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Invertibility for MIcrodlfferentlal Operators
of Infinite Order

By

Takashi AOKI*

Abstract

For each holomorphic microlocal operator its symbol ib defined as a holomorphic
function which satisfies a growth condition. A differential or micro (=pbeudo-) differential
operator of infinite order is naturally regarded as a holomorphic microlocal operator
and its symbol coincides with the usual total symbol. Some sufficient conditions of
invertibility for holomorphic microlocal operators in terms of symbols are given.

Introduction

The sheaf of rings 8H is defined by Sato, Kawai, and Kashiwara

(cf. [7], [10]). It plays important roles in the studies of many problems

(for example, see [2], [3], [4], [5]). The sheaf 8R includes differential

operators of infinite order, micro ( = pseudo-) differential operators of in-

finite order and of fractional order. We tentatively call a section of GM

a holomorphic microlocal operator (cf. [7]), even though there has not

yet been a common agreement on naming. In this paper, we study in-

vertibility for holomorphic microlocal operators.

Ellipticity and microlocal ellipticity for differential operators of in-

finite order with constant coefficients have been investigated by Kawai

[8], We consider microlocal ellipticity for an operator as invertibility

in the ring of holomorphic microlocal operators. In this sense we extend

his results to variable coefficient case.

Set X=C"3 (x1( ..-, x,) and T*.\"^C"X C"3 (.rlf • • • , .rn;Ci, -,£,)

— (x, C) • We use the notation :

/ ft \ ai / ft \an- r « r a a — °
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(0.2) C-d*1 ..... Cnan,

(0.3) \a\=ai+ — + an,

and

(0.4) al = a^ ..... <*„!,

where a= («!,••-, «„) eZ+ (Z+= {0, 1, 2, •••}). Let us denote by £f

(resp. <?J) the sheaf on T*X of holomorphic microlocal operators (resp.

microdifferential operators of infinite order) and by j3)J the sheaf on X

of differential operators of infinite order. There are canonical injections

n~l$)x-*£x and <?5->£f, where 7C:T*X-»X is the projection. Let x*

be a point In T*X. For a holomorphic microlocal operator F&G$t£t,

its symbol F (x9 Q is a holomorphic function defined in some conic

neighborhood F of x* which satisfies the following estimate in f: for

each £>0 there is a constant C such that \F(x, C) |<^Cexp (<J|C|) (cf.

[6]). Then the operator .F is expressed as F(x,Dx}. This notation is

justified by the composition rule in terms of symbols.

In our setting, Kawai's theorem on microlocal ellipticity for differen-

tial operators of infinite order with constant coefficients ([8] Theorem

4. 1. 8) implies the following: Let P(DX) = ]T] aaDx* be a differential ope-
l«l£0

rator of infinite order with constant coefficients. Let P(C) = 2 a<£>a De

l«l^o
its total symbol. Set V= {C^ Cn; P(C) =0}. Let Co^C71 and assume

that there is a conic neighborhood F of Co such that

(0.5) m^n{C;ICi>^}-0 for some R>Q .

Then P(DX} is invertible as an operator in <??fi* for each £* = (x9 Co) •

One of the most essential part in his proof is to obtain the estimate

for |1/P(C)I from (0.5). That is, for any £>0 there is C">0 such

that |-P(C) !2jC" exp( — e |C | )« In his proof Kawai essentially uses the fact

that P(C) is an entire function of order 1 of minimal type. The symbol

of a holomorphic microlocal operator is not an entire function in general,

however. Hence we cannot expect the estimate done by Kawai. There-

fore we begin our discussion with assuming some estimate for the symbol

from below. In our case such an estimate does not immediately imply the

invertibility of the operator except for the case where the operator in

question is with constant coefficients. Actually we still find some technical
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difficulties in proving our final result in the general case, and we

content ourselves with studying operators whose symbols satisfy an extra

growth condition specified below. Roughly speaking we deal with oper-

ators which naturally appear in connection with ultradistributions of class

(5) for 2<:5<:oo (cf. [9]).

