Publ. RIMS, Kyoto Univ.
18 (1982), 1-29

Invertibility for Microdifferential Operators
of Infinite Order

By

Takashi AoOKI*

Abstract

For each holomorphic microlocal operator its symbol is defined as a holomorphic
function which satisfies a growth condition. A differential or micro(=pseudo-)differential
operator of infinite order is naturally regarded as a holomorphic microlocal operator
and its symbol coincides with the usual total symbol. Some sufficient conditions of
invertibility for holomorphic microlocal operators in terms of symbols are given.

Introduction

The sheaf of rings &® is defined by Sato, Kawai, and Kashiwara
(ef. [71, [10]). It plays important roles in the studies of many problems
(for example, see [2], [3], [4], [5]). The sheaf &% includes differential
operators of infinite order, micro (=pseudo-)differential operators of in-
finite order and of fractional order. We tentatively call a section of &%
a holomorphic microlocal operator (cf. [7]), even though there has not
yet been a common agreement on naming. In this paper, we study in-
vertibility for holomorphic microlocal operators.

Ellipticity and microlocal ellipticity for differential operators of in-
finite order with constant coefficients have been investigated by Kawai
[8]. We consider microlocal ellipticity for an operator as invertibility
in the ring of holomorphic microlocal operators. In this sense we extend
his results to variable coefficient case.

Set X=C"> (o, -, 1) and TH*N=C"XC"D (ay, -+, 203 &1y o+, E)
= (x,{). We use the notation:

(0.1) D;:D_,‘jl...-.D;:‘n=<ﬁ>a‘.....<_0_>"’"’

0, 01,
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0.2) =% ... Lo
0.3) lal=a+ -+,
and

©. 4) al=ale el

where a= (ay, -, &) €Z% (Z,={0,1,2,---}). Let us denote by &F
(resp. £%) the sheaf on T*X of holomorphic microlocal operators (resp.
microdifferential operators of infinite order) and by 9% the sheal on X
of differential operators of infinite order. There are canonical injections
7'P3—>E3 and £3—CE, where n: T*X—>X is the projection. Let z*
be a point in T*X. For a holomorphic microlocal operator Fe&%,.,
its symbol F'(x,{) is a holomorphic function defined in some conic
neighborhood I of £* which satisfies the following estimate in I': for
each 0>>0 there is a constant C such that |F(x,{)|<Cexp(0|{]) (cf.
[6]). Then the operator I is expressed as F'(x, D,). This notation is
justified by the composition rule in terms of symbols.

In our setting, Kawai’s theorem on microlocal ellipticity for differen-
tial operators of infinite order with constant coefficients ([8] Theorem
4.1.8) implies the following: Let P(D,) = ZoaaD,“ be a differential ope-
rator of infinite order with constant coefﬁcilzll'lgts. Let P(&) =] a.l® be
its total symbol. Set V={eC"; P()=0}. Let &l a’;lizuassume
that there is a conic neighborhood I' of {, such that

(0. 5) I'NVN{&IEI >R =0 for some R>0.

Then P(D,) is invertible as an operator in ¥, for each #*=(z,&,).

One of the most essential part in his proof is to obtain the estimate
for |1/P(&)| from (0.5). That is, for any &>0 there is C’>>0 such
that |P(§) |=C’ exp(—¢|{]). In his proof Kawai essentially uses the fact
that P(£) is an entire function of order 1 of minimal type. The symbol
of a holomorphic microlocal operator is not an entire function in general,
however. Hence we cannot expect the estimate done by Kawai. There-
fore we begin our discussion with assuming some estimate for the symbol
from below. In our case such an estimate does not immediately imply the
invertibility of the operator except for the case where the operator in

question is with constant coefficients. Actually we still find some technical
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difficulties in proving our final result in the general case, and we
content ourselves with studying operators whose symbols satisfy an extra
growth condition specified below. Roughly speaking we deal with oper-
ators which naturally appear in connection with ultradistributions of class
(s) for 2<s<<oo (cf. [9]).

We prove the following theorem: Let P be a holomorphic microlocal
operator in &% ;. with its symbol P(x,&) defined in some conic neigh-
borhood I' of xz*. lLet o be a number such that 0<{p<1/2. Assume

that there exist positive constants h, C, C; such that
Coexp(—h[CI)Z|P(x, ) IZCiexp (hIC])  for (x,0) el

Then P is invertible in the ring &F ;. The inverse U of P is given
by U=QR where Q is a holomorphic microlocal operator with symbol
(P(x,&)) " and R is an operator of order 0. The principal part of R is

exp (35,00 (3,0) - 00,0, )

where p(x,) =log P(x,£). This is a natural extension of the theorem
on microlocal ellipticity for micro(=pseudo-)differential operators of
finite order ([10] Chapter II, Theorem 2.1.1).

Let M=R" with its complexification X=C" and T %X the conormal
bundle of M in T*X. Let us denote by & the sheal on T%X of
microfunctions. Then & is a left &F| 4 xy-module. Therefore the preced-
ing theorem yields the following theorem: Let £z*<7 %X and P be an
operator in &¥|,. satisfying the condition of the preceding theorem. Then

the mapping

P: By — Cary 0
is bijective.

The plan of this paper is as follows:

In §1, we give the notation.

In § 2, we define the symbols of holomorphic microlocal operators
and establish some calculation rules for holomorphic microlocal operators
in terms of symbols. In addition, we define the growth order of holo-
morphic microlocal operators.

In § 3, we study invertibility for holomorphic microlocal operators.
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§ 1. Preliminaries

1.1, Let X be an n-dimensional complex manifold and 7*X be
the cotangent vector bundle of X, Let us denote by Oy the sheal on
X of holomorphic functions and by £% the sheaf of holomorphic 7z-forms
on X. We identify X with the diagonal of XXX and T*X with the
conormal bundle T% (XX X) of Xin T*(XxX). We denote by €E|x.x
the sheaf of holomorphic microfunctions on 7% (XX X) (see Sato-Kawai-
Kashiwara [10]).

