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Euclidean Quantum Fields with on an
Indefinite Inner Product Space

By

Bengt EK*

Abstract

It is shown that for a Wightman quantum field theory with space inversion symmetry,
the Wightman functions in Euclidean points can be obtained as certain linear combinations
of vacuum expectation values of Euclidean fields, on a state space with an indefinite inner
product. The coefficients of these linear combinations only depend on the transformation
properties of the fields, not on their interactions.

The use of an indefinite inner product enables us to keep the number of Euclidean
fields the same as that of Wightman fields, except that in the case of hermitian fermion
fields, the corresponding Euclidean fields are not hermitian.

For free Dirac fields, the construction is exhibited explicitly and a Euclidean invariant
Hilbert space metric on the state space, making the indefinite inner product continuous, is
introduced.

§ lo Introduction

The Euclidean approach to quantum field theory (i.e. the study of the

vacuum expectation values at imaginary times) is an attempt to simplify

the problems by going over to totally commuting or anticommuting fields.

(For the properties of the Euclidean Green's functions and references to early

work in the field, see Oslerwalder-Schrader, [1, 2]).

By utilizing the fact that for many models the Euclidean Green's functions,

or Schwinger functions, can be obtained as vacuum expectation values of Eu-

clidean fields, much progress has been achieved in constructive quantum field

theory. In the case of bosons one can use probabilistic methods (see e.g. Nelson

[3]), and for fermions their anti-commutative analogues (e.g. Gross [4]).
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In [5] Osterwalder and Schrader construct Euclidean fermion fields cor-

responding to the free Dirac field. They find that since the Wightman functions

are not hermitian in Euclidean points, they must introduce extra independent

fields. I.e. adjoint relativistic fields do not correspond to adjoint Euclidean

fields in their formulation, the "number of degrees of freedom" is increased.

Ozkaynak [6] has studied free fields of arbitrary spin in a similar way.

Frohlich and Osterwalder in [7] avoid the doubling of the number of

fields in a certain (weak) sense. However, they conclude that it seems difficult

to construct interacting fermion fields in a natural way.

In the present paper, it is shown that if we allow the inner product on the

Euclidean state space to be indefinite, we can avoid the introduction of extra

fields (except in the case of hermitian fermion fields, which will correspond to

non-hermitian Euclidean fields) if we restrict ourselves to interactions that

preserve parity. Explicitly, for a Wightman theory, in the sense of Streater-

Wightman [8], with space inversion in variance we construct Euclidean co variant

fields acting on an (indefinite) inner product space, such that their "vacuum"

expectation values are linear combinations (independent of the interactions)

of the Wightman functions in Euclidean points. These fields commute (anti-

commute for pairs of fermion fields) in all points and adjoints in the relativistic

theory correspond to adjoints with respect to the inner product.

It is clear that the last two properties exclude a definite inner product for

Euclidean fermion fields (in Hilbert space, no non-zero operator anti-commutes

with its own adjoint).

The inner product of our construction is uniquely determined by the rel-

ativistic theory except for the non-uniqueness of the extensions of the Schwinger

functions to Euclidean points of coinciding arguments. For what interactions

the extensions can be chosen to give a definite inner product for a theory involving

bosons only, seems to be a non-trivial question (cf. [9, 10]).

Except in the proof of Lemma 2 below, our proof does not explicitly use the

positivity of the inner product in the relativisitc state space.

Simon [11] has pointed out the connection between Nelsons axioms for

free fields and space inversion invariance. Borchers and Yngvason [12] mention

the connection with the reality of the measure in a probabilistic formulation.

Following Feinberg and Weinberg [13], we allow the phase factors in the

space inversion operation to be arbitrary.

We note that any field theory can be embedded in one with space inversion
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invariance (by doubling the number of fields).

An indefinite inner product does, of course, not in general define a normed

topology. In the case of the free Dirac field (which is treated in detail below,

as an introduction to the general case) we will see that there is a majorizing

(in the sense of Bognar [14]), invariant positive definite inner product on the

state space. This brings us close to the formulation of [5]. Whether we can

always find such a majorizing inner product by choosing our extension of the

Schwinger functions properly is not clear (cf. [15]).

It seems (at least to the author) natural to consider the indefinite inner

product structure more intrinsic, and say that we can obtain a Hilbert space

formulation analogous to that in [5] only when a positive definite majorant

exists.

We do not treat the question of Markov properties of the fields (cf. [3, 16]),

nor the (important) problem of conditions on the Euclidean theory to correspond

to a Wightman theory in the relativistic region (some conditions are of course

direct from [2]).

For a description of different approaches to Euclidean Fermi fields and

their relationships, see Palmer [17].

The organization of this paper is as follows. After this introduction, we

present our main results in Section 2. These results are proved in Section 3

for the free Dirac case and in Section 4 for the general case. In these sections,

more precise formulations of our assumptions and notation are given.

§ 2. Main Results

We first restrict ourselves to the case of the free Dirac field. This means

that we have explicit expressions for the Schwinger functions and it is easy to

follow the manipulations. Proofs of Lemma 1 and Propositions 1 and 2 can

be found in Section 3.

Let S°(x, y), defined for x, y E R4 such that x ^ y, be the 4x4 matrix

Schwinger functions for the free Dirac field (see eq. (3.8)).