We prove the following theorem: Let P be a holomorphic microlocal

operator in £?,£* with its symbol P(x, C) defined in some conic neigh-

borhood F of £*. Let p be a number such that 0<J(0<^l/2. Assume

that there exist positive constants /i, C0, C\ such that

CoexpC-AICn^l -PC^Oi^QexpWCn for (T.Oe/1.

Then P is invertible in the ring €%&. The inverse U of P is given

by U=QR where Q is a holomorphic microlocal operator with symbol

, C))"1 and R is an operator of order 0. The principal part of R is

where p(x, C) — log P(x, C) • This is a natural extension of the theorem

on microlocal ellipticity for micro (-pseudo-) differential operators of

finite order ([10] Chapter II, Theorem 2.1.1).

Let M=Rn with its complexification X=CfL and TJX the conormal

bundle of M in T*X. Let us denote by WM the sheaf on TJX of

microfunctions. Then W M is a left c?^|r* ̂ -module. Therefore the preced-

ing theorem yields the following theorem: Let .r*eTJX and P be an

operator in £jc\±* satisfying the condition of the preceding theorem. Then

the mapping

P . (2? _ >, (2?
• & Mtx* ~~> 0 Mt£+

is bijective.

The plan of this paper is as follows:

In § 1, we give the notation.

In § 2, we define the symbols of holomorphic microlocal operators

and establish some calculation rules for holomorphic microlocal operators

in terms of symbols. In addition, we define the growth order of holo-

morphic microlocal operators.

In § 3, we study invertibility for holomorphic microlocal operators.
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§ 1. Preliminaries

1. 1. Let X be an ^-dimensional complex manifold and T*X be

the cotangent vector bundle of X, Let us denote by Ox the sheaf on

X of holomorphic functions and by Q\ the sheaf of holomorphic ^-forms

on X, We identify X with the diagonal of XxX and T*X with the

conormal bundle Tx(XxX) of X in T*(XxX). We denote by &$\XxX

the sheaf of holomorphic microf unctions on Tx(XxX) (see Sato-Kawai-

Kashiwara [10]).

The sheaf €$ of rings of holomorphic microlocal operators on T*X

is given by

pit _ c^-K /O\ j, -inn
—

where p2: Tx(XxX) -*XxX->X denotes the second projection. We will

call a section of fijp a holomorphic microlocal operator.

Let us recall that the sheaf Sx of microdifferential operators on

T*X is given by

/^ool _ V-I
&X\(T*X-X) — T

where T is the projection on the complex projective cotangent bundle:

T: T*X-TXX->P*X= (T*X-

We have canonical injections

and

where <DX is the sheaf on X of differential operators (of infinite order)

and 7T is the projection

n:T*X-*X.

The sheaf £$ (resp. £x, 3)x) is often abbreviated to GR (resp.

£", 3)-).

1.2. A subset T in T*X is called conic if each fiber Ff] (T*X)X
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is a cone in (T*X)X~ Cn~ J?2n(xeX) . A conic subset F' in T*X is

said to be compact if Tn CO is compact where

TR: T*X-T$X-*S*X= (T*X-TXX)/R+

is the projection. We often neglect a bounded subset of a conic subset

in T*X.

Remark. We denote by £? and <?J the sheaves denoted by £Pf in

[7] (JCC in [6]) and £x (on P*X) in [7], [10] respectively as this

notation is now more commonly used. We also call the sections of GZ

microdifferential operators instead of pseudo-differential operators.

§ 2e Symbols of Holomorphic Microlocal Operators

2e 1. Let X be a complex manifold of dimension n and take a point

x* in the cotangent bundle T*X. From now on, we fix a local coordi-

nate system x= (x1? • • - , xn) of X. Let (:r, C) = fe, •", J^Ci, •", Cn) be

coordinates of T*X, where C~ (Ci> "S Cn) is cotangent coordinates. With-

out loss of generality, we can assume that ,£*=(0;^, 0, • • • , 0 ) , where A

is a complex number. If >? — 0, we have 6^=3)^. Since the symbols

of differential operators are well known, we assume that ^=^0. The ring

G#i is defined as the inductive limit

where we set

(2.1.1) Ue={(jc, Jc'*)£EXxX; x\<c, \x-x'

(2, 1. 2) Zc§6= {(^ *') €= C/cjRetf te- .r/^

for c>0, £>0. Here 0("'n} = 0XKX (g) A"1^ is the sheaf of w-forms
pr1^

with respect to the second variable.

