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Runge-Kutta Type Integration Formulas
Including the Evaluation of the

Second Derivative

Part I

By

Taketomo MITSUI*

Introduction

We are concerning with theoretical study of numerical integration pro-

cedure for the initial-value problem of ordinary differential equation :

(E)

(IV)

Many numerical analysts have been investigating the discrete variable methods

for the problem. Consequently everyone can enjoy to solve numerically or-

dinary differential equation in almost all computing centers. It seems as if we

got the numerical integrator through the use of the computer. But the study

is yet continued for "better" numerical procedure.

Among the one-step methods, Runge-Kutta methods (RK methods, in

short) are popular because of the high accuracy and the feasibility of changing

step-size. In general the methods are expressed as follows. The solution of

(E) at x0 + h is approximated by

where
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h is the step-size and y0 is the approximated value at x0. This type of the method

is called (explicit) p-stage Runge-Kutta algorithm. According to the choice of

the stage number p and the parameters af, /?fj-, \i{ we have many variations,

among which the classical Runge-Kutta method or the Runge-Kutta-Fehlberg

method is famous. A distinguished contribution for the study of the Runge-

Kutta methods has been made by J. C. BUTCHER ([1] ~ [4]). He determined

the attainable order of the RK methods up to 10-stage formula. On the other

hand he introduced the semi-explicit (the summation is up to i instead of i — 1

in (*)) or implicit (the summation is up to p in (*)) formula.

RK methods (and perhaps many other quadrature formulas for the initial-

value problem) are constructed on the principle that the required function

evaluation is only forf(x, y), i.e. the first derivative of the solution. It is quite

natural because we are acquainted with the functional form of the first derivative

in the ordinary differential equation. Recently, however, some propositions

have been made to employ the function evaluation of the second derivative of

the solution. Functional form of it is given by

g(*> y)=fx(x, j>)+/,(*, y)f(x, y)-
M. URABE [15] made a first attempt to employ g(x9 y) by presenting an

implicit one-step method with step-size control strategy. Let y0 and y-1 be

approximations of y(x) at x0 and x0 — h, respectively. His algorithm employs

the predictor given by

and the corrector given by

yo^-i+^aoi/.-i+128/o+ii/o
(13^-4000-300,

240

where /, =f(x0 + ih, yj)9 gt =f(x0 + ih, yj)9 ft =f(xQ + h, j> 0 and g 1 = g(x0 + h,

j>0- Succeeding his result, J. R. CASH [5] has considered this type of formula

more generally and made some stability analysis. On the other hand H. SHIN-

TANI [12], [13] has proposed some formulas analogous to RK formula em-

ploying one evaluation for /(x, j;) and some for g(x, y). He has given the

values of the parameters appearing in the formulas up to the order 7. His

results, closely related to the present work, will be mentioned afterward.
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In this context another type of integration formula, for the origination of

which H. H. ROSENBROCK [11] is given credit, is now being developed. It

employs the partial derivative fy(x9 y) and is reported to have good stability for

stiff systems of ordinary differential equations ([7], [9]).

Here we shall examine an explicit (p, g)-stage Runge-Kutta type formula

including the second derivative. It requires p times evaluations for the first

derivative and q times for the second derivative in a similar manner for RK

methods. We are interested in the following problems.

(1) What is the attainable order of the (p, g)-stage formula from the

viewpoint of its local accuracy?

(2) How are the parameters in the formula determined?

(3) What formula is good for practical use?

These problems will be solved in the following sections and the forthcoming

paper by the author. The present paper is especially devoted to investigate the

(1, g)-stage formulas.

First, we shall define explicit (p, ^)-stage formula. Next, some algebraic

computations are carried out to investigate (p, g)-stage formulas. Here SAM

software is used as a powerful tool. Then, the attainable order of (1, g)-stage

formula is determined up to q = 4.

Remark. In the case of very complicated functional form of f(x9 y) in

higher dimension, the calculation of the second derivative g(x9 y) requires a

laborious work. It is the main reason why the methods employing g(x, y) have

not been considered. But the recent development of the symbolic and algebraic

manipulation (SAM) software brings the change of the situation. SAM soft-

ware, for example, REDUCE-2 or MACSYMA, is now a helpful tool for mathe-

matical sciences. In fact, some SAM program may print expressions in a

FORTRAN notation so that one can carry out the calculation of the second deri-

vative from/(x, y) in an automatic way. Once after algebraic computation we

may call g(x9 y) as a FUNCTION subprogram.

Moreover, SAM software is very useful for the theoretical study of the RK

and its analogous methods. For example, H. TODA [14] has considered 5-stage

RK limiting formula of order 5. He has utilized MACSYMA essentially. We

shall also attempt to apply SAM for our study.
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§ 1.1. Explicit (jp, g)-Stage Formula

We shall discuss numerical integration procedure for the initial-value

problem of ordinary differential equation :

(1-1.1) - = / ( x , 3 0 ,

(1.1.2) y(xI)=yI.

Here /is sufficiently smooth with respect to x and y. Let us define an explicit

(p, g)-stage Runge-Kutta type formula including the second derivative of the

solution. Let g stand for the second derivative of v(x),

(1.1.3) g(x, y)=fx(x, y)+fy(x, y)f(x, y) .

Explicit (p, g)-stage formula is given as follows.

(1-1.4) )>n+i=yn + h

where

(1.1.5) \ i-i i-i
{ kt =f(xn + a, h, yn + h Pijkj + h2 VUKJ>> « = 2, . . . , p,

(1.1.6) t 1-1

Remark 1. The parameters /^, v,-, a£, j8l7-, y£j-, pf, <7y and tl7 are, of course,
real numbers.

Remark 2. In the case of simultaneous equations in (1), y and / are con-
sidered vectors of the same dimension. Then fy(x, y), the Jacobian matrix of /,

is given in the matrix form. For example, assume that
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f x
2(>H 3;

2)

where at and fe{- are constants, then

and

9(x, y) =

Similar to the RK formulas, the determining equations and the parameters are

possible to be slightly different between the single differential equation and the

systems of equations. For convenience sake we shall investigate the single case.

The attainable order of the formula is not depend on whether (1) is single or

system.

§ 1.2. The Taylor Series Expansion of the Solution

To investigate Runge-Kutta type methods of higher order, we are required

to represent the solution y(x0 + li) for (E) and (IV) in Section 1.1 into the power

series of the stepsize h. For our quadrature formula it is preferable to represent

the solution into the power series utilizing the second derivative g.

