit of his thesis for sequential programs. To this end, several

challenging subjects must be attacked vigorously. For one thing, we have to

develop a powerful machinery which can deal with rich temporal properties of

concurrent programs. Complex interactions of concurrent processes require

formal analysis of what a program does while it is running, whereas partial

and total correctness are the only important properties of sequential programs.

Such formal machineries are now being developed under the name of process

logic, notably Harel, Kozen and Parikh [4], Nishimura [6], Pratt [9], etc.

For another thing, a nice axiomatization of PDL with the shuffle operator a///?

must be provided, which we are about to do in this paper. For its first-order

version, the reader can consult Nishimura [7].

§ 2. Concurrent Prepositional Dynamic Logic

The main purpose of this section is to present the exact syntax and seman-

tics of concurrent prepositional dynamic logic (CPDL). First of all, we define

the notion of a program a by induction as follows:
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(1) The program constant 6 (a program for "do nothing") is a program.

(2) Each atomic program, denoted by a, b, c,..., is a program.

(3) If a and ft are programs, so too are a; /?, a U /?, a* and a///?.

Programs of the form indicated in (1) and (2) are called indivisible pro-

grams.

The notion of a wff A is defined by induction as follows :

(1) Each atomic formula, denoted by p, q,..., is a wff.

(2) If A and B are wffs, so too are A A B, ^4 v B, 1^4 and ^4=> B.

(3) If A is a wff and a is a program, then [u]A is a wff.

In this paper we do not include programs of the form A! and or for the sake

of simplicity.

Let N be the set of all nonnegative integers. We define a function (p from

N x N to IV as follows :

cp (i9 j) = . . +y- for each (/, j)eNxN.

We know well in elementary mathematics that (p is a one-to-one corre-

spondence of NxN onto IV and if z+7<i'+/, then (p(i9j)<cp(i',jr). We

denote by \j/ and / the functions from N to N satisfying the following condition :

( 0. Z(0) = i for any i e IV .

We define a function d from the set of all programs to N as follows :

(1) d(a) = l for any indivisible program oc.

(2) d(a; jS) = d(aU« = 2(max{d(a), d(/Q}

(3) d(a*) = d(a) + l.

(4) d(a///0 = p(d(a
We define two functions init and rest from NxPM to PM, where PM is

the set of all programs, as follows :

(0) init (0, a) = 9 and rest (0, a) = a for any program a.

(1) init (i + l, a) = a and rest (i 4- 1 , a) = 6 for any indivisible program a.

(2a) init(2i + l, a; j8) = init(z, a) and rest(2i + l, a; )S) = rest(i, a); /*.
(2b) init (2(i 4- 1), a ; ft) = a ; init (i, 0) and rest (2(z + 1), a ; jS) = rest (i, j8).

(3a) init(2i+l, aU j?) = init(i, a) and rest(2i + l, all £) = rest(z3 a).

(3b) init (2(i + 1), a U )8) = init (i, )8) and rest (2(1 + 1), a U /?) = rest (i, )S).

(4) init (i + l, a//j8) = init(^(0, a)//init(x(0, /O and rest (i + l, a///0 =

rest(^r(i),a)//restOc(0,/0.
(5) init (i + l, a*) = a*; init(i., a) and rest (i+l, a*) = rest(i, a); a*.
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We define the rest-closure of a program a, written rest-cl(a)3 as the set

(rest(/, a)|0^igd(a)] .

We recall the following proposition of Nishimura [7].

Proposition 2.1. For any program a, any /? e rest-cl(a) and any i

we have rest(/, /?)e rest-cl (a). I.e., rest-cl (a) is closed with respect to the

operation rest.

We give some examples of rest-el (a).

(1) resl-cl(0) = {0}.

(2) rest-cl (a; b) = {a;b,9; b,b,9}.

(3) rest-cl ((a; &)*) = {(*; 6); (a; &)*, (0; 6); (a; &)*, 6; (a; fo)*5 0; (a; ft)*}.
(2) and (3) are completely precise but look somewhat superfluous. The

following simplified versions are much clearer.

(2r) rest-cl (a; b) = {ai b, b, 9}.