Let us fix c, s and write U=UC, Z=ZCi£. There is a homomorphism

(2.1.3) H%(U;0(Q'n^->£f«.

The open set U— Z is covered by holomorphically convex sets V(v)



6 TAKASHI AOKI

(V = l,2, — ,») defined by

y (v) = { O, x') e C7; l^i-^

Set

v= n ^(v)
5 ^(i° = n v(tl} -

y = l (i=j=v

We have the exact sequence

© r(VM; 0(Q'n^->r(V; 0(0'n^-*H%(Ui 0(0'n))->0 .
J>=1

Combining this with (2. 1. 3) yields a mapping

(2. 1. 4) T (F; 0(0'7l)) -»Hn
z(U-9 0{Q'n}) -><?§ .

Let X(.r, ^) be a holomorphic function defined on V. The operator

in <??* corresponding to K(x, x'} dx'^F(V; 0(0'n)) is denoted by ^

Set L(x, y) =K(x, x— y), then L is holomorphic on {(x, y)eCn

xCMxK*, |y|<^Re(^yi)<e|Imyyi)l, bil<e|yyl, J = 2, -,»}. Let Q^O,

O^i be two points sufficiently near yi = 0 such that

0< - £i Im (la^) <Re

and that

0<£! Im (^0:0 <Re (M)

where 0<£i<£.

Set

dy ,y fi8 JL. uj K \<^9 s> ? P ) ~; " — i —

here <y, C> = yiCi H 1- ynC» and fy

«ii

n A

c
I Im yi

0 Rey ,

\«0

y^-planeJ
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Ti is a path starting from a09 ending at o^ and around the origin

clockwise, and Tj 0/2^2) is a cycle rounding yj = 0 counterclockwise with

radius ^>B~l\yi\. Then k(x,^,p) is holomorphic on

(2. 1. 6) D= i(x, C,/>) eC*X C*X €;

"IC/KICil 0' =

for some positive constant a. Moreover, k (x, C? ^) is homogeneous with

respect to (C, p) of order ( — ;/).

Let us remark that k(x, C, (x — jc', C»ft>(C) ^' is nothing but the

normalized Radon transformation of F where

(See Kataoka [6], [7]). If K(x,x'}dx' belongs to the zero class, that

is F=0 in <?|E, then k(x,£,p) is holomorphic at /> = 0. The k(x^,p)

is independent of <2/ (^ = 0, 1) modulo holomorphic functions at p = 0,

Theorem 20 1. 1. Let SQ, Si be two holomorphic functions of C

of homogeneous of degree 1 defined on

{CeC»;Re(r1Ci)>a|Im(r1Ci)|, al

0<Re 5o (C) < - e, Im 50 (C) , a] So (Q ! < |CI

0<Re51(C)<£iIm51(C),

(2.1.7) F(a;fC) = (27r/=I)

-where the path 0"(C) Q/" integration is taken as figure
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, Im/>

Then -we have the following:

(a) F(x,£J) is holomorphic on

(b) For every compact cone F'^F and for every

(2.1.8)

(c) Assume that k(x,^,p) is holomorphic at p = Q9 then for each

compact cone F'CF, there exists a positive number 80 such that

(2.1.9)

Proof. By the definition of jF(.r7C)» (a) is clear.

Let S be a positive number. Take 5' as 0<^S'<^d. We can take

the path of integration as it is contained in {Re />> — 5'|C!}- Thus we

have (b) .

If k(x,£,P) is holomorphic on {|/>|<j5i|C|} for some c?i>05 we can

choose the path ff of integration as it is contained in {Re p^>di JC|} for

some 0<$i<Cfli- If we take d0 as dQ<^d'i, we have (c) .

A holomorphic function which satisfies the estimate (2. 1. 8) (resp.