Lemma 1. There exists an invertible 4x4 matrix C such that

(2.1) £°(x, y) = <5<>(x, y)C*

is her mi ti an:

(2.2) X°(x,y)
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Such a C is unique up to multiplication with a non-zero real number.

Here A* denotes the hermitian adjoint of the matrix A.

The integral representation (3.14) of 3£°(x, j), originally defined for

gives natural extensions to distributions on the Schwartz functions

They will also be denoted 3E°(x, y).

Definition. These £° and the many point functions obtained from their

products will be called the redefined Schwinger functions (for the free Dirac

field).

Proposition 1. There exists a non-degenerate indefinite inner product,

complex vector space (tf ', < • , • » with a vacuum vector Q, a unitary repre-

sentation V(A, B, a) of the covering group of the inhomogeneous Euclidean

group, and four component fields W, W^ (i.e. operator-valued distributions on

^(R*) with values acting on all of Jf), such that

Q is invariant under V(A, B, a) and (algebraically) cyclic w.r.t. W, Ff,

¥ transforms covariantly under V(A, B, a) (see (3.28-29)), for all x, y

e J24
3 W satisfies the following relations in distribution sense:

=0,
the vacuum expectation values ofW, W T are the re-defined Schwinger functions

and

W^ is the adjoint of W w.r.t. < - , • > •

The covering group of the inhomogeneous Euclidean group (in four di-

mensions) is a semi-direct product of SU(2)xSU(2) and I?4, i.e. A, BeSl/(2)

and a e R4 above.

Unitarity of V is with respect to < - , - > , i.e. WT=VTV = 1, { - , - } denotes

the anti-commutator.

The next result actually provides a relation between our work and that of

[5].

Proposition 2* On 3C of Proposition I there exists a positive definite inner

product (•, •) such that (Q, O) = l, V(A, B, a) is unitary w.r.t. (-, •) and the

topology induced by ( • , • ) majorizes < • , • >, i.e. < • , • > is (jointly) continuous

in that topology.

Remark 1. Concerning the uniqueness of a (•, •) with the properties in

Proposition 2, see the discussion in Remark 1 at the end of Section 3.
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Remark 2. Although the relativistic theory is space inversion invariant,

the Euclidean one is not. See Remark 2 at the end of Section 3.

We now come to the more general case of an interacting Wightman theory.

The proofs of the following results are in Section 4, with more detailed definitions.

Consider a field theory (as defined in Chapter 3 of [8]) with space inversion

symmetry. We have, then, a unitary representation U of the orthochronous

Poincare group ^T (i.e. preserving time directions) and a finite number of

linearly independent fields \l/7(x) acting on some Hilbert space. By (4.1, 2)

and (4.4) the fields transform among themselves under U and under taking

ad joints.

To construct the re-defined Sch winger functions we need the following

Lemma 2. The linear basis for the fields above can be chosen to be

{^aVhe./ with the finite range of oct depending on i and each i^(i) transforming

by an irreducible representation of the covering of the orthochronous Lorentz

group LT. Also, the finite index set ^ = 1 U t * U n disjointly, where

some jet},

and \I/W is the field with components 0/40)*-

In the following, we assume the fields chosen according to Lemma 2, but

also extend the index set </ by introducing formal adjoints i*, such that ^f*>

= ^(f)*, and by distinguishing i and z* for hermitian fermions (but not for her-

mitian bosons). Accordingly, n will from now on (except in Subsection 4.A,

the proof of Lemma 2) only contain indices for hermitian boson fields. We

will construct Euclidean fields which are indexed by this extended J.

If R = z"1,..., z"n is a sequence of indices in </, let R* denote the sequence

i*"'i* and 2BR(z1?..., zn) be the Wightman functions given by analytic con-
tinuation in the arguments of the vacuum expectation values of ^^(x^)--

*™(xj (cf- [8]).
If 7C6^M (the symmetric group of degree n), 7r(R) is the sequence in-i(iy-

i n - i ( n ) and a(n, R )=± l according as the number of transpositions of fermi

indices in R by n is even or odd.

The Schwinger functions ®R(x l9..., xn) are defined to be 2BR(xj,..., x'n)

for distinct xt in R4, where a' for a = (a0, al9 a2, a3) is defined by
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(2.3) (a0, al9 a2, a3)' = (ia0, al, a2, a3).

The a-indices of 2BR, SR etc. will not be written out, but summation over

them will sometimes be understood.

Proposition 3. For each sequence R of indices from «/", there exists an

invertible constant matrix CR (acting on the %-indices of SR, see (4.33)) such

that the (restricted) redefined Schwinger functions

/7 4) ^ (x x 1 = C S (x x )

are hermitian:

(7 5^ it (x x } =^ Tx v~l

denotes complex conjugation).

The 3ER 0re real-analytic functions defined for

(x1,...,xn)e<?R = {(yl,...,yn)e(R*)»\yi^yj if

The 3ER transform covariantly under the inhomogeneous Euclidean group,

i and /* under complex conjugate representations, and have the following

symmetry property:

(2.6) £,r(R)(Xr-i(l)>"-' Xw- i ( l l)) = a(7r, R)£R(X1 5 . . . , Xn).

77?e (multi-) matrices CR on/j; depend on the transformation properties

of the fields concerned.

