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The Probabilistic Treatment of Phase
In Lattice Models Composed of More

Than Two Types of Particles

By

Koji KURODA*

Introduction

The probabilistic treatment of phase separation for two-dimensional Ising

model was made by Minlos and Sinai [1], [2]. They showed the existence of

a lump of minus spins with the shape of nearly a square with the breadth of

about N1/2 asymptotically with probability one when the number of minus

spins N tends to infinity.

In this paper we consider the system in Z2 composed of more than two

types of particles and show by refining the method of Minlos and Sinai the

occurrence of phase separations of various types.

In particular, when the system is composed of three types of particles, the

following two types of phase separations called type I and II are typical; the first

one is "there exist two disjoint square lumps occupied by B- and C-particles

respectively in the 'sea' of A -par tides", and the second one is "there exists one

square lump consisting of 'core-part' and 'shell-part9 in the 'sea' of /4-particles,

its 'core-part9 is occupied by C-particles being also a spuare, and its 'shell-part9

is occupied by 5-particles" (See Fig. 1).

In Ising model we obtain the various estimates of correlation functions by

using the simple symmetry of plus and minus spins. But this system does not

have such simple symmetry. So, we consider the system composed of four

types of particles, in which the symmetry is satisfied, and show the occurrence

of phase separations of type I and II.

In Section 1 we describe the model precisely and give the definitions which
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Figure 1.

will be used in the sequel. We state our results rigorously in Section 2. Sev-

eral properties of correlation functions of contours are stated in Sections 3

and 4. In Section 5 we estimate the expectation value and the variance of

number of particles. We give the proof of our theorems in Sections 6 and 7.

§ 1. The Description of the Model

In this section we describe the model and give the definitions which will

be used in the sequel.

We consider the interaction system on Z2 which is composed of n (>2)

types of particles, denoted by A, B,..., and N.

In Ising model each configuration in a bounded region V under the pure

boundary condition is represented by the family of closed lines drawn between

the different spins. While, such lines may branch in multi-component system

composed of more than two types of particles.

In this paper we consider the model in which configurations including such

branching lines are not allowed. Therefore, in our model only the configurations

as in the Figure 2 are allowed. When the number of types of particles is more

than two the configuration cannot be represented by the family of closed lines.

So, we introduce the new notion of "contours". We call the triple F = (F, a, b)

contour, where a and b are the types of the particles being contact with the

closed line F from outside and inside. When the configuration in Vc is fixed

to COA, each configuration in Vis represented by the family of contours (rl5..., Fs),

where COA is the configuration given by
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<DA(t) = A for all

When the configuration in V is represented by (Ft,..., Fs) we associate to

them "potential energy"

where E( • ) is the real valued function defined on the set of all contours. Further

we assume that E( • ) has the formula given by

(1.2) £(/>e(a, 6)£(JT) (f = (F, a, 6))

where E( • ) is the function defined on the set of all closed lines in Z2 and e(a, b)

is the positive number determined by the set {a, b}. We assume the further con-

ditions (c.l) and (c.2) on £(•) and {e(a, b)}atbeS, where S = {A, B,..., N}.

(c.i) \E(r)-\r\\<EMr\),
where E0( • ) is the function defined on [0, GO) satisfying

(1.3) 0<£0(/c)</</4, E0(k) = o(k).

(c.2) For each a and b(a^b) there exists a permutation in S f=f(a, b) satisfying

l)/(a) = fc and 2) e(/(c),/(d)) = e(c, d) for all c and deS.

We prepare some terminologies which will be used in the sequel. Let

d(x9 y) be the distance between x = (xl5 x2) and 3; = (^i, y2) given by

We say two sites x and v are adjacent if d(x, }^) = 1. For a given bounded
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V aZ2, we denote the set of all sites in Z2\V adjacent to some site in V by dV

and the set of all sites in V adjacent to some site in Z2\V by <3inF. Further we

denote the set of sites enclosed by F by t;(F) and put 0(jT) = t;(r)\5ini<r), w(F)
= v(F)V dv(F). Let V be the region surrounded by the outer boundary of V.

The region F\Fis called inner part of V. If Fis simply connected, then the inner

part of Fis vacant. We say the family of contours (Fl5..., Fs) compatible with

(F, ^4) if each Ft does not surround the inner part of V and there exists a con-

figuration under which the totality of contours is given by (Fl9...,Fs). We

denote the set of all families of contours £ = (/%,..., Fs) compatible with (F, A)

by QVfA. We also say the family of contours (Flv.., Fs) admissible with (V, A)

if there exists a configuration £eQVfA satisfying {Fl5..., Fsjc:£. When Fee

is not surrounded by any other contours in £ we call F outer and denote the

totality of outer contours in £, by £out. For simplicity we denote the outer and

inner condition of F by o(F) and f(F) respectively.