The sheaf £F of rings of holomorphic microlocal operators on T *X

is given by

= gg{xu’ X .72z,
p270x

where p,: T35 (X x X) »>X X X—X denotes the second projection. We will
call a section of &% a holomorphic microlocal operator.
Let us recall that the sheaf €% of microdifferential operators on
T*X is given by
Exlirex—n=7""1+CE,
8?]1':8? ‘x,
where 7 is the projection on the complex projective cotangent bundle:
71:T*X-T}iX->P*X=(T*X-T%X)/C*.
We have canonical injections
TP E, E3CEF
and
EElx=C%1x=9D3 X=T%X),
where 9% is the sheaf on X of differential operators (of infinite order)
and 7 is the projection
m: T*X->X.

The sheaf &F (resp. €%, D) is often abbreviated to &F (resp.
E=, D).
1.2. A subset I' in T*X is called conic if each fiber I') (T*X),
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is a cone in (T*X),~C"~=R*(x=X). A conic subset I"” in T*X is

said to be compact if yp (") is compact where
T T*X—T3iX->S*X=(T*X-T}X)/R*

is the projection. We often neglect a bounded subset of a conic subset
in T*X.

Remark. We denote by &£ and €% the sheaves denoted by P¥ in
[7] (L€ in [6]) and Py (on P*X) in [7], [10] respectively as this
notation is now more commonly used. We also call the sections of &%

microdifferential operators instead of pseudo-differential operators.

§ 2. Symbols of Holomorphic Microlocal Operators

2.1. Let X be a complex manifold of dimeusion # and take a point
x* in the cotangent bundle 7*X. From now on, we fix a local coordi-
nate system x= (xj, --,x,) of X. Let (x,{) = (ay, -+, 20 &y, -+, &) be
coordinates of T*X, where {= (,, -+, {,) is cotangent coordinates. With-
out loss of generality, we can assume that z*=(0;4,0, ---,0), where 4
is a complex number. If 1=0, we have &E=PD3. Since the symbols
of differential operators are well known, we assume that A=0. The ring

E is defined as the inductive limit

E=lim Hz (Ug; O®™),
—

ce

where we set

2.1.1) U={(x, ) eXXX;|z|<c, |x—2'|<c},

2.1.2) Zee={(x. YU Re(A(x;— ")) =e|Im A (cy— ") ) 1,
o | == x| =2, e, 0

for ¢>0, ¢>0. Here O“"=0xxx ® p '2% is the sheaf of n-forms

P2 0x
with respect to the second variable.

Let us fix ¢, ¢ and write U=U,, Z=2Z,,. There is a homomorphism
(2.1.3) Hyz(U; 0"y >EE,

The open set U—Z is covered by holomorphically convex sets V¢
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(v=1,2, ---,n) defined by
VO ={(x, ') €U; Re (A (x;— 1)) <e|Im (A (x; — x7)) |},

V= {(x,2') €U; |x,— a1 |<e|lx,— x,|} for v=2, .-, n

Set

n

V=NV, Vo= nve,

=1 py

We have the exact sequence
@ I'(V500%) > I (V;0°") > H3 (U3 0°) 0.
Combining this with (2.1.3) yields a mapping
(2.1.4) I'(V;0%")>Hz(U; 0°™)»EE.
Let K(x, ') be a holomorphic function defined on V. The operator
in &E corresponding to K(x, x')dx’€I'(V;0“™) is denoted by F.

Set L(x,y) =K(z, z—y), then L is holomorphic on {(z,y) €C"

X C; |z <e, ly|<c, Re (Ay) <e|Im (Ay) |, || <elyil, 7=2, -+, n}. Let
a, be two points sufficiently near y;=0 such that

0< —¢, Im (Aay) <Re (Aay) < — & Im (Aa)
and that
0<e, Im (Aay) <Re (ay) <e Im (Aary) ,
where 0<¢e,<e.
Set

2.1.5 k R e (NS i
@15 k) (—zw_n"L»--W B3,

where <y, >=ml+ -+ +y.{, and 7; are paths determined as follows:

r Im y, Imy,

" Ty
0 Re y, 0 Re y,

yi-plane yy-plane
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71 is a path starting from «,, ending at «; and around the origin
clockwise, and 7; (j==2) is a cycle rounding y;=0 counterclockwise with

radius >&7'|y|. Then k(z, ¢, p) is holomorphic on

(2.1.6) D={(x,{,p) eC"XC"XC; |z|<c, Re (A7) >allmA7E) |,
alGI<IGl (=2, -, 7),
Re p<l&|Im p|, a|pi<<ICl}

for some positive constant a. Moreover, k(x, &, p) is homogeneous with
respect to (§, p) of order (—n).
Let us remark that 2(x, &, {ax—2,8)0()dx’ is nothing but the

normalized Radon transformation of F where

0@ =3 (1) - e N - N

(See Kataoka [6], [7]). If K(x, 2’)dx’ belongs to the zero class, that
is =0 in &F, then k(x, &, p) is holomorphic at p=0. The k(x,&,p)

is independent of a; (7=0,1) modulo holomorphic functions at p=0.

Theorem 2.1.1. Lcl s, s; be two holomorphic functions of €

of homogeneous of degree 1 defined on
el Re(A78) >allm (A8 |, alli<IGl (=2, -, n)}
such that
0<Re 5 () <—&lm (), als@)I<IC]
and that

0<Re 5: () <&rIm 5, (0), als: (@) 1<ICI.

Set
@17 F@o=-e/-h | @G D) exp (= 2)dp

where the path 0 (L) of integralion is taken as figure.
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f‘Imp

S1 (C)
4G /

/0 —== Re p

.

50(©)

Then we have the following:

(@) F(x,8) is holomorphic on
I'={(zx,0) eCxC"
lz]<e, Re (7€) >allm (A7) |, alSGI<ICl (=2, -, m) }.
(b) For every compact cone I'"CI and for every 0>0,

(2.1.8) sup | I (z, &) exp (—015]) [ oo .