Twice integration after differentiation for the equation

, ,

implies the formula

CXQ+h If* / J 2 t > ( Y \ ) (XQ+h (Ct }

(1.2.1) A£gLdx\dtss\ g(x,y(x))dx\dt.
JXQ (jXQ UX ) JJCQ (JjCO '

The left-hand side of the above formula is equal to

y(x0 + h)-y(xQ)-hf(x0, X*o))

Hereafter the subscript 0 stands for the evaluation at x = x0 and y =

The right-hand side of (1) becomes

(h {CxQ+£, } Ch (/•£
\ \ g(x, y(xy)dx\dt = \ \
Jo U.xo ' ^0 IJO
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Then, assume that for O^C^/i , X*o + C) can be expanded in the power
series of £ by

m
(1.2.2)

where KJ (j = l, 2,..., m) is the coefficient to be determined later. Substitution

(2) into the integrand implies

kn r

Here D0 is a differential operator defined by

Therefore we have the following equation:

/

which determines K7 recurrently.

Twice differentiation for (3) with respect to h implies

m i- m Ijl ( I I I \ /m-1 ,- \fef / P \fc ~1 )

(1.2.4) Z^' = x 4 r E , ( £ -TTlV A') ^~*(-r-) S\ ./=o /' /=o /' U=o \ ^ / \ r= i (r+1) • /L \^/ JoJ

Then, we have the following important result.

Theorem 1. The coefficient Kt (/ = 0, 1,..., m) is determined by the follow-

ing way:

/or / = !, 2,.. .3 m.
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Here BStt(xl9 x2,...5 xs) is the multivariable polynomial of E. T. Bell of the

order (s, f) and

m(/, s) = min(s, / —s) .

Note. KJ appeared in the summation of the right-hand side of (5) is for j

less than or equal to / — 2 so that we can determine Kt recurrently by the formula.

Proof. KQ = QQ is clear. Let us introduce two functions G(h) and A(h\ I)

as follows:

m—1(L2-6)

(1.2.7) ^ 4 ( A ; / ) = Z r }{G(h)}k\ Dl
0-

k(-^-} g I , /=0, 1,..., m .

Note that G(h) is of the order h and G(0) = 0 holds. Then, the right-hand side

of (4) is equal to Zg=o hs.
s •

Hence, we have the equation

(1.2.8) f -rr *'
/=o s=o 'S1

For an integer / such that 1^/^m, /-times differentiation to (8) with respect to

/? implies

(1.2.9) ic^'
s=0 \ S

By (7), the equation

is clear. For s ̂  1 , we have from (7)
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For higher derivatives of composite functions, the formula employing the Bell

polynomial is known (J. RIORDAN [10]). Hence, applying the formula, we have

for Jt = l, 2,..., l-s

which implies

, , = o l O

From (6), the equation

nt~* 1

holds. Hence we have

,

Then /4(s)(0; /-s) is given by

m(/,s) / l—S

= ] 2

(I-S) I K0

which implies from (9)

l-l I I \ fmU.s ) (l—

l-l (m(l,s) 7f / k- k- k-

z { z J,(,_'J-,)!
B-(TL- -T- ..... v?

This is the desired result. D

The multivariable polynomial B8tt(xly x2,...,xs) has a recurrence formula

to calculate it conveniently by the application of any SAM software. That is,
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Z xk+l
\k=l

s+l
= Z £,+ ! , , (* ! , . - • , *s+lK-

r = l

Here, the both sides of the formula is considered as a polynomial of a. The

recurrence formula for Bst will be employed during the calculations of KI by

REDUCE-2.

Theorem 1 tells us a concrete method to determine the Taylor series ex-

pansion (2) employing the second derivative. For example,

^

We may also carry out the process by the SAM software up to the desired order.

The result by REDUCE-2 is shown in Table 1 .

Note that because of Remark 2 in the preceding section we do not care the

order of the higher partial derivatives.

Another important result from Theorem 1 is that any KJ is a summation of

an integer multiple of some product of [_D$(d/dy)qg~]0. Hence, we shall call

any product of [D$(d/dy)qg]0 an elementary differential of g. J. C. BUTCHER

[1] has used the terminology of elementary differential in a different sense.

However, our study of the expression of the coefficient of Taylor series in the

elementary differentials is on the similar point of view.

In fact, the way of the proof of Theorem 1 is applicable to the Taylor

series expansion of y(x0 + h) employing the first derivative.

Theorem 2. Assume that

(1.2.10)

Then, the coefficient A, (/ = 0, 1,..., m — 1) is determined by
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(1.2.H) U - r/>< n + y1 lmys)
I ^<- LA>/]o + 5L I fL

7 = 1, 2,..., m.

We shall call (10) the first type power series expansion in contrast with

(2) which will be mentioned as the second type expansion.

Table 1.

= [O00]o

]0 ' 0*o + 30o ' [^00 Jo

+ [Wo ' 0*o + 4[000]o • [£>o0 Jo + 6ffo • [̂ i&Jo + 0o • 0*o

+ 20[D00]0

+ 10[0
+ 15g0

+ 00 ' 0y,0 + 1800

]0 • flf,,.0 + 70[D0

0o0j,]o + 450o • 0*o •

+ 150o • 0*o • [J>o0*lo + 210o • [
+ 2100o • [^o0]o ' [.Dfayjo + 6600 • [D00]0 -0*0' 0y*
+ 840g • [D0gy]0 • 0W(0 + 1200g • 0yi

• 0*o
• 0*o + 56[DS0]0 • \_D3

0gy-]0 + 14[£>g0]0 • 0y>0 • [D0ff Jo
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3
y,o + 35ED20]2, • 0Wi0 + 56[D00]0

192[D00]0 • [D00,]o • [J>g0,]o + 76[D00]0 • 9y,o

+ 280[D00]0 •

o ' 9y,0 ' IDfoylo + 00, 9ytO

+ 16800 - [Dg0]0 . [Do6fy3?]0 + 420^0

+ 36000 - [D00]0 - [D00y]0 - gyyt0 + 50800 -

+ 28000
+ 2520§

+ 4650§ - 0^0 - [D§0y),]o + 810g • 02j0 - 0 0̂ + 2100g • [Dg0]0
+ 8400g

+ 2250g ' 0^0 • gyyy^ + 1050^ • Qyyyyfl

% 1.3. Implicit (1, €|)-Stage Formula

For the study of the general (1, g)-stage formula, it is convenient to analyse
the corresponding implicit (1, g)-stage formula, because we gain an insight into

its algebraic relations by them.
Consider an implicit (1, g)-stage formula as follows:

(1.3.1) yn+i=yn + ViMl+ ]£

(1.3.2)

We need to analyse one-step integration by (1) and (2), so we may substitute
n = 0, i.e.