(3') rest-cl ((a ; &)*) - {(a ; b)*3 fc ; (a ;&)*}.
We now turn our attention to semantics. A structure is a triple (FF, p, n),

where

(1) Wis a nonempty set (heuristically, of possible states).

(2) p is a function from the set of all programs to 2WxW.

(3) n is a function from AF x W to (0, 1} , where ̂ 4F is the set of all atomic

formulas. I.e., n(p, w) denotes the truth value of p at w.

An ordered pair (w, v) of states w and v in W is called a move. A finite

sequence (w l5 i?i)---(wn, t;n) of moves is called a pcrtfc, while w1 and un are called

the initial and final states of the path respectively. We denote by H(PF) the

set of all paths in W. For any h e H( W\ we denote the initial and final states of

h by is(/7) and fs(/i) respectively. A path (\vl, y j ) - - - ( w W 5 vn) is called legal if

iJf = w i ^ 1 for each 1 r g / ^ « — 1. We denote by Hr(W^) the set of all legal paths.

Given two subsets S and Tof H(fV), we define:

(1) 5; Tis the set of all concatenations of ht E S followed by h2 e T.

(2) S* is the least subset of H(PF) which contains S and {(w, w)| we W}

and which is closed under concatenation.

(3) S/ IT is the set of all interleaving sequences of h± e S and h2 e T.

Now we are ready to extend p to all programs.
(1) p(9)=WxW.

(2) p(a;/0 = p(a
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(3) p (aU£) = p(a

(4) p(a*) = p(a)*.

(5) p

Let

Now we are ready to extend n to all wffs.

(1) n(A/\B, w)=l iff7r04, w) = l and n(B, w)=l .

(2) n(A v B, w) = 1 iff n(A, w) = 1 or TT(£, w) = 1.

(3) 7i(~M, w)=l iff n(A, w) = 0.

(4) n(A^>B, w)=l iff n(A, w)=l implies n(B, w)=l .

(5) 7r([a]^4, MO = 1 iff for any /? e pr(a), is (/?) = w implies that 7r(,4, fs (/?)) = 1.

A sequent is an ordered pair (T, zi) of finite sets of wffs, which we will usually

denote by F-*A. n can be extended to all sequents as follows:

(1) n(F-*A, w)= 1 if for any A E F n(A, w)= 1

and for any B e A n(B, w) = 0,

(2) 7i(r->/l, w) = 0 otherwise.

We say that a sequent F-+A is realizable if for some structure (W, p, n)

and some we HP, 7r(r->zJ, w ) = l . A sequent F-+A which is not realizable is

called valid (notation: |=r-*z1).

§ 3. Axiomatization

The main purpose of this section is to present a Gentzen-type sequential

axiomatization of CPDL, say, GCPDL, which consists of the following axioms

and inference rules:

Axioms: A-+A

Rules: -^ ~* (extension)

•r"*r J7-»l "^ (cut)

r->A,A r-+A, B , A.
F-*A, A/\B

A, F-+A
, F->A

(A-*)
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, A
^A,AvB

(-> v)r-+A,B
F-+A, AvB

AvB, F-*A

4,r->A ,
F-+A, ^A

r-+A, A
~u, r-^A
A, F-+A, B

A^B, r, fT-
r-*A

r-*A, A
F-+A, [0~]A

— ( v - » )

n)

r-*A, [oi

, [ai]A

[ai]A, F-+A
, F-+A

(CU] -> )

A,
[at*]A,

[a*]^, r-^A

(-+ [ / /]) ,

where X = {r-^J, [ink(/, j8)] [a] [rest(/,)?)]/! |0g/gd()8)} and a is an in-
divisible program.
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[init(f.j8)][a][rest(/.j8)]^.r-.

where a is an indivisible program.

X (-*[(;)//]),

where X = {r->.d, [<x//init(i, y)] |j3//rest(i,

/init(/. y)] Q?//rest (f,
[(a;

A-+C*X, X> (_ [W//]) j

where Cy is a wff for each y e rest-cl (/?), X1 = {Cy-»[a//init (/', y)]Crest

yerest-cl(jS) andO^i^d(y)} and X2 = {Cy^\y~\B\y erest-cl(j8)}.

