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Runge-Kutta Type Integration Formulas
Including the Evaluation of the
Second Derivative

Part 1

By

Taketomo Mitsur*

Introduction

We are concerning with theoretical study of numerical integration pro-
cedure for the initial-value problem of ordinary differential equation:

) L —fx, ),

(IV) y(xp)=yr.

Many numerical analysts have been investigating the discrete variable methods
for the problem. Consequently everyone can enjoy to solve numerically or-
dinary differential equation in almost all computing centers. It seems as if we
got the numerical integrator through the use of the computer. But the study
is yet continued for “‘better’’ numerical procedure.

Among the one-step methods, Runge-Kutta methods (RK methods, in
short) are popular because of the high accuracy and the feasibility of changing
step-size. In general the methods are expressed as follows. The solution of
(E) at xo+ h is approximated by

yi=Yo+h 3 ki,
where
ky=f(xo0, Yo)>
®) k=1 (xo+ s, yo+h ,i:l Buk), i=2... D,
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h is the step-size and y, is the approximated value at x,. This type of the method
is called (explicit) p-stage Runge-Kutta algorithm. According to the choice of
the stage number p and the parameters o;, B, 4; we have many variations,
among which the classical Runge-Kutta method or the Runge-Kutta-Fehlberg
method is famous. A distinguished contribution for the study of the Runge-
Kutta methods has been made by J. C. Burcrer ([1]~[4]). He determined
the attainable order of the RK methods up to 10-stage formula. On the other
hand he introduced the semi-explicit (the summation is up to i instead of i—1
in (%)) or implicit (the summation is up to p in (*)) formula.

RK methods (and perhaps many other quadrature formulas for the initial-
value problem) are constructed on the principle that the required function
evaluation is only for f(x, y), i.e. the first derivative of the solution. It is quite
natural because we are acquainted with the functional form of the first derivative
in the ordinary differential equation. Recently, however, some propositions
have been made to employ the function evaluation of the second derivative of
the solution. Functional form of it is given by

g(x, y)=fdx, ) +f,(x; »f(x, ).

M. URABE [15] made a first attempt to employ g(x, y) by presenting an
implicit one-step method with step-size control strategy. Let y, and y_; be
approximations of y(x) at x, and x,— h, respectively. His algorithm employs
the predictor given by

91=—31y_+32y,—h(14f_; +16f5)+h*(—2g_; +4g,)

and the corrector given by
h A
y0=y—1+ 74—0‘(101f_1+128f0+11f1)
B2
T 540 (13g-,—40g0—341),

where f,=f(xo+1h, y), g;=f(Xo+1h, y), fi=f(xo+h, 9,) and §;=g(xo+h,
$1)- Succeeding his result, J. R. CasH [5] has considered this type of formula
more generally and made some stability analysis. On the other hand H. SHIN-
TANI [12], [13] has proposed some formulas analogous to RK formula em-
ploying one evaluation for f(x, y) and some for g(x, y). He has given the
values of the parameters appearing in the formulas up to the order 7. His
results, closely related to the present work, will be mentioned afterward.
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In this context another type of integration formula, for the origination of
which H. H. RosENBROCK [11] is given credit, is now being developed. It
employs the partial derivative f,(x, y) and is reported to have good stability for
stiff systems of ordinary differential equations ([7], [9]).

Here we shall examine an explicit (p, q)-stage Runge-Kutta type formula
including the second derivative. It requires p times evaluations for the first
derivative and g times for the second derivative in a similar manner for RK
methods. We are interested in the following problems.

(1) What is the attainable order of the (p, q)-stage formula from the
viewpoint of its local accuracy?

(2) How are the parameters in the formula determined?

(3) What formula is good for practical use?

These problems will be solved in the following sections and the forthcoming
paper by the author. The present paper is especially devoted to investigate the
(1, g)-stage formulas.

First, we shall define explicit (p, g)-stage formula. Next, some algebraic
computations are carried out to investigate (p, g)-stage formulas. Here SAM
software is used as a powerful tool. Then, the attainable order of (1, g)-stage
formula is determined up to g =4.

Remark. In the case of very complicated functional form of f(x, y) in
higher dimension, the calculation of the second derivative g(x, y) requires a
laborious work. It is the main reason why the methods employing g(x, y) have
not been considered. But the recent development of the symbolic and algebraic
manipulation (SAM) software brings the change of the situation. SAM soft-
ware, for example, REDUCE-2 or MACSY MA, is now a helpful tool for mathe-
matical sciences. In fact, some SAM program may print expressions in a
FORTRAN notation so that one can carry out the calculation of the second deri-
vative from f(x, y) in an automatic way. Once after algebraic computation we
may call g(x, y) as a FUNCTION subprogram.

Moreover, SAM software is very useful for the theoretical study of the RK
and its analogous methods. For example, H. TopA [14] has considered 5-stage
RK limiting formula of order 5. He has utilized MACSYMA essentially. We
shall also attempt to apply SAM for our study.
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§1.1. Explicit (p, q)-Stage Formula

We shall discuss numerical integration procedure for the initial-value
problem of ordinary differential equation:

(111 D —f(x, 1),
(112 Yo = s

Here f is sufficiently smooth with respect to x and y. Let us define an explicit
(p, q)-stage Runge-Kutta type formula including the second derivative of the
solution. Let g stand for the second derivative of y(x),

(1.1.3) 9(x, Y)=£f(x, Y)+£(x, Y)f(x, ¥).

Explicit (p, q)-stage formula is given as follows.

(1.1.4) Peii=rabh Y wki RS wK,  n=0,1,2....,
i=1 i=1
where
kl =f(x,,+ot,h, yn)9
(1.1.5) i=1 i=1 .
ki=f(x,+o;h, y,+h Zl Bijk;+h? ‘21 7, K, i=2,..., p,
Jj= Jj=
K;=g(x,+p1h, y,+hoyky),
(1.1.6) i i-1 .
K;=g(x,+p;h, y,+h Zl o ;k;+h? -21 7,;K;), i=2,...,q.
J= J=

Remark 1. The parameters y;, v;, o, B,;, 7:j» pi» 0;; and 1;; are, of course,
real numbers.

Remark 2. In the case of simultaneous equations in (1), y and f are con-
sidered vectors of the same dimension. Then f/(x, ), the Jacobian matrix of f,
is given in the matrix form. For example, assume that
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fiyis v2) )=( (a;—byys)y, )
fr(y1s ¥2) (a—byy,)y,

where a; and b; are constants, then

ay—by, —byy, )
—byy, ay—byy,

flx, y)=(

f‘.(X, y)=(

and

gx \,‘)=( aty +(byy+b1y,—2a;—a3)biy1y, )

a3y, +(byy +byy,—a,—2a3)b,y,y,

Similar to the RK formulas, the detcrmining equations and the parameters are
possible to be slightly different between the single differential equation and the
systems of equations. For convenience sake we shall investigate the single case.
The attainable order of the formula is not depend on whether (1) is single or
system.

§1.2. The Taylor Series Expansion of the Solution

To investigate Runge-Kutta type methods of higher order, we are required
to represent the solution y(x,+ h) for (E) and (IV) in Section 1.1 into the power
series of the stepsize h. For our quadrature formula it is preferable to represent
the solution into the power series utilizing the second derivative g.

Twice integration after differentiation for the equation

d
d—.}‘;‘ =f(x5 y)s xgxo

implies the formula

(1.2.1) S’“’”’ {S' d’y (x) dx}dt - S’“’“’ {S; g(x, v(x))dx }dt.

X0 X0 dx2 X0

The left-hand side of the above formula is equal to
Y(xo+h)— y(xo) = hf (xo, ¥(xo))
=y(xo+h)—yo—hfy.

Hereafter the subscript 0 stands for the evaluation at x=x, and y=y,.
The right-hand side of (1) becomes

gh {Sx:+§ g(x, ,v(x))dx}d§=g: {Sj g(xo+¢, ."(X0+C))dC} dé.

J0O X
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Then, assume that for 0<{<h, y(xo,+{) can be expanded in the power
series of { by
(1.2.2) YXo+=yo+L{fo+ Z Ere =5+ o),

where x; (j=1, 2,..., m) is the coefficient to be determined later. Substitution
(2) into the integrand implies

g(xo+E, y(xo+0))=g(x0+{, yo+{fo+ 2 r—2 r+o((m1))

(e o § Yo o

=3 L-[(po+ (B ﬁ%c*-l)%)’g]owmmﬂ)

r=2 F.

