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The Probabilistic Treatment of Phase Separations
in Lattice Models Composed of More
Than Two Types of Particles

By

Koji KurobpA*

Introduction

The probabilistic treatment of phase separation for two-dimensional Ising
modcl was made by Minlos and Sinai [1], [2]. They showed the existence of
a lump of minus spins with the shape of nearly a square with the breadth of
about N'/?2 asymptotically with probability one when the number of minus
spins N tends to infinity.

In this paper we consider the system in Z2 composed of more than two
types of particles and show by refining the method of Minlos and Sinai the
occurrence of phase separations of various types.

In particular, when the system is composed of three types of particles, the
following two types of phase separations called type I and II are typical; the first
one is “there exist two disjoint square lumps occupied by B- and C-particles
respectively in the ‘sea’ of A-particles’’, and the second one is “‘there exists one
square lump consisting of ‘core-part’ and ‘shell-part’ in the ‘sea’ of A-particles,
its ‘core-part’ is occupied by C-particles being also a spuare, and its ‘shell-part’
is occupied by B-particles”” (See Fig. 1).

In Ising model we obtain the various estimates of correlation functions by
using the simple symmetry of plus and minus spins. But this system does not
have such simple symmetry. So, we consider the system composed of four
types of particles, in which the symmetry is satisfied, and show the occurrence
of phase separations of type I and II.

In Section 1 we describe the model precisely and give the definitions which
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Figure 1.

will be used in the sequel. We state our results rigorously in Section 2. Sev-
eral properties of correlation functions of contours are stated in Sections 3
and 4. In Section 5 we estimate the expectation value and the variance of
number of particles. We give the proof of our theorems in Sections 6 and 7.

§1. The Description of the Model

In this section we describe the model and give the definitions which will
be used in the sequel.

We consider the interaction system on Z2 which is composed of n (>2)
types of particles, denoted by 4, B,..., and N.

In Ising model each configuration in a bounded region V under the pure
boundary condition is represented by the family of closed lines drawn between
the different spins. While, such lines may branch in multi-component system
composed of more than two types of particles.

In this paper we consider the model in which configurations including such
branching lines are not allowed. Therefore, in our model only the configurations
as in the Figure 2 are allowed. When the number of types of particles is more
than two the configuration cannot be represented by the family of closed lines.
So, we introduce the new notion of “contours’’. We call the triple ['=(T, a, b)
contour, where a and b are the types of the particles being contact with the
closed line I' from outside and inside. When the configuration in V¢ is fixed
to w4, each configuration in Vis represented by the family of contours (I'y,..., I')),

where w,, is the configuration given by
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Figure 2.

w (=4 forall teZ2.

When the configuration in V is represented by (Iy,..., I'y) we associate to
them “potential energy’’

(1.1 UL sees T = 3 BT,

where E(-) is the real valued function defined on the set of all contours. Further
we assume that E(-) has the formula given by

(1.2) E(I)=¢(a, b)E(I)  (I'=(T, a, b))

where E(-) is the function defined on the set of all closed lines in Z2 and &(a, b)
is the positive number determined by the set {a, b}. We assume the further con-
ditions (c.1) and (c.2) on E(-) and {&(a, b)}, es, Where S={A4, B,..., N}.

(c.1) |E(D)—= T <Eo(IL),
where Eq(-) is the function defined on [0, o) satisfying
(1.3) 0<Eq(k)<k/4, E k)=o(k).

(c.2) Foreachaand b (a# b) there exists a permutation in S f=f(a, b) satisfying
1) f(a)=>b and 2) &(f(c), f(d))=¢(c, d) for all c and d e S.
We prepare some terminologies which will be used in the sequel. Let
d(x, y) be the distance between x=(x;, x,) and y=(y,, y,) given by
d(x, y)=|xy—yil+1x;—y,l.

We say two sites x and y are adjacent if d(x, y)=1. For a given bounded
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V =Z?, we denote the set of all sites in Z?\V adjacent to some site in V by oV
and the set of all sites in ¥ adjacent to some site in Z2\V by 0,,V. Further we
denote the set of sites enclosed by I' by v(I') and put () =v(I')\0;,v(I"), w(I')
=v(I")U du(I'). Let V¥ be the region surrounded by the outer boundary of V.
The region V\Vis called inner part of V. If Vis simply connected, then the inner
part of Vis vacant. We say the family of contours ([,,..., I',) compatible with
(V, A) if each I'; does not surround the inner part of ¥ and there exists a con-
figuration under which the totality of contours is given by (I'y,..., [,). We
denote the set of all families of contours é=(I",,..., I'y) compatible with (V, 4)
by Q, 4. We also say the family of contours (I'y,..., I'\) admissible with (¥, 4)
if there exists a configuration e, , satisfying {I'y,.... [(}=& When I'eé
is not surrounded by any other contours in ¢ we call I outer and denote the
totality of outer contours in & by £,,,. For simplicity we denote the outer and
inner condition of I by o(I") and i(I") respectively.
Finally we define the Gibbs measure Py, 4(-) on 2, , by

(L4) Py, s()=—7— exp (~BUy.(&).

where f=1/kT (k: Boltzmann’s constant, T: absolute temperature).

§2. Main Resuits

In this section we restrict our attention to the model composed of only
four types of particles, denoted by A4, B, C, and D, and give the interaction
parameters {&(a, b)},, by

(D.1) &(A, By=¢(B, C)=¢(C, D)=¢(D, A)
=¢,«¢g,=¢(4, C)=¢(B, D).

It is easily seen that {e(a, b)} given by (3.1) satisfies the condition (C.2).
(In § 3 and § 4 we prove the various properties of correlation functions in models
satisfying (C.1) and (C.2).)

We call a contour I' cqy-large if |I'|>cyIn|V|. Other contours are called
co-small. We also call the cy-large contour which is not surrounded by any
other cy,-small contours “phase boundary’”. By these boundaries V is divided
into several regions. When the type of particles in the inner boundary of the
region is A, we call it “A-phase’’. The totality of “A-phase’ is denoted by
0,. Similarly B-, C-, and D-phases are defined. We also denote the greatest
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connected component of 8, by 0™, and denote the longest boundary between
a-type particles and b-type particles by I'max.

Before describing our results we define the conditional Gibbs measures as
follows. Put

NP ={¢eQy 45 INg(&; V)—rglV]I<p}|V]
and [Np(&: V)—rplVII<pt|VI}
and
N§’2)={€EQV,A; INg(&; V)—rglVII<pilVI
and |[Nc(&: V)—rclVII<pf|VI]}
where p¥ is the function of f satisfying p¥(B)/exp (—3Be;) | 0 as f—oco0. and

its precise definition is given in Section 3. We define the conditional Gibbs
measures Py and Py® by

@1 PNS)(')=PV,A('IN§/I))
22 Pyg(-)=Py,,(-IN®)

Let {E, Q) ,} be the sequence of events. We say {E,} occurs asymp-
totically with Py(»-probability 1 if

Py u(Ey)—>1 as |V|—> o0
and denote it by
E, aw. Pyy-prob. 1.
We state our results in the following two theorems.