Finally we define the Gibbs measure PVjA( •) on QVtA by

(1-4) PV,A(® = -

where f$ = \jkT(k: Boltzmann's constant, T: absolute temperature).

§2B Main Results

In this section we restrict our attention to the model composed of only

four types of particles, denoted by A, B, C, and D, and give the interaction

parameters {s(a, b)}0ib by

(D.I) e(A, B) = s(B, C)-e(C, D) = e(D, A)

= cl«s2 = s(A, C) = e(J3, D).

It is easily seen that {e(a, b)} given by (3.1) satisfies the condition (C.2).

(In § 3 and § 4 we prove the various properties of correlation functions in models

satisfying (C.I) and (C.2).)

We call a contour F c0-large if |F|>c0ln |F|. Other contours are called

Co-small. We also call the c0-large contour which is not surrounded by any

other c0-small contours 66phase boundary". By these boundaries Fis divided

into several regions. When the type of particles in the inner boundary of the

region is A, we call it ",4-phase". The totality of "^4-phase" is denoted by

6A. Similarly J5-, C-, and D-phases are defined. We also denote the greatest
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connected component of 9a by 0™ax, and denote the longest boundary between

fl-type particles and 6-type particles by F™a
&

x.

Before describing our results we define the conditional Gibbs measures as

follows. Put

i V)-rB\V\\<pf\V\

and \N^:V)-rD\V\\<pl\V\}

and

NP = {teQv,A; \N^; V)-rB\V\\<pt\V\

and \N&:V)-rc\V\\<pt\V\}

where pf is the function of ft satisfying pJ(/J)/exp( — S^) | 0 as j6->oo. and

its precise definition is given in Section 3. We define the conditional Gibbs

measures Pjvy> and Pw«> by

(2.1) P»P(-) = Pr.A

(2.2) PN?\-) = Pv,A

Let {£FdOFj/4} be the sequence of events. We say {Ev} occurs asymp-

totically with Pjyjo -probability 1 if

. + a s — . 0 0

and denote it by

Ev a.w. Pjv£?>-prob. 1 .

We state our results in the following two theorems.

Theorem 2,1. For sufficiently large ft, the following l)-5) are satisfied

asymptotically with P^^-prob. 1 ;

2) \

3) ||0f"l-'-Bl^ll<r"l^
\\0F*\-rD\V\\<0-'\V\

for each a satisfying 0<a<2,

4) | |
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5) 0£axn0(30rx)=0

where fc0(j8) = (8M0 + l)/(j8fi1-u0), w0 = ln6 + 2/c0, c0<l/21n3, and Na(0a) is
the number of a- particles in Oa.

Theorem 2.2. For sufficiently large ft the following l)-5) are satisfied

asymptotically with PNw-prob. 1 ;

1) \\0A\-(l-rB-rc)\V\\<e-*"i\V\

\\0B\~r,\V\\<e-*"i\V\

\\Oc\-rc\V\\<e-*"i\V\9

2) \NJ(

3) \\eW
l|0rx|->'c|J /ll<£-a|F| for each 0<a<2,

4) l|rj

5) l |rj

6) rjE

§ 3. Properties of Correlation Functions

In this section we treat the system satisfying the conditions (c.l) and (c.2)

in Section 1.

For a given admissible family of contours (f 1?..., fs) in V9 the correlation
function T^Cfj,..., fs) is defined by

0.1) W/V.., rs)=pViA(@(r1,..., rs)),
where

We say the family of contours whose outer conditions are A in F(ri5..., Fs)
"mutually disjoint" if there exists at least one configuration <;eQViA such that

Fl5..., Fsecout. We also say the family of contours in Z2 "mutually disjoint"
if it is "mutually disjoint" in Ffor some large V.

For a mutually disjoint family of contours of type A (rl5..., Fs) the cor-

relation function of outer contours pVtA(rl,..., Fs) is defined by

where
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These correlation functions satisfy the chain of equations as follows,

(3.2)

A, 2,,..., 2k)

if s>\

where the sum Xr1,! takes over all the /c-ordered pairs of contours of type A

such that each A{ intersects rl and the sum XFZ) takes over all contours A of

type A which surrounds the contour Fr.

Let Nk be the set of all /e-ordered pairs of /t-type contours (F !,..., Ffc)

mutually disjoint in Z2. Put

where </)k: Nk-*R and

|| * ||= sup [ sup l^f,,..., rj |nexp(/J JB(r,))2-l r ' l] .
*^i (r, . . . . . r f c)6Ni i=i

Then ^/f becomes a Banach space. Let /4 be the linear operator given by

(3.3)

,..., rs,
if

where the sum Zz1^ takes over all /c-ordered pairs (Al9...,Ak) such that

(F2,...,FS, Zj, . . . , Ak)eNk+s_l and each Am intersects F19 and the sum Zj^

takes over all contours of type A such that (F2,..., Fs, A) e ATS and /I surrounds

Then the correlation equations in Z2 is expressed in the following equation

on ^,

(3.4) p = Ap + A

where /I is the element of „# given by
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) if s = l

otherwise.