(¢) Assume that k(x,C, p) is holomorphic at p=0, then for each

compact cone I'"EC I, there exists a positive number 0, such that

(2.1.9) sup [ (z, §) exp (0[] [Loo -

Proof. By the definition of F(x,&), (a) is clear.

Let 0 be a positive number. Take 0’ as 0<(0’<0. We can take
the path of integration as it is contained in {Re p>>—0"|{!}. Thus we
have (b).

If 2(x,&, p) is holomorphic on {|p|<(0:|{|} for some §,>0, we can
choose the path ¢ of integration as it is contained in {Re p>>07||} for
some 0<0;<(0;. If we take §, as 0,<<07, we have (c).

A holomorphic function which satisfies the estimate (2.1.8) (resp.
(2.1.9)) is called infra-exponential type (resp. rapidly decreeasing type).
We give the definition of symbols of holomorphic microlocal operators

in accordance with Kataoka [6].
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Definition 2.1.2. The holomorphic function F(x,{) obtained in
the preceding theorem is called the symbol defined in I’ of the holo-

morphic microlocal operator FeEE.

Then F is represented as F(x, D.) where D,,z(

a_a>

01:1’ ’0.7‘,,

The symbol of the holomorphic microlocal operator is independent

of 5;(7=0, 1) modulo rapidly decreasing functions. When F'= )] a,(x) D5
lejz0
is a differential operator, the symbol of F in the sense of the defini-

tion coincides with its ordinary total symbol F(x,&) = > a,(x){".
[aT=0

Theorem 2.1.3. Let G(x,8) be a holomorphic function of

infra-exponential type defined on
I'={(z,0) eC"xC"; |z|<c, [£|>r,
Re (A7) >allm (A7C) |, a|&I<<IG] (=2, =, m)}

where ¢>0 is a small number, a and r are large positive numbers.

Set
1 teo
2.1.10 =__;_._I G ep)Tdr
G110 9@ 8D =it |, G Do)
for & =2 where R»1 is a constant, and
, ‘ (AN A A

(2.1.10%) 9(z,¢, p)_(g) g<x, £ gp)
Jor Li==A.

Then g(x,&, p) is extended holomorphically to the sei
D={(x,&, peCXCXC;|x|<c, Re(X7C) >allm(A7'C) |,
alGI<I&l =2, -+, m),
Re p<l&,[Im p|, a|p|<<IC[}

for some &>0, homogeneous with respect to (L,p) of order (—n),
and independent of R modulo holomorphic functions at p=0.

Moreover, when G(x,8) =F (x,&) modulo rapidly decreasing func-
tions, we have g(x,§, p)=k(x, &, p) modulo holomorphic functions at
p=0.
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Proof. If Re p<0, the integral (2.1.10) converges absolutely.
Deformation of the path of integration proves the first situation. When
G(x,{) is rapidly decreasing, it is clear that ¢(x,C, ) becomes holo-
morphic at p=0. Assume that G(x, &) =F (x, &), then we have

:__1_.* ” - —-q pr.n—1
06,6 0) =g [ [, kGt etdgererias

Ton/—1 1I<;) (@0~

=k(z,{, p) modulo holomorphic functions at p=0.

e(l’ (324

Therefore €& is represented as infra-exponential holomorphic func-

tions modulo rapidly decreasing holomorphic functions.

Theorem 2.1.4. Le:z {F;} (7=0,1,2,--) be a sequence of holo-
morphic microlocal operators defined in some neighborhood of x*
=(0;1,0, ---,0).

Assume that the symbol F;(x,&) of F; satisfies the following

conditions:

@) Fy(x, &) is holomorphic on
I'={(z,0) e C"x C"; |x|<c, [{|>r,
Re&i>a|lm Gy, a|Gl<IG) (=2, -, 7)}
where 0<c<K1, 1Ka, and 1L (=0,1,2, --+).

(i) For each compact cone I''CI, there exists a positive
number A, and for each positive number O, there is a positive con-

stant C; such that
(2.1.11) |Fy(x, Q) I<GA L7 exp(dIC]) for j=0, (x,{)el".

Then, there is a sequence {Y;(x,8)} (7=0,1,:-:) of holomorphic
functions of rapidly decreasing type defined in I such that
}__,‘ (Fi(x,&)— </Jj(x §)) converges locally uniformly in I' and that the
sumF(x OH= 2 (F (z, ) — [z, ) is infra-exponential type in I'. That

is, the sum F— 2 F; of holomorphic microlocal operators F; exists
j=o

in CE,



INVERTIBILITY 11

Proogf. Take R>O0 sufficiently large and set

) . 1 +oo —n i -1 -1 n—1 7.
fi(z,8, p)—@v__—l)njwmcl F, (z, 7670 exp (€7 pr) o d
for j=0,1,2, ---. Because of the homogeneity of f;(x, &, p), we can

restrict our discussion about it to {(x,C, p);{ =1}. Since [ satisfies

estimate (2.1.11), we have

(e, & )
< (@m) "GAGFIG+D j;wf“““j exp((J+1) (0l +Re p)r) dr

<C;B’R7(j+1) [ (0|¢|+Re p) exp((G+1) (01| +Re p) R)
if 0|¢|+ Re p<<0, here we set C; =3C;(27) "R*', B=3A. For each p
such that Re p<{0, we can take 0 as 0|{|+ Re p<<0. Then

fZQoCéB"R“"OJr 1) | (BI¢|+Re p) "'|exp (G+1) O1¢|+Re p) R)

converges if R is sufficiently large. Hence f}f,(x, ¢, p)=f(x,&, p) con-
=0
verges locally uniformly in {Re p<{0}. Each f;(x,{, p) is extended holo-

morphically to the set
D={(x,{,p) eC"XCXC; |x|<c, {i=1, a|li|<<1 (1=2, -, 1)
Re p<leilm p|, a|p|<IC[}

for some €>0. Similar argument as above shows ifj(:c, £, p) converges
o j=0

locally uniformly in D. Let I';(.x,{) and F(x,{) be symbols correspond-

ing to f;(x, &, p) and f(x,¢, p) respectively. Then,

Fj(x’c) —Ff(x’ C) =¢J'(x1 C)

is a holomorphic function of rapidly decreasing type in I for each j and
iF,—(x, £) converges locally uniformly in I'. The sum is equal to
=0

F(x,{). Set F=F(x,D,), then we have

§0Fj(x, DI) - jZ=0Fj (.Z‘, D"’) :ﬁ‘<x, D.r) .