B lzoc—;{kz:o( i( )(":z::i (r+1)' Cr)

<[5 o]} o,

Here D, is a differential operator defined by
_ 0 0
DO = '—a‘; + f 0 —5;' .
Therefore we have the following equation:

(1.2.3) yothfot+ Z r—2 {"=yo+hfo+

+So($o§o§—;{k§lo( k)(m:1 (r+1)'c>[ ( )o l)}ﬂ)clé,

which determines x; recurrently.
Twice differentiation for (3) with respect to 4 implies

w20 §w - AR (8 e o (2]

Then, we have the following important result.

Theorem 1. The coefficient k; (1=0, 1,..., m) is determined by the follow-
ing way:
Ko=4do-
m(l,s) 1!

<i=[Diglo+ X {2, ST=s=9T

st,t(%"—’ s s+1)[Dl—St<—> :H

for 1=1,2,....,m

(1.2.5)
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Here B, (x;, X3,..., X5) is the multivariable polynomial of E.T. Bell of the
order (s, t) and

m(l, s)=min (s, [—5s).

Note. «; appeared in the summation of the right-hand side of (5) is for j
less than or equal to /—2 so that we can determine k, recurrently by the formula.

Proof. kg=¢g, is clear. Let us introduce two functions G(h) and A(h; I)
as follows:

(1.2.6)  G(h)= ,21 T

A.2.7)  A(h; D)= k'go( ){G(h)}" Di k( 0 ) gJ m.

Note that G(h) is of the order h and G(0)=0 holds. Then, the right-hand side

of (4) is equal to ;’;0@ hs.

Hence, we have the equation

(1.2.8) > M= 3 AW g

s=0 S '

For an integer [ such that 1 <I<m, I-times differentiation to (8) with respect to
h implies

!
(1.2.9) i, = 21( . )Am(o; I—s).
By (7), the equation

A(0; =[Djg]o

is clear. For s=1, we have from (7)
I—s
ks =)= 177 | GmIDE 19,16
I—s s
#5710

+(l_ks )dhs G D () o]+
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For higher derivatives of composite functions, the formula employing the Bell
polynomial is known (J. R1orRDAN [10]). Hence, applying the formula, we have
for k=1, 2,..., I—

k!

ds - min(s, k) , " s 1
i GO =" 5 S Bu(G ), G (B, GO X (G},
which implies

{ k'B; (G'(0), G"(0),..., G®(0)) forszk,

ths Gt ] 0 for s<k.

From (6), the equation

-1 1 m—1
(s) r. y—] r—s ._h*__.l_.__ r=s
GO0 =E L T T S pre=st !

holds. Hence we have

G(0) = s=1,2...,m—1.

+l’

Then A®)(0; [ —5) is given by

k=1
B
= t=lmBs,!<Ta "3‘,..., m_ D J

which implies from (9)

400, [—5)= "3 ( )k!Bs,,(G’(O),..., G(0)] Dy (& ) 9]
2
oy

=1 ] m(l,s) (—s)! K K K
= [ D} TS No Kq s—1
k=L °g]°+§1(s ){ (I—s—-0! Bh‘( 27 3 s+l>

t=1

= i Ko Ky K )
[D gJ0+ z { tgl S'(l S‘—t)' Bs,t( 2 ’ 3 IAREE] S+I
6 t
Dl—s-t __) }
X[ 0 dy gl)
This is the desired result. O

The multivariable polynomial B (x,, X,,..., x;) has a recurrence formula
to calculate it conveniently by the application of any SAM software. That is,
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s s s aBst
Z xlBs t(-xl"--; xx)aﬁ-l + Z <Z Xk+1 a * )al
=1 ’ =1 \k=1 X

st+1
= 21 Bs+1,r(x]s-"a xs+l)al .
=

Here, the both sides of the formula is considered as a polynomial of a. The
recurrence formula for B,, will be employed during the calculations of x; by
REDUCE-2.

Theorem 1 tells us a concrete method to determine the Taylor series ex-
pansion (2) employing the second derivative. For example,

k1=[Doglo,
K2=[D3gJo+ 2!B1,1("2)g,.0=[D391o+ Kody,o=[DF9Jo+d0d, 0.

3!
k3=[D3g1o+31B1.1 (2)[Dog,Jo+ 3; Bar (52,5 )ay0
= [D89]0+3K0[Dogy]o+’<1gy,o
=[D39]o+390[Dogy]o+ [Dog10d,,0 -

We may also carry out the process by the SAM software up to the desired order.
The result by REDUCE-2 is shown in Table 1.

Note that because of Remark 2 in the preceding section we do not care the
order of the higher partial derivatives.

Another important result from Theorem 1 is that any «; is a summation of
an integer multiple of some product of [D§(d/dy)?g],.- Hence, we shall call
any product of [D5(0/0y)?g], an elementary differential of g. J. C. BUTCHER
[1] has used the terminology of elementary differential in a different sense.
However, our study of the expression of the coefficient of Taylor series in the
elementary differentials is on the similar point of view.

In fact, the way of the proof of Theorem 1 is applicable to the Taylor
series expansion of y(x,+ h) employing the first derivative.

Theorem 2. Assume that

(1.2.10) y(xo+h) =pyo+ i _)i:—_l_hr+0(hm+1) .
r=1

r!

Then, the coefficient A, (1=0, 1,..., m—1) is determined by
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,10=fo
(1.2.11) {

m{l, 1!
A=[Dflo+ 2 { 2 T=s=D1s!

s=1 t=1
<Bus(5o G SO 26 ()7L

=1, 2,....,m

We shall call (10) the first type power series expansion in contrast with
(2) which will be mentioned as the second type expansion.

Table 1.

Ko=Jo

k1=[Doglo

x2=[D§glo+9go" 9.0

k3=[D3g]o+[Doglo " 9y,0+390-[Dogylo

ka=[D¢glo+[D3910" gy,0+4[Doglo - [Dog;lo+ 690 - [D3gyJo+ g0 93,0
+390'gw,

ks=[D3glo+[D3910" gy,0+5[D391o - [Dogylo+ 10[Dogl, - [D3g,]o
+10g, - [D39,10+[Dog]o - 93,0+ 890 9y,0 - [Dogylo+10g0 - [Doglo - 9yy,0
+15g5 - [Dog,y]o

ke=[D8glo+[Déglo- gy,0+6[D3g])o - [Dog,lo+15[D3g]o - [D3g,]0
+20[Dog]lo - [P3g,]o+ 1590 - [Ddg,lo+[D3glo- 92,0+ 189, [Dog,13
+10[DogJo gy,0 - [Dog;Jo+2190 - gy,0 - [D3gyo+10[Dog 13- gyy,0
+15g0-[D3910 - gyy,0+ 6090 - [Doglo - [Pogyylo +4593 - [D3g,5]0
+90-930+189%- 95,0 9yy.0+ 1593 Gypy.0

x,=[Dgglo+[D3g]-g,,0+7[D8g]o - [Dog,]o+21[D3g]0 - [D39,]0
+[D3g1o- 92,0 +35[D3g1o - [D3g,lo+12[D3g]o - 9y,0 - [Pog,]o
+35[Dog]lo - [Dég,]o+28[Doglo - [Dog,13+31[Doglo - 95,0 - [P0
+[Doglo - 93,0 +35[Dog1o - [PF9]0 - Gyy,0 +70[Dog13 - [Dogyylo
+21g0-[D3g,]o+105g¢ - [Dog,lo - [D3g,]0+4590 - 9y,0 - [P3g,]0
+15g0-9%,0-[Dog,]o+2190 - [D3g]o - 9,y,0 +105g4 - [D3g]o - [Dogyylo
42109, - [Doglo - [D3g,yJ0 + 6690 - [Doglo - Gy,0 - 9yy,0 + 10593 - [D3gyy 1o
+84g3 - [Dogylo - 9yy,0 112093 - 95,0 - [Dogyy]o + 10593 - [Doglo  Gyyy,0
+105g3 - [Dogyyp0

kg =[D§glo+[D§glo - gy,0 +8[D3g]o - [Dogylo+28[Déglo - [Dgy]o
+[D§g]o - 93,0+ 56[D3g]o - [D3gy]o+ 14[D3g 1o - 9y,0 - [Dogylo
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+70[D3g]o - [Dég,]o+40[D3g]o - [Dog,15+43[D3g10 - gy,0° [D3g,1o
+[D3g]-93, 0+35[D3g13 - gyy,0+56[Doglo - [D3gy1o