(1.3.3)

1+ Z

J

For kl3 we have the following expansion:
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On the other hand, K{ has the expansion

Hence, the equation

(1.3.4) yi ,

holds. The solution y(x0 + h) has the power series of h as follows:

(1.3.5) y(xQ + h) = y0 + hf0+±h*g0 + 0(h*).

Comparison of the terms having the same power of h in (4) and (5) yields the

following equations.

Thus, Ju1 = l , a 1 =0 and Z?=iv i = l/2 must hold in the implicit (1, g)-stage

formula.

Next, since Kt has the expansion

the comparison of the third order term of yl and y(xQ + h) implies the equation

y [^o^]o=y(^fo+/o-^,o)= ZviKp^.o + ffn/o-^.o)] •

From the viewpoint of homogenuity of differential operation, Pi = ffu must hold

for / = !, 2,..., g.

Hence, let us rewrite (3) by

(1.3.6)
I Xf = g(x0 + pth, y0 + P//I/O 4-

We shall assume the Taylor series expansion for 1^ by

(1.3.7)

where Kf, will be determined by the similar manner for Theorem 1.
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Theorem 3. For each /, KU in (1.3.7) is determined by the following:

j * 10 = 00*

n 1 Q\ J(L3-8)

**,.,( t lino,-, * I T.jKy...,)^-1-' CTHT)' »1 } .
j=l j i_ \ try ' J0>

/=!, 2,..., m.

Afofe. By the above formula, KU can be determined in the ascending order

of the second subscript, i.e., Ki2 (/=1,.. . , q) after Kn, /c/3 (/=!,... , ^f) after Ki2,

and so on.

Proof. Two-variable Taylor series expansion for K{ gives

h- +

= /=o

/m-1 / T ir \ \*F

i-'(S(?i^)4'*') [*

Thus, putting G,(/i) as

(1.3.9)
r=0 \j=i r!

and noting that G/(/i) is of the order h and Gj(0) = 0, we have the equation

t *'- f -

which is similar to (1.2.4). Hence, following after the proof of Theorem 1, we
have

From (9), for fc=l, 2,...,s
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holds, which implies

Thus we have the desired result.

By Theorem 3, KU is given as follows:

= P?[^o0]o + 2(Z *ij)0o • 9y,o •>
j

VS'O* 2 Z *ljKj

P) [0o0j j

The result with the help of REDUCE-2 is shown in Table 2. Here we employ

the notation

Tik= !>,%•, i = l, 2,..., q, /c = 0, 1, 2,... .

From (6) and (7), the Taylor series expansion for y± is given by

(1.3.10) y,=yo+¥o+ Z v

=y0+V0+ _

o+ f (S
r=2 i=l

On the other hand, from (1.2.2), the (second type) Taylor series expansion

of the solution y(x0 + h) is given by

(1.3.11) y(

where KJ is represented by (1.2.5). The comparison of (10) and (11) brings the

determining equation of the implicit (1, g)-stage formula, for which we have the

following

Theorem 4, Each KU in (10) is constructed with the all elementary differ-

entials included in the corresponding ?cz in (11). Hence the determining equa-

tion of the implicit (1, q)-stage formula is of the form such as

(an integef)x(a polynomial ofvt, piy iij) = (an integer).
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Proof. From (10) and (11), K:/ and TCM must satisfy

which implies

i

From (1.2.5) and (1.3.8) the conclusion follows. D

KiO =

Table 2.

• g0 • gy,0
o -g0 •

fl[D0ff]0 • [D0ff J0

[Dgff Jo +24(Z Ty7j0)ff0 • <^,o + 12T?0 • g2
0 • gyy<0

pf • [Dgglo + 207].3 - [D^]0 - ff y>0 + 60p;Ti2

]0+ 120(E

0 + 120

1207,07,! • fifo • [-Do^lo ' ffw,

'(

]0 + 360(Z

120p?ru[D00]0 • [Dgffjo + 720{E (pj + pX-

]^ - 0^0 + 30pf ri0 • 00 • IDfoJo
y]g + 360{ ̂  (pf

/. 00 •

+ 720p,7,07fl • 00

+ 360 f z Ty(75o +2ri0rJ.0)}0g - 0y,0 • 0W>0 + 1 2or?0 • g I • gyyy,0
Jo

0 + 840(Z Ty

0 + 2520(5: (pt + pfaTrf [D§0]0 • g,i0 • [D0ff J0

1) [D00]0 •

+ 2520(2: (p? + P?)%7;.1)[Do0]0
j



' [030,Jo

+5040(Z Ty(rror

+ 2520(E (p,rjo + 2pJ.Ti0)TlJTJO)g$ • gyt

+ 6720(E

,̂]o + 20160(E p,pjitJTj

+ 1 0080(Z (p? + pfru

+ 201 60(Z Z TyTJtTu
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+ 5040(Z Z T

+ 2520p/T?, [D00]g - [D00 Jo + 42pf Ti0g0 • [D& J0

+ 2520(1 p.-p/Pi + py^.T^o • [D00 Jo • [080 Jo

+840(Z)P? +pfriJTJO)g0 • gy,0 • [080 Jo
+ 5040(2; z 0», + PJ + p*)T^r*o)0o • 0io • [000 Jo

• 0w.o + 252QPiTi0Ti2g0 • [Dg0]0 • [000,Jo

+ 20160(E p0&i + pfa]Tn) [Dofif]0 •

+ 6720(Z (P?