When the norm of A is smaller than one, the equation (3.3) has the unique

solution. We call its solution "correlation functions in Z2".

We state the various properties of correlation functions in the following

several lemmas. The proof of lemmas will be given in Section 4.

First of all we give the estimate of TK^(/\,..., Fs) from above.

Lemma 3.1.

TKM(f „..., f5)^ n exp(-j?E(f,)).

As for the correlation function of outer contours, we have the same estimate.

Lemma 3.2.
_ _ 5

Pv,A(r!)•••> ^s) = II GXP(

Let XV,A be the linear operator on ̂  given by

f tffc(f i
= 1 0

(f)k(r !,..., f fe) if (f !,..., f k) is admissible with (F, A)

otherwise,

From Lemma 3.2. we have #F,/JPK,/I e Jt . Further the correlation equations

in V is expressed in the following formula

(3-5) XvtAPv,A = Xv)A^Xv,APv,A + Xv,A^ •

Concerning the estimate of \\A\\ we have the following lemma.

Lemma 3.3. For sufficiently large f}, we have

\\A\\<\.

From this Lemma we have the unique solution of (3.4), and denote it by

PA('\
Next, we estimate the following differences between correlation functions.

Let F! c V2 be two finite subsets of Z2. Put

~ Xv,APv,A

Lemma 3.4. For sufficiently large ft the following estimate holds,
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2)

where c} is some absolute constant, e = MinajbeSe(a, b), a(F) =

d(Vl9 V2) = dVl\dV2, and d ( F { , . . . , Fs; d(Vl9 K2)) is the distance between [F,,

By using this lemma, we have the clustering property of correlation functions

of outer contours.

Lemma 3.5e For sufficiently large /?, the following estimate holds,

where c2 is the absolute constant.

As for the correlation function TF</4(F l5..., Fs), we have the similar pro-

perties. Let Kj c: V2 be two finite subsets of Z2.

Lemma 3.60 For sufficiently large /?, the following estimate holds,

IV1^)-V2,4(ni<c3a(f)exp[--(3/4)^(r5 d(Vl9 F2))]

whenever F is admissible with (I7
l5 A), where c3 is ^/te absolute constant,

Similarly to Lemma 3.5, we have the following lemma.

Lemma 3,1. For sufficiently large /?, we have

c4a(r iXf 2)exP [-(3/4)^^^ r2)]
whenever (F1, F2) is admissible with (F, A) and v(r1)f]v(r2) = 0, where c4

is the absolute constant.

§ 4o Proof of Lemmas

In this section we give the proof of lemmas stated in Section 3.

First we prove Lemma 3.1 in the case of s=i. We define the mapping

fj from ^(F^ to QVtA as follows. When ce^^) is denoted by

is given by

where {Jl5...5 2m} is the totality of contours included in 0^) and {Al9...,
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is the totality of contours included in V\w(ri). It is easily seen that #fl is

one-to-one as the mapping from &(T \) to Qv A and

By using the facts above, we have

I exp {-££/„(£)}= exp {-^(A)] L exp {-
£e.#(ro s'e^(ri)

<cxp{-J8£(f1)} I cxpi - j
£<=Q^,.4

Hence,

In general case, we can prove it by composing the mappings gr 15..., gTs.

In the same way we can prove Lemma 3.2.

Before proving Lemma 3.3. we prepare the following lemma which will

be used many times in the sequel.

Lemma 4.1. For sufficiently large /?, the following estimates hold,

2)
f.-rs

3)
r

4) Z a(f ) ̂  const. |0| exp ( -
r:Tc0

/i /s the absolute constant and e = Mine(0, b).

Taking into account the fact that

we can prove this lemma by the standard argument.

Proof of Lemma 3.3. When ||$|| <1, we have

(4.i) \4>k(r ,,...,
i=l

for all k and any (F l5..., fk)e]Vfc. From Lemma 4J and (4.1), we have
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k

i flcnv+i z a(n\;:rso p=i r : r 3 o , i r i>2 f l )
CO / 15

+ rf, S expf --y_

for sufficiently large /?. Therefore Lemma 3.3 was proved.

Before proving Lemmas 3.4-3.6, we prepare the following lemma. For a

given subset S of Z2, we define the Banach space ^(S) by

{4M^ie^; ||*IL,(s,<oo]
where

ll*IUS) = SUp[ SUP |
k^4 ( f i f . . . , f k )

Lemma 4.2. 1 ) // 0 e ^f (S), f fcgw A^ e ~//(S).

2) MIL/r(S)< 1 for sufficiently large /?.

We can prove this lemma by the similar way to the proof of Lemma 3.3

of [2].