This completes the proof of Theorem 2.1.4.
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Remark 2.1.5. By the method of the proof, we can replace esti-
mate (2.1.11) in the preceding theorem by

(2.1.11") |Fy (2, ) ISGA G D IS exp OICD) (/=0,1,2, -)

for a positive constant s.

Definition 2.1.6. Let z*= (2" & be a point in T*X=C"XC"
and I' be a conic neighborhood of x*. Let {F;(x,{)} (j=0,1,2, )
be a sequence of holomorphic functions defined in I" such that for each
compact cone I'"C1I, there is a positive constant A and for each 0>>0,

there is a positive number C; such thai
I (e, Q) ISGATNE | T exp(01C])  (7=0,1,2, )

Jor (x, ) l.
Then we call the formal sum i F;(x, &) aformal symbol defined
=0
inI'. We denote by E the set of all formal symbols defined in some

conic neighborhood of x*.

By the preceding theorem, the sum iFj(x, D,) defines a holomor-
w 7=0
phic microlocal operator in E& if 3 F;(x, &) belongs to E;.. (Cf. Boutet
=0
de Monvel [1]). The sum is well defined since we have the following

theorem.

Theorem 2.1.7. Let iFj(a:, &) be a formal symbol defined
7=0

in a conic neighborhood I' of x*. Assumne that for any compact cone
I"€r, there is a constant A>0 and for each 0>>0, there is a number
C;>0 such that

N1
[;Fj(x, O I=SGAN LV exp (61C])
Jor (x,)el’, N=1,2, -.-.

Then, the sum Y F;(x, D,) defines zero operator in CE.
=0

Remark 2.1.8. Let F(x,D,) =] F;(x, D,;) be a microdifferential
iz

operator €&%. Here F;(x, D,) is the homogeneous part of F of order
& J g
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7 in D,. That is, F;(x,&) is a holomorphic function defined in a conic
neighborhood I" of z£* and homogeneous in £ of degree j which satisfies
the following conditions:

(a) for every ¢>0 and every compact cone /'€, there is a con-
stant C>0 such that

Py 01=Sei8l for 20, (5,0 T,
N

(b) for every compact cone [“@€/I, there is a constant R >0 such
that

[Fy(2, OIS (=DIRTIEY for j<O, (x,0) el

Clearly, the symbol of F;(x, D,) in the sense of Definition 2. 1. 2 coincides
with F;(x,{) (modulo rapidly decreasing functions, of course). Set
F.(z,D;) =} F;(x,D;) and F_(2, D;) = 3% F;(x, D;). Condition (a)
shows ZFj(f,oC) converges locally uniforﬁ;y and the sum F, (z, &)
=3 F;?,Or, £) satisfies the following:

jzo(a’) for every €>0 and every compact cone ['€I, there is a
constant C¢>0 such that

|F\ (x,8)|<C.exp(eC]) for (x,&)el”.
Therefore F, (z,£) is a symbol in the sense of Definition 2.1.2 and
F.(x,D,) =F,(x, D). On the other hand, 3 F;(x, &) does not con-
<0
verge but the formal sum Y F;(x,{) defines a formal symbol in the
70 N ~

sense of Definition 2,1.6. There is a symbol F'_(x, {) such that F_ (x,
D)y=F_(x, D). Thus the symbol of the microdifferetial operator F(x,
D) in the sense of Definition 2.1,2 is given by F_(x,{) +F_(z,8).
By the way, remark that if we set

Go(x, Q) =Fo (2,0,

Gi(x, ) =F;(x,0) TF_;(x,§) for ;>O0,

then the formal sum ) G;(x,{) is a formal symbol which defines
j=20
F(x, D).

2.2, Next we establish some calculation rules concerning holomor-

phic microlocal operators, which are expressed in terms of formal symbols.
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Following theorems are direct consequences of § 3.3 in Kataoka [7].
Let £* be a point in T*X=C"x C".

Theorem 2.2.1. Let F= iFj(:c, D,) be an operator in ER
o0 Jj=0
where Zon(x, §) is a formal symbol. Then the formal adjoint
i=
operator G in EFiu (a(x*) = (x, —&) for z*=(x,8)eT*X) of F is

expressed as follows:

G= Gy (x, D,),

TMS

— (—1)Ial apn a —
Gi(z,0) = po (0:0,"F ) (z, =€), £=0,1,2, .

k=lal+ ]

Here in (x, &) defines a formal symbol & Eyi,.
k=0

Theorem 2.2.2, Let F= ZFj(x D,) and G= ZG,,(I Dx) be
holomorphw microlocal operators deﬁned by formal symbols Z F;(x,
&) and Z Gy (x,8) in E, respectively. Then the composite operator
R=FG is expressed as

R= 3 Ri(z, D).
1=0

oo

Where 3 R,(x,&) is a formal symbol in E; defined by
0

Ri@,0= 3 0F,(%,0)0.°Cu(=,0).

l=|a|+j+k QL

Theorem 2.2.3. Let xz=(x, =+, Tn), ¥y= (3, -, Ya) be the two
local coordinate systems of X, and &= (&, -+, &), 35=(61, -+-, &) be the
corresponding fiber coordinates of T*X. ie. §,=2.¢,0x,/0y, Set

.’L‘=go(y) = (@1 (y)’ *tts Gﬁn(y)),
P ) ="(00./0%,) u) s
mll<y) 7)) =§0ﬂ(y) ’—%z(y‘*‘t‘l’(.V)"’) +7}ﬂ .