+192[Dog1o - [Dog,]o - [D§g,]o +76[Doglo * gy,0  [D39y1o
+18[Doglo- 92,0 [Dogylo+56[Doglo - [P3g]o - 9yy.0

+280[Dog]o - [D3910 - [Dogyylo+280[Dog13 - [D3g,y10
+66[Dog13- 9,0 Gyy.0+ 2890 - [DSg, o+ 1689, - [D3g,15

+2489g, - [Dog,]o - [D3gyo+ 8590 9y,0 - [D§g,10 +8290 - gy,0 - [Dog,13
+4990- 93,0 -[D39,o+90» 95.0+2890 - [Déglo - gyy.0

+168g4 - [D3g]o - [Dogyylo +420g, - [D3g]o - [D3gyylo
+113g0-[D3glo - gy,0 - 94y,0 +560g0 - [Doglo - [P3gyy]0

+360g, - [Doglo - [Dogy]o - gyy,0+ 350890 - [Doglo - 95,0 - [Pogyylo
+280g - [Dog 15 - 9yyy,0 +21093 - [D3g,,]0

+252g% - [D3g,]o0 - 9,yy,0 + 62493 - [Dogylo - [Dogyylo

+465g5 - 9y,0 - [D3y,J0 +8195 - 93,0 9yy,0 +21095 - [D3g 10 - .0
+840g% - [Doglo - [Dogyy,lo +420g3 - [D3g,,,10+8493- 92,0
+22593 95,0 9yy,0 10598 - 0

§1.3. Implicit (1, g)-Stage Formula

For the study of the general (1, g)-stage formula, it is convenient to analyse
the corresponding implicit (1, g)-stage formula, because we gain an insight into
its algebraic relations by them.

Consider an implicit (1, g)-stage formula as follows:

q
(1.3.1) VYu+1=Ynt+uhk, + > v;h2K,, n=0, 1, 2,...,
=1

{ kl =f(xn+a1h, yO)s
(1.3.2)

q
K;=g(x,+pih, y,+0;1hk; + '21 1;;h%K)), i=l,..,q.
=

We need to analyse one-step integration by (1) and (2), so we may substitute
n=0, i.e.

q
Y1=Yo+ushk;+ 21 vih?K;,
(1.3.3) ky=f(xo+ash, yo),
Ki=g(xo+p;h, yo+0;.hk; + 3 7;;2K)), i=1,.,4.
J

For k,, we have the following expansion:
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Ky =fo+tihfoot 5 0h? frgo+O(R?).
On the other hand, K; has the expansion
K,=go+0(h).
Hence, the equation
(1.3.4) V1= Yo Hulfo+ Hi, oo+ 2 vigo) + O(h?)
holds. The solution y(x,+ h) has the power series of h as follows:
(1.3.5) Yo+ h)= Yo+ hfo+ 5 h2go+O0(h?).

Comparison of the terms having the same power of h in (4) and (5) yields the
following equations.
w=1

9o -

l\)(r—‘

q
1% frot Z:l Vigo=

Thus, yu;=1,0;,=0 and X} ¢, v;=1/2 must hold in the implicit (1, q)-stage
formula.
Next, since K; has the expansion

_ [ 0 0 2
Ki=go+ L(Piﬁ +‘7i1f0'53,—>910'h+0(h )

the comparison of the third order term of y, and y(x,+ h) implies the equation

'é_ [Doglo= % (9x,0tf0 9y,00= iz; vil(Pigx,0t+0i1f0°9y,0] .

From the viewpoint of homogenuity of differential operation, p,=0;, must hold
fori=1, 2,..., q.
Hence, let us rewrite (3) by
q
Yi=Yo+hfo+ Z} vih?K;,

(1.3.6)
Ki=g(xo+pih, yo+pihfo+ 2 1:;h2K}), i=l...q.
J

We shall assume the Taylor series expansion for K; by
(1.3.7) K;= f ._K_”__hl.{.o(hnﬁl)’

i=o /!

where k;; will be determined by the similar manner for Theorem 1.
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Theorem 3. For each i, ky in (1.3.7) is determined by the following:

Kio=Ydo,
~1 (mss) 2l

(1.3.8) {m=mwwb+§{

I—s—t

=1 S'(l s_t)' Pi
q _ o\

st,t( ng Tinjo,---, S ; lekj s—l)(Dl s (W) g}()} ’

I=1,2,...,m

Note. By the above formula, x; can be determined in the ascending order
of the second subscript, i.e., k;, (i=1,..., q) after x;, K;3 (i=1,..., q) after x;,,
and so on.

Proof. Two-variable Taylor series expansion for K; gives

-3 [{ Lt (pifot+ Su K } }+0(hm+l)

= ’):) L Hp,po+ (SwhK) 5} 9 | +0Um)

=:a%[9”“(ﬁxéf%%9wﬁfJﬁ]+“W”

=5 e (B () e Y [ () o
Thus, putting G,(h) as o
(1.3.9) G,(h) = ;‘: (él%ym

and noting that G,(h) is of the order h and G,(0)=0, we have the equation

£tn= £ d o Jrewr o) el

which is similar to (1.2.4). Hence, following after the proof of Theorem 1, we
have

™

m(l,s) —
cu=rlDbalot 3 | {78 (525 P BGO), GO

=1 (I—s—0)!
<[ o6 () L

GO (h) = 'z_*’ll (r(:-I’c--ll—)l’)! <§: ‘ru:?jr )hr—k+1

From (9), for k=1, 2,..., s
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holds, which implies

G(k)(o) k'(Z ”KJIk)11> kZTu’CJ k—1-+

J
Thus we have the desired result. |

By Theorem 3, x;, is given as follows:

11=P;[Dog]o:
Kip=pi[Ddglo+ 2!B1,1(Z T4iK50) * Gy,0

—p2[D g]0+2(z Tu)go gyO’

K3 =p3[D} g]0+3'P; B (2 leKjo) [Dogy]o+3Bz (2 TijKjo» 23 TinJ1)'gy,o
=p3[D3 g]0+6P;(Z 7,90 - [Dogy]o+6(z 7:;0;) [Doglo - gy,0 -

The result with the help of REDUCE-2 is shown in Table 2. Here we employ
the notation

Ty= Z phty;, i=1,2,...,q, k=0,1,2,...
From (6) and (7), the Taylor series expansion for y, is given by
(1.3.10) Yi=yo+hfo+ i vih2<§ Ei,l_hl)+0(hm+3)
=yo+hfo+ Z (Z v; K,,) +0(h'”+3)
=yo+hfo+ EZ ( iz=:1 ViKi,r—2) —(T:f)—v +O(h™1).

On the other hand, from (1.2.2), the (second type) Taylor series expansion
of the solution y(x, -+ h) is given by

(1.3.11) y(xo+Hh) y0+hf0+2 "2 A +O(hmt1),

where x; is represented by (1.2.5). The comparison of (10) and (11) brings the
determining equation of the implicit (1, g)-stage formula, for which we have the
following

Theorem 4. Each k;; in (10) is constructed with the all elementary differ-
entials included in the corresponding x; in (11). Hence the determining equa-
tion of the implicit (1, q)-stage formula is of the form such as

(an integer) x (a polynomial of v;, p;, 7;;)=(an integer).
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Proof. From (10) and (11), x; and x;; must satisfy

Ls i, 1=0,1,2 2
T;l zl UTZ)“!'” =Y, I, 49...,mm— 2,
which implies
(I+D(1+2) 3 vikg=x;.
From (1.2.5) and (1.3.8) the conclusion follows. O