. r

«//init(/. /?)][a*//rest(f.

A proo/ P (in GCPDL) is a tree of sequents satisfying the following con-

ditions :

(1) The topmost sequents of P are axiom sequents.

(2) Every sequent in P except the lowest one is an upper sequent of an

inference rule whose lower sequent is also in P.

A sequent F-+A is said to be provable (in GCPDL) if there exists a proof

whose lowest sequent is F->A. If a sequent F-*A is provable, then we write

hF-> A (in GCPDL). A sequent F-+A which is not provable is said to be con-

sistent (in GCPDL).

It is a great pleasure to note that there exists a strong analogy, e.g., between
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rules (->[ U ]) and (-»[( U )//]). Indeed, if we take 7 to be 0 and Identify, e.g.,
a//0 with a, then the rule (->[( U )//]) is reduced to (-*[ U ]). In particular, the
analogy between (->[*]) and (->[(*)//]) is exciting, because the rule (-»[*]) is
the dynamic logical counterpart of celebrated Floyd's invariant assertion method

and the rule (-»[(*)//]) is its extension to concurrent programs. The rule

(-»[*]) can be illustrated by Figure 3.1. Similarly Figures 3.2 and 3.3 depict

the rule (-»[(*)//]) in case of P = a; b and /? = (a; 6)* respectively.

We now recall the notions of the characteristic wff \I/(T-*A) of a sequent
F-*A and of the characteristic wff\l/(X) of a finite set X of sequents, which were
defined in Nishimura [5] as follows :

(1) ^(r-*J) = 4 1 A . - - A 4 l l A n B 1 A . . . A - l B m , where r={Al9..., An] and

(2) ^(X) = ̂ (r1->J1)v- v^r^JO, where X = {F1-*A1,..., Fk-»Ak}.
We borrow the following lemma from Nishimura [5].

Lemma 3.L For any sequent F, U^A9 I, we have that hF, II-* A, I

iff h*KF-»zf), n^i.

Figure. 3.2
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all(bi (a; b)*; a)

§ 4. Soundness

Theorem 4.1 (Soundness Theorem for GCPDL). For any sequent F-*A9

r->Ay then

Proof. The proof is carried out by induction on the construction of a

proof of the given sequent. It follows immediately from the definition that any

axiom sequent A-*A is valid. As for the inference rules, we deal only with

(->[(*)//]), since other cases are similar or easier. Thus we must consider

Figure 4. 1 .

ink (/, y)]Crest(l>)|y erest-cl Q8)

f.o1 (RM
(-[(*)//])

Figure. 4.1

By induction hypothesis, the upper sequents are valid. I.e.,

(A) \=A >C,,

(B) \=Cy ^[«//init(i,y)]Cre,,( l>r) for

each y e rest-cl (ft) and each 0 g / ̂  d(y),

(C) N Cy > [y]B for each 7 e rest-cl (/!).
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Assume, for the sake of contradiction, that the lower sequent A-*\jx* / 1 ff]B

is realizable. Then there must exist some structure (W, p, n) and some we W

such that :

(D) 7T(/i, W ) = l ,

(E) <[a*///T|B,w) = 0.

(E) implies that there exists some h Gpr(a*//jS) such that:

(F) is(/?) = w,

(G) n(B,

Since pr(a*///?) = W pr(
a"///0» we nave ^ e Pr(a"///0 f°r some we AT. Hence

M=0

there exist some hl9..., hn + leHr(W), some programs y l 5 . . . ? ?„, <515..., (5W and

some /!,..., lneN such that:

(H) /i = / 7 1 ; . . . ; / i f l + 1 ,

( I ) /!_,-€ Prfal/jj) for each 1 ̂  ./ g w ,

( J ) /7n + 16p r(«5

(K) y I =in i t ( i 1 , )9 ) and a^restO',, j8),

(L) yj = init(i j ? ^•~1) and 5^ = rest (/_,-, 5j_!) for each 2^j^n.

(A) and (D) imply that:

(M) n(Cp,w)= 1.