(2.1.9)) is called infra-exponential type (resp. rapidly decreeasing type).

We give the definition of symbols of holomorphic microlocal operators

in accordance with Kataoka [6].
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Definition 2. 1. 2, The holomorphic function F(x, C) obtained in

the preceding theorem is called the symbol defined in F of the holo-

morphic microlocal operator F^&ft.

Then F is represented as F(x,Dx} where Df-

The symbol of the holomorphic microlocal operator is independent

°f sj(J = ®, 1) modulo rapidly decreasing functions. When F = ]£] ^a(-
r)-^S

is a differential operator, the symbol of F in the sense of the defini-

tion coincides with its ordinary total symbol F(.r, C) — Zjaa(-^)Cw-
|ff|:>0

Theorem 28 1.3. Let G(x,Q be a holomorphic function of

infra-exponential type defined on

'" • 1 r\<:'r P\^>r, \X\ \6, s 1^' 5

^vhere c^>0 Is a small number, a and r are large positive numbers.

Set

(2. 1. 10) g (x, C, P) =

for Ci — ̂  where R^r is a constant^ and

(2. 1. 10') (/Or, C, j>)

Then g(x,^,p) is extended holomorphically to the set

for some £2>0, homogeneous -with respect to (C, />) Q/" order ( — ri)9

and independent of R modulo holomorphic functions at p = Q.

Moreover, ivhen G(x, C) =F(.?:, C) modulo rapidly decreasing func-

tions, we have g(x, C, P) =k(jc, C, P) modulo holomorphic functions at
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Proof. If Re /?<0, the integral (2. 1. 10) converges absolutely.

Deformation of the path of integration proves the first situation. When

G(x, C) is rapidly decreasing, it is clear that g(x,^,p) becomes holo-

morphic at p = 0. Assume that G(x9 C) — F(x, C) , then we have

*(rt)

1 r f,(P-*)R
= 9^7=^ k(x,C,q)l-—dq

Zn^ — I J < r < f ) Q — p

^k(x,£>9p) modulo holomorphic functions at p = 0.

Therefore c?|* is represented as infra-exponential holomorphic func-

tions modulo rapidly decreasing holomorphic functions.

Theorem 2,1.4. Let {Fj} (j = 0,l,2, • • • ) be a sequence of holo-

morphic microlocal operators defined in some neighborhood of x*

Assume that the symbol Fj(x,£) of Fj satisfies the follozving

conditions:

(i) FJ(JC,£) is holomorphic on

ReCi>fl | ImCii, ^I

where 0<c<l, l<a, and l<r (j = Q,I,2, • • • ) •
(ii) For each compact cone F^F, there exists a positive

72 umber A, and for each positive number d, there is a positive con-

stant C8 such that

(2.1.11) |^(^OI<aA{/!|C|^exp(5[C|) for

Then, there is a sequence {&(&, C)} (j — 0, 1, • • • ) of holomorphic

functions of rapidly decreasing type defined in F such that
00

]T] (Fj(x9^) — (f}j'(x,^y) converges locally uniformly in F and that the
J=Q
sumF(x, C)= Z] (Ffa, C)~ 0X-^, O) is infra- exponential type in F. That

J = 0 oo

is, the sum F= ^J Fj of holomorphic microlocal operators Fj exists
j=Q

in €$.
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Proof. Take R^>0 sufficiently large and set