Theorem 2.1. For sufficiently large B, the following 1)-5) are satisfied
asymptotically with Py®»-prob. 1;

D 84— =rg=rp)V|[<e 3=V

|16g] —ral V]| <e 3|V

[10p] —rpl V|| <e 3|V
2) IN6,)—pT*|0| | <e”CrDP|V|3% (a=A, B, D, pt*=1-p})
3) [1eg>—rlVII<p=*IV]

105> —rplVII<B~*|V]

for each a satisfying 0<a <2,

4) 1100F=| —4ry?|V['2| <2ko(BIV]2
[1065°%| —4rp/*|V[112| <2ko(B)| V|12
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5) 65 n6(05=)=9

where ko(B)=(8uo+1)/(Be; —uy), uy=In6+2/cy, co<1/2In3, and N, 0,) is
the number of a-particles in 0,.

Theorem 2.2. For sufficiently large [ the following 1)-5) are satisfied
asymptotically with Py&-prob. 1;

O HOd=A=rg=rlV][<e V]

[10p] =gl V]| <e™3fe|V]

0cl=rclVII<e 3|V,
2) ING(0)—pt*|0,] | <e~G/2ber| V314 (a=A4, B, (),
3) legex[—rplVII<p=|VI

[ 102X —rc|VII< B2 V| for each O<a<2,
4) [Irgegl—Hrp+ro) 3V <2ko(B)IVIV2,
5) |ITg%l—4r? V"2 <2ko(BIVI2,
6) I'pe<6(Iy}).

§3. Properties of Correlation Functions

In this section we treat the system satisfying the conditions (c.1) and (c.2)
in Section 1.

For a given admissible family of contours (I'y,..., I'y) in V, the correlation
function 7, 4(Iy,..., I'y) is defined by

(3.1) ‘L'V’A(f‘l,..., l:s)=PV’A(.@(1=1,..., 1—-5)),

where B([y,..., [)={¢€Qy 4; Ty,..., [,€&}.

We say the family of contours whose outer conditions are 4 in V (I'y,..., )
“mutually disjoint’” if there exists at least one configuration ¢ € Q, , such that
ry,...,[,eé,,,. Wealso say the family of contours in Z2 “mutually disjoint™
if it is “mutually disjoint’’ in V for some large V.

For a mutually disjoint family of contours of type 4 (I,,..., ['y) the cor-
relation function of outer contours py 4(I'y,..., I') is defined by

Py, AL 15eees T)=Py ((C(Ts,..., T))
where C(f]s"'s I_:s)={éeQV.A; Flv--a fseéout}'
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These correlation functions satisfy the chain of equations as follows,

pV.A(I:H"" I:S)zexp(_[))E(I:l)){pV,A(FZv"" ]:.s)
o _I k — — — —_
+ 3 D ST Ty By

(3.2) - pV,A(I_"Z,..., l=s, 71)} if s>1
— — o — 1)+ - —
py (I )=exp(—=BEU ) {1 +,§.l ("k‘}‘)— %/l)k pV,A(Al’-”v 45)
=2 pre (A it s=1

where the sum Y}t takes over all the k-ordered pairs of contours of type A4
such that cach 4, intersccts I', and the sum Y {2’ takes over all contours A of
type A which surrounds the contour I';.

Let N, be the set of all k-ordered pairs of A-type contours ([,,..., I'})
mutually disjoint in Z2. Put

M={P=(P)z1: [|P] <00}

where ¢,: N,—R and

I'y,..., Tr)eNw

_ ok ~
I @l =sup[ sup |¢(Ty.-.., TOITTexp (BET)271M1] .
z1 i=
Then .# becomes a Banach space. Let A be the linear operator given by

(Aq))s(rb"'a I:s)=e)‘p(—'ﬁE(1=1)) {d)s—-l(fZa'--a 1:;)
o0 — k _ — - -
+ 3 T b (T T B A
(3.3) YR ¢ (s Ty A} i s>1
(40), (T ) =exp (= BETILE, )% £, s 4)

- (zzl)‘ﬁl(/—i)} if s=1

where the sum Y jY  takes over all k-ordered pairs (4,,..., 4;) such that
(Fye.., T, 4y,..., 4)€Nyyy—, and each 4, intersects I';, and the sum Y3
takes over all contours of type A4 such that (I5,..., Iy, A)e N, and 4 surrounds
r,.

Then the correlation equations in Z2 is expressed in the following equation
on .4,

(3.4) p=Ap+A

where /A is the element of .# given by
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_ _ exp (—BE(T if s=1
My 7y=] FPCIECD |
0 otherwise.

When the norm of A is smaller than one, the equation (3.3) has the unique
solution. We call its solution “correlation functions in Z2”’.

We state the various properties of correlation functions in the following
several lemmas. The proof of lemmas will be given in Section 4.

First of all we give the estimate of t, ,(I'y,..., I';) from above.

Lemma 3.1.
%1 [)S T exp (= BET)).

As for the correlation function of outer contours, we have the same estimate.

Lemma 3.2,
Py al g5, TS I:I exp (—BE(I)).
Let xy 4 be the linear operator on .# given by

(XV,A)k(flv--a Iy
__{ ¢(Ty,..., T if ([4,..., T}) is admissible with (¥, 4)
0 otherwise,

From Lemma 3.2. we have x, 4p, 4€.#. Further the correlation equations
in V is expressed in the following formula
(3.5) Xv,aPv,a=Xv,aA%v,aPv,a+ Xv, a4 .

Concerning the estimate of | 4| we have the following lemma.

Lemma 3.3. For sufficiently large f, we have

Al <1.
From this Lemma we have the unique solution of (3.4), and denote it by

pal-)-
Next, we estimate the following differences between correlation functions.
Let V, <V, be two finite subsets of Z2. Put

Ny va,d=Xv,aPva,a = Xv aPv,4

Nv,z2,4= Xv,APA— Xv.4Pv,4

Lemma 3.4. For sufficiently large B the following estimate holds,

D v, ypaT e fs)|<01;l;11a(1_"i) exp [—G/4)ped(Ts,..., T'; d(Vy, V2))]



PHASE SEPARATOINS IN LATTICE MODELS 283

2 yzosaT 1o DOl < [T alT) xp [~ (/4)ed(T .., I, V)]

where ¢, is some absolute constant, e=Min,,se(a, b), a(l)=2T1e=FEM),
oV, Vy,)=0aV,\oV,, and d(T,..., Ty, 0(V;, V,)) is the distance between {I'|,
e T} and o(Vy, Vy).

By using this lemma, we have the clustering property of correlation functions
of outer contours.

Lemma 3.5. For sufficiently large 3, the following estimate holds,

|pV,A(FI’ FZ)_pV,A(FI)pV.A(F2)|
<ca(I)a(l',) exp (—(3/4)Bed(I'y, T')),

where c, is the absolute constunt.

As for the correlation function 1, 4(I',..., I')), we have the similar pro-
perties. Let V, <V, be two finite subsets of Z2.