It follows from (H) and (I) that is(/i1) = w and hle pr(a/ /y^. Hence, by

applying (B) to the sequent C^-^a//^]^, (M) implies that:

(N) 7i(C,1,fs(/i1))=l.

Similar arguments show that:

( O ) n(Cdj9 fs (hj)) = 1 for each 2^j^n.

In particular,

( P ) *(Qn, is (hn + 0) = <Qn, fs (/IM)) = 1 .

Hence, by applying (C) to the sequent Qn->[5n]J3, (J) and (P) imply that:

(Q) 7T(B5fs(/i)) = 7r(B,fs( / iM + 1))=l .

(G) and (Q) contradict, which is the desired conclusion. This completes

the proof.

Theorem 4.2 (Consistency of GCPDL). The empty sequent -* is con-

sistent.
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Proof. Follows from Theorem 4.1.

§ 5, Completeness

The main purpose of this section is to establish the semantical completeness

of our sequential system GCPDL with respect to the relational semantics

discussed in Section 2. I.e., this section is devoted to the proof of the following

theorem.

Theorem 5.1 (Completeness Theorem for GCPDL). Any consistent sequent

F-+A is realizable.

A finite set cP of wfTs is called closed if it satisfies the following conditions:

(1) If(AAJ3)e<P, thence <i> and Be®.

(2) If 04 v £)£<!>, thence <£> and Be 0.

(3) If-Ue<£>, then Ae&.
(4) Tf(A=>B) E $, then A e $ and B E $.

(5) If [ai]A E <f>, thence 0.

(6) If [a ; p\A E <£>, then [a] \ff\A e <£.

(7) If [a U P\A e <f>, then [a]4 e ^ and [$\A e (P.

(8) If [a*]^ e 4>, then [a] [a*]4 e cp.

(9) If[a//f}']AE<& and a is an indivisible program, then [init(f, j8)][a]

[rest (i, flftA e ̂  for any 0^ i^d(j8).

(10) If ([(a; /D//?;M e 4>, then [a//init (z, 7)] [)8//rest (i, y)~\A e ̂ >
for any Ogzgd(y).

(1 1) If [(a U P)/ly]A E ̂ 5 then [a//y]^i E ̂  and |j8//y]>4 E <f>.

(12) If [at*UP]A E <f>, then |j8]̂  E $ and [a//init (i, ft] [a*//rest (f,

(13) If [(a//ft//y]4 E *, then [a//G8//y)] A E ^.

In the rest of this section we fix such a closed set, say, 0. A sequent F-*A

is called ^-saturated if it satisfies the following conditions:

(1) F-^A is consistent.

(2) ruA = $.

It is easy to see that for any ^-saturated sequent F-»^,Fn^i=0. We

borrow the following from Nishimura [5].

Lemma 5,2. Any consistent sequent F-+A can be extended to some con-

sistent sequent F-+A such that <P^F U A.
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Corollary 5.3. Any consistent sequent F-+A, where FVA^$9
 can be

extended to some ^-saturated sequent.

Now we define the ^-canonical structure $(<I>) = (W, p, n) as follows:

(1) w= {F-»A | F-> A is ^-saturated}.

(2) p(d) = {(F1-^Al9 F2-*A2)EWx W\ {A\ [a]y4er1}gF2} for any atomic

program a.

(3) For any atomic formula p, n(p, F-+A) = l iff peF.

The rest of this section is devoted almost completely to the proof of the

following theorem, for which several auxiliary notions and lemmas are in order

and from which Theorem 5.1 follows at once,

Theorem 5,4 (Fundamental Theorem of S ($)). For any wff Ae<P and any

sequent F-> A of W, n(A, F-+A) = 1 if AeF and n(A, F-*A) = 0 if AeA. There

foren(F-^A, F-»A) = L

We define two functions co1 and w2 from the set of all programs to the set

N of all non-negative integers as follows :

(1) co1(a) = l for any indivisible program oe.

(2) co^oc; jS) = co1(aU j8) = Q)1(oc) + co1(^)+l.

(3) ^(a*) = o)1(a///?) = G)1(a) + l.
(4) co2(a) = 0 for any indivisible program a.