/. (jc C? p) = CI-»F, (X? rC
(27TV — I)71 J</+D*

for j — 0, ls 2, • • - . Because of the homogeneity of fj(jc, C, /O » we can

restrict our discussion about it to { (x, C, /O J Ci ~1}- Since F;- satisfies

estimate (2.1.11), we have

<; (27T) -C,A-(; ! 0'+ 1) ""•' f V-1--' exp ( (y+ 1) (5|C| + Re /») r)
Js

if 5|Ci + Re^<0, here we set C» =3Cs(2n) ~nRn~l, B = 3A. For each p

such that Re^<0, we can take d as 5|C|+Re/><0. Then

converges if 7^ is sufficiently large. Hence Zj/X-r, C, />) = /(-r> C? ̂ ) con-

verges locally uniformly in {Re/><CO}. Each /} ( x, C, /^) is extended holo-

morphically to the set

; x\<c, Ci = l, «I

for some £^>0. Similar argument as above shows X] /}(.£, C, .£) converges

locally uniformly in D. Let jP/(.r, C) and F(x,£) be symbols correspond-

ing to /XJT, C? />) and /(x, C, /*) respectively. Then,

is a holomorphic function of rapidly decreasing type in F for each j and

y Q converges locally uniformly in /1. The sum is equal to
J=0

F(x,Q. Set F = F(x,Dx), then we have

] F,(x, A)
y=o

This completes the proof of Theorem 2. 1. 4.
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Remark 2.1.5. By the method of the proof, we can replace esti-

mate (2. 1. 11) in the preceding theorem by

(2.1.11') l*X^C)I^C,A'C/!) IICr' 'exp(ff|CI) C/ = 0,l,2, • • • )

for a positive constant s.

Definition 2.1.6, Let x*=(x?,C) be a point in T*X^CnxCn

and F be a conic neighborhood of x*. Let {Fj(x,Q} (j = 0,1,2, • • • )

be a sequence of holomorphic functions defined in F such that for each

compact cone F'tglF, there is a positive constant A and for each

there is a positive number Cs such thai

for te

Then fwe call the formal sum ]T] Fj(x, Q a formal symbol defined
3 = 0

in F. We denote by E£* the set of all formal symbols defined in some

conic neighborhood of x*.

By the preceding theorem, the sum ]Tj F j ( x , Dx) defines a holomor-
J=0

phic microlocal operator in Gf* if Y] F j ( x , Q belongs to E±f. (Cf. Boutet
J=0

de Monvel [1]). The sum is well defined since we have the following

theorem.

Theorem 2.1.7. Let XI ̂ /(^C) be a formal symbol defined
J=0

in a conic neighborhood F ofx*. Assume tt hat for any compact cone

F'^F, there is a constant A^>0 and for each <?>0, there is a number

Cff>0 such that

for (x^)^Ff, JST=1,2, -.

Then, the sum Y\Fj(x,Dx) defines zero operator in
.7=0

Remark 2. 1. 8. Let F(x, Dv) = ^ Fj(x, Dx) be a microdifferential
j<EZ

operator e<5?l. Here F j ( x , Dx} is the homogeneous part of F of order
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j in Dx. That is, FJ(JC,£) is a holomorphic function denned in a conic

neighborhood F of ,£* and homogeneous in C of degree j which satisfies

the following conditions :

(a) for every £>0 and every compact cone F'^F, there is a con-

stant C>0 such that

|F,(*,C)I^— e ' iCI ' for
./!

(b) for every compact cone F/^F, there is a constant R^>0 such

that

\Fj(x,^\<(-j)!R-'\QJ' for J<0, (*,C)e/".

Clearly, the symbol of F3(x, Dx) in the sense of Definition 2. 1. 2 coincides

with ^(x,C) (modulo rapidly decreasing functions, of course). Set

F^ (xy Dx) = J2 Fj(x, A,) and F_ (.r, D,) - I] ^-(^, A) - Condition (a)

shows £j -^X-^i C) converges locall}^ uniformly and the sum J^+ ( :̂, C)

— Z]^(X»C) satisfies the following:
.̂ o

(ax) for every e>0 and every compact cone /"Cl/\ there is a

constant C£^>0 such that

| /-+(x,C)i<;CEexp(£iC|) for U

Therefore F+ (x, C) is a symbol in the sense of Definition 2.1.2 and

.F+O, D,) =jP+(j:, D,). On the other hand, 2]^(a:, C) does not con-
y<o

verge but the formal sum 2 -^X-37* O defines a formal symbol in the

sense of Definition 2.1.6. There is a symbol F- (x, C) such that F-.(jr,

D)—F-(x,D). Thus the symbol of the microdifferetial operator F(x,

D) in the sense of Definition 2.1.2 is given by F, (x, C) + F. O, C) .

