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Linear Radon-Nikodym Theorems for
States on a von Neumann Algebra

By

Hideki Kosakr*

Abstract

Several linzar Radon-Nikodym theorems for states on a von Neumann algebra are obtained
in the context of a one parameter family of positive cones introduced by H. Araki. Among
other results, we determine when a normal state ¢ admits a linear Radon-Nikodym de-
rivative with respect to a distinguished normal faithful statc ¢, in the sense of Sakai, that is,
& =hg,+¢oh with a positive 4 in the algebra.

§0. Introduction

We consider a von Neumann algebra on a Hilbert space admitting a cyclic
and separating vector. Making use of the associated modular operator, [9],
Araki introduced a one parameter family of positive cones. Several Radon-
Nikodym theorems are known in the context of positive cones ([1], [4], [5]) in
which “Radon-Nikodym derivatives’’ reduce to the square roots of measure
theoretic Radon-Nikodym derivatives provided that the algebra in question is
commutative.

In this paper we obtain three linear Radon-Nikodym theoremns (Theorem
1.5, 1.6, 1.7). Our proofs are very constructive so that we obtain explicit ex-
pressions of linear Radon-Nikodym derivatives.

Our main tools are relative modular operators and the function {cosh (nt)}~*
which was used by van Daele to obtain a simple proof of the fundamental
theorem of the Tomita-Takesaki theory, [12].

§1. Notations and Main Results

Let .# be a von Neumann algebra on a Hilbert space 5# with a unit cyclic
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and separating vector £, with the vector state ¢o=w;, and 4, J be the as-
sociated modular operator and modular conjugation respectively, [9]. Fixing
these throughout, we denote the modular automorphism group {Ad 4i'},.g on
4 simply by g,. Let.#, be a o-weakly dense *-subalgebra consisting of every
x € .# such that t e R—o,(x) € .# extends to an entire function.

The following one parameter family of positive cones was introduced by
Araki:

Definition 1.1 ([1]). For each 0<a<1/2, we denote the closure of the posi-
tive cone 4*.4.&, in # by P*(=Pj)). These cones enjoy the following
properties:

Proposition 1.2 ([1]). For each 0=a<1/2, we have

(i) Pr=Jpt/2me=(p/2=ey (={les; ((|£)20, (e PU/2=}, the dual
cone),

(ii) Prg2(41/2-22) gpd AM/2=220=](, { € P*,

(iii) the map: Ee P'*—w. e 4% is bijective.

By (iii) in the above proposition, each ¢ € .#} admits a unique implement-
ing vector in P/, the natural cone, which we will denote by &, that is, ¢=w,,.
Then a positive self-adjoint operator 4,,, on # with a form core .#¢, satisfying
JAYE xEo=x%¢,, x € M, is known as the relative modular operator (of ¢ with
respect 10 ¢,). Also, a partial isometry 4i, A5l =(D¢; Do), teR, in 4 is
known as the Radon-Nikodym cocycle (of ¢ with respect to ¢,). (See [3] or
§ 1 of [5] for full details.)

In the first main theorem (Theorem 1.5), we need the following concept:

Definition 1.3 (One parameter family of orderings, [3]). For A>0, we
write ¢ < do(2) if the map: te R—(D¢; Dg,), extends to a bounded o-weakly
continuous function on —A=<Imz<0 which is analytic in the interior and
|(D¢; Dpo)_i;[I=1. 1t is well-known that ¢ =Z¢py(1/2) is equivalent to ¢=¢,
in the usual ordering in .#,, that is, ¢(x) < po(x), x €4,

The next lemma is our main tool in the paper.

Lemma 1.4. Let f(z) be a bounded continuous function on 0<Rez=<1

which is analytic in the interior. We then have
f/2)= Sg_o {f@)+f(1+it)} {2 cosh (nt)}~1dt .

In fact, it is well-known (see p. 208, [8] for example) that the pair (P,
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(a+ i, ) =sin (na)/2{cosh #(t — f) —cos na}, P,(a+ if, t)=sin (na)/2{cosh n(t — f)
+cos mae}) gives rise to the harmonic measure for the strip 0OSRez=<1. And
both of Py(1/2, t) and P,(1/2, t) are exactly {2 cosh(nt)}~!. Since we use this
result repeatedly, we shall denote the function {2 cosh (nt)}~! simply by F(z)
throughout the paper.