Table 2.
Kio=9o
i1 =piLDoglo
Ki2=p3[D§g1o+2Ti0 " Go - gy,0
ki3=p3[D3g]o+6T;1 - [Doglo - gy,0+6p:Tio- 9o [Dogylo
Kia=pt[D§910+12T;,[D3glo - 95,0 +24p:T:1[Doglo - [Dogylo
+12p7Tyo- 9o - [D§ gy]o+24(}2 7;Ti0)90° 93,0+ 12T% - g3 gyy0
K;5=p3 - [D3g1o+20T;5-[D3g],- gy0+60pz i2-[D3 g]o[Dogy]o
+6OP§T.-1[Dog]o[th)gy]o+120(2 5 T51) - [Doglo- 93,0
+20p3T;-go - [D3 gy]o+120{z(P;JFPJ)TUT,O}QO 9y.0°[Dog,lo
+120T;T;1 - go - [Doglo - 9yy0+6OP;T - g5+ [Dogyylo
K6 =Pp8[D§g 1o+ 30T, [Déglo - g,,0+ 120p,T;3[D3g] - [Dog,lo
+180p?T;,[D§g]1o[ D3 gy]0+360(2 7:;T52) [D§g10 - 920
+120p?T;,[Dog]lo - [DF gy]o+720{Z(p,+p,)r,JT,1}[Dog]o 9y,0'[Dog,]o
+3607%[Dogl5- gyy,0+30piTo - 90 [D3g,1o
+720(Z PiP;%i;T0) 9o - [Dog,:]o+360{z (PF+ 0D Ti0}g0 9y.0- [PE9,]0
+720(Z Z‘fu #wTko)do" 93, 0+36OT,0T,2 9o-[D39Jo " gyy.0
+720P, i0Ti1 90 [Pog]o - [Dogyylo+ 18002 T%g3 - [D3g,,10
+360’Z T{(T30+2T0T0)}95 9y,0* Gyy,0+120T30- 93 - Gyyy.0
Kip=p]-[D] g]o+42 is[D3g]o - gy,0+210p;T;4[DEg o - [Dog,lo
+420p?T;5[D3g]o - [Dogy]o'*‘g‘m(JZ 7,;T;3) [D3g91o- 920
+420p3T;,[ D391, - [D3 v]0+2520(2 (P;"‘P;)Tusz)[Dog]o gy0° [Dogy]o
+210pt T34 [Doglo - [D§ gy]o+5040(2 PiP%:;T;1) [Doglo - [Dog,15
+2520(§ (P} +p3)i;T;1) [Doglo - gy,O [D3g,1o
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+5040(Z Z 7T Tk1) [Doglo - 93,0+ 2520T;, T;,[Doglo - [D3g1o - 9yy.0
+2520P;T [Dog]o‘ [Dogyy]0+42pz i0do" [Dogy]o
+2520(% pip(pi+p)7i;Tj0)g0 - [Dogylo- [D3g,10
+840(5)07 + 0% Ty000- 650 D36, 1o
+5040(Z 2 (pi+p,+ P07 Ti0)do 95,0 [Dod5Jo
+84OT;0T1390 [D3glo- gyy0+2520p17;0 1290 [D3g]o - [Dogyy]o
+2520p%T;4T;190 - [Doglo - [D3g,,10
+5040(Z T TioTj1 + TjoTjs + Tio Ti1))90 - [Doglo * Gy.0 * Gyp,0
+42003T%g 3 (D3 gy»lo
+2520(% (20:Tyo +p;T;0)71;T0)93 - [DogyJo - Gyy,0
+2520(é (P:iTjo+2p;T0)i;Ti0)g - 95,0 - [DoGyylo
+2520T%T;,g3- [Doglo- yyy,0+ 8400, 3693 - [Dogyyy]o

Kig =p3[D8glo+ 56T - [D§g 1o - 9,,0 +336p;T;s[D3g]o - [Dogylo
+840p%T;,[D§g], - [D3 gy]o+1680(2 T;,T,4) [Déglo- gy 0
+1120p3T;5[D3g]o - [D3 gy]o+6720(2(p1+p,)tUT,3) [D3970 " 95,0 - [Dog,1o
+840p¢ T;,[D3g]o - [D§ gy]0+20160(2 Pip;%i;T;2) [D3g]o - [Dog,15
+10080( Z(p. +p7)7i;T;2) [D3glo - gyo [D3g,1o
+20]60(Z Z 7Tk Tk2) (D390 - 93,0+ 5040T%[D3g13 - gyy.0
+336P¢5Tz1[D09]0 [D3g,10
+20160(% pip(pi+ p)%i;T;1) [Doglo - [Dogylo - [D3g,10
+6720(S (p3-+ %, Ty) [Doglo - gy (D3, 1o
+40320(JZ Z (pi+p;+ P75 Ti1) [Doglo - 92,0 - [Dogy]o
+6720T,1T,3[D0g]0 [D3glo- gyy0+20160pl 11Ti2[Doglo - [D3g]o - [Dogyy]o
+10080p?T#[Dog13 - [D3g,ylo
+20160(Z T Tj1Q2Ti + Tj1)) [Dog 13- 9y,0* Gyy.0
+56P?T,ogo [D8g,]o+10080(3 ppjti;Tjo)go - [DE9,18
+6720(3 pip(p? +P3)TUT10)90 [Dog,]o - [D3g,0
+1680(T (pF-+ P, Ty0)o - o [Dig51o
+ 40320(%: ; (pip;+ PP+ PiP)TijT ik Txo)do - Gy,0 - [Dog,13
+20160(Z Z (p?+p3+PD)tiiTi Tro)do - 93,0 - [DBgy 1o
+40320(Z Z Z 7Tkt T10)90 * 95,0 +1680T;0 Ti4g0 - [D§g10 - 9yy,0
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+6720p;T;o Ti3g0 - [D3g1o - [Dogyylo

+10080p? T3 Ti2go - [D3¢ o (D39, 1o

+20160(3 7;{(T;2 Tjo+ Tio Tj2 + TjoTj2))0 - (D391 9y,0" Gyp0

+ 6720p%'11",~0T,~190 -[Dog]lo - [D3g,y]0

n 40320(; TP TioTj1 + P Ti Tjo+ PiTjo Tj1))90 - [Poglo - [Dodylo - Gyy,0
+40320( 7ii(piToTys + piTu Tio + £ Tjo Ty [PogJo - 95,0 (Do Jo
+20160T;0 TH90 [Dog 8 Gysy.0 +840p¢ Thog - [D3g,51o

+10080C 73,(p} Tjo + 203 T10) Tj0)03 - [D3G,Jo - Gomo

+20160(3 pip 72T + Tjo) Tio)gd - [DodyJo - [Dogss]o

+10080(2 7P Tyo+20T0) Ty0)g3 950" [D3glo

+ 20160(1Z ;’ 74275 Tio Teo + 276 Tjo Teo + T Tjo Tro + T T %0))95 93,0 * Gyy,0
+10080T% T;,93 - [D3g1o - 9ypy.0+20160p, T3 T;193 - [Doglo - [Dodyyylo
+3360p2T393 - [D3g,yy]0 + 20160(_2 7:;Ti0T50)93 - 93,0

+6T2(S 53T+ Tio) Tlg3- 0" G0

+ 1680T g% - gyyyp.0

§1.4. Determining Equation for (1, q)-Stage Formula

An algebraic computation according to Theorem 1 gives the number of
elementary differentials including in each ;. Let m, be the number of elementary
differentials in x;, and define the integer M, by
o
Each m; and M, are given in Table 3 up to [=8.

Thus, we have M, restrictions for the parameters v;, p;, 7;; of the formula.
In the implicit (1, g)-stage formula the number of the parameters to be de-
termined, say N, can be given as a simple function of ¢

NP =q(q+2).

It implies that the implicit (1, g)-stage formula can attain at least the order
(1+2) where 1 is the largest integer satisfying the inequality M;<N". These
relations are shown in Table 4.

However, the above argument based on merely counting the number of
the equations that must be satisfied, ignores the relationship between them.
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In fact, it may happen that M, restrictions are satisfied with fewer than M,
variables. But, since we are interested in the explicit formula rather than
implicit one, we shall not come into more investigation for the attainable order
of the implicit formula.

An explicit (1, g)-stage formula, which is defined by the parameters v;, p;
and 7;; (1;;=0 for j=1i) in (1.3.6), has N{¥) parameters to be determined. Here
N is given by

NSIE) =q(q+3)/2.
Hence, similar consideration for the implicit case gives the largest integer [*

satisfying the inequality M ,ngiE). Table 4 includes the relations between g,
the number of stages, and I*.

Table 3.
[ m, M,
0 1 1
1 1 2
2 2 4
3 3 7
4 6 13
5 9 22
6 17 39
7 26 65
8 46 111

Table 4.

q I N 7 | N I*
1 3 | 2 1
2 8 3 5 2
3 | 15 4 9 3
4 24 5 14 4
5 35 5 20 4
6 48 6 27 5
7 63 6 35 5
8 80 7 44 6
9 99 7 54 6

10 120 8 65 7
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SHINTANI has given some explicit one-step methods utilizing the second
derivative [12], whose formulation coincides with our explicit (1, g)-stage
formula. He has determined the parameters for g=1, 2, 3, 4 and 5 which give
the formula obtaining the order 3, 4, 5, 6 and 7 respectively. His results attain
the orders that we have argued as the least number [* for each stage formula.
Hence, it is a question whether Shintani’s results can be improved.