By the way, remark that if we set

(^C) Tor f>0,

then the formal sum ]Tj^X-r>O ^s a formal symbol which defines
3^

F(x, D).

2B 2. Next we establish some calculation rules concerning holomor-

phic microlocal operators, which are expressed in terms of formal symbols.
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Following theorems are direct consequences of §3.3 in Kataoka [7] .

Let x* be a point in T*X~CnxCn.

Theorem 2.2.1. Let F=f}FJ(x,Dx) be an operator in £f*

zvhere ^Fj(x9^) is a formal symbol. Then the formal adjoint

operator G in €%**> (*(**) - (x, -Q for x* = (x, C) e T*X) o/ F zs

expressed as folloivs:

Here ^Gk(x,^) defines a formal symbol

Theorem 2. 2. 2. Le£ jF= j ̂ (or, A) and G= £ Gk(x, Dx) be
./=0 fc=0 oo

holomorphic microlocal operators defined by formal symbols ^Fj(x,
J=»

C) and Zj^C^C) ^ -Ef* respectively. Then the composite operator
k = Q

R = FG is expressed as

Where ^ RI (x, C) is a formal symbol in E^ defined by
z=.o

r^^ (*, 0 • 9/G, (^ Q .

Theorem 2.2.3. Let x= (xl9 • • • , xn)9 y= (yi9 • • • , yn) ^e £/*

coordinate systems of X, and C~ (Ci» • • • , C n ) > ^ — (fi» m"9?n) be the

corresponding fiber coordinates of T*X. i.e. ?v = ̂ 2^/(dxf(/dyy. Set

^ (y, ̂ ) = ̂  (y) - ^ (y + V (y) *0 + ̂  •

F be a holomorphic microlocal operator in Gf*, Suppose
00 00

F=22Fj(x,Dx) for a formal symbol ^Fj(x^) by the first co-
J=Q J=Q

ordinate system. Then F is expressed by the second coordinate
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system as follows-.

C -*1*) (9 (y) , 0 (y) ?)

.Hiere <5(y, z/) = ($i(y, u), • • • , (5n(y, w ) ) > 7Cn) zs the identity matrix of
oo ^

size n and ^,Fi(y,£) is a formal symbol.
£ = 0

2,3. In this section, we study the behavior of symbols at C — °°-

We use the same notation as in section 1.1: Let x* = (0; 1, 0, • • • , 0)

be a point in T*Xand F be an operator in SfL Suppose that k(x,^,p)

is the normalized Radon transformation of the kernel function of F and

that F(x, C) is the symbol of F defined in some conic neighborhood F

of x*. Then k ( j c , £ , p ) is holomorphic on the set D which is defined

by (2.1.6),

Lemma 2. 3. 1. Let p be a number such that 0<p<^L Then the

following conditions are equivalent'.

(i) For each compact cone jT'C/"1 there are constants Cl5 h^>0

(resp. For each compact cone F^F and /ii>0 there is a constant d)

such that

") for C^

(ii) For each compactly generated cone KtglD there exist con-

stants Cz, h2^>0 (resp. For each compactly generated cone K^D and

there exists a constant C2) such thai

-'"(I-')) for (x, C, />)

Proof. (i) => (ii) , First case: By Theorem 2.1.3, we have

(2. 3. 1) k (x, C, /») - (27T V^l) -71 f > (a:, rC) ̂ prr-yr (Ci = 1)
JR

modulo holomorphic functions at p = Q. For Re/>^— |Im/>|, we have
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(2.3.2) | £<>,£,/>) |

\p\i ft j\ \\p\

J\

where C\ , C2, h% are suitable positive constants. Here we use the in-

equality

(2. 3. 3) f] -^-^ exp (2^
= '

for some positive constant A.

For -Im£<;Re£<:<JIm£ or Im p<JRe p<,-dlm p (0<5<1), let

us deform the path of integration (2. 3. 1) as Re pr<^0 respectively.

Then the same argument as above shows

for -|I

Second case: Suppose that we can find Q for each /i^O. Then

for each 7z2^>0, we can choose /ii, C2 as the last inequality in (2. 3. 2)

is valid.