Osterwalder and Schrader have shown ([!]) that the SR, and thus also the

£R, define distributions on the space of those Schwartz functions on (jR4)"

that vanish with all their derivatives whenever two arguments coincide.

Proposition 4. The 3ER can be extended to distributions on &*((R4)n)

satisfying covariance and (2.5), (2.6) in distribution sense.

These extensions will also be called the re-defined Schwinger functions and

denoted £R.

Main Theorem. For afield theory as above, there exists a non-degenerate

indefinite inner product, complex vector space (Jf, < •, •» with a vacuum

vector Q, a unitary representation V(A, B, a) of the covering group of the

inhomogeneous Euclidean group and fields W^\ ie<# such that

Q is invariant under V(A, B, a) and cyclic w.r.t. the W ( i ) ,

transforms covariantly under V(A, B, a) (see (4.59)),
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the W ( i ) commute totally (anti-commute for pairs of ferml fields) in

distribution sense,

the vacuum expectation values of products of W(i^s are the re-defined

Schwinger functions,

and f<'*) = *•<'>*, the adjoint of¥^ w.r.t. <•, •>.

Remark. The fact that V(
0f\f) has an adjoint defined on all of Jf obviously

implies that it is continuous in the weak topology defined by < • , • >.

In fact, using Theorem III.5.1 of [14], it is easy to see that an operator on

a non-degenerate inner product space has an everywhere defined adjoint (unique

by non-degenerateness) if and only if it is weakly continuous.

§ 3. The Free Dirac Field

For convenience, let us fix the following representation of the y-matrices:

'(3.1) y° =1 ; Y ' 1 01' ' \ fft 0

where <T; are the Pauli matrices. Throughout we let 1 denote a suitable unit

matrix or operator.

Then

The corresponding representation of SL(2, C) is

(3.3) A ,
\ 0 A*"1

We let A denote the standard homomorphism of SL(2, C) onto L| (the re-

stricted Lorentz group) given by:

(3.4) M(A)x)^ = A*A*, x = x°l + xial

for x e R4 (or C4), A 6 SL(25 C).

Analytic continuation of (3.3) and (3.4) give representations of SL(2, €)

x SL(2, C), the covering of the complex Lorentz group. For A, B e SL(29 C),

(3.5) -•- ' A °

(3.6)
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By restriction, (3.6) gives the following (universal covering) homomorphism of

SU(2) x SU(2) onto the homogeneous Euclidean group in four dimensions

(3.7) (L(A,B)xy = ^(A5BX

where A, B e SU(2), xeR4 and x' is defined by (2.3).

(A) Re-defining the Schwinger Functions; the proof of Lemma 1.

The two-point Schwinger functions of the free Dirac field (defined like

before (2.3), with R corresponding to if/if/*) are (cf. [5])

(3.8) ®0(x, y) = (2nT4 (p2-f m2)'1 exp (ip(x -

for x ̂  y in f^4. Here px = £g Paxa^E = Zo PaJa an<* the Euclidean -y-matrices
are

(3.9) y* = yQ = f9yJ=iyj=-iyJ 7 = 1 , 2 , 3 .

Then

(3.10) y** = y*

(3.11) {y*,y$} = 2dabl a, b = 0,...,3.

S° is not hermitian, the reason why independent fields W^\ W&> are

introduced in [5]. The proof of our Lemma 1 is now immediate: If 3£°(x, y)

= @°(x, y) (Dy^)* with D invertible, hermiticity of X° is equivalent to :

(3.12) f D* = D

(3.13)

and one solution is D = yf = y% yfyf yf = yf * = ( Q _ t ) •

Uniqueness : D =Byf is a solution of (3.12, 13) if and only if

and hence [yE, B] = 0, which by Schur's lemma implies B = a • 1, a e C. Either

equation and invertibility of D gives oce J2\{0}, and this proves Lemma 1.

Q.E.D.

The two-point re-defined Schwinger functions are

(3.14) S°(x, y)=(2n)-4
l(p

2+ni2r1 exp (ip(x -

which are extended to all x, yeR4 as distributions on
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The many point re-defined Schwinger functions are obtained from (3.14)

by the following type of relations:

I°(xk,...,x1,y1,..-,^) = 0 if

Here the arguments xt correspond to fields if/, yi to i/f*.

(B) Constructing the Euclidean theory, the proof of Proposition 1.

By continuing the covariance properties from the relativistic region we

obtain for A, B e 517(2), a el?4 and distinct x, y in H4:

(3.15) 6°(L(A, B)x + a, L(A, B)y +a) = S(A, B)S°(x, j;)S(B, A)T.

Hence

(3.16) £°(L(A, B)x + a, L(A,

= S(A, B)X°(x, j;)S(A, B)* .

(3.16) remains true in distribution sense for all x, y el?4.

We now start the construction of the "state space" of Proposition 1. Not

unexpectedly it will be the (incomplete) anti-symmetric Fock space over a

certain "one particle space".

Let K be the space C8®^(H4), where £f is the Schwartz space of rapidly

decreasing C°° functions.