Lemma 3.6, For sufficiently large B, the following estimate holds,
|y, a(D) =Ty, A(D) < c3a(l") exp [ — (3/H)Bed(I, 8(V1, V2))]
whenever [ is admissible with (V,, A), where c is the absolute constant.
Similarly to Lemma 3.5, we have the following lemma.
Lemma 3.7. For sufficiently large f, we have
oy, a1, T2) =ty A1) oy, a2 <cqa(T)a(l’,) exp [—(3/4)Bed(Iy, I'5)]

whenever (I, I',) is admissible with (V, A) and v([';,)no(I',)=@, where c,
is the absolute constant.

§4. Proof of Lemmas

In this section we give the proof of lemmas stated in Section 3.
First we prove Lemma 3.1 in the case of s=1. We define the mapping
gr, from &(I'y) to Qy 4 as follows. When e #(I,) is denoted by
=Ty, Aiyerry Ay Agseony Ay,
gr,(¢) is given by
9r,O=fr,(41)s fr,(4n), Asse.es Ay

where {4,,..., 4,,} is the totality of contours included in 6(I';) and {4,,..., 4}
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is the totality of contours included in V\w(I';). It is easily seen that gp, is
one-to-one as the mapping from %(I",) to Q, , and

Uplgr (&) =Un&—ET).
By using the facts above, we have

> exp{-pUO}=exp{-BET,)] X exp{—BUx(gr,(%)}

ge@(I) {ed(ly)
<oxp{~E(T)} T oxp{~BUO)
Hence,
TV,A(F1)= Y exp(—BUW(E) X exp(—=BUL)
ed(Ty) $eQv, 4
<exp (—BE(T))).

In general case, we can prove it by composing the mappings gr,,..., gr..

In the same way we can prove Lemma 3.2.
Before proving Lemma 3.3. we prepare the following lemma which will

be used many times in the sequel.

Lemma 4.1. For sufficiently large f3, the following estimates hold,

1Y) f;ao a(N)<h(B) (h(B)/exp (—3Pe) | 0 as f—0)
~ 3

2) f:l'aO.lrlgla(r)éd‘ exp<—_zﬂal>

3) f@;ca a(lN =10121"" exp (— BE(7))

4) -2 oa(f)_<_=const. |0] exp (— 3B¢)

where d, is the absolute constant and ¢=Min ¢(a, b).
Taking into account the fact that
E(I)z(IT'—-1/4ITDe
we can prove this lemma by the standard argument.

Proof of Lemma 3.3. When ||®@| <1, we have

(4.1) lpu(l 5., Tl < ;=ﬁ; a(l’)

for all k and any ([4,..., .)€ N,. From Lemma 4.1 and (4.1), we have
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(AD)(T ..., T,) ﬁ a(F)

ll/\

g+ 2 (T arye s s e

m=1 p=1T:Is0,|I'|z2p

2,1,1, {(1 +h(B))"1 +d, ,,; exIJ(—*z‘ﬂb‘P)}

<o (49 )+ 230

Tz

IIA

<1

for sufficiently large 5. Therefore Lemma 3.3 was proved.
Before proving Lemmas 3.4-3.6, we prepare the following lemma. For a
given subset S of Z2, we define the Banach space .#(S) by

M(S)={P=(P 21 €A |P| 4(5)< 0]}
where

_ ok .
1Pl esy=sup[ _sup_ [ ¢l 1,..., I [T a(I) ™ e3/Hbedtln, DS
k24 (Fy,....,Tx) i=1
Lemma 4.2. 1) If ®e.#(S), then AP e #(S).
2) ||All_gsy<1 for sufficiently large B.

We can prove this lemma by the similar way to the proof of Lemma 3.3
of [2].
Now we prove Lemma 3.4. From the following two correlation equations

4.2) Xvi,aPv, a= v, adly,, aPv,, a7t 1y, 44
(4.3) Xv2,4Pv, 4= XVZ,AAXVz,Asz,A + XV;,AAa
we have

(4.4) M vaa=Xv o aAnlv, v,at v, vaa
where

CV[,Vz,A = XVl,AA(sz,Asz,A - XV] ,Asz,A) .

In the similar way to the proof of Lemma 3.4 of [2], we have the following
estimate of {y, ,, «(Iy,..., Ty,

v vpad 15 T
<d; TT a(Fy exp (=3 psd(I's, oV, 1))

where d, is the absolute constant. Hence, (., ,, €#(3(Vy, V,)) and
1y vaalles)<da-
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From Lemma 4.2 and (4.4), we have

d,
1= A4l 4cov1,v2))

X [I ry)- expf——ﬁsd(rl, , T 0(Vy, Vz))].

InVl,Vz,A(FN'"a F—s)<

Therefore the first assertion of Lemma 3.4 was proved. In the same way we

can prove the second assertion.

Proof of Lemma 3.5. From the definition of correlation functions of

outer contours, we have

]pV,A(Fl’ fz)—pV,A(fl)pV,A(fZ)l
=pV,A(I:1)]pV\W(I';),A(r2)_pV,A(F2)"

From Lemma 3.4, we have
lpV,A(FIs fZ)_pV,A(FI)pV,A(fZ)[
<e,a(l'a(l) exp| — 5 Ped(Ty, T) |.

The proof of Lemma 3.6 is divided into following two cases.

Case I. o(#A.

In this case I" cannot be the outer contour. As I is surrounded by some
outer contour I';, we have

TV,A(F)=_ > PV,A(f1)"-'9(r1),i(f1)(F)-
Fy:0(T1)=A4,0(I'1)>6(I)

By using this formula, we have

ITV,,A(f)_TVz,A(f)I
=< > |PV1,A(f1)_PVz,A(Fl)[To(rl),i(r‘l)(F)

Fi:0(I1)=A,V120(1)>6(I)

+ > P, all D Tocryy,icrn) -
Fy:0(T1)=4,0(I1)206(I),0(I1)Nd(V1,V2)+0

From Lemma 3.4, the first term is estimated as follows.

<cia(l) > a(Ty) exp| —3-Bed (T, 8V, V)|

Fy:0(T1)=4,V126(I'1)=6(I)
d(I,o0(V1,V2))—1

<csa(T) > e Glber > a(l'y)
/=i F1:T420, Tyl >20a(, 0071,V 2))-p)

__ d(I,8(Vy,V2))-1

2c;da(l) 2 e~k exp [ —Be(d(I', 0(V1, V3)) —p)]

Scidia(T) exp| —3 ped(T, 3V, Vz))]pi::l eCaep
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By using the same argument as in the proof of Lemma 3.4 in [2], we have

a(l)a(l)

1 T1:T130,|Iy|>2(d(T,8(V1,V2))+k)

al) 3 dyexp( =3 pe(d(T, oV, V) +K))

A
Ms

12
k

IIA

<d,a(l') exp E— —%ﬁad(r, oV, VZ))J 21 e-(3/2)Bek |

From these estimates the assertion of Lemma 3.6 is proved.
Case II. o(l)=A.
In this case 7, 4(I') is expressed in the following formula.