( i i )=$>(i ) , First case: By the definition (see Theorem 2.1.1),

F Cr, jC) - (27T V^I) "-1 f'l(iC>* (a:, <
J<o(*C)

for 5^1. Take the path CT of integration as follows:

0"- = {P; 1^1 = tc$p~\ arg ^j^arg ^^arg SQ}

where / = 0, 1, 0</C<1.

Then we have
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Im p

(2.3-4) f s-*k(x9G,P)e->
J<TCO

and

(2. 3. 5)
Jfft 9 '

f | s '<s~nC2 exp (h2icsp) I
Jo

where C27, /ii are some constants, 0$ = cos (arg s^) , z" = 0, 1. Thus we have

for some constant Ci

Second case: For each /Zi]>0 there exist constants £, /i2, C2' such

that the last inequalities in (2. 3. 4) and (2. 3, 5) are valid. Hence for

each /?!>0 there is a constant d such that

This completes the proof of Lemma 2.3.1.

Definition 2* 3. 2. Let F(x, C) be a symbol defined in some conic

neighborhood F of x*. The holomorphic microlocal operator F(x9 Dx)

in <?J* is called of growth order (p) (resp. {p}) for a number p
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(resp. 0<p<;i)) if for each compact cone F'glF there are

constants C, /i>0 (resp. for each compact cone F'CF a?id h^>0 there

is a constant C) such that

for

We denote by ££)fi. (resp. £gjfi*) the set of all F(x, DJ e£% of

growth order at most (p) (resp. {p}) , and by 5* (resp. £$}) the sub-

sheaf of GR of germs <S*iA* (resp. £§fjt*).

(?* is nothing but c?15 and for 0<p<Cl, we have

Now we define a subclass of E& corresponding to £*,£* (resp. £§.;&*).

Let p be a number such that 0<^p<l (resp. 0<p<Il) .

oo

Definition 2. 3. 3» A formal symbol Y] J\ (̂ :, C) defined in F is
j=Q

called of growth order (p) (resp. {p}) if for each compact cone F'CF

there exist positive constants C, A, h (resp. for each compact cone

F'CF there exists a constant A, and for each /f>0 there is a number

C) such that

(2.3.6) l^(^

We denote by E(p)>±* (resp. E{p}i±^) the set of all formal symbols of

growth order at most (p) (resp. {p}) defined in some conic neighbor-

hood of x*,

Theorem 2. 3. 4, Let £] Fj(x, C) be a formal symbol of growth
.7=0

order (p) (resp. {p}). Then the sum ^Fj(x9Dx) is a holomorphic

microlocal operator of growth order (p) (resp, {p}).

Proof. The case of (p) . Set

f, <X C, /») = (ar v^l) - f " F, (x, rQ e"r-
J(/ + l)«
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for Re/><[— |Im^!, Ci — 1 where ^>1 is a constant. Suppose that esti-

mate (2.3.6) is valid for F3(x,^). Then, as in the proof of Theorem

2. 1. 4, one can find C">0, J3>0 such that

Moreover, we have

where A is some constant (see (2.3.3) in the proof of Lemma 2.3.1).

Thus we have

(2.3.7) \JZMx, Z,P)\^C''exv(H\p\-''«-») for

where C",/I>0 are suitable constants.

In the same way as in the proof of Lemma 2. 3. 1, estimate (2. 3. 7)

is obtained for - |Im ̂ |^Re £<3|Im p\ (0<5<1).
CX3

Hence f ( j c , C, P) — ZI/^C^ C, />) satisfies condition (ii) of Lemma
j=0

2. 3. 1, which shows our theorem in the case of (jO) . Another case can

be proved in a similar way.

Remar'k 2. 3. 5. The preceding theorem is also valid if estimate

(2. 3. 6) is replaced by

(2. 3. 6') \Ft(x, C) I^CA'tf !)'|Cr* exp(A|CIO

for a positive constant s.

Corollary 2, 3. 6. £% (resp. G^) is a subring of £R.
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Corollary 2. 3* 7. 6^) (resp. G^}) is invariant under taking

formal adjoints and coordinate transformations.