+ 40320(Z Z (p, + pj + p»)TuTJJkrH) [jDo^o -fll.0 ' C^off Jo

+ 6720rar,3[D0fli]0 • [D8

+ 20160(Z tyTj^r,, + T^)) U>0g-ti • gy,o • gyy,0

o + 10080(Z rfpjrtJTJO)go • Wig J§

+ 6720(Z PtPtpi + pfruTjo-tio • [Doff J0 • [Dgff J0

1680(Z (pf + P>UTJ.0

+ 40320(Z Z (p0j + PJPk + plpdtijiflCTl[0)go • 9y,o • [D0ff JS

+ 20160(Z Z (P? + PJ + pD^J'^^o)0o • ff 5,o ' [020 Jo

+ 40320(Z Z Z TyT7tTHTJO)ffo ' 0*,o + 1680TIO Ti4g0 • [Dj
J K t
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+ 20160(5 tij(T>2Tj0 + Ti0TJ2 + Tj0TJ2))g0 •

+ 40320(Z

+ 40320(E rlJ(piTi0Tjl

+ 201607^00 - [D00J8

+ 20160(E p,pj-ctfiTm + TJO)TJO)g% •

+ 10080(Z rrfpjTjo + 2p?Ti0)TJO)g2
0

+ 20160(Z E Ty(2T7llr,o Tk0

+ 20160(1

§ 1.4. Determining Equation for (1, g)-Stage Formula

An algebraic computation according to Theorem 1 gives the number of

elementary differentials including in each /c,. Let m( be the number of elementary

differentials in K, and define the integer M, by

Each ml and Ml are given in Table 3 up to / = 8.

Thus, we have Ml restrictions for the parameters vf-, pi9 xu of the formula.

In the implicit (1, ^f)-stage formula the number of the parameters to be de-

termined, say N(q\ can be given as a simple function of q

It implies that the implicit (1, g)-stage formula can attain at least the order

(1 + 2) where I is the largest integer satisfying the inequality M^N^. These

relations are shown in Table 4.

However, the above argument based on merely counting the number of

the equations that must be satisfied, ignores the relationship between them.
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In fact, it may happen that Ml restrictions are satisfied with fewer than Ml

variables. But, since we are interested in the explicit formula rather than

implicit one, we shall not come into more investigation for the attainable order

of the implicit formula.

An explicit (1, g)-stage formula, which is defined by the parameters v^, pt

and ru (^ = 0 for ;^i) in (1.3.6), has N(
q

E) parameters to be determined. Here
is given by

Hence, similar consideration for the implicit case gives the largest integer /*

satisfying the inequality M^N^. Table 4 includes the relations between q,

the number of stages, and /*.

Table 3.

/ m, M,

0
1
2
3
4
5
6
7
8

1
1
2
3
6
9

17
26
46

1
2
4
7

13
22
39
65

111

Table 4.

1
2
3
4
5
6
7
8
9
10

3
8
15
24
35
48
63
80
99

120

1
3
4
5
5
6
6
7
7
8

2
5
9
14
20
27
35
44
54
65

1
2
3
4
4
5
5
6
6
7
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SHINTANI has given some explicit one-step methods utilizing the second

derivative [12], whose formulation coincides with our explicit (1, g)-stage

formula. He has determined the parameters for q = l, 2, 3, 4 and 5 which give

the formula obtaining the order 3, 4, 53 6 and 7 respectively. His results attain

the orders that we have argued as the least number /* for each stage formula.

Hence, it is a question whether Shintani's results can be improved.

We shall consider the determining equation for the explicit (1, g)-stage

formula. Tables 1 and 2 give the equation as follows. We employ the notation

for summation symbol such that the upper limit of summation can not exceed

the variable of the preceding summation symbols, i.e. 2r"(Sj"Omearss X?=i°"

(£J=i"")- Moreover, the symbol Tik means

Tlk = Q and

Determining equations.

/ = 0: (E-0) 22v ,= l

/ = !: (E-l) 62>,p,= l

1 = 2: (E-21) 12Ev i j0? = l

(E-22) 24 2 ^7,0 = 1

7 = 3: (E-31) 2oi>(pf = l

(E-32) HOSv.r,^!

(E-33) 12oiv^T/0

1=4: (E-41)

(E-42)

(E-43)

(E-44) 360 i ^7,0 = 6

(E-45)

(E-46)

(E-52)

(E-53)

(E-54)

(E-55) 504022:^^^ =

(E-56)
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(E-57) 5040 E E vt(pt + p^jTjo = 8

(E-58)

(E-59)

1 = 6: (E-601)

(E-602)

(E-603)

(E-604) 10080 E Vipl Ti2 = 1 5

(E-605) 20160 E E v£T0.T,2 = 1

(E-606) 6720

(E-607) 40320 E E vf(pf + p^j

(E-608) 20160^^ = 10

(E-609) 1680 z'vipf r,0 = 15

(E-610) 40320 Z S viPip^jTJO = 18

(E-61 1) 20160 £ Z v,.(p? +^)T/J.TJ.0 =21

(E-612) 40320 ESS v.TyT^T*, = 1
> j k

(E-613) 20160 E v(7;.07;.2 = 15

(E-614) 40320 E viPiTi0Tn = 60

(E-615) 10080 Evip?r?0= 45

(E-616) 20160 E E v.TyCTjo + 2T!0)r;o = 18

(E-617) 6720EVir?0 = 15

1 = 1: (E-701) 72Ev ip/ = l

(E-702) 3024Evir/5 = l

(E-703) 15120Evfpi7;.4 = 7

(E-704) 30240 E v;p?Ti3 =21
i

(E-705) 60480 E E V,.T(J. r/3 = 1

(E-706) 30240 E v,pf rj2 = 35

(E-707) 181440 E E v^ + ̂ TyT^ = 12
( j

(E-708) 15120 EvipfTu = 35

(E-709) 362880 E E v^^ty T,. t = 28

(E-710) 181440 E Z v((p? +p5)TijTJ.1 = 31

(E-71 1) 362880 E Z E W^T* , = 1



RUNGE-KUTTA TYPE INTEGRATION FORMULAS 345

(E-712) 181440 Zv,TMT,2 = 35

(E-71 3) 1 8 1 440 Z v,p,.T?i = 70

(E-714)