Now we prove Lemma 3.4. From the following two correlation equations

(4-2) X

(4-3) X

we have

(4-4) n

where

In the similar way to the proof of Lemma 3.4 of [2], we have the following

estimate of tVltV^A(rl9...9 fs),

<d2 fl fl(f,)exp(— f jSa/OV d(Vl9 K2))
i=l \ — /

where d2 is the absolute constant. Hence, CK,^,^^^^ ̂ 2))
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From Lemma 4.2 and (4.4), we have

Therefore the first assertion of Lemma 3.4 was proved. In the same way we

can prove the second assertion.

Proof of Lemma 3.5. From the definition of correlation functions of

outer contours, we have

From Lemma 3.4, we have

The proof of Lemma 3.6 is divided into following two cases.

Case I. o(r)^A.

In this case f cannot be the outer contour. As F is surrounded by some

outer contour rl9 we have

By using this formula, we have

+ Z
f1:0(r1)=^,0(r1) = 0(r),0(

From Lemma 3.4, the first term is estimated as follows.

_ Z a(T x) exp[-^-^(rl3 d(Vl9 F2))'.0(rl}=A9v^e(rl^e{r) L 4
r.acFt.Fz))-!

Z e-^l^P Z a(r\)
p=i r1:r l3o,|ri|>2(d(r,a(F1,F2))-p)

Z s-O/W-p exp [-^(^(r, ^(F15 F2)) -
P=i

--^^r, 5(Klf F2))
p=i
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By using the same argument as in the proof of Lemma 3.4 in [2], we have

/ 2 ^ z _ z
^ e x p - WCF, d(Vl9

k=l

1; F2))

From these estimates the assertion of Lemma 3.6 is proved.

Case IL o(T) = A.

In this case TFj/1(F) is expressed in the following formula.

By using this formula and the same argument in Case I, we obtain the assertion

of Lemma 3.6,

Finally we prove Lemma 3.7. The proof of this lemma is also divided into

following two cases.

Case L o(Fl) = A or o(r2) = A.

Case II. o(F^A and o(

Case L o(Fl) = A or

When o(r1) = A, we have

From Lemma 3.6, we have

[-|-/Jed(r1, r2)]

II. o(f 0 7^ ̂  and o(f 2) ̂  A.
As both rt and F2 are not outer contours, there exist outer contours which

surround /\ and F2. We denote the set of all contours of type A which sur-

rounds FI and does not surround F2 by C^F^ F2). For each F e C1(F1, F2),

we denote the set of all configurations in &(Fl9 F2) which contains F as an outer

contour by ^1(Fl, F2; F). We also denote the set of all contours of type

A which surround I\ and F2 together by C2(Fl9 f 2). For each F 6 C2(f 19 F2),

we denote the set of all configurations in ^(Fls F2) which contains F as an
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outer contour by ^2(T? ^2 1 O- Then we have

z

Further we denote the set of all contours of type A which surround F1

and intersect with F2 by C3(Fl5 f2). For each Fe Ct(F 1? F2) U C2(f 15 F 2)

U C3(Fl5 F2), we denote the set of all configurations in 38 (T ̂  which contains

F as an outer contour by @(T \ ; F). Then we have

f)+ Z
reCi(ri,r2) reCzCr^rz) r6C3(r,

Hence, we have the following estimate,

Z \
r6c2(r1,r2)

We denote the first, second and third terms in the right-hand side by Il9 /2,

and 73. We estimate them seperately in the following.

First of all we estimate the first term I{. From Lemma 3.6, we have

^ Z exp ( -

p=l

p=l

1> r2) (
/ p=i

Here we have used the fact that the number of points satisfying rf(Tl5 0<

d(F1, r2) — p is at most
d(rltr2)-p

Z (1^1 + 8m).
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Next we estimate the second term. As \F\>2d(Fi, F2) for each F e C2(Fl9

F2)9 we have

I2<2d, fei exp (-/fefcXf Ja(r 2) exp (- -f-/ted(rlf F2))

As for J3, the similar estimate to 72 is obtained. Hence, we have

-^-jBed(r,, F2)l

whenever t>(r,) H u(f2) = 0, where c4 is the absolute constant.

§ 5. The Expectation Value and the Variance of the Number of Particles

In this section we estimate the expectation value and the variance of the

number of particles by using the correlation functions.

We prepare some notations which will be used in this section. We say

Fj is congruent to f2 if o(f1) = o(F2), /(f1) = z(r2), and Fl is superimposed on

F2 by translation. A congruent class is denoted by y, and the set of such con-

gruence classes is denoted by F.

If Ft is congruent to F2, then

From the standard argument, the expectation value of Na(£: V} is given by

\V\-
y : o ( y ) = A f e y

(5.2) <Na>KM=

where <«fl(y)> is the expectation value of Na(£: v(y)) in the ensemble

Put

= Z
y:o(y)=a

and pf * = 1 — pf . From the symmetry of interactions pf = p*(^) is independent

of a, and pf (/0/exp ( - 3j5e) | 0 exponentially as /?-»oo, where e = Min(e(a, fc)).