We shall consider the determining equation for the explicit (1, g)-stage
formula. Tables 1 and 2 give the equation as follows. We employ the notation
for summation symbol such that the upper limit of summation can not exceed
the variable of the preceding summation symbols,i.e. 3 ;---(3 ;---) means 2 f -
(XiZ--). Moreover, the symbol T, means

T,,=0 and T,= Z P, i=2,3,...,q

Determining equations.

[=0: (E-0) 2% v=1

I=1: (E-1) 6 Zl: vip,-=1

I=2: (E-21) 12 Z vpi=
(E-22) 24 Z v Tl0 =1

[=3: (E-31) 20 Z v, 03 =
(E-32) 120 Z v,T;y=1
(E-33) 120 2'; v;0;Tio=3

I=4: (B-41) 30 Zlv,-p‘}=1
(E-42) 360 Z v, T,=1
(E-43) 720 z Vi Ty =4
(E-44) 360 Z': v;ip?Tp=6
(E-45) 720 Z z vt Tio=1
(E-46) 360 Z v T 2,=3

I=5: (E-51) 42 Z V3=
(E-52) 840 i v, Tiz=1
(E-53) 2520 EZ v;ip; Ti,=5
(E-54) 2520 Z v;02T;; =10
(E-55) 5040 Z Z vt T =1
(E-56) 840 ; v,pl 10=10
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(E-57) 5040 3 3 vip;+p))ti;Tj0=8
(E-58) 5040 z yiTo Ty =10
(E-59) 2520 z v T2 =15

I=6: (E~601) S6 z ypf=1
(E-602) 1680 ¥ W=
(E-603) 6720 . vp, Ty =6
(E-604) 10080’2 yp?T,y =15
(E-605) 201602 % vy Tz =1
(E-606) 6720 z ypiToy =20
(E-607) 40320 z 5 oty Ty =10
(E-608) 20160 z vT% =10
(E-609) 1680 z yptTo=15
(E-610) 40320 z % vt Tro=18
(E-611) 20160 Z Z vi(p? +pPr;Tio=21
(E-612) 403205 ¥ % vitypTio=1
(E-613) 20160 3 v,Typ Ty, =15
(E-614) 40320 5 vpTioTiy =60
(E-615) 10080 z v T =45
(E-616) 20160 z % vitf(Tio +2To)Tio =18
(E-617) 6720 % v,T}=15

[=7: (E-701) 725 vpl=1
(E-702) 3024 % v,Tjs=1
(E-703) 15120 S vp,Tru=T
(E-704) 30240 ¥ vp?T,y =21
(E-705) 604805 5 v Ty =1
(E-706) 30240 3 vp3Tjy =35
(E-T07) 181440 5 5 vt 0,5, Ta=12
(E-708) 15120 z VT, =35
(E-709) 362880 Z 2 vipip;Ti; T =28
(E-710) 181440 Y. 3. vi(p? +p)5, Ty =31
(E-711) 362880$ é‘; % vty =1



(E-712)
(E-713)
(E-714)
(E-715)
(E-716)
(E-717)
(E-718)
(E-719)
(E~720)
(E-722)
(E-723)
(E-724)
(E-725)
(E-726)
(E-727)
(E-801)
(E-802)
(E~803)
(E~804)
(E-805)
(E~806)
(E-807)
(E-808)
(E~809)
(E-810)
(E-811)
(E-812)
(E-813)
(E-814)
(E-815)
(E-816)
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181440 3 v,T;, T}, =35
181440 3" v, T3 =70

3024 ¥ vpiTo =21

181446 2 Zvipipi(pi+ptijTio=105
60480 3 3 vi(p} + )t Tio =45

362880 z z Zvilpitpit ptitaTio =15
604802 v TioTi3 =21

181440 z vip;Tio Ty =105

1814402 vip?Tio Ty =210

362880 z 2 viifTioTju+ TjoTjs + ToTia) =66
30240 z yp3 T2 =105

181440 z z vi2piTio + p;Tjo)ti; Tjo =84
181440 z z vi(piTjo+2p;Tio)t;; Tio=120
181440 z v; T 0 Tiy =105

60480 z vipi T3 =105

90 Z V; p8 =1

5040 T Te=1

30240 Z vip;iTis=8

75600 3 vip? T,y =28

15120012 2 it Tia=1

100800 z vj,vp?TD =56

604800 3 5 vipy-+ ) Tys =14

75600 3 vlpl 4T;, =70

1814400 z z vipip;Ti;T;2 =40

907200 z z vi(p? + p)t;;T;, =43

1814400 z z z Vit T Tia =1

453600 z v, T? 2_35

30240 Z vipi Ty =56

1814400 3 z vioip i+ p )i Ty =192
604800 z z vipi + o3, T;=T76

3628800 iz 7; b) vi(pi+ P+ P T T Tiy = 18



346

(E-817)
(E-818)
(E-819)
(E~820)
(E-821)
(E~822)
(E-823)
(E-824)
(E-825)
(E-826)
(E-827)
(E-828)
(E-829)
(E~830)
(E-831)
(E-832)
(E~833)
(E-834)
(E~835)
(E-836)
(E-837)
(E-838)
(E-839)
(E-840)

(E-841)
(E-842)
(E-843)
(E~844)
(E~845)
(E~846)
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604800 3" v,T;, Ty, =56
1814400 5" vyp,Ty; T;, =280

907200 5. vp?T% =280

1814400’2 e T T,y + ;1) =66
5040 5 ,pf =28

907200 5 5 vptojTo= 168

604800 Z Z vipip (p%+p3)Ti;T;o =248
151200 5 3 vt + p3ye Tio =85

J
3628800 32 3 X vilpip+ P pict P3P Tro =82
L
1814400 ¥~ ¥ ‘7‘; vi(p?+ 2+ pP)Ti T Tho =49
roJ

3628800 ; ; ‘k; ZI: VT Tl =1
151200 Z v; T, T;4 =28

604800 Z v;0;T;0T;3=168

907200 Z v,p?T;o T, =420
1814400lz Z V(T Tijo+ToTjn+
604300 > vl,o, 3T, T;; =560

TJoTj2)=113

3628800 3° 3 vitij(p,; Tio Tjs +pTi1 Tio + piTj0 Tj1) =360
rJ
3628800 Z Z vitif0: T Tj1 + PiTi1 Tjo + p;Tjo Tj1) =508

1814400 z v,T,OT,1 =280
75600 3 vt T2 =210

907200 Z Z Vvitij(p?Tj0+2p3Ti0) Tjo =252
1814400 3 z vipip %2 Tio + Tyo) Tjo = 624
907200 Z Z Vit (p3T, +?p Ti0)T;o =465
1814400 Zl %’, \k‘{: Vviti /(2T 5 Too Tho + 27 3 Tj0 Tho

907200 ¥ v, T} T, =210
1814400 z vip; T2 T;, =840

302400 z v,p2 T3 =420

18144002 3 vt TioTho=84

604800 z z Vit 3T+ T20) Tjo =225
151200 z v, T4 =105

+ 75 Tj0Txo + T To) =81
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§1.5. Attainable Order of (1, 1)- and (1, 2)-Stage Formulas

The explicit (1, g)-stage formula is said to have the attainable order m if
m is the largest integer for which

y(x+h)—y,;=0(h")

among all combinations of the parameters of the formula, where y(x) is the
analytical solution and y, is given by (1.3.6). The definition of the attainable
order will be extended, if necessary, to general (p, g)-stage formula.

It is obvious that a (1, g)-stage formula has the attainable order m if and
only if the determining equations corresponding up to ! have at least one so-
lution, but they have no solution up to I[+1, where I=m—2.

Theorem 5. The attainable order of (1, 1)-stage formula is 3.
Proof. The left-hand side of the equation (E-22) is equal to
24 }": vi(; i)
which vanishes for (1, 1)-stage formula because > ;1;;=0. This means that
the parameters v, and p, can satisfy merely the equations (E-0) and (E-1). [
Theorem 6. The attainable order of (1, 2)-stage formula is equal to 4.

Proof. Assume that the formula attains order 5, that is, the parameters
Vi, V2, P1, P2 and T, satisly the equations (E-0) - (E-33).