(5)

(6)

(7)

We denote by < the usual lexicographic order on NxN. I.e., for any

O'ij ^'2)9 (Ji> J2) ̂ NxN, (ij, /2)<0"i9 7*2) iff one of the following conditions holds :

(1) i2<J2-
(2) T2 = j2 and i^j^

We decree that fl(a) = (o)1(a), ft>2(
a)) f°r anY program a. We borrow the

following from Nishimura [7].

Lemma 5.5e

(2) O(a) < Q(a U j

(3) Q(a)<Q(a*).

(4) Q(a)<Q(a//j8), Q(init(i, j8))<fi(a//j8) and 0(rest(i, ]8))<C(a//j8) /or
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(5) Q(a//imt(i,y))<Q((o^ fi//y) and Qtf // rest (i, y))<O((*'9 filly) for

any ieN.

(6) fl(a//y)<fl((a U filly) and Q(f}/ /y)<Q((a U filly).

(7) 0(a//init(z, y))<Q(a*//j8) and G()0<0(a*//jB) /or any y e rest-cl(jS)

and any 0^/^
(8)

For any 7g PFand any program a, the gravitated set of Y by a, denoted

by GS (a, 7), is defined as follows :

GS (a, Y) = {vv e W\ for any h e p,(a), if is (h) = w, then fs (h) e 7] .

For any X, Y^W and any program a, we say that Y is closed under a

relative to X (notation : cl (a, X, Y)) if X s GS (a, 7). In the rest of this section

we will often identify a set {w} consisting of a single element w with w itself.

Lemma 5.6.

(1) cl(0, X, Y ) i f f X ^ Y .

(2) cl (a; 0, X, Y) iff cl (a, X, GS (/J, 7)).

(3) cl (a U 0, X, 7) iff cl (a, X, Y) and cl (ft X, 7).

(4) cl (a, GS (a*, X), GS (a*, X)).

(5) GS(a*, X)gX.
(6) Let a fee an indivisible program. Then cl (a//)8, X, 7) iffcl (init (/, )B),

X, GS(a; rest(i, jg), 7)) for any Q£i£d(fi.

(7) cl(a,GS(a;j5, X),GS(P,X)).

(8) cl ((a; /0//y, X, 7) # cl(a//init (/, y), X, GS(^//rest (i, y), 7)) for any

(9) cl((a U fil/y 9 X, Y) iff cl (a//y, X, 7) and cl (/J//y, X, 7).

(10) cl(a//init(/, fi, GS(a*//j8, 7), GS(a*//rest(i, jg), 7)) /or any O^

(11) clO

(12) cl ((«///*)//?, A-f 7) iff<A(*H(PHy)9 X9 7).

Lemma 5.7. For any X, Y^W and any program a, i/cl(a, X, 7),

Proof. By induction on fi(a). Lemma 5.5 is implicit in the following.

(1) a = 0: By (1) of Lemma 5.6,

(A)
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Hence, by applying rule (-»[#]) to (A), we obtain

(B) hK*)— >[0MY).

(2) a is an atomic program, say, a: Let X = {Fr *At \ Igzgn}. We

assume, for the sake of simplicity, that n =2. Then it is easy to see that

( A )

Suppose, for the sake of contradiction, that the sequent

is consistent, which implies, by Lemma 3.1, that the sequent F1->Al,

is also consistent. So the sequent {A\ \_a]A e F \] ~»^(Y) is also consistent, for

otherwise r t->J1? [a]i//(7) would be provable by rules (->[ ]) and (extension).

By Lemma 5.2, the sequent {A \ \_d]A E F ̂ } -*\I/(Y) can be extended to some

consistent sequent F-+A such that < P ^ F \ J A . Then it is easy to see that

(Fl-*Ai9 T n $->A n ^)e7r(o). Since cl(a, rj-^^j, 7) by assumption, (f n 4>

-»zfn<£)ey. So

(B) hi/^(f n <f>^Jn (p)

This implies, by Lemma 3.1, that

(C) hf n<£ — >An<

This contradicts the assumption that the sequent F-+S is consistent and

\I/(Y) e A. Thus we can conclude that

(D)

A similar argument shows that

(E) ^(F

By using rule (cut) twice, we can deduce from (A), (D) and (E) that

(F) hK*) - >[flMY).