From Lemma 3.7 and (5.1), we have
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< Z I7l2{ Z \pv,A(r)-pA(y)\+ Z
y:o(y)=A rey Fey

y:o(y)=A fe = l

where x(F) is the left most lowerst point in F. Hence, we have

where

Fi(P) = 2 Z_ |y|36?£r^y>, F1(j8)/exp(-3j8e)iO as ft > oo.

Put

p*= Z (nb(y)ypa(y) (a^b).
y:o(y)=a

Then pj is also independent of a and b. From Lemma 3.7 and (5.1) we have

(5.4) \<NbyVtA-p%\V\\

<_ oZ=^<«*(y)>{ Z ^v^-P^ + ̂ -.^y^vt

<p,mdv\.
As for the variance of NA( •; V), we have the following formula.

(5.5) DYtA(NJ= Z £(^(7')) Z Pv,A(r)
y:o(y)=A Fey

x _Z
Lieyi
T2ey2

+ Z
y:o(y)=^ Fey

By using Lemma 3.7 we have

(5.6) \DViA(NA)\

< Z
71=^72

o(yi)=o(v2)=^

+ 2 Z

+ 2|F|
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where F2(/?)/exp( — 3/te) | 0 exponentially as j5-»oo. When b = A we have

(5.7) DVtA(Nj = £ D(nb(y» Z PF,^)
y:o(y)=A Fey

> Z {pv^i,r2)-pv.A(rjPvjr2)}

+ E <%60>2 Z Pr^CO (1 - Pv,A(r)) •
7:o(y)=yl Fey

By the same way we have

(5.8) \Dv,A(Nb)\<F2(ft\V\.

We summurlze the above estimates in the following.

Proposition 5oL For sufficiently large /?, we have

2)
3)

4)

Fl(P)~F2(P) and F1(^)/exp(-3j5s) | 0 exponentially as

§ 6a The of PriA(N^) and FF,^(]¥^2)) from

From now on we restrict our attention to the model composed of four types

of particles satisfying the conditions (c.l) and (D.I).

By using the properties of correlation functions we estimate the probabi-

lities Pv,A(N(
v
l}) and PVtA(N(^) from below. Let /\ and F2 be the two

squares with the breadth of r|/2|F|1/2 and r|/2|F|1/2 arranged as in Figure 3.

Put r^(Fl9A9B)9 F2 = (r2,A,D) and uf^eO^: f l9 f2e^ou t}. Let

Pjr(') be the conditional probability PViA( • \*#), then

(6.1) Pv.A(NW ^PV,A(^)P^(N^) .

We first estimate the probability P^N^) from below. Put V2 = 0(r±),

V3 = 0(r2\ and V1 = V\(w(r1)Uw(r2)). Let ̂  be the subset of Jl given by

2, and

It is easily seen that ja/1cJV^1) for sufficiently large jS and F. Therefore,

(6.2)
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By using the Chevyshev's inequality, we have

(6.3) Pri.A(\NA(t: V1)-pr\V1

Similarly, we have

Hence, P^(N(y^)>9/\0 for sufficiently large ft.

Next we estimate the probability PVtA(^?) from below. We can express

PY,A(^} as follows.

(6.4) Py

Taking into account the fact that

(6.5)
OE(y) f e y

r<^v

and putting Et(y) = tE(y), we have from (6.4)

(6.6) In Py,AM = -4psl(r}/i + ryi)\V\^ +

" - - l n ZVltA(t) + - l n ZY,iA(f)

y

+ z TKlXJ(r)+ z vs>xxo- E ,
Tey Fey Fey

r<=v2 r<=v3 rev

Here we have used the fact that Zv>a is independent of a from the symmetry of

the interactions.

We first estimate the second term in the right hand side of (6.6) as follows

by employing the properties of correlation functions obtained in Section 3,

z TKl.x/r)+ s *v>,A,,(n+ z ^3,A,,(D- ETey Fey Fey Fey

< Z 1̂ ,̂ (0-̂ ,̂ (01+ Z
Fey Fey
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, , , , . .
Fey Fey Fey

F<=K 3 FGF FCF
FintersectFi F intersectF2

< const.

If we fix /? sufficiently large, then the following estimate holds for sufficiently

large V,

where m(/?)/exp( — S^eJ J, 0 exponentially as /?-»oo.

We summurize the above estimate in the following proposition.

Proposition 6.1. If we fix ft sufficiently large, then the following estimate

holds for sufficiently large V,

exp - j f i l r + - m

w/rere m(j8)/exp( — S^Sj) | 0 exponentially as /?-»oo.

Next we estimate the probability PF>^(]V^2)). Let Fj and F2 be the two

squares with the breadth of 0*B+rc)
1/2(F|1/2 and r£/2|F|1/2 arranged as in

Figure 3. Put f t =(r i? A, 5), f2 = (r2, 5, C), F3 = 0(F2), F2 = 0(F1)\w(F2) and

Fj = F\w(F1). Let Jf be the set of all configurations such that F^ e ^out,

F2e£, and every Fe^Fj does not surround F2.