We now state our three main results. The first one is a slight strengthening
of the result in Section 6, [1]. However, more importantly, we obtain the
explicit expression of Radon-Nikodym derivatives.

Theorem 1.5. Let ¢ be a normal state on # and 0=Sa<1/2. If ¢=I¢,
(Max (o, (1/2) —a)) for some 1>0, the vector

Co=|" FOA029(D: Dgo)*i(112)- 0/ (Db: D021l yds

in P* satisfies p(x)=(x{,|&o)+ (x| L,), x €.

For the special value of o=0, the assumption in the theorem is exactly
¢ =I¢, in the usual ordering. Furthermore, {, e P? is written as {,=hé, with
hzgoo F(t)o(|(Dg; Dpy)-;i/212)dt € .# so that we have ¢=heoy+Poh, which is
Sakai—’c;J linear Radon-Nikodym theorem (Proposition 1, 24, 4, [7]). As the
second main result, we prove

Theorem 1.6. Let ¢ be a normal state on 4. Then ¢ admits a (unique)
linear Radon-Nikodym derivative he #,, that is, ¢ =hoy+ Ppoh, if and only
if <l¢o with some 1>0. Here, ¢ € 4% is defined by

§= S: F(t)oo,dt .

Furthermore, if this is the case, h is exactly |(D§; Do) ;1| =(D; D)%), -
(D$; Do)—ijp- (See also Lemma 4.1.)

In the next result, we further assume that ¢, is periodic in the sense that

or=1d for some T>0 ([10]). When ¢=hoo+pohe.#% (he.# ), for each
positive x in the centralizer .#s  ([10]), we estimate

B(x)=do(xh) + ¢po(hx) =2¢o(x/2hx/?)
=2[hldo(x).

Our third result asserts that the converse is also true.

Theorem 1.7. Let ¢ be a normal state on .#. When the distinguished

¢o is periodic, ¢ admits a linear Radon-Nikodym derivative as in the previous
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theorem if and only if ¢<Id, on M4, the centralizer of M, for some 1>0,
that is, p(x) < lgy(x) for each positive x € My,

The rest of the paper is devoted to the proofs of these three theorems. We
denote a generic normal state on .# by ¢ and the distinguished ¢, is supposed
to be periodic only in the proof of the last theorem.

§2. Proof of Theorem 1.5

In this section, we prove two lemmas from which Theorem 1.5 follows

immediately.
Lemma 2.1. Let { be a vector in # satisfying
P(x)=(41P72xEo | 0), xe.
Then { belongs to P*. If we set

n=g°° F(HAa-20ul s

then n belongs to P* and satisfies

d(x)=(xn1&o)+(xEo M), xe. .

Proof. The cone 41/~ g &, being dense in P(1/2)~« (e P* follows from
the positivity of ¢ and Proposition 1.2, (i). Also, since P* is invariant under
A=2a)it and F(1) is positive for each — oo <t< 00, n belongs to P* as well.

To prove the final equality, we may and do assume xe.#,. Firstly we
observe

£}

(xEolm={" F() ol 402010yt

—

[* Foao-muxg | par

-0

o)

F() (AY27%0 (1 _pyei((1)2)-0(¥)C0 | Ot

-0

= S:J F)P(0(1 - 2ay+i¢(1/2) - )(X))dt .

Secondly, by Proposition 1.2, (ii), we observe

(01| £0) = (J AP =20 x*Eq) = (JAUI22n | J 4112,
— (A 1/2x60 l A(1/2)—2zzn) — (A 1—21x60 I rl)

{7 Fo@2xgy | 4-0-200s
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—_ gw F(t) (A 1—21+(1—2a)i1‘x€o I C)dt

—00

= S " FO@OP0 iy -a)0 | DAt
= S: F(OP(0(1 - 20y —i((1/2) - (X))l .
Hence, Lemma 1.4 applied to f(z)=¢(a,(x)), w= —i(1 —20) (z— (1/2)), yields:
(x&o | M) +(en | £0) = oo(x)) = P(x). Q.E.D.
Lemma 2.2. If ¢<Ido (Max («, (1/2) —a)), then we have