(1.5.1) Vv, =
1

(1.5.2) V1Pt Va0, = 6

1
(1 .5.3) "2‘[21 = ﬁ
(1:54) npt+vasd=

l

(1.5.5) VaP2T21= 75

(1.5.6) Vit = Top
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(157 nipt+vap3= 0
The equations (1), (2) and (4) yield a matrix equation
I 1 1/2 vy
py p2 1/6 ) v, |=0,
et p3 1/12 -1
which implies
\ 1 12

(1.5.8) py py 1/6
Cpi Py 1/12

=0

for the existence of nontrivial solution [v,, v,, —1]*. On the other hand, (3),
(5) and (6) give the values

-1 -3
P1 5° p2—55

which specify the determinant of (8) by 1/250. This contradiction implies the
statement. O

Note. SHINTANI gives (1, 1)-stage formula with parameters v,=1/2 and
p;=1/3. He also gives (1, 2)-stage formula with v, =(9+\/€)/36, v,=0—
J6)/36, py=(4—/6)/10, p,=(4+/6)/10, 15;=(9+4/6)/50. These parameters
are not unique solution (1.5.1)—~(1.5.4). The solution of them is represented with

one parameter p by the following:

p1=p <p¢ —;-)
p2=(2p—-1)23p—1),

v, =1/6(6p%2—4p+1),
v2=(3p—1)?/3(6p>—4p+1)
T1=(6p*—4p+1)/8(3p—1)?

§1.6. Attainable Order of (1, 3)-Stage Formula

The determining equation for the explicit (1, 3)-stage formula are given as

follows:



(E-0)

(E-1)

(E-21)
(E-22)
(E-31)
(E-32)
(E-33)
(E-41)
(E-42)
(E-43)
(E-44)
(E-45)

(E~46)
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[

VitV tva= o

VPt Vapr+V3p3=

I~ o

vip+vap3+vipi= i

(18]

VaTa +Va(T3; +135)= ﬁ
Vvip3+vap34vip3= 216
VaP2Ta1 +V3p3(T3 +T35)= Zlﬁ
V2P 1 T2 +V3(P1 T3 +P2T32) = T%O-
vipt+vaps+vapi= 3i0
V2p3Ta1 +V3p3(T31 +132)= EIT)
V2P2P1T21 +V3P3(P1T31 +P2T32) = TtIET
V20172 +v3(pits, +p3t30) = *3%—(7

1

V13 +V3(T3 + 13,2 = 120

1
V3721732 = 720

349

It is remarkable that none of the factors on the left of (E-46) can vanish.

Assume that two of p,, p,, p3 are equal, say p,=p,.
(E-1), (E-21), (E-31) and (E—41), we see that

o1 L .
'E):— vl+“/
1 -
Pr Pk 6 Vk =0,
0} Pk 13| -~
L 12 J
r 1
1 1 6 pr(vi+vy)
1
Pr Px 13 PrVk =0,
2 2 L -1
Lpl Px 20

Then, from (E-0),
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1
LT pi(vi+vy)
1
P1 Pk 3g pkvk  |=0
2 2 1
PT Pk 35 -1

The condition that the above three equations have non-trivial solutions, implies

the equations with respect to p;, px as follows:
(Px=p0) {3 Pipx— & (pr+P0) + 15 =0
Pr=PD 5 PPk~ g \P1TPK) T 13 >

1 1 1
(pK—pz){—g PPk~ 15 (Pr+pr) + E} =0
and

0.

1 1 1
(px— .01){1—2 P1Pk— 3p (pr+ pr)+ j(‘)}
If p;#pk, p; and pg must satisfy the equations

1 1 1
E“PIPK_%(PI'*'PK)+é=%P1PK_E(PI+PK)+§()
=12P1Px~ 3 PrTPk 30 =V

which is impossible. The case of p, =p,=p; leads to a contradiction because
of

V1+V2+V3= _i—,
_ 1
p1(vi+ vy +v3)= rE
1
pi(vi+vy+vsy)= i2°

induced by (E-0), (E-1), (E-21), respectively.
Hence no two of p;, p,, p3 are equal. It is convenient to define

i—1
A= 3 -2 (1=1,2,3).
Jj=1 2

Since we consider the explicit formula, 4;= —p?/2 holds. Then, we have

simultaneous linear equations

1 1 4 vi4,
L P1 P2 P3 J[ Va4, :'=O
p P p3 - vids
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by (E-21), (E-22), (E-31), (E-32), (E-41) and (E-42). Since no two of py, p,,
ps are equal, all of v, 4y, v,A4,, v3A4; vanish. By virtue of the above mentioned
remark, we distinguish the following four cases.

Casel. A;=A,=A4,;=0.

The equations A, =0 and 4,=0 imply p, =0 and 7,, =p%/2. Then, (E-43)
and (E-44) bring the equations vip,p373,=1/180 and v;p3t;,=1/360, which
give the identity p;=2p,. Thus (E-1), (E-21) and (E-31) imply the equation

|-
P2 2p, o !r Vz—l
1
p% 4:0% E "3 =O:
3 g Ll '
p3 8p3 20 || _1_‘

which yields a quadratic equation of p,
20p3—15p,+3=0
because of p,#0. But the above quadratic equation has no real roots.

Case2. v,=0and 4,=A4,=0.

In such case, we have the equations
T21= é“ 3
and
T31+T3,= ~é~p§.
Substitution of 7,, =p32/2 and 15, =(p%/2) — 3, into (E-44) implies
p1+24v373,(p3 — p)) = 75
Employing the equation
(%) V3p3T3= Sé—O
induced by (E-46), we obtain

p1(1—24v575,)=0.

Hence, the equation p; =0 or v373,=1/24 holds. The case of p; =0 is equiva-
lent to Case 1. The equation v3t3,=1/24 yields
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P1+24v3135(p2 —py)=p,= ?l .

by (E-33). The equation (x), however, implies p3=1/15, which leads to a
contradiction.

Case 3. v,=0and 4,=A4,=0.
A,=0 implies p, =0. Then, (E-1) and (E-21) bring the equations

V3p3= %‘
and
vipi= 12
Hence we see p3=1/2 and vy;=1/3. [t contradicts the equation v;p3=1/20

induced by (E-31).

Case4. v,=0,v,=0and 4;=0.

The equations (E-0) and (E-1) yield v3=1/2 and py=1/3. Again, it
contradicts the equation v;p3=1/20 induced by (E-31).

Thus, we can conclude that the determining equations (E-0) — (E-46) have
no solutions. The proof of the following theorem is now accomplished.

Theorem 7. The explicit (1, 3)-stage formula can not attain order 6. Its

attainable order is 5.
Note. SHINTANI gives (1, 3)-stage formula with parameters

vy =1/12, v, =5+ 3)24,v; =(5—/3)/24, p,=0, p,=(5—/3)/10,
15, =3 =/3)/20, p3=(5+/5)/10, 13, =0 and 73,=(3++/5)/20.

These parameters are also not unique solution of (E-0) — (E-33).

§1.7. Attainable Order of (1, 4)-Stage Formula
The determining equation for the explicit (1, 4)-stage formula are given by

the following:

(E-0) v +v,+vs+v,= %

(B-1)  vip1+Vapr+V3ps+vaps= 'é—



(E-21)
(E-22)
(E-31)
(E-32)
(E-33)
(E-41)
(E-42)
(E-43)
(E—44)
(E-45)
(E—46)
(E-51)
(E-52)
(E-53)
(E-54)
(E-55)
(E-56)

(E-57)
(E-58)

(E-59)
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[~

V1Pt +vap3+vapd+vepi= [

b9

1
VaTa1 +V3(T31 +T32) HValTyy + 142 +143)= 24

-

V1P +V2p3 V33 + Vapi= 5

(=}

VaPaTa1 4+ V3P3(T31 +T32) +Vapa(Tay +Tan +T43)= 4_10

V2P 1Ta1 HV3(P1T31 + P2T32) FVa(P1Tar +P2Taz + PaTaz) = ]1T0
VPt a0+ vapt vt = 3

V2P3Ta; +V3p3(Ta1 +T32) +Vapi (T4 + T4a +T43)= 616
V2P2P1T21 +V3P3(P1 T3y + P2T32) +VaPa(P1Tar +P2Taz + PaTaz)= —lfli—()ﬁ

1
V2p3ta +V3(p3T31 +p3T30) +va(plty, + phtay +p3Tas) = 360

1
V3T Taa +Va(T21Tar +T31 T3+ T3,T43) = 720

e

Vo131 +V3(T31 +132)% +ValTay + 740 +143)° = 20"