( i )

F, Fz

( 2 )

Figure 3.

Let P^( - ) be the conditional probability PViA( • \JV\ then

(6.7) P

Let jaf2 be the set of Jf given by
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then J2/2 ^ -N*?* f°r every sufficiently large and V. Theorefore we have

(6.8)

In the same way as we obtained that P^(N^)^9/109 we have

(
F

2)) ^ 9/10 for sufficiently large ft.

We also have the following estimate of PV,A(^} by the same way as we have
obtained the estimate

where m(/?)/exp( — B/teJ I 0 exponentially as /?-»oo.
Hence we have the following.

Proposition 6.2. If we fix ft sufficiently large, the the following estimate

holds for sufficiently large V,

>-^-exp[{-4/te1((rB +

where m(/?)/exp( — 3^8^ J, 0 exponentially as /?->oo.

§ 7. Proof of Theorems

In this section we give the proof of theorems by estimating the length of

phase boundaries and the number of particles in each phase.

The following proposition performs an important part of the proof.

Proposition 7.1. For sufficiently large ft and V, we have

< C exp [ - (q(ft)t2k112 - 8/tej) | V\1/2]

for any t>Q and /c>0 (i = l, 2).

<Cexp [-(

for any £>0 and k>Q (i = l, 2), w/iere 6a is "a-phase", Na(-; 9a) is the number

of a-particles in 9a, and q(ffy/Qxp (lft&^) t °o exponentially as jS-^oo.
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The proof of this proposition is decomposed into several steps. We first

estimate the probability of the following event mFjCO with respect to PV,A('\

ViA; _sup |F|<c0ln|F|}

Lemma 7.1. For every sufficiently large /?, the following estimate is

satisfied:

Proof. From Lemmas 3.1 and 4.1, we have

PV,A(™CV,CO)^ Z PViA(n
r-.o(r)=A

Let &V,A,CO b£ tne set of all families of type A c0-small contours ^ = (rlv.., Fs)
such that w^j),..., w(Fs) are mutually disjoint.

We introduce the probability measure PV,A,CQ('} as follows

where

Z9,fl=

Let 9 be the set of V satisfying |0| >fc|F|. We denote the number of outer

contours F which belong to y under the configuration £ by N(y; £). We now

consider the asymptotic behavior of Na(£i 6) as |F|->oo under the condition

that all outer contours in 9 are c0-small. Put

^«;fl)=-mp7r Z \N(y;&- Z P^cni^i^-lvl
I17 1 y: co-small fey

Fc0

where A = l/5c0 and c0<l/21n3. Note that u^; 9) is determined by £out.

As for the estimate of WA(^; y), the following lemma is satisfied.

Lemma 782. For sufficiently large /?, we have

(7.1) Pe>^«; 0)> T9 N(y, 0 = 0 /or aH enlarge y)

c(j8)/exp (2/tei) t oo exponentially as /?-»oo,
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The proof of this lemma is given in the appendix.

From Lemma 7.1 we have

(7.2) ZVjAfCJZViA>9/W for sufficiently large ft.

Taking into account (7.2), we have the following lemma from Lemma 7.2.

Lemma 7.3. For sufficiently large ft and V, we have

(7.3) P9.A,Mt ; 0) > T) <^j- exp ( - c(ft)TW2\ V\^} .

We prepare the following standard argument of probability theory.

Lemma 7.4. Let Xl9...9Xn be the sequence of independent random

variables and assume that R^x) = <exp (xfa)> exists for each i and a. Further

we assume that

|.
COL2

Then we have,

Prob(|Z1 + --. + ̂ rj-s| >x)<2exp(-x2/2e),

where c=Z?=i ct and s=Z?=i <^>-

We take a family of outer contours (f 15..., Fs) satisfying u^({F1,..., fs}; 9)

<T9 and denote the conditional probability measure under the condition that

the totality of outer contours is (ri9...,Fs) by P(f,,...,fs)- By using Lemma
7.4, we have

(7.4) Pcn,..^!^; ̂ )

2 Z N(y;rl9...9 Fs)\V(y)\2

y'- co-small

As «*(/*!,..., Ts; 6}<T, we have

(7.5) Z N(T,r,,...,rs)\v(yW
y : co-small

y: co-small

,
F: Co-small

Tc0

(r1,...9 rs; _
F:co~small

Z |y|4
y:co~small



PHASE SEPARATIONS IN LATTICE MODELS 297

where s(/?)/exp( — 3fei) I 0 exponentially as /?-»oo.
From (7.4) and (7.5), we have

(7.6) F ( f i ..... rs)(|AU£;

^ 2 exp ( - (f2 /

From the definition of wA(r i ? . . . , fs;), we have

(7.7) |<Nx>(fli...ifJ-<Nx>M.Co|

< Z IMr/Y.^r j -Z
y:co-small Fey

j i _
r:co"small

<MAwA(f1 , . . . ,f s :
y : co-small

For a given £>0, we choose the number T>0 satisfying t> 22/10 T MA

and T> 1/3 r. Then we have

(7.8) P9.A.
<

From (7.3) and (7.8) we have

(7.9) /Y^c0(l^« ; 0) - <NX>

< const. exp(-

where ^/(Wexp(2jSe1) t oo as j5->oo.