P()=(4V272xE, [ (), xet
with

{=(D¢; D(bo)ﬁi((l/Z)—a)J(D(/); D)%y -
Proof. We simply compute

(497272x8o | O =((D@; Do) —i(1/2)-ayd P *xEo | (DD 5 Ddo)*10& )
=((D¢; Ddo)-i((1/2)-nyd VP 72xE | AYZ (Db 5 Do) —i0Co) -

Using the uniqueness of analytic continuation, we can easily prove

(D5 Do) —i((1/2y-ayd P 72xEo =A§,14{§)'“x§0 ,
(Dd; Do) -1&o=4% o 0-

Since (D¢ ; Do) _i,&o belongs to M E S D(44/2), we have &, e 2(4{2D+*) and

(A0~xxEq | )= (A2 *xEo | 4G4 *<E0)
= (A%foxfo | A%fofo) =(Jx*§¢ | 54;)
=6 x*Ep)=(x). Q.E.D.

§3. Proof of Theorem 1.6
The proof of Theorem 1.6 is divided into three lemmas.

Lemma 3.1. Assume that ¢=hdy+Pohe#L with a positive he.#.
Then for each x € 4 we have

doo ()= FOd(-x)ds
{7 FOse s

Here, the left hand side makes sense due to the K. M. S. condition, [9].
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Proof. By the invariance ¢q°0,=¢,, We compute
[" Fodo_par={" ($oo- i+ polho_ )} (i
{7 (@olxai(h) + gola WD

Thus, the result follows from Lemma 1.4 and the fact that ¢y(xo.(h)) is bounded
analytic on —1<Imz=<0 and ¢o(xo_;4(h)=¢o(0,(h)x) (the K.M.S. con-
dition). Q.E.D.

Lemma 3.2. For x, he.#., we have
0§¢0(xa—i/2(h))§ lAlldo(x).

Proof. We notice that

bo(xo _ija(h))=(x4'2h&, | o)
=(xJhJ&y | &o)

due to the positivity of h. Since 0=JhJ <|/h|| and they commute with xe.#,,
we have

0=(xJhJ¢o | Co) SN (xEo | E0) =11 Po(x) - Q.E.D.
Lemma 3.3. When

3={" Fopeodisig,,

we have ¢=h¢o+¢0h With h=|(D$; D¢0)_i/2|26c/”+ .
Proof. To prove ¢(x)=¢o(xh)+do(hx), we may and do assume that

x€.#, At first we notice that

(D(5§ Dd’o)—i/zfo =&5,

(D$; D¢o)—i/2)’~fo=(D4;§ Do) -i12d 41 2y*Eo
= (D‘$ > Dd’o)—i/z-lo'—i/z()’*)']fo
=Jo_;n(y*)I(Dd; Do) -i1280
=Jo_;n(yes  (YEM).

By using these facts, it is easily shown that
Po(hx) + do(xh) = §(;2(%) + 0 _/2(x))
{7 PO (#0210 + B0Vl

Thus, the result follows from Lemma 1.4 applied to the function



LINEAR RADON-NIKODYM THEOREMS 385

f@)=¢(0,(x), w=—i(z=271). Q.E.D.

§4. Proof of Theorem 1.7

The next lemma is obtained in [6] in a slightly different set up. However,
for the sake of completeness, we present its proof in our context.

Lemma 4.1. We have
3={" Fwseodizig,
if and only if for each >0 (hence all a) there exists a positive c=c, such that

S“ oodt < coo.

Proof. The “only if’” part is trivial since F(t) is a strictly positive even
function and monotone decreasing on [0, c0). To show the “if”’ part, we
assume that

S“ pocdt S ciy .

We compute that

© 0 2nt+1)a
S_mF(t)qSoa,dt: 3 S F(f)goo,dt

(2n—1)a

= 3 {7 P+ 2m0)00, gt

n=-—ao

IIA

3 elexp (x@Inl+ D)} $o0 3

=( 3 clexp (@(2lnl+ D)} Do
Q.E.D.

Proof of the theorem. Let T >0 be the period of ¢,. It is easy to observe
that

T
S odt=2Te,
-T

where & is a normal projection of norm 1 from .# onto the centralizer .#,
satisfying ¢qoe=¢,. (See [2], [10], [11].) By the previous lemma and Theorem
1.6, we know that ¢=heoy+¢oh if and only if @oe<1'¢py=1"chyoe, which is
equivalent to ¢ <1'¢, on Ay,. Q.E.D.
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