If the pairs [f,, gJeK, where fh gieC4®^(R4), / = !, 2, define the non-

degenerate indefinite inner product

where

\ f l , f2 \=-

and

The representation v(A, B, a) of the covering of inhomogeneous SO(4),

defined by

(3.17) (v(A, B, a) [f, g]) (x) = [S(A-», B-i)Tf (L(A, Br^x - a)),

S(A-1,B-1)*g(L(A,B)-1(x-a))])

is then unitary w.r.t. < • , • >, by (3.16).
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Define JT to be the algebraic direct sum of A$(K) for m = Q, 1,..., where

A%(K) is the algebraic w-th exterior product of K, ^lg(K) = C. I.e. Jf consists

of all elements of the anti-symmetric Fock space over K with only a finite number

of components non-zero.

The non-degenerate indefinite inner product < • , • > on Jf is, as usual,

defined by sesqui-linear extension of

(3.18) « i A . . . A 5 m , i / 1 A . . . A / 7 l l > = 5IIIIidet«f l,^»

where £h r j t e K . The representation V in Proposition 1 is defined by linear

extension of

(3.19) V(A, B, fl)«! A . . . A « B ) = (v(A, B, a)^) A - A(v(A, B, *)£„),

where A, BeS£/(2), aeR4, £f eK. It is obviously unitary w.r.t. <-, •> and

it leaves the vector Q= 1 e /18(K) invariant.

To complete the proof of Proposition 1 it only remains to construct the

fields ¥ and W^ and verify their properties. For £eK, define the creation

operator Bf(<;) as a linear operator on Jf satisfying

(3.20) Bt(c)(^A..-A^) = ^ A ^ A . . . A ^ .

Its adjoint, the annihilation operator B(£), acts on Jf linearly and satisfies

(3.21) B(f)«, A .» A Cn)= f (- i)*+ X£, ^X, A -. A t i - , A {| + 1 A -. A {„ .
i=l

obviously depends conjugate linearly on <!;.

As usual, for (^, fy e K :

(3.22) (8(

(3.23) {8(0, Bfo)} = {BKO, Bt(iy)} = 0 .

Obviously, for £ e K, A, B 6 Sl/(2), a 6 H4 :

(3.24) V(A, B, fl)B<t)tf)V(A, B, a)-1 =B(t)(v(A, B, fl){) .

We now define f <^(h) : JT-> JT for h 6 C4®^(H4) by

(3-25) ?F(h) = Bt([h, 0]) + B([0, h])

(3.26) ¥ t(h) = B([h, 0]) + Bt([0, h]) .

Note that, unlike B, both f(h) and W T(h) depend linearly on h and

= r^h).

To prove that any vector in Jf* can be written as a polynomial in ¥(ft) and
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acting on Q, i.e. that Q is cyclic, we note that any vector can be written

as a finite sum of vectors of the form [f 5, 0] A • • • A [ffc? 0] A [0, gj A • • • A [0, g£].

For each of these the result follows from the fact that it is the highest order term

in f*(f1)---Sr(fk)ft(g1)---Srt(g£)jQ, and by using induction on the order k + l.

To prove covariance, use (3.24) and (3.17) to obtain

(3.27) V(A, B, flO^rthyVXA, B, a) = V(h)

where h(x) = S(A, B)Th(L(A, B)x + a). Hence

(3.28) V(A, B, fl)-i*-(x)V(A, B, a) = S(A3 B)F(L(A, BrKx-fl))

and the adjoint relation:

(3.29) V(A, B, cO-^MVCA, B, 0) = S(A, B)Ff(L(A, B^Cx

i.e. the desired covariance.
From (3.22, 23) we find

(3.30) (W(f ), rt(g)} = ([g, 0], [f, 0]> + <[0, f ], [0, g]>

= \ g , f \ + / f ,g/ = 0

(3.31) {¥ (f), f(g)} ={¥ t(f ), ft(g)j = 0

i.e. the fields anticommute totally.

For the vacuum expectation values, finally :

(3.32) r(f)ft(g)Q = f(f)[0, g] = [f, 0]A[0, g] + <[0, f], [0,

=<[o, F], [o, g]>=/F, g/=io(f, g).
Because of the general connection between Fock space and free fields it is

easy to show that all re-defined Schwinger functions are obtained as vacuum

expectation values of the fields W and f"r.

This completes the proof of Proposition 1. Q. E. D.

(C) Making tf a Hilbert space; the proof of Proposition 2.

Proposition 2 is proved by explicitly exhibiting the positive definite inner

product majorizing < • , • > on Jf constructed above. This is sufficient, since

(j>T, < - , • » of Proposition 1 is unique up to unitary equivalence.

Let ( - , - ) on K x K be defined by

(3.33) ([ft, gl], [f2, g2])= )*6m(X
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where (the distribution)

(3.34) 6m(x) = (27i)- (P
2 + m2r1/2 exp (ipx)d*p

(cf. p. 284 in [5]). ( • , • ) is positive definite.

Since S(A, B) is a unitary matrix for A, BeSl/(2), v(A, B, a) is unitary

w.r.t. (-, •) on K.

It is easy to see that ( • , • ) defines a decomposition majorant on K, in the

sense of Bognar [14]. I.e. there is an operator J on K, with J2 = l, which is

self-adjoint and unitary both w.r.t. < • , • > and w.r.t. ( • , • ), such that

(3.35) <- , • > = ( • , ! • ) .