Taking into account the estimate

(7.10) |<A^>MiCo-pr|0||<W^

we have the following lemma from (7.9).

Lemma 7.5. For sufficiently large ft and V, we have

(7.1D P*,A

where ^(j9)/exp(2^e1) t oo exponentially as /?-»oo.

From Propositions 6.1, 6.2, and Lemma 7.5, Proposition 7.1 is easily proved.

Next we shall estimate the length of the totality of phase boundaries A.

Let MTtk be the set of all configurations such that A is composed of /c com-
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ponents and |/t| = T. As the length of each phase boundary is greater than

c0 In |F|, k must be smaller than T/c0 In \V\.

By using the similar estimates stated in Sections 3 and 4, we have

(7.12) PViA(MTik)<42k2T3T exp (-/teiT

Put Mr = {£; \A\ = T}. From (7.12), we have

(7.13) /VM(Afr)<426rexp(-/fe1r-
<42 exp (-CSfi! -In 6)T>(2/c°>I71n|F|

< exp (( - pet + In 6 + 2/c0) T- ^So(T)) .

From Propositions 6.1, 6.2, and (7.13), we have the following Proposition.

Proposition 7.2. If we fix f$ sufficiently large, then for each t>Q and every

sufficiently large V, we have

2)

From this proposition we have

(7.14) M|<4(r

(7.15) MI<4((rs + rc)
1/2 + rp)|F|1/2 + /c0(^)|F|1/2 a.w.P<>-prob.l

where /c0(£) = (8w0 + l)/08fil - u0).

First we prove Theorem 2.1. Let r(jS) be the function of /? satisfying

r(j8) - exp ( - 3j8fij). If 1^1 > (1 + K£)KI F| (a =5 or D), then from Proposition
7.1 we have the following estimate

(7.16) Na(£ ; 0fl) > p** rfl(l + r(£))| F| - r(^)i/4| FP/^

>ra\V\ + l/2rar(fi\V\ a.w. Pwc

for sufficiently large /?.

On the other hand,

(7.17) NJtS; V)<ra\V\+pf\V\ for any

Because 1/2 rar(f})>pf((}) for every sufficiently large P, (7.16) is inconsistent

with (7.17). Hence,
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(7.18) \Oa\<(l + rW)r.\V\ a.w. Pwc.>-prob. 1 (a = B or D)

If|0J<(l-r(/0)r.mthen

From Proposition 7.1, we have

Na(£l V 9b)<2pf\V\.
b=f-a

Hence we have

(7.19) Na(t; V)<(l-r(^ra\V\+2pf\V\

<ra\V\-H2rar(p)\V\

for every sufficiently large /?.

On the other hand,

(7.20) Na(£; V)>ra\V\-pf\V\ for any {e

Because (l/2)rflr(j8)>p*(/J) for every sufficiently large /?, (7.19) is inconsistent

with (7.20). Therefore, we have

(7.21) |

From (7.18) and (7.21), we have the following lemma.

Lemma 1,6* For sufficiently large /?, we have

(7.22) \\Oa\-ra\V\\<r(p)\V\ a.w. PNp-prob. 1,

where r(/?)~exp( — S/tej).

Let 0^ax be the largest connected component of 0fl. Put fl"m = 0fl\0?™.

Put /c(j8) = ra (0<a<2). If |0ff"|<(rB-fcG8))|7|, then |0ff»| > 16/25 fc(£)|F|

for every sufficiently large /?.

Taking into account the fact that the plain figure with the area of N which

has the shortest boundary is the square with the breadth of N1/2 for a given

number N > 0, we have the following estimate

(7.23) |00

for every sufficiently large p.

From Lemma 7.6, we have ia0B|>4(rD-r03))1/2|F|1/2. Hence,
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(7.24) \A\

a.w.P*o>-prob. 1.

On the other hand, from (7.14) we have

a.w. P<>-prob. 1

Because (7.24) is inconsistent with this, we have

(7.25) |0rxl >(rB- ktJWW a.w. Pj^-prob. I .

By the same way, we have

(7.26) \OV\>(rD-km\V\ a.w. P^>-prob. I .

As 0f ax and 0gax are connected subsets, the following estimates are easily

obtained from (7.25) and (7.26),

r \de^\>4^2\v\^2-k(ft)\vv'2
(7.27) \ a.w.P^-prob. 1 .