Let F be a holomorphic microlocal operator in EE. Suppose
F=j};:]FJ(x, D,) for a formal symbol Y F;(x,&) by the first co-
p =0

ordinate system. Then F is expressed by the second coordinate
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system as follows:

= 21\, D),
Fi(y, &)= Z Tl ,(ag“Fk) @®),¢(8)
e alf!

> 0{7+ﬂ<@'9 (v, 0)<0 (v, v), ¢ (¥)E)7 del <I(n) _g-f:(y’ 7))>>L=o ’

Here @ (y,v) = (@0,(v,v), -+, 0, (v,v)), I'™ is the identily matrixz of
size n and in (v, &) is a formal symbol.
1=0

2.3. In this section, we study the behavior of symbols at {=o00
We use the same notation as in section 1.1: Let z*=(0;1,0, ---,0)
be a point in 7*X and F be an operator in &%, Suppose that k(z, &, p)
is the normalized Radon transformation of the kernel function of F and
that F'(x,{) is the symbol of F defined in some conic neighborhood I”
of £*. Then k(x,&, p) is holomorphic on the set D which is defined
by (2.1.6).

Lemma 2.3. 1. Let o be a number such that 0<p<1. Then the
Sfollowing conditions are equivalent:

(1) For each compact cone I'"CI there are constants C,, h,>0
(resp. For each compact cone I''CI" and h,>0 there is a constant C,)

such that

|F(X,0)|<Ciexp(M|E]") for (x,&) T,

(ii) For each compactly generated cone K€D there exist con-
stants C, hy,>0 (resp. For each compactly generated cone K€ D and

h,>0 there exists a constant C,) such that
[k (2,8, p) |SChexp (hulp| ™" "7”)  for (x,8, p) eKN{Gi=1}.
Proof. (i)= (ii), First case: By Theorem 2.1,3, we have
2.3.1)  k(z,C p)=@r/—1)" j “F(z, 0P dr (Gi=1)
R

modulo holomorphic functions at p=0. For Rep<<—|Im p|, we have
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2.3.2)  |k(z,C, p)|<(2m)~" Ecl exp (1] ¢]7%) exp (Re p7) e*~'dr
w0 1) 4p\*?
¢/ (i) B em ()

=C/’A <l-i—l> "exp <2 a-p0) <2hl <I_‘i%> ”> ‘/<1~P)>

<C; exp (hs| p|7*'77)

where C,’. C,, h, are suitable positive constants. Here we use the in-

equality

IME

(2.3.3)

‘ﬁ;sgA exp (2sx*) (s>0, £>>0)
o (4!

[
Il

for some positive constant A.
For —Imp<<Rep<0Imp or Imp<<Rep<—0Imp (0<<iK1), let
us deform the path of integration (2.3.1) as Re pr<{0 respectively.

Then the same argument as above shows
Ik (1', C, P) Igcz exp (hzlpi—p/(l—p))

for —|Im p|<<Re p<<0|Im p|.

Second case: Suppose that we can find C;, for each 7,>>0. Then
for each 7,>0, we can choose h;, C, as the last inequality in (2.3.2)
is valid.

(i1) = (i), First case: By the definition (see Theorem 2.1.1),

F(a,s0) = @V =D ke, 56, p) e

— 5 (0
=@/=D [ ke, € p) e

for s> 1. Take the path ¢ of integration as follows:
0=0,+0.+0,,
0i=Ap;arg p=arg s, £s""<|pI<|sil},
0= {p; [pl=£s"", arg s;<arg p<arg so}

where i=0,1, 0<£<1.

Then we have
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Imp s

0y

- Re
0 =
N

0O,

So

(2-3-4) l Ls-n/e (2,8, p)e~?dp

<s "2mks?'Cy exp (hy (s* 1) ~7/4=0) 4 [5P)
<C,’ exp (his?),

and
(2.3.5) ' £is‘"k (2,8, 2) e‘”’dpt

Isci
<s "C,exp (h,ks") J Iexp (—srl)dr
0

<C, exp (h,s")
where C,’, h, are some constants, 0;=cos (arg s;), =0, 1. Thus we have
| F(z, s€) |<<C; exp (hys°)

for some constant C,>0.

Second case: For each A, >0 there exist constants £, h, C,” such
that the last inequalities in (2.3.4) and (2.3.5) are valid. Hence for
each A, >0 there is a constant C, such that

|F(x, s€) |<C, exp (Iys”).

This completes the proof of Lemma 2. 3.1.

Definition 2.3.2. Let F(a,&) be a symbol defined in some conic
neighborhood I' of x*. The holomorphic microlocal operator F(x, D,)
in €& is called of growth order (0) (resp. {0}) for a number
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(0=0<<1 (resp. 0<p<1)) if for each compact cone I"CI there are
constants C, h>0 (resp. for each compact cone I'"CI" and h>>0 there
is a constant C) such that

|F(x, &) |=<Cexp(h|C])
Sfor (x, ) el”.

We denote by £ ;+ (resp. £F ;) the set of all F(x, D,) €ER of
growth order at most (0) (resp. {0}), and by €& (resp. &%) the sub-

sheaf of &F of germs €& .+ (resp. €F ;).
&R is nothing but £F and for 0<p<{1, we have

ERGEESFER.

Now we define a subclass of E;« corresponding to €& . (resp. €& ..).
Let o be a number such that 0<{p<<1 (resp. 0<<p<1).

Definition 2.3.3. A formal symbol ion(x, &) defined in I' is
called of growth order (0) (resp. {o}) iffajr—each compact cone ['CI’
there exist positive constants C, A, h (resp. for each compact cone
I'"C€1I there exists a constant A, and for each h™>0 there is a number
C) such that
(2.3.6) | Fy(z, §) | <CA11C| ™ exp (R|C])

for =0, (x,0) I,
We denote by E, ;+ (resp. Ey ;) the set of all formal symbols of

growth order at most (0) (resp. {0}) defined in some conic neighbor-

hood of z*.