(E-71 5) 1 8 1 440 Z Z v,p,p/p, + pj*tJTlo = 1 05

(E-7 1 6) 60480 Z Z v;(p? + pJ)Ty Tyo = 45

(E-717) 362880 Z'Z Z v,.(pi + P/ + ft)tiyTJ.tTk0= 15

(E-718) 60480 zv , ,or ,3 = 21

(E-719) 181440 Z VipiTioTi2=W5

( E-720) 1 8 1 440 Z vfp? 7]0 7) , = 2 10

(E-722) 362880 Z Z v^(Ti0Tn +

(E-723) 30240 z'viP?T?0 = 105

(E-724) 181440 Z Z

(E-725) 181440 Z Z

(E-726) 1 8 1 440 Z v, T?0 T, , = 1 05

(E-727) 60480 Z v,p,T?0 = 1 05

(E-801) 90Zv ( pf=l

(E-802) 5040Zv ;T i6=l

(E-803)

(E-804) 75600 Z Vip?Tj4 = 28

(E-805) 1 5 1 200 Z Z v,ty 7}4 = 1
' y

( E-806) 1 00800 Z v,p? Ti3 = 56

(E-807) 604800 Z Z v;(pf + P7)ty T73 = 14

(E-808) 75600 Z vfpf 7;2 = 70

(E-809) 1 8 1 4400 Z Z WiPj^jTji = 40

(E-810) 907200 Z z'v/P? + P?)tyTy2 =43

(E-81 1 ) 1814400 Z Z Z v,TI7t;trt2 = 1
i j fc

(E-8 12) 453600 Z v(r?2 = 35

(E-813) 30240 z'v/P? rn =56

(E-814) 1 814400 Z Z W0fy>i + pfaTj! = 192

(E-815) 604800 Z Z v^p? + pJ^T,,. = 76

(E-81 6) 3628800 Z Z Z vfoi + Pj + l>k)iij*jkTkl = 18
I J K
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(E-817) 604800 E vtTn Ti3 = 56
i

(E-818) 1814400

(E-819) 907200 EV^^I =280

(E-820) 1814400 E E v;T0T;i(2T;i + 7^) = 66

(E-821)

(E-822) 907200 E £ v^fpfa,!},, = 168

(E-823) 604800 E E v^/p? + pj)ty T}0 = 248

(E-824) 1 51200 Z S vrfpf + P^IIJTJO = 85

(E-825) 3628800 EZ L

(E-826) 1814400 i £ E

(E-827) 3628800 E S E
i j k I

(E-828) 1 5 1200 E vtTi0 T;4 = 28

(E-829) 604800 E v{PiTmTi3 = 168

(E-830) 907200 E v(p? T;o Ti2 = 420

(E-831) 1814400 E E vfit{TuTj0 + Ti0Tj2+ TJOTjJ= 113

(E-832) 604800 E v;p? Ti0 T; t = 560

(E-833) 3628800 S E ^tAPj^

(E-834) 3628800 E E vt-r,j(ptTloT

(E-835) 1814400 E v,rror?i = 280

(E-836) 75600 E v;pf T?0 =210

(E-837) 907200 E E vi

(E-838) 1814400

(E-839) 907200 E ZvfitfrjTj^rf Tio)TJO = 465

(E-840) 1814400 EE Z v,T(X2TJkTf0T
i j t

+ tikTj0Tko + Tyt

(E-841) 907200 E vtTJ0Tt2 = 210

(E-842) 1814400 E ViPiT?0Tn = 840

(E-843) 302400 E v;p? r?0 = 420

(E-844) 1814400 E E v,ty Ti0 TJ0 = 84
i i

(E-845) 604800 E E VjTy(3rf0 + T2
JO)TJO=225

(E-846) 151200 E vfrf0 = 105
i
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§ 1.5. Attainable Order of (1, 1)- and (1, 2)-Stage Formulas

The explicit (1, g)-stage formula is said to have the attainable order m if

m is the largest integer for which

among all combinations of the parameters of the formula, where y(x) is the

analytical solution and y± is given by (1.3.6). The definition of the attainable

order will be extended, if necessary, to general (p, g)-stage formula.

It is obvious that a (1, g)-stage formula has the attainable order m if and

only if the determining equations corresponding up to I have at least one so-

lution, but they have no solution up to / + !, where l = m — 2.

Theorem 5, The attainable order of (I, \)-stage formula is 3.

Proof. The left-hand side of the equation (E-22) is equal to

which vanishes for (1, l)=stage formula because £yT£j- = 0. This means that

the parameters v^ and pl can satisfy merely the equations (E-0) and (E-l). D

Theorem 6B The attainable order o/(l, 2)-stage formula is equal to 4.

Proof. Assume that the formula attains order 5, that is, the parameters
vi> V25 Pi? P2 and ^21 satisfy the equations (E-0)-(E-33).

(1.5.1) v, + v2=^

(1.5.2)

(1.5.3)

(1.5.4) ' i r i - i - * 2 f 2 — 1 2

(1.5.5) v2p2T21=^

(1.5.6) v2p1T21=12Q
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(1.5.7)

The equations (1), (2) and (4) yield a matrix equation

I I 1/2 \

Pi P2 1/6 | v2 ) = 0 ,

P\ P22

which implies

I 1 1/2

(1.5.8) Pi p2 1/6 = 0

for the existence of nontrivial solution [vt, v2, — l]f. On the other hand, (3),
(5) and (6) give the values

Pi = ~y •> Pi~ "y5

which specify the determinant of (8) by 1/250. This contradiction implies the

statement. D

Note. SHINTANI gives (1, l)-stage formula with parameters v1 = i/2 and

Pi = 1/3. He also gives (1, 2)-stage formula with v1=(9-hv
/6)/36, v2=(9-

VQ/36, p1=(4-N/6)/10, p2 = (4 + x/6)/10, T21 =(9 + v'6)/50. These parameters
are not unique solution (l.S.l)-(l .5.4). The solution of them is represented with

one parameter p by the following:

Pi=P

P2=(2p-l)/2(3p-l),

v,=l/6(6/92-4p + l),

§ 1.6. Attainable Order of (1, 3)-Stage Formula

The determining equation for the explicit (1, 3)-stage formula are given as

follows:
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(E-0) i

(E-l) ViPi + v2p2 + v3p3=-~

(E-22) V 2T 2 1+V 3(T 3 1+T 3 2)=

(E-32) v2p2T21 + v3p3(t31 + T32) =

(E-33) v2pii21 + v3(pjT31 +p2T32) = — L-

30

(E-42) v2pit21 + v3pi(T31 +T32)= gL

(E-43) v2p2p1T21 4-v3p3(p1T31 +p2T32)= -~

(E-44) v2p?T21+v3(p?T31+piT32):= -jig-

(E-45) v2T|1+v3(T31+T32)2= —L_

(E-46) v3T21T32 = -720"

It is remarkable that none of the factors on the left of (E-46) can vanish.