J can be expressed as

(3.36) (j[f, g])(x)= [J -jm(x-

where (the distribution)

(3. 37) jm(x) = (2n)-4 (p2 + m2)' * /2 exp (ipx) (fr

Now we define ( • , • ) on 3C by a definition like (3.18). This gives a positive

definite inner product on 3f and the unitarity of V(A, B, a) w.r.t. it is clear.

Extending J to Jf, we see that ( • , • ) on tf defines a decomposition majorant of

<-, •> on JT.

This proves Proposition 2. Q. E. D.

Remark 1. Positive definite inner products on JT which make V unitary

and majorizing the indefinite inner product < • , • > are not uniquely defined even

if we restrict our attention to those defined from a decomposition majorant on

K (like in (3.18)).

In fact, i f ( - , • )i = < • 5 Ji • > is a positive definite inner product on K with
J1 a fundamental symmetry, v is unitary w.r.t. (•, •)1 if and only if J1v = vJ1.

This relation for v(l, 1, a), a el?4, shows that Jx must act as multiplication with

some p-dependent (8 x 8) matrix on the Fourier transform. If we let this

matrix be

(3.38)
0

the J of (3.35) corresponds to the matrix H(p) being 1.
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A detailed analysis, however, shows that any positive matrix H(p) such that

the square of (3.38) is 1 and

(3.39,
0 S(A, B) / \ 0 S(A, B)

will do.

Without giving the general form of such H, we note that

cosh(p1(/?2)l+ si

0

is one, for any (continuous, say) real-valued functions (pl and (p2 with cpf(0) = 0.

This shows that the positive definite inner product is not unique, as asserted.

Remark 2. Let Ts be space inversion on R4, i.e. the operation of changing

sign of all components except the first one. Then

(3.41) %0(lsx,lsy)=-y$%°(x,y)y$

for x, y el?4, as is easily seen from (3.14).

We now show that the Euclidean Dirac theory is not space inversion in-

variant, in the following sense:

On Jf there is no unitary operator V(IS) such that

(3.42) V(IS)V(A, B, a) = V(BT-1, A*'1, Isa)V(Is)

(3.43) V(ls)Q = Q

(3.44) V(Is)-
ir(x)V(Is) = PF(Isx) + QFt(Isx) .

Here P and Q are 4x4 matrices. (3.42) is the representation condition for

the full Euclidean group.

Indeed, for unitary V (3.43), (3.44) and the adjoint of (3.44) imply, using

(3.41),

(3.45) 3E°(x, y)= -P?P°(x, 30ygP* + Qy5*°G% *MQT-

(3.42) and (3.44), however, give the following general form of P and Q:

(3.46) P=v ' 2-i o / 2ff2 o
with complex numbers a l j2, ^Ii2 and cr2 the second Pauli matrix. A simple
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computation using the expression (3.14) for 3E°(x, 3') shows that (3.45) can not

be satisfied for all x, y e R4.

§ 4. A Wightman Field Theory with Space Inversion Invariance

Let U(A, a), U(IS) for AeSL(2, €), aeR* be the unitary representation

of (the covering of) the orthochronous Poincare group on the relativistic state

space. The fields \j/v transform as

(4.1) U(A,

(4.2)

where A(A) is as in (3.4), for A e SL(2, C). The matrices S(A), P give a re-

presentation (assumed to be continuous) of the covering group of the ortho-

chronous Lorentz group, i.e.

(4.3)

but we do not assume that P2 = l. Further, by Section 2,

(4.4) ^W* = D7/iM*)

for some matrix D. It obviously satisfies DD = 1.

(A) Choosing linear basis for the fields', the proof of Lemma 2.

Since the covering group of the orthochronous Lorentz group has an

infinite number of components, its complexification does not have a compact

real form and not all its finite-dimensional representations are completely re-

ducible. In our case, however, the matrix P2 is equivalent to a unitary one and

"the Weyl unitarity trick" can be used to prove that our representation S(A), P

is completely reducible.

To prove that P2 is equivalent to a unitary, we show that all its eigenvalues

are semi-simple and of absolute value 1. Let \j/ be a field (i.e. a linear com-

bination of the \l/y) such that

(4.5)

The vacuum vector cw satisfies U(Is)co = o) and there exists a test function f

such that f = \l/(f)a) ^ 0, by the Reeh-Schlieder theorem. (4.5) then gives U(IS)~2C

= A£ and hence |A| = 1. If the eigenvalue A of P2 were not semisimple, we could

for some such \l/ find a field i//' with
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(4.6) U(Is)-2iA'

This would, however, imply that U(IJ~2^ = c4-A/7, for rj = \jj'(f)co. Since

U(JS) is unitary we have a contradiction, i.e. the eigenvalue A is semisimple

and P2 equivalent to a unitary. (In this argument we obviously have to assume

that U(IS) is unitary w.r.t. a positive definite inner product.)

S(A) gives a finite-dimensional, continuous representation of SL(2, C)

and can be analytically continued to S(A, B), giving a representation of 5L(2, €)

x SL(2, C). The relation continuing (4.3) is

(4.7) PS(A, B) = S(B1 -1, A1'1)?

for A, BeSL(2, C).

To prove Lemma 2, we consider the finite-dimensional vector space i^

which has basis vectors er where the index y has the same range as for the fields
\j/r On i^ S(A, B) and P define a representation, t(A, B), TT, of the covering

group of the full complex Lorentz group :

(4.8) t(A, BJ-'e^Sy/A, B)e7.