We shall prove

(7.28) |a0fax|<4rV2|K|1/2 + 2/co(^)|K|1/2 a.w. PNu>-prob. 1.

If |6)0rxl^4rV2|F|1/2 + 2/c0(^)l^r/2
9 then from (7.27) we have

a.w. P^c

This is inconsistent with (7.14). Hence (7.28) is proved.

Next we shall prove Theorem 2.2. Let r(/?) be the function of fl satisfying

~exp(-3££l).

In the similar way to the proof of Theorem 2.1 , we have the following lemma.

Lemma 7.7. For sufficiently large $ and F, we have

I \Oa\-ra\V\\<r(P)\V\ &.w.PNp-prob. 1 (a = B or C).

Let k(p) be the function of ft satisfying /<(^)-exp(-2^e1)- If ^Jffl^
2, then

This is inconsistent to the assertion of Proposition 7.2. Hence, we have
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(7.30) ry5£4{(rB + rc)"
2-k(P)}\V\1'2 a.w. P^-prob. 1.

By the similar way we have

(7.31) r^^(r\J2-k(fi)}\V\li2 a.w. P*(

Hence the third and fourth assertions of Theorem 2.2 are proved. The fifth

assertion is trivial.

Appendix. Proof of Lemma 7.2

Let E'( - ) be any function defined on P . We denote the Gibbs measure on

&O,A with respect to E'( • ) by PQ,A,E'- Then we have the following for a given
family of nonnegative integers {c(7)}^:co_small,

(A.I) P0,A,E'(N(r.& = c(y) for all co-small y,
and N(y\ £) = 0 for all c0-large 7)

II (Z,(7Mm.E' exp (-
y:co-small

where N({c(y)}\9) = #{£EQetA', N(yi £) = c(y) for all c0-small y and N(y\

= 0 for all c0-large y}. From (A.I) we have

(A.2) N({c(y)} |fl)^ZMi£- II (^
y :co-small

When £(•) is the function on F given in Section 2, we write Pe,A,E = Pe,A •
From (A.I) and (A.2), we have

(A.3) P9iA(N(y-^ = c(y) for all c0-small y

and JV(y; 0=0 for all c0 -large 7)

^ exp [inf {In Ze^E, - In ZQ^E -ft £
£' y: co-small

- £ 0(7) (In Za(y)fl.(y )§E. - In Ze(y)f,(y)fE)}]
y :co-small

where J £(y) = E'(y) - E(y).

We denote the terms in the bracket { } in (A.3) by Fe>A>E(E'). Then by

using correlation functions F0 ^ E(£') is expressed as follows,

(A.4) Fa>A^E')
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E'=E+xAE

Fey

7 fey

+ j8 E c(y) E Z
yerc

- Z

where T^ = {y e I1 ; o(y) = J} , Ty = {y e T^ ; 7 : c0-small} .
For any contour y e T1^0, put

(A.5) s(y)
reji,r

Then /j+^+Jj is expressed as follows,

(A.6) /J+/4+/5

j8 Z Z
rerAA:A=>

P Z . Z

8(7)



PHASE SEPARATIONS IN LATTICE MODELS 303

Z Z
SrArsrA:r^

Z E^er^

Z

As — 16 is the sum of variances of some quantities, I6 ^ 0.

By using the clustering properties of correlation functions, we have

(A.7) |J2| + |J3|

g/?2 z { _ z \t9.A,E'(rltr^

o,A,E'(r1, f2)

Z e-
y,T<=0

- Z
yi¥=y2:co-

Z

y : co-small

where A^^p2 exp (-

Hence,

(A.8) F

' small

+ j8 E s(y){AE(y)+ E
yerco ^c^(

We take the following restriction on E(y)
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(A.9)

where 0<i«IK)1/20. Put

y :co*small

We estimate the right hand side of (A. 8) under the condition (A. 9). First

we have

(A.I 1) |the sum of first and second terms in (A.8)|

where X(/?)/exp( — 2^e,) | 0 exponentially as /S->oo. The third term in (A. 8)

is estimated as follows,

the third term in (A. 8)

iT
I y I

A |^| 1/4

where fiA(P)~B(f$). Hence, we have

ther.h.s.of(AJ)^-/»^

Put

Hence, we have

(A. 13) P9>A(N(yi £) = c(jO for all c0-small y and JV(y; ^) = 0 for all c0-large?)
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inf

and

inf
0<»/<fc 1 / 4 | F | 1 / 2 0

[ -A(P)k*'2\V\l'lQ, otherwise.

By using this estimate we have

(A.14) PetA(ui(t',0)>T and tf(y; £) = 0 for all c0-large y)

<7VCo[exp{

where Nfo = ft{{c(y)}; sA(0)>T}. By the standard argument, we have

Wro^exp(241n|FHF|c° ln3).

As c0 In 3 < 1/2, we obtain the assertion of the lemma.
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