Theorem 2.3.4. Let ZF,(J: &) be a formal symbol of growth
order (0) (resp. {0}). Then the sum ZF y(x, D) is a holomorphic

microlocal operator of growth order (p) (resp. {0}).

Proof. The case of (0). Set

f]' (.’L‘, C, P) = (277-"\/——1) -n j\(;:_l)RFj (1, TC) eprz-n—ldz_
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G+1"

:@;J:D; j‘RWFj (x, (j -+ 1) Z‘C) e(f‘t"l)prrn_._ldz_

for Re p<<—|Im pl, {;=1 where R>1 is a constant. Suppose that esti-
mate (2.3.6) is valid for F;(«,{). Then, as in the proof of Theorem
2.1.4, one can find C’>>0, B>0 such that

£z, )]
SCBR [ [exp(h G+ 7L exp (Ui+ DRe pr)de

Moreover, we have

12, )]

ipiper A RDP@RY* 4o
<2C’B’R™? —E.
=2 RSV E R T )

gC’B’R‘fmA exp <2 a-0) (2 <l470l> ) W_”)

where A is some constant (see (2.3.3) in the proof of Lemma 2.3.1).
Thus we have

2.3.7) | 3 f(x, ¢, p) |<C” exp(H|p|®) for Rep<—|Im p|
j=0

where C”,HH>0 are suitable constants.

In the same way as in the proof of Lemma 2. 3. 1, estimate (2.3.7)
is obtained for —|Im p|<<Re p<<d|Im p| (0<<6K1).

Hence f(x,,p) = gjfj(x, €, p) satisfies condition (ii) of Lemma
j=o
2.3.1, which shows our theorem in the case of (0). Another case can

be proved in a similar way.

Remark 2.3.5. The preceding theorem is alsc valid if estimate
(2.3.6) is replaced by

(2.3.6") | Fy (2, 8) ISCA (51 *1C1 7 exp (RIC])

for a positive constant s.

Corollary 2.3.6. E&F (resp. £§) is a subring of EF.
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Corollary 2.3.7. &8 (resp. ER) is invariant under taking

Sformal adjoints and coordinate transformations.

§ 3. Invertibility for Holomorphic Microlocal Operators

3.1. First we investigate invertibility for holomorphic microlocal
operators of algebraic growth. Let I be a conic neighborhood of
e T*X~=C"x C".

Theorem 3.1.1. Let i P;(x,&) be a formal symbol defined in
I’ which satisfies the follo-;z;'ng conditions: for each compact cone
rer
(1) there exist constants A€ R, C,>0, C,;>0 such that
GII<IP(x, Q) ISGIL* for (£,0) ],
(ii) there exist constants C,>0, A>0 such that
|Py(x, O) |ISCGAGNCI for j=0, (z,0)el”.
Then the operator P(x,D,) = iP,(x, D,) is invertible in the
ring EF, =

Proof. First we construct the right inverse of P(x, D,;). Set
Qu(z, ) =1/Py(x,Q),
Q0 =— X L0P,(2,0)-0.50:(z,0) /Ps(z,0)

1=1aT3 i+ el
for I=1.

If 2 Q. (z,8) is a formal symbol, it is clear that P(x, D,)Q(x, D,) =1
for Q(.r D,) = Z Qi (x, D.z')

Let us prove that ZQ;(.‘C §) is a formal symbol defined in 7.
Note that each Q;(x,&) is holomorphic in /" by the definition. For each
compact cone /€I one can find §,>0 by means of Cauchy’s inequality

such that
!@: Pj(l‘ C)|<C2Ajaxl !CI;. G- la'“*\u|

for j=0, (z,{) el’, axsZ,"
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We prove the following inequality by induction; for each compact
cone €I there exist constants C,;, B, 0;, 0, and M >1 such that

1Ok (x, ©) ISC Bk 10,770, 7*|C| ™ 7F

for k20, (x,{)El.
Set C;=C,™", then the inequality is valid for 2=0.
Assume the inequality for each %2 such that £<{/. Then we have

;a.z:an (x’ C) IéCSBk(IaI +k) ! 61—M(|a]+k)62—k{c|—l-*k

for (z,{)el”’, acZ,”, k<l. Here 0, (resp. 0,) is the distance from
7(I'") to 0n (") (resp. from the fiber of 7 (/") to the fiber of Orx(I")
where 7g is the projection T*X—X—-S8*X). Thus we have

Qi (z,0) |

< Y CATFIE| I i0, MO B (o] + B)ID, e g,k g A

Ti=|alT 4k
k<l

<SCyBUIO ™, 7ML IC,Cy Y n"AYBTI0M0, .

l=v+j+k
1244
Since 0,, 0, are sufficiently small, there exists B independently of / such

that

CiCs Y nAIB~-90115,7<1.
l=1,lc-2{+k

So we have
1O (z, OGB! 07074 E| Y for 120, (x,8) T,
Hence iQk (x,8) is a formal symbol defined in I” and Q(x, D,)
o =0
= 31 Qi (x, D;) is the right inverse of P(x, D).
k=0

It is clear from the method of the proof given above that we can
construct the left inverse S of P also. Then we have S=S(PQ)=(SP)Q
=(, hence S=Q holds.

3.2. Next we study invertibility for holomorphic microlocal oper-

ators with constant coefficients.

Definition 3.2.1. A holomorphic microlocal operator P defined

in an open set of T*C" (s said to be with constanti coefficients if
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[D, Pl=D,P—PD;=0 for j=1,2, ., n
where D;=0/0x;.

The following theorem is trivial.