(4.9) TT^Pyy.Cy,

for A, B e SL(2, C). For the restriction to the real Lorentz group we denote

t(A) = t(A, A), AeSL(2, C). We also introduce an involution, *, on y :

(4.10) *ey = Dr/e},.

It then follows from the unitarity of U and (4.1, 2, 4, 7):

(4.11) *t(A) = t(A)* and *7i = 7i*.

If we find a basis {c^} for y^, such that the {e^} for fixed / transform

irreducibly under t, n and also *e^i
) = e .̂*) for some /*, Lemma 2 will follow.

Since the matrix P2 is equivalent to a unitary, there exists a positive definite

inner product on y, which makes n2 unitary. Let it be (-, -)o and define

(4.12) ( • , - ) = ! ; ((7c'l(A, B)., 7i't(A, B).)o<lMA, B)
i=o J

on -j^x^. Here the integral is over SU(2)xSU(2) and JJL is Haar measure

on that group. It is then easy to see that t(A, B) for A, B e SU(2) and n are

unitary w.r.t. ( • , • ). This shows (using the analyticity of the S(A, B)) that ^

decomposes completely :

(4.13)
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where v ranges over the (equivalence classes of) irreducible representations of

the covering of the orthochronous Lorentz group and each y^ = Jl^

®i/F(v). ~*f(v) is a standard representation space for the representation v

and e/T(v) is a vector space with dimension the multiplicity of v in t, n. t(A)

and 7i act on ^v> as

(4.14)

(4.15)

Since * is conjugate linear, (4.11) implies that *^(v) = ^(v^, where v* is

the representation complex conjugate to v.

If v^v* and {e^j is a basis for ^(v) which decomposes it into irreducible

subspaces, the same will be true of {e^} = {*&$} in y/"<v4">. So, in this case

Lemma 2 holds.

If v = v* there exists a conjugate linear mapping, q (v), on ^(v) which com-

mutes with t<v>(A)(A6iS'L(2,C)) and n^ and such that q ( v > 2 = ± l (the sign

depending on whether t(v)(A), n^ is equivalent to a real representation or not).

Let K be an involution on J f ( v ) . Then the linear #(q(v)®?c) commutes with

all t(A) and n on ^(v) and therefore it is 1®F on ^(v) for some linear F. This

gives

(4.16) * = q(v)®q'(v) on ^(v>

with conjugate linear q<v>, q'(v> and q< v > 2 = ±1, q '(v>2= ±1, the same sign for

both.

If q ( v > 2 = +1 we can choose "real" bases of Jt^"> and jV(v) and choose our

e^} as tensor products of them.

If q ( ^ ) 2 = : — 1 it is not hard lo prove (by induction) that there is a basis

{g<£>} of ,/r<v> such that for i odd: q'(v)g(o = g(«+i) . Taking the tensor product

of this basis with any basis of ^<v> gives us a basis for y/*<v) with the desired

properties (with indices / in I U I*).

This, at last, proves Lemma 2. Q. E. D.

Remark. If v is equivalent to a real representation, the construction above

gives a basis for the corresponding fields which is hermitian. This does not

mean that we have to choose them like that. For physical reasons, or to have

as few hermitian fermion fields as possible, we may prefer to use non-hermitian

fields in our basis.



EUCLIDEAN FIELDS WITH SPIN 267

(B) Redefining the S chw ing er functions ; the proof of Proposition 3.

In the basis given by Lemma 2, the transformation properties of the fields

are:

(4.17) U(A, fl)-h/

(4.18) U(Is)-V
(i)

where summation over a-indices is implied on the right hand side (but not over z).

The continuation of S(i) from SL(2, C) to its complexification SX(2, €)x

SL(2, C) will be denoted S<*>(A, B). Then, as in (4.7),

(4.19)

for A, BeSL(2, C). Since the representation "z"1 is irreducible,

(4.20) p(02
=c(i)i arid S<£>(-1, -1)= ±1

for some c(0 e C with |c(i) | = I . The sign in the second relation of (4.20) depends

on whether "z" describes bosons or fermions.

The unitarity of U and (4.17, 18) imply

(4.21) S^'*>(A) = S^(A), pc*) = pco

and hence

(4.22) c<'*> = cW.

In particular, for z en, S(i)(A), P(0 and c(i) are real. Using the condition

(mentioned in (^4) above) for a representation to be equivalent to a real one and

known properties of representations of SL(2, C), it is not hard to prove that for

"/" indexing a hermitian field, c( / ) = l for boson and c ( i ) = — 1 for fermion

index "/".

For the continued representations, (4.21) gives

(4.23) S<**>(A, B)-S(£)(B, A).

If R = / ! - •• /„ is a sequence of indices in (our extended) ./, SR(A, B) will

denote the tensor product of S^(A, B)»-S<'»>(A, B). SR n f will be the an-

alogue with the unit matrix instead of S^fi^A, B) if i^l. PR, P R n n 3 SR \ f*

etc. are defined similarly.

The co variance properties of the Wightman functions can then be written

(4.24) 2BR(^(A, B)z1 + fl,..., ^(A, B)zB + fl) = SR(A, B)9BR(zl5,.., z,,)

(4.25) 2BR(Iszl5-.., IszfJ) = PR2BR(
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for A, BeSL(2, C), aeC4 and (z,,..., zj in the domain of definition of 2BR.