Assume that two of pl5 p2, p3 are equal, say P/ = PJ. Then, from (E-0),

(E-l), (E-21), (E-31) and (E-41), we see that

I

Pi

p}
\

Pi

Pi

}

PK

P2K

I

PK

P2K

1 ~
2

1
6

JL

l ~
6
1

12

J_

"v +v ~/ j

VK

- }

= 0,

- +v -
p v

PK^K

-1

= 0,
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1

Pi

pf

1

PK

P2K

12
1

20

J_

"pfCv. + v/

P&K

-I

= 0.

The condition that the above three equations have non-trivial solutions, implies

the equations with respect to p/5 pK as follows :

PiPK- -^(PI + PK)+ 12! =°5

P/PK--72(P/ + PK) + 20] =0

and

, PI and pK must satisfy the equations

yPiP*:- y (PI + PK) + 12 = ~6~PiPK~ ^(PI + PK) + 20

= i2PiPK~ 2o(P/ + Px) + 30 =0 »

which is impossible. The case of pa =p2 = Ps leads to a contradiction because

of

V i + v 2 + v3=-i-,

Pi(vi + v2 + v3)=-i-,

induced by (E-0), (E-l), (E-21), respectively.

Hence no two of pl9 p2, p3 are equal. It is convenient to define

Since we consider the explicit formula, Al=—pH2 holds. Then, we have

simultaneous linear equations

r 1 l l n

Pi P2 PS

PI pi pi
= 0
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by (E-21), (E-22), (E-31), (E-32), (E-41) and (E-42). Since no two of pt, p2,

p3 are equal, all of vlAl9 v2A2) v3A3 vanish. By virtue of the above mentioned

remark, we distinguish the following four cases.

Case 1. A1=A2 = A3 = Q.

The equations A1 =0 and A2 = 0 imply pt =0 and T21 = pi/2. Then, (E-43)

and (E-44) bring the equations v3p2p3T32 = 1/180 and v3p§T32 = 1/360, which

give the identity p3 = 2p2. Thus (E-l), (E-21) and (E-31) imply the equation

= 0,

which yields a quadratic equation of p2

20pi-15p2 + 3 = 0

because of p2^0. But the above quadratic equation has no real roots.

Case 2. v± = Q and A2 = A3 = 0.

In such case, we have the equations

-

P2 2p2

pi 4pi

pi 8p|

1
6

1
12

1
20 _

r
V2

V3

-1

=

and

Substitution of T21=p2/2 and T31=(p3/2) — T32 into (E-44) implies

Pf + 24v3T32(pi-p?)= i.

Employing the equation

induced by (E-46), we obtain

p1(l-24v3T32) = 0.

Hence, the equation pL=Q or v3T32 = l/24 holds. The case of P!=0 is equiva-

lent to Case 1. The equation v3T32 = 1/24 yields
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Pi+24vyr32(p2-p1) = p2=y -

by (E-33). The equation (*), however, implies p^ = l/15, which leads to a

contradiction.

Case 3. v2 = 0 and Al = y!3 = 0.

Al =0 implies pl =0. Then, (E-l) and (E-21) bring the equations

= -L

and

Hence we see p3 = l/2 and v3 = l/3. It contradicts the equation v3p| = l/20

induced by (E-31).

Case 4. v1=0, v2 = 0 and ^43 = 0.

The equations (E-0) and (E-l) yield v3 = l/2 and p3 = l/3. Again, it

contradicts the equation v3p| = l/20 induced by (E-31).

Thus, we can conclude that the determining equations (E-0) - (E-46) have

no solutions. The proof of the following theorem is now accomplished.

Theorem 7. The explicit (1, 3)-stage formula can not attain order 6. Its

attainable order is 5.

Note. SHINTANI gives (1, 3)-stage formula with parameters

4,v3 =(5-V5)/24, P l=0, p2 = (5-V5)/10,

), T31=0 and T32 = (3 + x/5)/20.

These parameters are also not unique solution of (E-0) - (E-33).

§ 1.7. Attainable Order of (1, 4)-Stage Formula

The determining equation for the explicit (1, 4)-stage formula are given by

the following:

(E-0) Vi -hV2 + V3-hV4= —
\ J 1 2 3 * 2

(E-l)
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(E-22) V2T21-f V3(T31+T32)4- V4(T41-fT42+T43)=

(E-3 1 ) v ! pf + v2pl + v3pl + v4pt = ^

(E-32)

(E-33) V2p !T2 ! + V3(p1T3 t + P2T32) + V4(p1T41 + p2T42 + P3T43)

(E-4i) V1pt + v2pf + v3pt + v4pt=^

(E-42) V2piT2 j + V3pi(T3 j + T32) + V4p|(T41 + T42 + T43) =

(E-43)

(E-44) v2p?T21+v3(p?T3]

(E-45)

(E-46)

(E-52)

(E-53)

(E-54) v2jo2^T21 + v3p3(p|T31 + piT32) + v4jo4O?i

(E-55) V2/3|T21 + V3(pjT31+/)iT32) + V4(p?T41 + pil42-r^3,43j,- -g^--

(E-56) v3

(E-57)

(E-58)

+ V4p2(T4! T42 + T42T43) + V4p3(T31T43 + T42T43) =

(E-59)
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The question is whether any parameters vt, pt and rtj exist to satisfy these

22 equations simultaneously. It is helpful for investigation to introduce the

following notations :

Ti0 = Z* ty, Tfl = Z* Pjty (i = 1, 2, 3, 4) ,

(Ti0 and T11 mean zero.)

(1 = 1, 2, 3, 4) .

Then, from (E-21), (E-22), (£-31), (£-32), (£-33), (£-41), (£-42), (E-43),

(£-51), (E-52) and (£-53), we easily see that

(1.7.1) Z Mi=Z ViPidi=S ^pMi=Z
i i i i

and

(1.7.2) ZvA=ZVjp^:

The equations (1) means

/ 1 1 1 1

Pi P2 Pa P4 v2J2 = 0.
V3^3

I PI p\ pi pi/
pf pi pi P!

We now distinguish two cases according as two of pl5 p2, p3, p4 are equal or

otherwise.