(3) a = 0 ; y : By (2) of Lemma 5.6, we have cl (0, X, GS (y, Y)). Hence

by induction hypothesis,

(A) hiK*)— -[W(GS(y, Y)).

Since cl (y, GS (y, Y), Y), we have by induction hypothesis that

(B) hKGS(y, Y))

By applying (->[ ]) to (B), we have
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(C) HD8MGS (7, 7))

By using (cut), we have from (A) and (C) that

(D) hK*) — *[/OC7M7).
By applying (->[ ; ]) to (D), we have

(E) i-^W— >D5;yMiO.
(4) a = j8 U y : By (3) of Lemma 5.6, cl (]8, X, 7) and cl (7, X, Y). Hence

by induction hypothesis,

(A)
(B)
By applying rule (->[ U ]) to (A) and (B), we have

(C) HKX) - >[£U7M7).

(5) a = £*: Since clOS*, X, 7) by assumption, we have JSTgGS(j8*, 7).

Hence

(A) hKX) - >*KGSOS*, 7)).

By (4) of Lemma 5.6, cl (a, GS (a*, 7), GS (a*, 7)), which implies by induction

hypothesis that

( B) hiKGS 08*, 7)) — > L8MGS 08*, 7)) .

By (5) of Lemma 5.6, GS (j8*, 7)g 7, which implies that

(C) hKGS03*,7))—+ tfr(Y).

By applying rule (->[*]) to (A), (B) and (C), we have

(D) h*K*) - >DS*MY).

(6) a = j8//y and ^ is an indivisible program : By (6) of Lemma 5.6,

cl (init (i, 7), X, GS 08 ; rest (i, 7), 7)), for any 0 ̂  / ̂  d(y)

which implies by induction hypothesis that

(A) hiK*) - > [init (i, y)]^(GS(j8; rest(i, 7), 7)) for any 7^i^

By (7) of Lemma 5.6,

c!08, GS(j5; rest(i, 7), 7), GS(rest(z, 7), 7)).

Hence by induction hypothesis,
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(B) hKGS(£;rest(z,y), 7)) - > DW(GS (rest (z, y), 7)) for any O^zgd(y) .

Since cl (rest (z, 7), GS (rest (z, y), 7), 7), we have by induction hypothesis that

(C) hiKGS(rest(z, y), 7)) - > [rest(z, y)MY) for any O^z^d(y).

By using rules (cut) and (->[ ]), we can deduce from (A), (B) and (C) that

(D) WX) - > [init (i, 7)] [/?] [rest (i, y)]tfr(Y) for any 0 ̂  i£ d (y).

By applying rule (-»[//]) to (D), we have

(7) a = (j8; y)//<5: By (8) of Lemma 5.6, cl(j8//init(z, (5), X, GS(y//rest

(z, (5), 7)) for any 0:g z'fgd ((5). Hence by induction hypothesis,

(A) hi//(AO - > []8//init(i, 5)]^(GS (y//rest(i, 5), 7)) for any 0^ i^

Since cl(y//rest (z, 5), GS(y//rest(z, 5), 7), 7), we have by induction hypothesis

that

(B) hiKGS(y//rest(z',(5), 7)) - > [y//rest(i, 5)MY) for any 0^ig

By using rules (cut) and (->[ ]), we can deduce from (A) and (B) that

( C ) htf<X) - > [)?//init (z, (5)] [y//rest (z, 5)]^r( Y) for any 0 ̂  z ̂  d(<5) .

By applying rule (->[( ; )//]) to (C), we have

(D) hKJQ— »[(£;y)//W(7).

(8) a = ( j8Uy)/ /5: By (9) of Lemma 5.6, we have cl(£//<55X3 7) and
cl(y//(5, X, 7). Hence by induction hypothesis,

(A)

(B)

By applying rule (-»[( U )//]) to (A) and (B), we have

(C) ^W— *[G8Uy)//3MY).

(9) a = ^*//y: Since cl(£*//y, X, 7) by assumption, we have JTg

GS(P*Hy9Y). Hence

(A) hK*)— ̂ (GS05*//y, Y)).