Theorem 3.2.2. Let P be a holomorphic microlocal operator
with constant coefficients defined in a neighborhood of z*<T*C"
Let P(x,8) be the symbol of P defined in a conic neighborhood I
of £*. Assume that for each compact cone I'"CI and e>0 there
exists Co>0 such that

[P(x,8) | =Ccexp(—¢ll]) for (z,0) el

Then P=P(x, D,) is invertible in CE,

3.3. Now we prove the following theorem which gives a sufficient
condition of invertibility for holomorphic microlocal operators in a rather
wide class which includes (micro)differential operators of infinite order
with variable coefficients (of growth order at most (1/2)). Let I' be
a conic neighborhood of z*e T*X.

Theorem 3.3.1. Let P(x, &) be a symbol defined in I'. Let 0
be a number such that 0<p<1/2. Assume that there exist positive
constants h, C,, C, such that

Goexp(—hlCI) <P (2, ) |=Ciexp (RL]) for (x,0) T

Then the holomorphic microlocal operator P=P(x, D,) is invertible
in the ring E&. The inverse U of P is given by the form U=QR.
Here Q is a holomorphic microlocal operator with symbol (P(x,{)) ™"
and R is an operator of order 0. The principal part of R is

exp (35,06 (%, 0) - 02, 0))

where p(x,{) =log P(x, ().

Lemma 3.3.2. Let P(x,{) be a symbol defined in I'. Let p
be a number such that 0<p<<1 (resp. 0<<p<1l). Suppose that there
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exist positive constants h, C,, C, (resp. for each h>>0 there exist

positive constants Cy, C,) such that
3.3.1) Coexp(—h|€)<|P(x, &) I<Ciexp(h|E]°) for (1,0 &l

Then there are holomorphic functions R® (x,8), S& (x,8) defined in
I' for all ¢ Zy, v, p=0,1, ---, |a| —1 satisfying
(@) for each a(la|=1)

(@) 0P 0 /P =2 R0

lai—1
(@) 0P(x,0)/P,0) = 5 5 (x,0)
f=
(b) for each compact cone I''"CI there exist positive constants
C, 0y, 0: H, A and MZ=2 (resp. for each compact cone I''"CI" there
exist positive constants C, 0y, 0,, M(=2) and for each H >0 there

exists A>0) such that

@) 1R® (z,0)|<- U =D! ety e gz 4 Aytei=vg)-ie
(ol —y—1)!

@) 1S9 (2,0 |=—UH=D!_ciei-sg el iz ) 4 A) et
(ol — n—1)! :

for v, u=0,1, -+, |a| -1, (z,{)el".

Proof of Lemma 3.3.2. Let p(x,{) be a holomorphic function
defined in /" such that P(x,&) =exp(p(x,&)). Then we have

0P (x,8) /P(x,8) =exp(—p(x,£)) 0" exp(p(x,8))
= (Dp, +0,p(x,8)) o+ (D, + 0, p(x,8)) "1
= (D, +gradep (x,{))°1.

Here the last term is the homogeneous part of order O of the differential
operator (D,+grad; p(x,{))°.
Set
R (z,8) =0.°p(x,{) =0, log P(x,{)
for la|=1. Suppose that R is defined for each « such that |a|<<I—1
({=2), then we define R® for |a|=I[ as follows: If a= (0, ---,0, a;,
Wy, o+, Xn) with a;50, put 8= (0, -+, 0, a;—1, &j4y, -+, &) and set



24 TAKASHI AOKI
(3.3.2.1)  R®(xz,8) =0,R"(x,0),
(3.3.2.2)  R®(x,0) =0,R® (z,0) +0.,0(z,0) -R¥P (z,8)
for 1=y<i[-2,
(3.3.2.3) R (2,0) =0,6(z,0) -RP (z,0).
Then we have (a,). Indeed,
0,°P(,8) /P (x, )
= (De,+ 00,6 (z, ) (0:°P (z,8) /P (,0))

= (De, 00,5 (2,0) 3R (2,0
= S0, RO (2,0) + X 06,6(2,0) - RP (2, 0)

=0¢,R{% (2, 0) + Z (0, RS2 (2, ©) 40,2 (2, 0) - RP (2,0))

+ aC]P (‘r’ C) * Réﬁ) (.I?, C) .

Let us prove the estimate for R® (x, &) by induction. Note that

Sublemma. Let f(2) be a holomorphic function of one variable z
which is holomorphic in |z—z2,|<r (zo€C, r>0), continuous and non
zero in lz—z|<r. Then we have

S () _
f(=)

Sfor |z—z|<r (i= «/-——1).

1 r" oy Zotre’
1 ; db
7 Jo og|f(zo+7e ),(zo+reio 2)?

Proof of Sublemma. Apply the well known formula in the theory

of functions of one complex variable
2
(p(z):iIm(a(zu)-l——l—J Re ¢ (20 -+ re®) 2270 +2 g
2 Jo Ztreff—=z

to ¢(2) =log f(2) and operate di on the both members.
2

Proof of Lemma 3.3.2 continued. The estimate for R{® (x, ) for
|| =1 is obtained by means of Sublemma; for o= (1,0,:--,0), we have
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2r ' 0
06,6 (2, 1< L [TllogI Pz, 4 re, 0 152 F 77 g
T Je r

where {= (&,&). If (x,{)el"€I, one can put r=0,|{| for some
0,>0. In view of (3.3.1) there exist positive numbers H, A (resp. for
each H>0 there exists A>>0) such that

10,0 (x, ) | (HIC|P+ A) €] 105"

where M is a constant =>2.
Suppose estimate (b,) for all a such that |a|</—1 ([=2). Then

for each a such that |a| =/ we have from (3.3.2.2) that
IR (z,8) |
gIaClesi)l (.’C, C) I + Iafjp (JL', C) l : |R15ﬁ) (‘ra C) l

UBI—=D)! Hig-s N 1813 8]
<ML O 1-1 0

X (H|E|?+ A) B L7181 (0,[€] /18])

+ (lﬁl—l)! Clﬁl—v-—lé‘z—ﬁll(H|C|p+A) [ﬁ]—v!cl—[ﬁ]

(18l —v—-1)!
X (HICI"+A) €] 707"
(-D!