To prove Proposition 3, we observe that analytic continuation (by "the

Edge of the Wedge theorem") of the hermiticity conditions on the vacuum

expectation values gives

(4.26) 2BR(;

Using (4.24, 25) we find

(4.27) 2BR(z!,..., zB) = S

For the Schwinger functions this means

(4.28) S>R(A',,..., x,) = SR*(1,

for (*!,..., x r t)e<fR . Using (4.28) we will construct CR of Propositions.

Let / en . Since it is (by our extension of «/") a boson index, we have

co = l, S^>(-1, -1) = 1 and with

(4.29) &l>=-(l-iSW(l,

we find O')"1C£)=S^>(1, -l)P(n (e.g. by noting that

Now, by (4.23, 21, 19, 20),

(4.30) SR*nf(l, - l)PR*n f=SR n f ,(-l , l)PR n f*

= PRn!*-1SRnt*(l, -l^n^^.
R n f *

But using (4.25) twice we find that if 3BR does not vanish, then r iR c ( 0 = = l -

Hence, in this case,

(4.3i) n ^°= nc ( ' r i= n c^"1
R n f * R \ f * R * n f *

where we used (4.22) and c( / ) = 1 for / e n. If we define z~1/2 so that arg z~1/2

e [0, TC) for z eC\{0} (for instance),

(4.32) (n c^>)- i /2=( n c^
R n f * R * n f *

if 2BR does not vanish.

We now set

(4.33) CR= n C«>( n c(^)-1/2SRn!,R n n R n f *

and find that (4.28) shows that (2.5) is satisfied.
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The analyticity properties of 3£R follow from the corresponding well-known

properties of SR.
The ®R transform covariantly under (the covering of) the inhomogeneous

Euclidean group,

(4.34) 6R(L(A, B)x1 +0,..., L(A, B)xB + 0) = SR(A, B)SR(x,,..., xn)

for A, BeSl/(2), a eR4 and (x1? . . . , x,,)e<fR . Hence

(4.35) £R(L(A, B)x, + fl,..., L(A, B)xB + a) = SR(A, B)£R(x1;..., x,,)

where the S / ( i )(A, B) for A, B e Sl/(2) are as follows.

For i E !,

(4.36) S' t<>(A, B) = S<*>(A, B).

For /e l*,

(4.37) S'< j>(A, B)=S^>(1, -1)P^')S^)(A, B)P(/)"1S^)(1, -1)~!

1, AT-^'Kl, -l)~1=S ( i )(B5 A)
= S<'*>(A, B)=S'^*>(A, B)

by (4.19), the unitarity of A, B and (4.23).

For / e n :

(4.38)

and from C^-'C'^S^l, -l)P^ we find

(4.39) S'<*>(A, B) = S'<i)(A, B) for / e n .

Similarly,

(4.40) aER(I.xl9..., Isxli) = PRSR(x1,..., xj

where

(4.41) p'(o = p(«) if i€i

(4.42) P'^=S^(-1> -l)PrF) if

(4.43) p'(0 = c(np(OC(0-1=p'(0 if / 6 n .

Since Cw(R) = CR, (2.6) follows from the corresponding result for SR.
This concludes the proof of Proposition 3. Q. E. D.

Remark 1. From (4.33) we see that if we had restricted ourselves to the case
c < j ) = l for all /e./, CR could be chosen as a product C^—C1'"', the
depending only on / and being 1 if / e I.
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For free fields it is always possible to choose c(i) = l (the number operator

can be used to modify U(IS)), and in the Dirac case we could avoid extra phase

factors in the redefinition of the Schwinger functions.

Remark 2. The Euclidean theory will in general not be space inversion

invariant, because of the factor S(f)( — 1, —1) in (4.42).

(C) Extending to all Euclidean points; the proof of Proposition 4.

For i e ./, let <£^ be the space of test functions with values in (the dual of)

the representation space of S(f), i.e. an element of ^ is of the form (fai) with

each fa. 6 <^CR4)5 the Schwartz space.

For a sequence R = i1~-in of indices from J \ let ̂ R = yi-1®-"®^n, the

completed tensor product. Its elements will have components faf ...a e

With 7c(R) as in Section 2, define

(4.44) ^tR]= ©'(^«(R)©^(«(R)).)
Tte^ii

where ©' means that we do not repeat identical terms. ^[R] is a direct sum of

a finite number of copies of ^((R4)n) and this defines a natural Frechet space

structure on it. <^Ro, <^[R]0 will denote the subspaces of ^R3 ^[R] consisting

of all functions that vanish with all derivatives whenever at least two arguments

(from U4) coincide.

If fe^[R] and R' is of the form n(R) or Tr(R)*, fR> will denote the com-

ponent of f in <9V-
We define a continuous involution * on ^[R], by

(4.45) (f*)R(xl5..., xB) = fR,(;cB,..., Xj ) ,

a representation of &n by continuous operators s^ for n e &„ by

(4.46) (s«f)R(xlv.., ^w) = (T(7r? R)f7C-i(R)(x,r(1),...? xn(n))

(a(n, R) as in Section 2) and a continuous representation of inhomogeneous

SC/(2) x SC7(2), v(A, Bs a) for A, B e St/(2), a ell4 by

(4.47) (v(A, B, a)f)R(xls..., xJ^S^A'1, fi-^

S/T is the transposed matrix of S'. ^Ro and «^[R]o are invariant under *, s^

and v(A5 B, a). v(A, B, a) commutes with * (by (4.37, 39)) and sw, while

sre* = *sre, for a certain TC' e 0>n.