TV,A(f)=PV,A(F)+ ; > P PV,A(F1)Te(r1),i(r,)(f)

1:0(r1)=
0(I)=6(r)

By using this formula and the same argument in Case I, we obtain the assertion
of Lemma 3.6.

Finally we prove Lemma 3.7. The proof of this lemma is also divided into
following two cases.

Case I. o(l'))=A or o(l,)=A.

CaseIl. o(I'))#A and o(l,)#A.

Case I. o(l)=A or o(l,)=A.
When o(I",)= A, we have

]TV,A(FI’ I:Z)_TV,A(FI)TV,A(FZ)I
=TV,A(F1)|TV\W(rl),A(Fz)—TV,A(Fz)l

From Lemma 3.6, we have
|TV,A(1: 15 r 2)_TV,A(F I)TV,A(F 2
_ _ r 3
<c,a(l'y)a(ly) exp| —3 ped(T,, T) |

Case II. o(I')# A and o(I",) # A.

As both I'; and T, are not outer contours, there exist outer contours which
surround I'y and I',. We denote the set of all contours of type A which sur-
rounds I'; and does not surround I', by C,(’;, I';). For each F'eC,([y, I,),
we denote the set of all configurations in %#(I";, I',) which contains I as an outer
contour by #,(I'y, [,; ). We also denote the set of all contours of type
A which surround I'y and I', together by C,(I'y, I';). For each I'e C,(['y, I'),
we denote the set of all configurations in (I, I’,) which contains I' as an
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outer contour by %&,(I", I',; I'). Then we have
BT, T)= )y gl(l:ufzif)'f‘_ > BTy, Ty 7).

FeCy(T1,T2) FeCy(I'y,T>)

Further we denote the set of all contours of type A which surround I',
and intersect with I', by C5(I'y, I';). For each FeC,([,, [,)UCy(T,, T,)
U C4(Ty, I',), we denote the set of all configurations in #(I",) which contains
I as an outer contour by 2(I";; I'). Then we have

AT)=_ Y 920D+ Y 920D+ X  2(;T).
Ir'eCy(l'y,I>3) IFeCy(Iy,T>3) IreC;3;(Iy,ry)

Hence, we have the following estimate,

|TV,A(I=19 Fz)"TV,A(fl)TV,A(Fz)I
= 2 i IPV,A(gl(fU Iy f))—PV,A(@(f1§ F))PV,A(g(fZ))I

FeCy(Ty,T>)
+f C(}; . [Py (B2, T ;D) =Py (2(T,; D)Py (B(I,))]
+ X Py (2(Ty, D)Py (B(T5)).

FeCa(I'y,T2)
We denote the first, second and third terms in the right-hand side by I, I,,
and I5. We estimate them seperately in the following.
First of all we estimate the first term I,. From Lemma 3.6, we have

11=f C(Zf . )PV,A(Q(fl; D) Py (B,(Ty, T5; D) |2(I ; I))— Py 4((B(T,))|
= > exp (— B(E(T )+ E(I)) lTV\W(r),A(Fz)—TV,A(Fz)l

FeCy(Ty,T>)

<cja(FePET Y e PED) exp < - —i—ﬂgd(r, r2)>

TeCy(Ty,T2)

_ _ _d(I'y,Ir)-1 d(ry,I2)-p
Sc|ly|ePET0g(l,) Y e G/®ber 5 (142m) -
p=1 m=1

exp| —3 Be(d(Ts, ) =) |
a(Iry, r2)-1 (ry,2)—p

— — d
Sesdia(T a8 eemne “USTT (1 am)

m=1

exp| ~3 pe(d(T's, ) =) |
< csdysup b a(FDa(ly)-exp(—3-Bod(Ty, T2) ) 3 (97+2p)emGromer
24 £ p=

Here we have used the fact that the number of points satisfying d(I",, 1)<

d(l'y, I';)—p is at most
d(ry,I[2)~p

> (5| +8m).

m=1
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Next we estimate the second term. As |I'|>2d(I"y, I',) for each I' e C,(T',,

I',), we have
1,<2d, 3 exp (= pekya(l Ja(l"y) exp (= 3 fed(L, T))
As for I, the similar estimate to I, is obtained. Hence, we have
ITV,A(an F) =ty 4(T 1)ty ((T)|
<cqa(T a(l,) exp[— %ﬂsd(ﬂ, rz)j|

whenever v(I',) n v(I",)=@, where c, is the absolute constant.

§5. The Expectation Value and the Variance of the Number of Particles

In this section we estimate the expectation value and the variance of the
number of particles by using the correlation functions.

We prepare some notations which will be used in this section. We say
I, is congruent to I', il o(I';)=o0(T",), i(I';)=i(I';), and T, is superimposed on
I', by translation. A congruent class is denoted by 7, and the set of such con-
gruence classes is denoted by I".

If I, is congruent to "5, then

(5.1) PA(F1)=PA(F2)-

From the standard argument, the expectation value of N (¢: V) is given by

Vi—_ 2 (VOI=<ni) Z pval)  (a=4)
7i0(¥)=4 IE?—;’

52) ANy .= ) _
5-2) Nadva Y ) X ppaD) (a#A)
¥io(7)=4 fﬂ,

where {n (7)) is the expectation value of N,(¢: v(y)) in the ensemble Q) ;7).
Put

pi=_ 2% _ (IVOI=<n®>)pa(?)

y:o(¥)=a
and pf*=1—p¥. From the symmetry of interactions p¥ = p¥(f) is independent
of a, and p¥(p)/exp (—3pe) | 0 exponentially as f— oo, where e=Min (e(a, b)).
From Lemma 3.7 and (5.1), we have

|<NA>V,A’“P’1k*|V”
< 3 VO =N T praD)=pa®IV |

Irev
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< > ¥ f§ lpyaD)—paMDI+ X exp(—BEI))}

y:o(7)=4 7 fey
x(ev *([)eV, ¢V
o0
< X {X (10V]+8k)6!vI.e G0k 4 |5V |- [y|}e~PED
Fro(N=4 k=1

where x(I') is the left most lowerst point in I.  Hence, we have

(5.3) KN v, a=pT*IVII<F1(B)I0V]

where
FB=2 5 [P6ess0, Fiplep(=3e) L0 as f— oo.
Put
pi= 7:0(27)=a m(opd7)  (a#b).
Then p% is also independent of ¢ and b. From Lemma 3.7 and (5.1) we have

(54 KNpva—p3lVlI
<7:0(273)=A <my (M4 E_ oy, (D) =PI+

x(I')eV

- DI pV,A(f)}
ey:x(I')eVI¢V

<F,(B)lov].

As for the variance of N ,(-; V), we have the following formula.