ViP3 V203 HVapi+vepi= 35

V2P3Ta1 +V3p3(T31 +T32) +Vap3(Tay +Taz +T43)= @11

¥2P301T21 +V3p3(P1T31 +P2T32) +VapH(P1Tar + P2Tar +P3Tas) = 555
V20203021 +V3p3(P3T31 + p3T32) +Vapa(pitar + P3Tar + p3tas) = 555
V203721 +V3(p3T31 + 03732) + V(03741 + 0374, + P3T43) = #8411_0‘

V(P24 P3)T21 T3+ Va(P2+ Pa)T21Tas +Va(P3+ Pa) (T31Ta3 +T32T43) = 6—§13(—)—

1
V3P1T21 T30+ VaP1(T21Ta2 +T31T43) +VaP2Ts2Ta3= 5040
v2P1731 +V3(P1731 + 01731732+ P2T31 T30+ P2732)
+v4(P1731 + P2T52 + P3T53) +Vapi(T41Tar +T41T43)

1
+V4P2(Ta1Ta2 +Ta2Ta3) +VaP3(T31Ta3 +Ta2Ta3) = 304
1

6

V202731 +V303(T31 + 7320 +Vapa(Tay +T4n+143)* = 168
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The question is whether any parameters v;, p; and 1;; exist to satisfy these
22 equations simultaneously. It is helpful for investigation to introduce the

following notations:
i=1 i=1 .
Tio= JZ& Tijp L= ng PiTij (i=1,2,3,4),

(T, and T;, mean zero.)

1

1 .
Ai=TiO_7p%: Bi=Ti1“6‘Pz3 (@=1,2,3,4).

Then, from (E-21), (E-22), (E-31), (E-32), (E-33), (E-41), (E-42), (E-43),
(E-51), (E-52) and (E-53), we easily see that

(1.7.1) 2 Vvidi=Z vipidi=2 vip}A; =2 vip}4;=0
and
(1.7.2) 2 viBi=2 vip;B;= 2 v;p?B;=0.

The equations (1) means

1 1 1 1\[v4

P1 P2 P3 Pal| V242 ~0
Pt p3 Py pi || vads
P p3 P} pil\vid,

We now distinguish two cases according as two of p,, p,, ps, p, are equal or

otherwise.

Case 1. Two of py, p,, p3, ps are equal.

Assume that two of them are equal, say p,=p;. Equations (E-0), (E-1),
(E-21), (E-31), (E-41) and (E-51) give three simultaneous linear equations as
follows:

11 1 % vi+vy
1
Pr Pk PL 6 Vk
1 =0
pt Pk Pt 15 123
Pi Pk P -2% -1
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I 1 1 ’é‘ pr(vi+vg)

Pr Px PL '11_2 PxVk _o,
pi Pk pi 515 PLVK

Pi Pk Pi 31—0 -1
Lot 5\ p3o+v)

Pr Px Pr 2]—0 PRV —0
pt pk i % pive

pi Pk PL 117 -1

The condition that these equations have non-trivial solutions, implies the de-

terminants of matrices to be vanishing. Hence, we see that the equations

-6% (pr—pi) (P = 1) (p.— p1) { = 30010kP 1. +10(p, P + PxPL+ PLAD
—=5(pr+pg+pL)+3}=0,

% (pr=px) (P = pL) (L= PD) {—=10p1pkpL+ 501k + PrPL+PLPD)
=3(pr+px+p)+2}=0

and

Téﬁ (pr=px) (P = PL) (pL— P { = 35p1pxoL+21(P1Pk + PrPL+ PLOD)
—14(p;+px+pp)+10}=0
hold. We can distinguish three cases.
(i) At least three of p; are equal.
(i) py=p; and px=py.
@iii) py;, px, p are distinct, and the above equations hold.
But, the case (i) can not hold by the similar reason mentioned at the first part of

Section 1.6. In the case (ii), (E-0), (E-1), (E-21), (E-31) and (E-41) imply the
equations
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I 1 —%— vit+v,
1 -
P1 Px ¢ || vetve [=0,
2 2 1
P1 Px 12 =1
1
11 3 pi(vi+v,)
1
Pr Px 73 || Px(Vk+vL) | =0,
2 3 1
Pt PR 35 -1

PV +Vy)

px(vg+vy)|=0.

-1

°
L
©
N

&~ 8~ Sk

pi pk

Thus, by the same reason as for case (i), these equations lead to a contradiction.
In the case (iii), we easily see the equations

9
Prt+pPx+pPL= "7

3
P1Pk+PrPLY PLPI= 7

and
_ 1
P1PKPL= 33>
which imply that p;, pg, p,, are distinct roots of the cubic equation

(1.7.3) ¥ F x4 3 x— 35 =0.

The cubic equation is irreducible and has three distinct real roots given as
follows. Let 0 be an angle such that

_ 1 T
(1.7.4) cos 30= 55 (0<30§ 2).

Then, the roots are
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Ro= — (3+2/2 cos ),

L
7
(1.7.5) R, =+ (3—Zcos0+/6sin 0),

R_ —71~(3 \J2cos0—./65in 0).

Some algebraic properties on the equation (3) are the followings:
Lemma 1.7.1. The roots Ry, R;, R_, are equal to none of 0, 1/7, 1/3.
Proof. Substitution of 0, 1/7 and 1/3 into the cubic polynomial of (3)

gives —1/35, 16/1715 and 8/945, respectively. O
Lemma 1.7.2. The equation (3) has no common roots with the cubic
equation
s_3 23 3 _
(1.7.6) b g x 6*t 6=
Proof. Put
fi(x)=x3 -g—x2+ —,37—x—- §l—5-
and
f2(x)=x3— %x’—%x+ 633
The Sylvester’s determinant D(f;, f,) is equal to —3437/32768000. O

Lemma 1.7.3. The equation (3) has no roots, one of which is the triple of
another.

Proof. Assume that one of roots is equal to the triple of another, then
the root satisfy another cubic equation

3_ 8l o, 9 1 _
27x 7x+7¢\ 35—0.
That is,
3_3 o, 1L 1
o T Xty X— g5 =0
Put
fl(x)=x3—~,9,—x2+ %x—%

and
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| 1
fr(x)=x>— %—x2+ 31*~ 945

The Sylvester’s determinant D(f;, f>) is equal to 80384/41351522625. O

Case1.1. p,=p,.
From (E-45) and (E-57), the assumption gives p;=p,=1/7. Due to
Lemma 1.7.1, we lead to a contradiction.

Casel2. p;=p;.
We may assume that p,, p,, p, are distinct. From (E-0), (E-1) and
(E-21), we have the equation

11 1\ v+, %
(1.7.9) P1 P2 Pa V2 = ‘é‘
t oot ot)\ v |\t
The solution of (9) is given by
vi+vs 1 1 1 >
_ 1
Va =|PL P2 Pa 6
1
Voo, Pt pP3 pPi iV

—6pyp4+2(py+pa)— 1
12(p1— p2)(Pa—p1)

—| _—6pap1+2(pstp,)—1
12(p1=p2) (2= Pa)

—6p1p+2(py+py)—1
12(p2=pa)(P4—p1)

Note that v, +vs, v5, v4 can not vanish. The reason is as follows: For ex-
ample, assume that —6p,p,+2(p,+p4)—1=0. Then

— 2p,—1
Pa= 6p2__2

holds. Substituting this into the cubic equation

9 3 1
pi— T Pi+ 5 pa—35=0,

we see that
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64p3—24p3—12p,+3 -0
35(6p,—2)° '

But, by Lemma 1.7.2, there is no common roots for the cubic equations
9 3 1
pi— = pi+ 5 p2— 35 =0
and

3_ 3 2 3 3 _
P2= g P2~ 16P2F 54 =0.

Then, from the equations (1) and (2) we have
V1A +V3A3=V,4,=v,4,=0
and
v{B;+v3B3=v,B,=v,B,=0.

Since v,#0, A,=B,=0 holds. This means the equations 7,;=p3/2 and
pP1T21=p3/6, which imply 3p,=p,. Hence, we lead to a contradiction by
virtue of Lemma 1.7.3.

Case 1.3. pi=p,.
This is equivalent to Case 1.2.

Case 1.4. p,=p;.