By [1], the 3£R define distributions (i.e. continuous linear functionals) on
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. Let X[R] be the corresponding distribution on

By Proposition 3, for

(4.48) 3[R](f ) = *[R](f *) = 3E[R](v(A, B, fl)f ) = 3E[R](s,f).

Proposition 4 will be proved if we can find an extension of 3E[R] to y[R]

(cf. [9]), satisfying (4.48) for all fee9^[R]. This extension will be made in three

steps.

1. By the Hahn-Banach theorem and the invariance of X[R] under space

translations, we can find a continuous linear functional, ext^^, on c^[R],

which extends X[R] and is invariant under space translations.

2. Now let f.in be normalized Haar measure on the compact group Gn

=-0>n x SU(2) x SU(2) and define, for f e ^[R],

(4.49) ext2 £[R](f ) = ext1 X[R](^ s,v(A5 B, 0)fd/*n(7r, A, B)).

Since the integrand is continuous on Gn, ext2 3£[R] is well defined. It is also

continuous, linear and invariant under @>n and inhomogeneous SU(2) x 517(2).

By (4.48), ext2 3£[R] extends 3£[R].
3. Finally, for fe^[R], let

(4.50) ext31[R](f) = |- (ext2 S[R](f) + ext2I[R](f*)).

This functional is continuous and linear on «^[R] and an extension of 3E[R].

Using the commutation properties of *, s^ and v(A, B, a) we find that it satisfies

the relation in (4.48) for all f e ^[R].

This proves Proposition 4. Q. E. D.

In what follows we will for convenience denote ext3 X[R] by 3E[R].

(D) Constructing the Euclidean field theory; the proof of the Main

Theorem.

The construction of the state space and fields given here is closely analogous

to that of the Wightman reconstruction theorem ([8]).

Since we want Q to be cyclic, we start from subspaces of the yR. Let J^R

G^R be the algebraic tensor product of the «$^fc, i.e. for fe^, f«( ...«f is a

finite linear combination of functions of the form fa. i(x1)---ga. (xn).

Let <£ be the algebraic direct sum of all the ^R (£*R for R empty being

defined to be €7), i.e. each vector f in J? has only a finite number of components

fR non-zero.
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It is easy to see that v(A, B, a), sn and * defined in (C) leave 3? invariant.

On & we also define a multiplication, x , by

(4.51) (f Xg)R(x l 5 . . . , XM)= £ fRlOl,..., *fc)gR2Ofc + ! , • • • > Xn)
R = R i R 2

for f, ge .£?. R jR 2 is the sequence "first Rl5 then R2".

The extended re-defined Sch winger functions £R define a linear functional

£ on & . For f, g e Jgf, define

(4.52) < f , g > i = £ ( f * x g ) .

Since (f xg)* = g* xf* , <-, •>1 is an inner product on <£.

Now we define the state space of the Euclidean theory

(4.53) JT = ̂ /{g6^|<f, g>1=0, Vfe^}.

< • , • >j clearly defines a non-degenerate inner product on JT. It will be denoted

< - , • > •
For A, B e SU(2\ aeR4, define V^A, B, a) on & by

(4.54) (V^A, B, *)f)R = v(A, B, a)fR.

By (4.48) (for the extended £), V^A, B, a) is unitary w.r.t. <-, >)l9 and Ql

= leC = j^f^ is invariant. By unitarity, Vj(A, B, a) defines an operator

V(A, B, a), unitary w.r.t. < - , - > , on JT. V(A, B, a) leaves O, the equivalence

class of Ql9 invariant. Now, for h 6 ̂ -, define ̂ ^(h) on & by

(4.55)

where (h^})R = h if R = *'?
 and =0 if R^j . By our choice of &, Dt is cyclic

w.r.t. the fw.

For f, g e & , we find

(4.56) <f, jfO^g)! =£(f * x h( f > x g) = 3E((h<'*> x f)* x g)

Hence ^ c>(h) defines an operator fc>(h) on

(4.57) fC^

and Q is cyclic in JT w.r.t. the ¥(i}, i

By (4.54, 55),

(4.58) Y^A, B, arsr^WV^A, B, a)= ,r'Kv(A, B, «)

The same relation holds for V, y<o which implies
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(4.59) V(A, B, a)-l¥^(x)V(A9 B, fl) = S'<''>(

That the re-defined Schwinger functions are obtained as vacuum expectation
values of ^(O is clear from (4.52, 55). By the definition of <•, •> and ¥(i\

the same is true of the ¥(i).

For the commutation properties of the f(i), finally, note that by the sym-

metry of the 3ER

(4.60) <r, 1r<')(h)lr^>(k)g>1 = ±<r,
for f, geJSf, z, jeS and he«9^, ke<9^. The sign depends on the boson or

fermion nature of the indices z and j. (4.60) implies the desired commutation

properties for the f(i).

This proves our Main Theorem. Q. E. D.
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