(5.5 DV,A(NA)= ' (Z_)=A D(n 4(7)) _Z pV,A(F)

+ ?12_2 VO =< G ) (V) —<na(72)>)
0(71)=0(72)=4

X I_,IZE:% {ov,u(T' 1> T3)=py AT oy, AT2)}

+ (Z_l) A(IV(V)I—<nA(?)>)2 2 praaD) A =py 4.
Y:io(y)= rey

By using Lemma 3.7 we have

(56) Dy AN

¥:0(7)
<elVI{ [Y3a()}2 3, (1 +2k)e~Gropek
7:0(7)=4 k=1
+2|V] Iy[2e#E®
Vio(7)=4

<F,(AIVI,
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where F,(B)/exp (—3p¢) | O exponentially as f—~oco. When b=A4 we have
(5-7) DV,A(Nb)= Z D(ny(7)) I_;y pV,A(f)

7:0(7)=4

+ 2 (710 <ny(72)? f%ﬂ {ov 4(T'1, T2) = py, AT )py 4(T2)}

o(F1)20(7)=4 rsv:
+ X ny(M>* X pr D) (L—py ).
yio(¥)=4 Tey
By the same way we have

(3.8) IDy 4(Np)| <F,(B)IV].

We summurize the above estimates in the following.
Proposition 5.1. For sufficiently large B, we have

) KNy a—pT*IVII<F(BI0V]

2) KNpyva—p3lVII<FB)IOV]I  (b#A4)
3) Dy AN JI<F,(B)IV]

4) Dy AN <F,(BIVI

where Fy(B)~F,(B) and F,(f)/exp(—3p¢) | O exponentially as f— 0.

§6. The Estimates of P, _,(N{V) and P, ,(N{?) from Below

From now on we restrict our attention to the model composed of four types
of particles satisfying the conditions (c.1) and (D.1).

By using the properties of correlation functions we estimate the probabi-
lities Py ,(N{) and P, (N@) from below. Let Iy and I', be the two
squares with the breadth of r}/2|V|V/2 and r}/?|V|V/? arranged as in Figure 3.
Put I'y=(Ty, 4, B), I',=(I;, A,D) and #={¢eQy :T,, I,eé,}. Let
P_,(-) be the conditional probability Py ,(-|.#), then
6.1 Py A(NP)Z Py ((A)P ,(NP).

We first estimate the probability P_(N{) from below. Put V,=60(I,),
Vi=0(I'y), and V;=V\(W(I)Uw(l',)). Let o7, be the subset of .# given by
Ly ={Ce; |N4&; V) —pT*IVill <Fo(B)3| V]2,
INg(E; Vo) — pT*|Vall <F2(B)'/3|V,|"?, and
INp(E; Va) — pT*I Vsl <Fo(B) /3| V5|12
Tt is easily seen that &7, c NW for sufficiently large f and V. Therefore,
6.2 P (NP)Z P (o).
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By using the Chevyshev’s inequality, we have
(6.3) Py (N A& V)= pT* Vi I <F(B)'PIV1D)
> Py, N AE: V)= AN gDy, al <3 Fo(B21V,)
>1—4F,(B)1/3.
Similarly, we have
Py, s(INg(E: Va) = pT*|Val | <Fo(B)'3[V,) > 1 —4F (B)/?
Py, p(INp(&: V3)— pt*|[V3| | <Fy(B)'P|V3))> 1 —4F 5(B)!/3 .
Hence, P_,(N{")>9/10 for sufficiently large S.
Next we estimate the probability Py, ,(.#) from below. We can express
Py () as follows.
1

V,4

(6.4) Py (M) = e BETOYETD). 7, 7, W T, .

Taking into account the fact that

dln Z =
6.5 T2V = I
(6.5) 9EG) B r%%? Ty, a(l)

and putting E(§)=tE(}), we have from (6.4)
(6.6) InPy 4(M)=—4Pe,(ry>+ iV +B,(V]'/?)

("L z,, .0 +4 Zm(t)

+ 210 Zy, 40 =5 10 Zy 40}
PRy

+BEG |l T D)
+ Z_ TV;A:(F)'*' Z_ TV;,A:(F)'_ Z_ TVAt(F)}

rey €Y
rev, I“CV3 I"CV

Here we have used the fact that Z, ; is independent of a from the symmetry of
the interactions.

We first estimate the second term in the right hand side of (6.6) as follows
by employing the properties of correlation functions obtained in Section 3,

| X adD)+ X T, a D)+ Z Tyy,a.d0)— Z Ty, 4Dl

Tey Tey rey
rev, rcv, rcv; I'CV

< X |TV1At(F) TVA:(F)H' Z |TVzAt(F) TVA:(F)|

Tey
Iev, I‘c:Vz
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+ 2 [tyadD) =ty alDl+ T taD+ X 1y adD)

ey Tey Tey
rcvs rev rev
I intersectl'y I intersectI's

< const. | V|2 exp (— BE(})1) .
If we fix B sufficiently large, then the following estimate holds for sufficiently

large V,
In Py () +4Be (r2+rE)IVIV <m(B)| V|2
where m(p)/exp (—3fle,) | 0 exponentially as f— co.

We summurize the above estimate in the following proposition.

Proposition 6.1. If we fix B sufficiently large, then the following estimate
holds for sufficiently large V,

Py (NY)> T exp { —4e,(r} 2+ ry2) [V]1/2— m(B)|V]1/2)

where m(B)/exp (—3fe;) | 0 exponentially as f— co.

Next we estimate the probability P, (N{?). Let I'; and I', be the two
squares with the breadth of (rz+rc)V/2|V|/? and r¥2?|V|!/? arranged as in
Figure 3. Put ',=(T,, 4, B), [,=(",, B, C), V3=0(I,), V,=0(I'))\w(l',) and
Vi=V\w(I',). Let 4 be the set of all configurations such that I'; €&,
I',eé, and every I' e £\I'; does not surround I,.

(1) p (2)

Figure 3.

Let P () be the conditional probability Py 4(-|.#"), then
(6.7) Py ANP)ZPy (AP ,(NP).
Let o7, be the set of 4" given by

2y ={EeN; [N & Vi) —pT*IVil | <FL(B)'3| V]2,
IN(E; Va)—pT*[Val [<F5(B) 31 V,|'/2,
INC(E; Va)—pT*|Val | <F5(B)'/3| V512
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then o7, = N for every sufficiently large and V. Theorefore we have

(6.8) P (NP)Z P (f5)
=Py, AIN L& V) —pT* Vi< F(B)'73|V1]1/?)
X Py, s(IN5(&; Vo) — pF*[Val | <Fo(B)' /3| V,]'?)
X Py, c(IN(&; Va)— pT*| Vsl | <F,(B)'/3|V3]1/?).

In the same way as we obtained that P ,(N{¥)=9/10, we have
P,(N®)=9/10 for sufficiently large B.

We also have the following estimate of P), ,(.#") by the same way as we have
obtained the estimate of P, _,(.#),

In Py, (A7) +4Be{(rg+ro) 2+ rE VY2 <m(B) V]2

where m(f)/exp (—3fe,) | 0 exponentially as f—co.
Hence we have the following.

Proposition 6.2. If we fix f sufficiently large, the the following estimate
holds for sufficiently large V,

Py (NP)> 55 exp [{ ~4ey(rs+ )12+ T ) —m(B)} | V]/2]

where m(B)/exp (—3Be,) | 0 exponentially as f— co.

§7. Proof of Theorems

In this section we give the proof of theorems by estimating the length of
phase boundaries and the number of particles in each phase.
The following proposition performs an important part of the proof.