Case 1. Two of pl5 p2, p3, p4 are equal.

Assume that two of them are equal, say p/ = pj. Equations (E-0), (E-l),

(E-21), (E-31), (E-41) and (E-51) give three simultaneous linear equations as

follows:

/ I
Pi

pf
u

1

PK

P2K

Pi

i

PL

P!

P!

_1_\
2

1
6

1
12

1
20 /

/ \

Vx

VL

-1

=o,
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/

Pi

p}
\p}
/

Pi

P?
u

1

PK

Pi

PK

PK

Pi

Pi

1

PL

Pi

Pi

11

PL

P2L

P3L

1
12

1
20

30 /

1 \
12

]
20

30

1
42 /

"c"+")
PKTK

P,v,

\ ~1 /

/ \

Pl\vl VJ)

P&K

2

\ ~~1 /

= 0,

= 0.

The condition that these equations have non-trivial solutions, implies the de-

terminants of matrices to be vanishing. Hence, we see that the equations

^ (P/ - PK) (PK ~ PL) (PL - Pi) { ~

^Q (Pi ~ PK) (PK ~ PL) (PL ~Pi){~

and

-4^0" (pl ~ PK) (pK ~ PL) (pL ~Pi){~ 35PiPzPL + 21(pjpK + PKPL + Pi.Pi)

hold. We can distinguish three cases.

(i) At least three of pt are equal.

(ii) p^pj and pK = pL.

(iii) pj, pK, pL are distinct, and the above equations hold.

But, the case (i) can not hold by the similar reason mentioned at the first part of

Section 1.6. In the case (ii), (E-0), (E-l), (E-21), (E-31) and (E-41) imply the

equations
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JL
2
1

1 ' 2

P, PK 6

P2, Pi Ty
|

= 0,

JL\ ;

6

Pi PK J2

Pi PK in x20 -1

=o,

P/ Px ^

P? Pi

12

0.

-1

Thus, by the same reason as for case (i), these equations lead to a contradiction.

In the case (iii), we easily see the equations

PiPK + PxPL + PLP/ = y

and

PlPKPL= 35 >

which imply that p/9 pK9 pL are distinct roots of the cubic equation

(1.7.3) *3-yJC2+y;c--^=0.

The cubic equation is irreducible and has three distinct real roots given as

follows. Let 9 be an angle such that

(1.7.4) cos 30= ̂  (o<^ y ) •

Then, the roots are



RUNGE-KUTTA TYPE INTEGRATION FORMULAS 357

J*0 = y (3 + 2^2 cos 0),

= -L (3- J2cosO + ̂ 6 sin 6),(1.7.5)

Some algebraic properties on the equation (3) are the followings:

Lemma 1.7.1. The roots R0, Ri9 jR_! are equal to none 0/0, 1/7, 1/3.

Proof. Substitution of 0, 1/7 and 1/3 into the cubic polynomial of (3)

gives -1/35, 16/1715 and 8/945, respectively. D

Lemma 1.7.2. The equation (3) has no common roots with the cubic

equation

(1.7.6) *3--|*2-{

Proof. Put

and

The Sylvester's determinant D(/l9/2) is equal to -3437/32768000. D

Lemma 1.7,3. The equation (3) has no roots, one of which is the triple of

another.

Proof. Assume that one of roots is equal to the triple of another, then

the root satisfy another cubic equation

That is,

^3 — x2 + — x— ^ =0

Put

fi(x)=x -y*2+y*-35

and
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f2\x) = x ~ -j"x +2! *~945°

The Sylvester's determinant D(fl9 /2) is equal to 80384/41351522625. Q

Case 1.1. Pi=p2 .
From (E-45) and (E-57), the assumption gives Pi=p2 = 1/7. Due to

Lemma 1.7.1, we lead to a contradiction.

Case 1.2. Pi=p3 .

We may assume that pl5 p2, p4 are distinct. From (E-0), (E-l) and

(E-21), we have the equation

(1.7.9)

The solution of (9) is given by

/ I 1 1 \
Pi P2 P4

( PI Pi pi i

i \

V2

\ ^ 1
=

1 1 \
2

T
i

\ 1 2 /

V4 /

/ I
Pi

\pl

l

P2

Pi

1V
PA.

*i

1 l \
2
1
6
1

\12/

12(p1-p2)(p4-p1)
-6p4p!+2(p4-

12(p1-p2)(p2-p4)

12(p2~p4)(P4-Pi)

Note that vi + v3, v2, v4 can not vanish. The reason is as follows: For ex-

ample, assume that — 6p2p4 + 2(p2 + p4) — 1 = 0. Then

* 6p2-2

holds. Substituting this into the cubic equation

we see that
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64pj-24pj-12p2 + 3 _n

35(6p2-2)3

But, by Lemma 1.7.2, there is no common roots for the cubic equations

and

Then, from the equations (1) and (2) we have

v1Al + v3A3 = v2A2 = v4A4 = 0

and

Since v2^0, A2 = B2 = Q holds. This means the equations ^2i=p2/2 and

PiT2i=P2/63 which imply 3p!=p2. Hence, we lead to a contradiction by

virtue of Lemma 1.7.3.

Case 1.3. p1=p4.

This is equivalent to Case 1.2.

Case 1 A. p2 = p3.

We can assume that pl9 p2, p4 are distinct. From (E-0), (E-l), (E-21),

we have the solution

12(p1-p2)(p4-p1)

12(Pl-p2)(p2-p4)

v -

v +v -

v -4 12(p2-p4)(p4-p1)

Note that each numerator on the right can not vanish by the same reason as in

Case 1.2. Then, (1) implies v1^L1 = v2^42 + v3y43 = v4^44 = 0. Since v1^0, we

see ^i=03 which means PI =0. Thus, we lead to a contradiction.

Case 1.5. p2 = p4

and

Case 1.6. p3 = p4.
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Both of them are equivalent to Case 1.4.

Case 2. No two of pl9 p2, p3, p4 are equal.
The equation (1) implies vlAl = v2A2 = v3A3 = v4A4 = Q. Thus, we dis-

tinguish cases according as vf or At vanishes. We have, however, the following

results.

Lemma 1.7.4. The case ofvj = vK = vL = Q can not occur.

Proof. In this case, v7 = 1/2 by (E-0). Then, (E-J ) implies pr = 1/3. But,

they do not satisfy (E-21). D

Lemma 1.7.5. The case for vK = vL = 0 leads to a contradiction.