We can assume that p,, p,, p, are distinct. From (E-0), (E-1), (E-21),
we have the solution

y, = —6p204+2(pr+pa)—1
12(p1—p2)(pa—p1)
—6pap1+2(patpy)—1
12(p1—p2)(p2— Ppa)
—6p1p3+2(p1+p)—1
12(p2—p4a)(Pa—p1)

V2+V3=

1)

\l4=

Note that each numerator on the right can not vanish by the same reason as in
Case 1.2. Then, (1) implies v,A;=v,A4,+v;4;=v,4,=0. Since v,#0, we
see A, =0, which means p; =0. Thus, we lead to a contradiction.

Case 1.5. p,=p,
and

Case 1.6. p3=p,.
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Both of them are equivalent to Case 1.4.

Case 2. No two of p,, p,, p3, p4 are equal.
The equation (1) implies v,4,=v,4,=v;A;=v,A,=0. Thus, we dis-
tinguish cases according as v; or A4; vanishes. We have, however, the following

results.
Lemma 1.7.4. The case of v;=vg=v, =0 can not occur.
Proof. 1In this case, v;=1/2 by (E-0). Then, (E-1) implies p;=1/3. But,
they do not satisfy (E-21). O
Lemma 1.7.5. The case for vg=v;=0 leads to a contradiction.
Proof. The equation v =v; =0 yields a linear system
_ 1
Vit+v,= 5
_
PVt PVr= "¢
by (E-0), (E-1). Since p; # p,, this system has the solution

v, 1—3p, y, = 1-3p, i
6(p;—py) "’ 6(p,—pr)

Substitution of this into (E-21) and (E-31) implies

1 ] ]
o (Prtp) =5 pPips=13>

1
“é‘ (pi+pips+p3)— “é— pipsipr+py)= 20"
Put X=p;+p,;, Y=p,p,;, we have
2X—-6Y=1,
10(X2—-Y)—-30XY=3.

Thus, we easily see that X =4/5, Y=1/10. That is, p; and p, are equal to the
roots of the quadratic equation

(1.7.10) xz—%x+%=0,

which has real distinct roots. On the other hand, we see that

the left on (E—41)=vp}+v,p}

= % (pr+p)(pt+p3) - zipm,(p%p,pﬁp%)
19

0

N



RUNGE-KUTTA TYPE INTEGRATION FORMULAS 361
which is a contradiction. O
Due to the above Lemmas, we distinguish five cases.

Case 2.1. v;=0 and A,=A;=A4,=0. By a similar consideration as in
Case 1. we see that p,, p;, p, satisfy

9
P2t pstpa=—.

3
P2P3+P3Pat Pap2= 7>
1
P2P3P4= 35 -

Hence, they are equal to the distinct roots of the cubic equation (3). Note that,
contrary to Case 1, p, is equal to none of them.
On the other hand, the equation (2) yields v,B,=v;B;=v,B,=0. Taking
Lemma 1.7.5 into account, we are sufficient to consider the case B,=B;=B,=0.
A,=B,=0 implies the equations 1,,=p3/2 and p,7,,=p3/6, which give
p1=p,/3. Az;=B;=0 implies a linear system

1
T31+T32= jpg,
I 3
Pi1T31+ P73, = 6 P3
which has the solution

_ P33p2—ps3) _ P3p3—p3)
(1.7.11) Ta 4p, , T3z 4p, .

Since p,, p3, p4 are distinct, (E-0), (E-1), (E-21) give the solution for v,, v3, v,

as
vy = —6p3pat+2(p3+pa)— 1
12(p2—p3)(pa—p2)
—6papr+2(pstpr)—1
1.7.12 vy =
( ) } 12(p,—p3)(p3—Pa)
Ve —6pap3+2(pytpy) =1

12(p3—pa)(pa—p2)
(E-44) gives the equation
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1
Vva(pitar +p3Tan+P3T43) = 360 V203721 — v3(piT31 +p3732)

1 1 1
=360 ~ 18 V2F V39%<-9'731+732>

1 1
=360 ~ 18 V2R3~ ]g v3p203(4p3—3p5)

by (9). Hence, we may represent the left on (E-54) as the polynomial of p,
and p;. By (9) and (10),

V20203721 +V3p3(p3T31 +03732) +Vapa(pitar + 03Tar + p3T43) — 504
1
=182 p3 + ]8 v3p2p3(4p3—3p,) + 324 360 18 V203p4
- ﬁ v3P203P4(4p3 = 3p2) — 502

_+ S 242 __ 2 _ 2
= 37B00(p, = p,) CO22P3P5—360p3p3 4200203
~5p3+260p,p3+105p3 —60p3+3) .

Let us denote the numerator of the above by ¢(p,, p3). The question is whether
¢(p,, p3) vanishes for any pair (p,, p3). We have known the values Ry, Ry,
R_; which p, and p; are possible to be equal to. Calculation shows the fol-
lowing:

®(Ro, R))= ;ﬁ (—420 cos? 6 —760,/3 sin 0 - cos 6 — 630,/2 cos 6+ 60,/6 sin 0
+189+42,/3),

®(Ry, R_))= 343( —420 cos? 0+760,/3 sin 0 - cos 8 — 630,/2 cos 6 —60,/6 sin 0
+189—42,/3),

o(R,, Ry)= 33—3(1350 cos? 0—170,/3 cos 0 - sin 0+405,/2 cos 0 —285,/6 sin 0
—696—42/3),

o(R,, R_))= §2}‘§ (—930 cos? 6+590,/3 sin 8- cos 6+ 225,/2 cos 0 — 345, /6 sin 0
+444+42,/3),

o(R_, Ry)= 3{% (1350 cos? 0+ 170,/3 sin @ - cos 0 +405,/2 cos 0+ 285,/6 sin 6
—696-+42/3),

o(R_;, R)= 3%( —930 cos20—590,/3 sin 0 - cos 8 +225,/2 cos 6+ 345,/6 sin 0
+444-42./3).
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Computation by interval arithmetic shows the following:
o(Ry, R)e[—11.6391, —11.6390],
o(Ry, R_,)e[—4.70784, —4.70783],
o(R,, Ry)€[3.20479, 3.20480],
¢(R,, R_;)e[0.821791, 0.821792],
@(R_,, Ry)e[12.1750, 12.1751],
o(R_,, R,)e[—0.956777, —0.956776] .

(On the interval arithmetic, see [8]. Above calculation is carried out by the
program made by K. Ichida on HITAC VOS3 at the Educational Center for
Information Processing, Kyoto Univ.) None of them vanishes under the
condition (4) because every interval given above is away from zero. Thus, we
have a contradiction.

Case2.2. v,=0 and A,=A4;=4,=0. A,=0 implies p=0. Then,
P25 P3> Pg can not vanish. From (E-1), (E-21), we have

1=2p, ., __ _1=2p;
12p3(p3—pa) ’ 12p4(ps—p3)

Substituting these into (E-31), (E-41), we see that

\!3 =

P3+Pa—2p3pa= <

3
5 2
(P3+04) —2p3p4(P3+ Pa) — P3Pa= % .

Put X=p;+p,, Y=p3p,, then we have X =1, Y=1/5. The left on (E-51) is
equal to

1 .
2 (20304 —2p3p3—2p3pi+p3+p3pat papi+pi)

L 1
73 (X3 =2X2 = V)Y=-2AX+ Y)Y} = 155>

which is a contradiction.
Case2.3. vy=0and A,=4,=A4,=0. Equivalent to Case 2.2.
Case2.4. vy,=0and A,=A4,=A4,=0. Equivalent to Case 2.2.

Case2.5. A =A,=A3;=A,=0. A;=0 implies p,=0, which means
B,;=0. Then, the equations > v;B;=3 v;0;B;=3 v;p?B;=0 yield v,B,=v3B;
=v,B,=0. Since v,, v3, v, are assumed to be noun-zero, we have B,=B;=B,
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=0. B,=p,;7,,—p3/6=0 implies p,=0 because p, =0. This contradicts the
assumption that no two of p; are equal.

Now, we have accomplished to investigate the whole cases. In conclusion,
we have

Theorem 8. The explicit (1, 4)-stage formula can not attain order 7. Its
attainable order is 6.

Note. SHINTANI gives (1, 4)-stage formula with parameters v, =1/20, v,
=7(7+/21)/360, v;=8/45, v,=7(1—./21)/360, p,=0. p,=(7T—21)/14, 75,
=(5—/21)/28, p3=1/2, 13, =(3—/21)/192, 15, =(21 +/21)/192, p, =(T+/21)/
14, 14, =021+5/21)/294, 74, =(y21—3)/84, 143=(21+/21)/147. These pa-
rameters are also not unique solution of (E-0) — (E-46).
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