Proposition 7.1. For sufficiently large  and V, we have

1) Pyd(INAE: 6,)— p1*10,]1> 116,14, 10,1> kI V])
<Cexp [—(qg(B)1*k!1>—8Be,) [V]'/?]

for any t>0 and k>0 (i=1, 2).
2) Py(INLE: U 6,)—pt( 2 16,D1>1( X 10,134, 2 16,1 >kIV])
b#a b+#a b#a b+#a
<Cexp [—(q(B)r*k"/>—8Pe)|V|'/]

for any t>0 and k>0 (i=1, 2), where 0, is “a-phase’’, N(-; 0,) is the number
of a-particles in 0,, and q(B)/exp (2Be;) T oo exponentially as f— co.
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The proof of this proposition is decomposed into several steps. We first
estimate the probability of the following event my ., with respect to Py 4(-),

my ={€Qy 4; fsup Il <coIn|V]}

€&out
Lemma 7.1. For every sufficiently large B, the following estimate is
satisfied:

d

PV,A(mV,co) =1 —'I’W .

Proof. From Lemmas 3.1 and 4.1, we have

Py ((m§ )= B Z pV,A(f )
T:o(r)=A4
rev,|I|zcoln|V]
= d
=l X exp (= BED) <-pempert -

T coln V]
Let Qy , ., be the set of all families of type 4 cy-small contours E=(I"y,..., I'y)

such that w(Il',),..., w(I';) are mutually disjoint.
We introduce the probability measure Py 4., (-) as follows

Py, 4,¢0(€) =—ZV1A—CQ ;—EIE exp (= BE(D)) Zyr),icry

where
Zo,= 2 exp(—BUQ).
§eQop,a

Let 0 be the set of V satisfying |0]| > k|V|. We denote the number of outer
contours I' which belong to 7 under the configuration & by N(7; £). We now
consider the asymptotic behavior of N, (&; 0) as |V|—oo under the condition
that all outer contours in 0 are cy-small. Put

u;(&;0)= 19113/4 y 3 ulN(?; 6)_1_-2 po.4(T) e [y]
:co-smal ey
rce

where A=1/5¢, and cy<1/2In3. Note that u,(¢; 0) is determined by &,,.
As for the estimate of u,;(&; y), the following lemma is satisfied.

Lemma 7.2. For sufficiently large 5, we have

(7.0 Py sui(&; 0)>T, N(y; )=0  for all co-large 7)
<2exp [—c(B)T2k1/2|V|1/2]

where c(B)/exp (2f¢,) T c© exponentially as f— 0.
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The proof of this lemma is given in the appendix.
From Lemma 7.1 we have
(7.2) Zy 4.clZy 4>9/10  for sufficiently large B.
Taking into account (7.2), we have the following lemma from Lemma 7.2.

Lemma 7.3. For sufficiently large  and V, we have
(7.3) Popcitié; 0)> T) <2~ exp (— ATV [112).

We prepare the following standard argument of probability theory.

Lemma 74. Let X,,...,X, be the sequence of independent random
variables and assume that R(a)=<{exp (x,0)) exists for each i and «. Further
we assume that

0%1n R;()
O<—a—a—2—— <c;.

Then we have,
Prob (| X+ -+ X,—s| >x)<2exp (—x2%/2c),
where c=1_; ¢; and s=X -, {X).
We take a family of outer contours (I'y,..., I’y satisfying u,({Iy,..., [;}; 6)
< T, and denote the conditional probability measure under the condition that

the totality of outer contours is (I'y,..., [,) by P, 7, By using Lemma
7.4, we have

(7.4) Piryro(INAES )= <N &5 0)> (r,,....7 | > 1O13%)
2 3/2
<2exp (- 2.3 N(;;I?I,..., ISR )
As u,(Ty,..., T,; 0)<T, we have
(7.5) 7:COZS)m“N(?; [y TYlo(y)|?
<X NG Iy fs)—% Po.a(D)Ilv(]?

rce
+ 2 Po,A(f)|v('}’)|2
r:(ig-csbnal]

<Max k3e**|03/4y,(T'y,..., T;; 00+ Y e FED|r]4
k24

I':co-small

<Max k3e . T-|0]34+10] X |y|*e PED
k=4 5
<s(B)16]

7 :co-small
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where s(f)/exp (—3f¢,) | 0 exponentially as f— co.
From (7.4) and (7.5), we have

(7.6) P(Fl .....
<2exp (—(12/25(B)) - k112 - |V|1/2),

ol >1101°7%)

From the definition of u,(I,..., I';;), we have

(1.7 KN (fyry = SN 026,400l
< z ]N(f 1:1»---,11)—1__2“ pG,A(F)| I.le
€y

7 :co-small
re<e

+(ZV,A/ZV,A.C0—1)I__ 2 I Po4(DIT|?

icosma

<Muuy(l g5 Tz OO +d k| V||V [P/#00c0™ —dy - 3 e FEDy|2

7 :co-small
11
< 10 TMABP/A’ .

For a given t>0, we choose the number T>0 satisfying t>22/10 T M,
and T>1/3t. Then we have

(7.8) Py 4colIN A 0) =N g 4.col > 2O13%, u,(E; 0)<T)
<2exp (—(1?/8s(B)) - k2| V|'2).

From (7.3) and (7.8) we have

(7.9)  PoacolINAE; 0) =N 4Dg,4,c,l > 1101°/%)
<20/9 exp (—c(B)T?k12|V|1/2)+2 exp (— (¢2/8s(B))k1/2|V|1/2)
<const. exp (—¢q'(B)t2k!/2|V|1/2)

where q'(f)/exp (2f¢,) T o as f— 0.

Taking into account the estimate
(7.10) IKN 426,4,00— PT*101 | <H(BYK' 2| V|12, (h(B)/exp (—3Be,) L 0)
we have the following lemma from (7.9).

Lemma 7.5. For sufficiently large  and V, we have

(7.11) Py acolIN A(E; 0)— p¥¥16] > 116]/4)
<cexp (—q(B)r2k'2|V|!/?)
where q(B)/exp (2f¢,) T c© exponentially as f— 0.
From Propositions 6.1, 6.2, and Lemma 7.5, Proposition 7.1 is easily proved.

Next we shall estimate the length of the totality of phase boundaries A.
Let My, be the set of all configurations such that A is composed of k com-
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ponents and |A|=T. As the length of each phase boundary is greater than
¢o In |V], k must be smaller than T/cy In |V]|.
By using the similar estimates stated in Sections 3 and 4, we have

(7.12) Py J(My ) <42k273T exp (— Pe; T— Po(T)) |V[*
Put M, ={¢&; |A|=T}. From (7.12), we have
(7.13) PV’A(MT)<426TeXp(—ﬂ&lT—ﬁo(T))
<42 exp (—(Pe; —In 6)T)e@/caTIn|V|
<exp ((— P&, +In6+2/ce) T— Po(T)).
From Propositions 6.1, 6.2, and (7.13), we have the following Proposition.