By (10) of Lemma 5.6, clG5//init(i,5), GS(£*//(5, 7), GS(j5*//rest(z, 5), 7))

for any 5 e rest-cl (y) and 0 g z <£ d(5). Hence by induction hypothesis,
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( B) hiKGS (P*H8, Y)) - > [/J//init (/, «)]^(GS (/»*//rest (i, 5), Y))
for any (5 e rest-cl (y) and 0 ̂  i ;g d (<5) .

By (11) of Lemma 5.6, cl (8, GS (j8*//5, Y), Y) for any 8 e rest-cl (7). Hence by

induction hypothesis,

( C) h^(GS G8*//<5, Y)) - > [<5M Y) for any 8 e rest-cl (y) .

By applying rule (-*[(*)//]) to (A), (B) and (C), we have

(D) I-^W— *D8*//rMY).

(10) a = 0?//y)//(5: By (12) of Lemma 5.6, clO?//(y//<5), X, 7). Hence by

induction hypothesis,

(A) W*)
By applying rule (-»[(//)//]) to (A), we have

(B) h«K*)
Lemma 5.8. For any wjf A, any program a and any sequent F-+A of

W, if [x]AeA, then there exist a sequent r'-*A' of w and a path h e pr(x)

suchthatis(h) = r-+A fs(h) = rf-*A' and A E A'.

Proof. Let X = {(!! — I)e W\AeII} suppose, for the sake of contradic-

tion, that cl(a, T->J, X). Then by Lemma 5.7,

(A) hKf-^) - >[<x]iKX).

It follows from the definition of X that

(B) \-i,(X)—+A.

By using rules (cut) and (->[ ]), we can deduce from (A) and (B) that

(C) hKr-*J) - >[ai]A.

By Lemma 3.1, it follows from (C) that

(D) KT - ^,[a]X,

which contradicts the assumption that the sequent F-*A is consistent and

[a]^4 e A. This completes the proof.

Lemma 5.9. For any wff A, any program a, any path /iepf(
a) and any

sequents F-+A and r'-*A' of W9 if is(h) = r~+A9 fs(fc) = r'->J' and [a]y4eT,

then AeT.

Proof. By induction on O(a). Since the proof is, in a sense, dual to that
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of Lemma 5.7, we deal only with the case that a = j8*//y. Since hepr(P*Hy)
00

and pr(/?*//y)= \J pr(fi"/ly), there exists some neN such that h ep,.(Pnl/y).
n=0

Hence there exist some /?, , . . . , / ? „ + , eH r(WO some programs < 5 , , . . . , 5n, C l s . . . , £„

and some /15..., /„£!¥ such that

(A) /i = / i 1 ; . . . ; / i n + 1 ,

(B) HjepMHtj) for each l ^ j ^ w ,

(C) /i,l + 1ep r(Q,

(D) 5 1=ini t ( / 1 , 7) and £1 = rest(/, )'K

(E) 5>/ = in i t ( / < / , C j - i ) and c / = rest( / / , C / - i ) for each 2^j^n.

Let r /->J i / = fs(/i</) = is ( / i / +1)for each 1 ^./^n. The sequent []8//<5J[j8*//Ci]^
F-+A is consistent, for otherwise [/?*//y]>4, F-»zl would be provable by rule

([(*)//]-»)• Since the sequent T->zl is ^-saturated, we have [j8//d] [j8*//d]
^leT. So by induction hypothesis, (B) implies that [/?*//d],4 e/Y By

repeating this argument, we have

(F) D3*//C;]^er/ for each \£j£n.

In particular, [^*//C,,]/l 6 Fn. The sequent [C,,]^, ^,,-*^n must be consistent, for

otherwise the sequent [/?*//£„], ̂ -*^« would be provable by rule ([(*)//]->).
Since the sequent rn->An is ^-saturated, we have [C,,]^4 e Fn. Hence by induction

hypothesis, AeF', which is the desired result.

Now we are ready to establish Theorem 5.4.

Proof of Theorem 5.4. By induction on the construction of a wff A e <P.

Use Lemmas 5.8 and 5.9 in dealing with wffs of the form [a]/t.
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