Cl—v—lb‘z—Ml(HIC!p+A)l—vic|—~l<62ﬂ'—leﬁ[+Z—V'—lc—l)

T (—y-1)! -1

for 1<y<{/—2. Since M>>1, and 0, is sufficiently small, one can choose
C independently of /, v such that

gi-tenp LVl

-1 -

Therefore we have (6;) for 1<<y<{/—2. By the definition, it is clear
that

nga) (x’ C) = (gradC P(‘r’ C) ) * 2
R® (x,8) =07 p(x,0).

Thus (b)) is also valid for v=0 and v=/—1. This completes the proof
of the estimate for R® (x,{). In a similar way, one can define S (z, &)
and have (&s).
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Proof of Theorem 3.3.1. Put Q(x,&) =1/P(x,{), then we
have
Q(x,0) I=C ' exp (h[€]7)  for (x,0) €T

and thus Q(«,&) is a symbol defined in I'. Let Q(x, D,) be the holo-
morphic microlocal operator defined by the symbol Q(x,&). Consider
the composite operator L= P (x, D,) Q(x, D,) of P(x, D,) and Q(x, D,).
Then L is expressed as (see Theorem 2.2.2)

L= 3 Li(z, D.)
=0
where li L,(x,8) is a formal symbol defined by
=0

L0 = % C%@;“P (2,0)-0.°Q(z,8)  for [>0.

al=

Apply Lemma 3.3.2 to P(x,{) and Q(x,&) respectively. Then
one can find R® (z,%), S® (x,8) for acZ® (ja|=1), v, #=0,1,--,
|| —1 such that

9P (z,8) _ 5 pw
by = B RO,

a.z-aQ (.27, C) — o=t S(d)
Q(.Z', C) A¢Z=U “ (1?, C)

and that estimates (/) in the lemma is valid.
It is clear that L,(x,{) =1. When /=1, L,(x,{) can be written as

_ v 1 0°P(,0  0,Q(,0)
L@ 0= ol Ped 0O

1 21-2
=|§z_lk2—o Z_k R (, C)ng) (x,C ’
1=t @ k= I
0=<z<i-1

Observe that R® (x,{)S® (x, ) satisfies the following estimate in virtue
of (b) in Lemma 3.3.2 (Ja|={ v+u==~k):

3.3.3) R (z, )8 (z,0)]

(l_l)!z —Mi2l—v—p—2 o Nmvep| | =1
S Uy DA g1y QT - YL

§4L—1k!6-lczl—k—2(H{CIp—1/2+AIC'—-I/Z)H(HICIF —l—A)_k
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for (£, ) el"€I'. Here we set 0= (0,0,)".
Put

K(z,0= Y -1 5 ReG 0890,

1=(k+3)/2 ja]=t ! via=k

then the sum converges locally uniformly in /. Indeed, in view of

(3.3.3), we have
(3.3.4) |K.(z,0]

=y »nl

' (B+ D141 tCH- =2 (H || P~V 4 AL |73
1 X!

X (HIC|"+A4)™"

<C**(k+DI(H[C!"+ A) 4~ %Eﬁ%ﬂ
X (HIL|P "+ A;Cjﬂ—l/z)liT '
2mIC i |C| T (HC|P + A)*
x exp (C;(H|L|*77+ AL

fOl' k=2m (77],:0’ 1, 27 ...)’

”/\\

2HC I 1| (H (G + A)°
X exp (Cy (L |C|~7+ A[¢] /)

for k=2m+1 (m=0,1,2,.)

in IV, Here we set C,=4nC?*}"'. Because p<<1/2, there is a constant
C;>0 such that

exp(G(HCIP+ AN =G for (2, ) el

Since

L+ Ku(2,§) =exp (= 2505,6(2,0) 02,02, ).
there exist constants C,>>0, ;>0 such that

CEN+ Ko (2, Q) + K (r,0) =6 for (x,0) el
Therefore if one sets

Ky(r,0) =14+ K, (x,0) - K (r,0),

R, (2,6) =Ky (2,8) + Kopur (2,8)  for m=>1,
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then i:fm(.r, ) is a formal symbol which satisfies the condition of
m=0

Theore;n 3.1.1. On the other hand, we have
SR, (z, D) =1+ ,ﬁg K.(z, D.)
m=0 =

= l;l] Ll (1:, D.Z)

L(z,D,).

Il

Thus L(x, D,) has the inverse (L(x, D,)) ' in &E&.

Now set U=Q(x, D,) (L(x, D,)) ", then U is the right inverse of
P(x, D,).
The construction of the left inverse V of P(x, D,) is left to the
reader. It is easy to see U=V. Hence P(x, D,) is invertible in EE.

At the same time, we obtain the following theorem which was sug-

gested by Kataoka (see (3.3.4) and Theorem 2, 3.4).
Theorem 3.3.3. Let 0 be a number such that 1/2<p<<1. Let

P(x,&) be a symbol of growth order (o) defined in I'. Assume that

there exist positive constants h, C,, C, such that
for (z,{) el

Coexp (—A|C1) 1P (x, §) |=Ciexp (h[L]")
Then the composite operators P(x, D,)Q(x,

Set Q(x,{) =1/P(x,%).
D) and Q(x, D,;) P(x, D;) are of growth order at most (20—1) at

z*,

3.4. Let M be a real analytic manifold, X a complexification of
M, and T%X the conormal bundle of M in 7*X. We denote by %
Since @y is a left EF| % y-module,

the sheaf on T%X of microfunctions.
Theorem 3.3.1 implies the following theorem.

Theorem 3.4.1. Let z* be a point in T§X and P a holomorphic
Assume that

microlocal operator defined in a neighborhood of z*.
the symbol P(x,§) of P (by a local coordinate system) satisfies the

condition of Theorem 3.3.2. Then
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P: Euw—>F n

is bijective at z*.
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