Proposition 7.2. If we fix f§ sufficiently large, then for each t>0 and every
sufficiently large V, we have
1) Pxp(Al> 4+ ry )|V V]
<2 exp [(— (Bey —uo)t+8ug)| V[172]
2) Py (|AI>4((rp+rd' 2+ 12V + 1 V]Y2)
20

<5 exp [(—(Bey—uo)t +8uo)| V']

where uy=1n6+2/c,.

From this proposition we have
(7.14) [A| <4(ry2+ryD)IV[V2+ ko(B)V]|Y?  a.w. Pvg-prob.1
(7.15) [A] <4((rg+r) 2+ rEDIVIV2+ ko(B)IVIM?  a.w. Py@-prob.1
where kq(8)=(8uq+1)/(Be; —uy).

First we prove Theorem 2.1. Let r(f) be the function of f satisfying
r(B)~exp (—3fe,). If |0,]>(1+r(B)r,lV]| (a=B or D), then from Proposition
7.1 we have the following estimate
(7.16) NAE&; 0> pT*r,(1+r(B)IVI—r(B) /4 V34

>rlVI+1/2 r,7(BIV| a.w. Pyw-prob. 1
for sufficiently large f.

On the other hand,

(7.17) N(&; M<r|V]+pFIV] for any £e N .

Because 1/2 r,r(f)> p5(B) for every sufficiently large B, (7.16) is inconsistent
with (7.17). Hence,
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(7.18) 10 <1 +r(B)r,|V| a.w.Pyw-prob.1(a=B or D)
If 10, <(1 —r(B)r, V], then

20> (A —rL=r(B)IV].

b+a
From Proposition 7.1, we have

NJ&; U 0,)<2p|V].
bFa

Hence we have

(7.19) N(&; V)< —r(B)ra VI+2pF|V]
<rlVI=1/2 rr(B)VI

for every sufficiently large f.
On the other hand,

(7.20) N, (& V)>r,|V|—p%|V|  forany Ee NP .

Because (1/2)r,r(B)>p¥(p) for every sufficiently large B, (7.19) is inconsistent
with (7.20). Therefore, we have

(7.21) [0,1>1—r(B)r,V| a.w.Pyw-prob. 1.

From (7.18) and (7.21), we have the following lemma.
Lemma 7.6. For sufficiently large 8, we have

(7.22) 10 =1 lVI<r(BIV] aw.Pyw-prob. 1,

where r(f)~exp (—3pe,).

Let 67ax be the largest connected component of 6,. Put 0rm=0,)\0max,
Put k(f)=p"* O<a<2). If |0g>|<(rg—k(B))|V], then |0%™|>16/25 k(B)|V]
for every sufficiently large .

Taking into account the fact that the plain figure with the area of N which
has the shortest boundary is the square with the breadth of N'/2 for a given
number N >0, we have the following estimate

(7.23) 13651 2 4(rs— k(B2 V|2 45 k(B 2V |1
Z4ry2V| M2+ S k(B2 V|2

for every sufficiently large S.
From Lemma 7.6, we have |00p|>4(rp—r(8))V/?|V|¥/2. Hence,
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(7.24) A 2100,]+|06,|

> 4(ry2 + ry2)| V]2 + %k(ﬁ)l/zww a.w. Pye-prob. 1.

On the other hand, from (7.14) we have
|4l <402+ V12 4 ko(B) V|2 a.w. Pyg-prob. |
Because (7.24) is inconsistent with this, we have
(7.25) |0%2x| > (rg—k(B)|V| a.w. Pyw-prob. 1.
By the same way, we have
(7.26) |0%2x| > (rp—k(f)|V]| a.w. Pyw-prob. 1.

As 0% and 6% are connected subsets, the following estimates are easily
obtained from (7.25) and (7.26),

|00F=x| > 4ry 2|V |2 —k(B)|V|'/?
(7.27) a.w.Pyw-prob. 1.
[005| > 4ry 2| V|2 —k(B)|V]'/?
We shall prove
(7.28) [00%2x| <4r2|V[V24+2ko(B)| V|2 a.w.Pyw-prob. 1.
If |00%x| = 4ry2|V|V2+2ky(B)| V|2, then from (7.27) we have
|A|>4(ry2+ryD)IVIV2+ ko(B) V|2 a.w. Pyo-prob. |

This is inconsistent with (7.14). Hence (7.28) is proved.
Next we shall prove Theorem 2.2. Let #(f) be the function of f satisfying
r(B) ~exp (—3pBe,).
In the similar way to the proof of Theorem 2.1, we have the following lemma.
Lemma 7.7. For sufficiently large B and V, we have
O =ralVII<HBIV| a.w. Py@-prob. 1 (a=B or C).
Let k(B) be the function of B satisfying k(B)~exp(—2fe,). If I'P3=<
Hrg+ro)2—k(B)}IV]'/2, then
Al Z 1T 52|+ gl + T c,pl + 1 p,al
24{(rp+ro)' 2 —k(BHVIV2+A(rc—r(B)2 V]2
+4[rg—r(B)—{((rg+ 1) 2 = k(B))> — (rc—r(B)}]/2 V]2
24{(rp+ro) 2+ rd VIV +(rg+ro) k(B2 V|2

This is inconsistent to the assertion of Proposition 7.2. Hence, we have
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(7.30) Iy >4{(rg+rc)V2—k(P)}| V|2 a.w. Py@-prob. 1.
By the similar way we have
(7.31) Iy 24(r/2—k(B)|V|V2  a.w. Py@-prob. 1.

Hence the third and fourth assertions of Theorem 2.2 are proved. The fifth
assertion is trivial.

Appendix. Proof of Lemma 7.2

Let E'(-) be any function defined on I". We denote the Gibbs measure on
Q, 4 with respect to E'(-) by Py 4. Then we have the following for a given
family of nonnegative integers {¢(7)};.co-smal1s

(A.1) Py s p(N@F: &)=c(y) forall co-small p,
and N(7; £)=0 forall cy-large )

=7_L;'—N({c(?)}|6) ol ,,(Zﬂtw.im,s' exp (—BE'(7)))?

6,4, ¥ :co~sma

where N({c())} |)=#{leQy 4; N(F; &)=c(7) for all cy-small § and N(J; &)
=0 for all ¢,-large }. From (A.1) we have

(A.2) NI O = Zg 4.k , LT (P50 Zg) 050,607 -

:co-small

When E(-) is the function on I" given in Section 2, we write Py 4 p=Pg ,.
From (A.1) and (A.2), we have

(A.3) Py ((N(F; &)=c(y) forall cy-small ¥
and N(3; £)=0 for all c¢,-large )
=exp [i;:{f {InZg 4 p—In Ze,A,E".B_ 2 c(DAE®)

7 :co-small

= 2 cPn Zgy) 0,6 =10 Zggy),i5),0)} ]

7 :co-small
where AE(y)=E'()— E(%).
We denote the terms in the bracket { } in (A.3) by Fy 4 g(E’). Then by

using correlation functions Fy 4, z(E) is expressed as follows,

(Ad)  Fo,iE)

aangAE' 5
=Y - AR AR
; 3E () ()
2
Ly 0%In Zy 4 & AE(F)AE®F,) (O<a<l)

5532 OE"(3,)0E"(7,) | E'=E+aak
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_ — 0In Zy(y), i3,
B y; JAE@)e®) y; @2 )y ———6E’(A)y AE(4)

_ 5 0%1n Zy(y, i), 2
75300(” 2 GEUOE (L) | prepsass AEENAED)

=-B Z _2 To,4,E (N 4E(7)

Y Tey
Irce

+82 Y X {tourTT) =145 T4}
1572 1"1;:?11{‘%%72

=

AE(7,) 4E(75)
+82% ¥ {to,4,5 (D) =14 4,5 (N2} AE(})?