Proof. The equation vK = vL = Q yields a linear system

y ,

~

by (E-0), (E-l). Since Pi^pj, this system has the solution

l-3pj = l-3p,
V/ 6(Pl-Pj) ' Vj 6(Pj-Pl) '

Substitution of this into (E-21) and (E-31) implies

Put X — PI + PJ, Y=pfpj9 we have

Thus, we easily see that X = 4/5, 7=1/10. That is, pL and PJ are equal to the

roots of the quadratic equation

(1.7.10) X2_±x+^ss0f

which has real distinct roots. On the other hand, we see that

the left on (E-4l) = vIpj + Vjpj

19
600"
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which is a contradiction. D

Due to the above Lemmas, we distinguish five cases.

Case 2. 1. v , = 0 and A2 = A2 = A4 = Q. By a similar consideration as in
Case 1. we see that p2, p3, p4 satisfy

P2P3 + P3P4 + P4P2 = ~f »

P2P3P4-J5'

Hence, they are equal to the distinct roots of the cubic equation (3). Note that,
contrary to Case 1, pi is equal to none of them.

On the other hand, the equation (2) yields v2B2 = v3B3 = v4B4 = 0. Taking
Lemma 1.7.5 into account, we are sufficient to consider the case B2 = B3 = B4 = Q.

A2 = B2 = Q implies the equations t2\—p\\1 and P^2\=P\I6, which give

Pi ==P2/3. ^3 = B3 =0 implies a linear system

which has the solution

(1-7.11) T31= r°X~^ TLJLL~ > T32 = —

Since p2, p3, p4 are distinct, (E-0), (E-l), (E-21) give the solution for v2, v3, v4

as

(1.7.12) 12(p2-p3)(p3-p4) 9

V4 = I2(p3-p4)(p4-p2)

(E-44) gives the equation
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v4(pfT41 + pii42 + p2T43) = 4n -360

^ - -l1,-n4_i;-/>2//-L
360

T31

= 360 ~ T8 V2/?2 - Is v3^2Pi (4p3 - 3p2)

by (9). Hence, we may represent the left on (E-54) as the polynomial of p2

and p3. By (9) and (10),

31 + piT32) + V4p4(pf T41 -~

v3p2pi (4p3 - 3p2)

378QQ(p2-p3)

Let us denote the numerator of the above by (p(p2, p3). The question is whether

<p(p29 p3) vanishes for any pair (p2, p3). We have known the values R0, Rl9

jR_! which p2 and p3 are possible to be equal to. Calculation shows the fol-

lowing :
A

(p(R0, RI)= qTTo (— 420 cos2 0 — 76073 sin 0 • cos 0 — 63072 cos 0 + 6076 sin 0
•JT" J

+ 189 + 4273),

<p(RQ, £_ i) = ^(-420cos2 0 + 76073 sin 0• cos 0-6307?cos 0-607?sin ®

+ 189-4273),

<p(Rl9 RQ)= ^(1350 cos2 0-17073 cos0. sin 0 + 405 72 cos 0-285 7? sin 0

-696-4273),

<p(R!, R - 0 = g|g (- 930 cos2 0 + 59073 sin 0 • cos 0 + 2257? cos 0 - 3457? sin °

+ 444 + 4273),

_ 1? ,R0)= ̂  (1350 cos2 0+17073 sin 0 - cos 0 + 40572 cos 0 + 2857? sin 0

-696 + 4273),

_!, 1? 0 = ^ (-930 cos2 0-5907^ sin 0-cos 0 + 22572 cos 0 + 3457? sin 0

+ 444-4273).



RUNGE-KUTTA TYPE INTEGRATION FORMULAS 363

Computation by interval arithmetic shows the following:

i)e[-11.6391, -11.6390],
-i)e[-4.70784, -4.70783],

(p(Rl9 R0) 6 [3.20479, 3.20480],
<p(Rl9 R _ i ) e [0.821791, 0.821792],

_!, *o)e[12.1750, 12.1751],

, Ki)e[-0.956777, -0.956776].

(On the interval arithmetic, see [8]. Above calculation is carried out by the

program made by K. Ichida on HITAC VOS3 at the Educational Center for

Information Processing, Kyoto Univ.) None of them vanishes under the

condition (4) because every interval given above is away from zero. Thus, we

have a contradiction.

Case 2.2. v2 = 0 and Ai = A3 = A4 = ̂ . A1=Q implies Pt=0. Then,

P2> Pa* P4 can n°t vanish. From (E-l), (E-21), we have

3 12p3(p3-p4) ' K4 12p4(p4-p3) '

Substituting these into (E-31), (E-41), we see that

3
5

(P3 + P4)
2 - 2p3p4(P3 + P4) - P3p4 = y .

Put J^ = p3 + p4, 7=p3p4, then we have X = l, 7=1/5. The left on (E-51) is

equal to

which is a contradiction.

Case 2.3. v3 = 0 and Ai=A2 = A4. — Q, Equivalent to Case 2.2.

Case 2.4. v4=0 and A1 =A2 = A3 = Q. Equivalent to Case 2.2.

Case 2.5. Ai=A2 = A3 = A4 = Q. A1=Q implies Pi=0, which means

B1=0. Then, the equations S vA = £ v^Bj = £ v£p?Br. = 0 yield v2B2 = v3B3

= v4B4 = Q. Since v2s v3, v4 are assumed to be non-zero, we have B2 = B3 = B4
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= 0. # 2 =Pi T 2i -P2/6 = 0 implies p2 = Q because p1=0. This contradicts the

assumption that no two of p{ are equal.

Now, we have accomplished to investigate the whole cases. In conclusion,

we have

Theorem 8. The explicit (1, 4)-stage formula can not attain order 1. Its

attainable order is 6.

Note. SHINTANI gives (1, 4)-stage formula with parameters v1 = l/20, v2

v3-8/45, v4 = 7(7-N/2T)/360, ^=0. p2 = (7-v
/2l)/14, T2,

= 1/2, T31=(3~X/2T)/192, T32 = (2l-fv
/2T)/J92,p4 = (7 + v/2l)/

14, T41=(21 + 5x/2l)/294, T42 = (N/2l-3)/84, T43 = (21+v'2f)/147. These pa-

rameters are also not unique solution of (E-0) - (E-46).
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