¥ Tey
rce

+B8 2 AEH)c(¥)

Ser€o
yeI'A

+8 X () X Y Tey,i, e (D) AE(4)

7e1":0 Ael’ TeAI'<0(y)

_ 0®In Zow),iGLE AE(A)VAE(A
Eoc‘” AEM 0E'(4,)0E' (4,) (41)AE(42)

=L+ L+L+1,+1+1,
where I',={fjel;0(f)=4}, I'e={yel,;7:cysmall}.

For any contour 7 e I"Sp, put

(A5) sP=c@—_ X poal,EN.
ey, r<é

Then I, +1,+1s is expressed as follows,

(A6) I,+I,+I;s
=—B 3 Tour (D)AE(D)+B Zoc(v){AE(v)
Fco

+r 29:( To.icr.e(DAED)}

=-—B fezr,, pO,A,E’(F )AE(F )
-B_ X > pe,A,E’(/_l)TG(A),i(Z),E'(f YAE(I)

Tel 4 A:4>06(I)

-8 X > pO,A,E’(/—l)TO(A),i(Z),E’(F YAE(T)

yel'e A:456(I)

+B 2 (s(+ Z Po,4,e(T)AE()

yel" ‘o

r<h
+B ? (s()+ Z PaAE(F)) 2 To(y) i e(DAEA) (Tg=I'\T"p
ye 2 Fco

==B X Poap)AET)

Terl 4\ I" 0
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-B > > pO,A,E'(/_l)TB(A),i(E),E’(F)AE(f)

Ael 4 Tel 4:I'<=6(4)

- _2 _ > Po,A,E'(/_l)To(A),i(Z),E'(F)AE(f)

Ael 4 T'el'S T =(46)

+B Z Po, 4, E(F) % n Tocry,iry,e(A)AE(A)

I"el" ‘o

+B Z 5(?)(AE(Y)+ Z Ta(v),i(v),a'(Z)AE(/_l))

yEI‘ ‘o

== 2 Po,A,E'(F){AE(F)"" ,T:A;e(r) Tocry iy, e (A)AE(A)}

fer,,\r“o

+B Z s(7) {AE(V)"' Z )Te(y),i(V),E'(Z)AE(/—D}-
yeI‘ 0
As —Ig is the sum of variances of some quantities, I <0.

By using the clustering properties of correlation functions, we have

(A7) ||+
éﬁZ_Z { > |Ta,A,E'(f1, Fz)

72 Tie71T2e72
0(ry)no(r2)=¢

_TO,A,E’(FI)TG,A,E’(FZ)IAE(’)_)I)AEWZ)
+ _ Z_ !TO,A,E'(fla ry)

I'i1ey1,T2€72

I2c0(I'1) orI'1<=6(I'2)

—T0,4,E (I'1) 7, A,E'(F2)|AE(71)AE(?2)}
+B*Y Y e FEMAE})?

y I'ey, I'<0

<A,(B)-10]- T 2nltlnle=BE GO-BE 2. AE(7,)- AE(7,)

71+72:co-small

+282-101 X [1l*yalPeTPE O0TREGDAE (D) AE(F))

71%F72:co-small

+ﬁ2|9I X e PEDAE®R)?

:co-small

where A,(B)~ B exp (—(3/4)Bey).
Hence,

(A8) Fo,u(EN=p?01{3 Z [y1l- [y |27 * 2l b GO=RE" G AE(F, ) AE(Y,)

F1F 72
£ Y eI MAEGY)
¥ :co-small
-B X po,ap){4ED) + Z Te(r),i(f),E'(/_l)AE(fl)}
Fera\r<o ASB(I)

+B Z S(?){AE(?)'*' Z TG(y),i(?),E’(F)AE(F)}‘

yEI‘ ‘o

We take the following restriction on E(y)



304 Kot Kurobpa

AEG) =~ sgn (Ole VI 4ue, Fe I (JAEG)| <l
AEG)=0, 7¢I

(A9)

where O<u < |V|1/20, Put

(A.10) Si=_ 2 IS@) Iyle*I7l.

7:co'sma
We estimate the right hand side of (A.8) under the condition (A.9). First

we have
(A.11) [the sum of first and second terms in (A.8)|

3 u? Vos
<= B0 —" 2207l g=BE (3)+4|y|1 252
= 16 ﬂ ,01 IV'”Z {; I'YI e } &1

+ﬁ|g|._i{z |p|2e=BE (11+24171} . g2
16 " vz 4 !

A 2
- < AP 161

where A(f)/exp (—2f¢,) | O exponentially as f—oo. The third term in (A.8)
is estimated as follows,

the third term in (A.8)

<= T IsDlylet” i

= Co
yeI"A

+B T Is@lyly lemsE @Ayl K
3.3'erco 4

u - u BB (5 el
< —Bs;——a+ B Max ke .5, - e~ AE ALY
b 4G +4 prvilind e 7’5‘%” |
A

= "ﬂslﬁ/'ﬁllT'i'B(ﬁ)'Sl"V_Tl/f
where fA(S)~ B(B). Hence, we have
2

the r.h.s. of (A.3) < —BSAI—V%-/T+A(/3)-I9|-I7u!”—2+B(ﬁ)-sl—lVTT.

Put
(A.12) si(0)=10]3/4s,
Hence, we have
(A13) Py ((N(F; &)=c(7) for all co-small § and N(7; £)=0 for all ¢y-large y)

. u? u
sexp{ _inf | ADIOL 3t~ (B BNt |

<u<|V|1/20
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=exp {|9|1/2 inf FA(ﬁ)(%u>2

0<tl<|Vl‘/2°L
~ (8= BN ({Prer)s:®) |
Sexp {612 inf [AB)r— (B BN, O]},

o<,,<k1/4|V|lIZO

and
inf [A(B)n* —(B— B(B))ns.(0)]
O<y<kl/4|y|1/20

_(ﬁ_B(ﬁ))z S}.(e)z, if S1(9)< ZA(B) k1/4|V11/20

< 44(p) B—B(B)
—A(B) k2| Ve, otherwise.

By using this estimate we have
(A14) Py ,(u;(&;0>T and N(; &)=0 forall cq-large 7)

<N exp { =L RO 72 191l +exp (— 4Bt 11040) |

where N, =#{{c(y)}; s,(6)>T}. By the standard argument, we have
N, Sexp(241n|V|-|V|coln3),

As ¢y In 3<1/2, we obtain the assertion of the lemma.
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