§ 3. Invertibility for Holomorphic Microlocal Operators

3. 1. First we investigate invertibility for holomorphic microlocal

operators of algebraic growth. Let F be a conic neighborhood of

~ CnxCn.

Theorem 3.1.1. Let S-P/C-t:, C) be a formal symbol defined in

F 'which satisfies the following conditions: for each compact cone

(i) there exist constants A ef?, C0>0, Ci>0 such that

aiCI'^IAteOI^GICI* for teOe/".

(ii) there exist constants C2>0, A^>0 such that

\P,(x,Q\^CtA'j\\t:r' for j^O, (*,Oe=/".
09

Then the operator P(x, Dx) = JH Pj(x, Dx) is invertible in the
/=o

ring GR,

Proof. First we construct the right inverse of P(x,Dx). Set

Qi (P, 0 = - I] - 9t
BPy (^, C) - 9/Q* (a:, C) /P, (*, Q

«=i«i+/+*a:!

for />!.

If XlQiC^O is ^ formal symbol, it is clear that P (x, Dx} Q (x, Dx) = 1

for Q(x,Dx)= EQi(x,Dx).
1 = 0 oo

Let us prove that 2 Q* (^ O is a formal symbol defined in F.

Note that each Qt (x, C) is holomorphic in F by the definition,, For each

compact cone F'^F one can find #2>0 by means of Cauchy's inequality

such that

|dr
BP,Cr,O i^

7, aeZ+".
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We prove the following inequality by induction; for each compact

cone r'CF there exist constants C8, B, Sl9 d2 and M>1 such that

for £:>0, Cr,

Set C3 = C0~
1, then the inequality is valid for k = Q,

Assume the inequality for each k such that k<^l. Then we have

for O, C) e/", <zeZ+n, £</. Here (?i (resp. 82) is the distance from

Tr(F') to 97TCT) (resp. from the fiber of Tig CO to the fiber of djR (F)

where TR is the projection T*X— X-»S*X) . Thus we have

S

Since 51? 52 are sufficiently small, there exists B independently of / such

that

C2C3 S
l= v + y+fe

fc<i

So we have

jiffr^fc-'icr1-' for &o, c^
Hence X] Qfc (^ C) is a formal symbol defined in F and Q (a:, Dx)

oo *=0

= E£2*(^,-D*) is the right inverse of P(x,Dx}.
fc = 0

It is clear from the method of the proof given above that we can

construct the left inverse 5 of P also. Then we have S= S(PQ) = (SP")Q

= Q, hence S=Q holds.

3. 2« Next we study invertibility for holomorphic microlocal oper-

ators with constant coefficients.

Definition 3. 2. 1. A holomorphic microlocal operator P defined

in an open set of T*Cn is said to be 'with constant coefficients if
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[DhP]=DjP-PDj = 0 for j = l,2,

where Dj =

The following theorem is trivial.

Theorem 3. 2. 2. Let P be a holomorphic microlocal operator

with constant coefficients defined in a neighborhood of x*^T*Cn,

Let P(x, C) be the symbol of P defined in a conic neighborhood F

of x* . Assume that for each compact cone Ff^F and £>0 there

exists Ce>0 such that

£|CI) for

Then P=P(x,Dx) is invertible in ££*,

3. 3. Now we prove the following theorem which gives a sufficient

condition of invertibility for holomorphic microlocal operators in a rather

wide class which includes (micro) differential operators of infinite order

with variable coefficients (of growth order at most (1/2) ) . Let F be

a conic neighborhood of x*

Theorem 38 3.1. Let P(x^} be a symbol defined in F. Let p

be a number such that 0<Jp<^l/2. Assume that there exist positive

constants h, C0, Q such that

CoexpC-^ICn^l^OI^QexpWa') for (x,Qf=F.

Then the holomorphic microlocal operator P = P(jC9Dx) is invertible

in the ring G&. The inverse U of P is given by the form U=QR.

Here Q is a holomorphic microlocal operator with symbol (P(x^))~l

and R is an operator of order 0. The principal part of R is

where p(x, C) =log P(x, C).

Lemma 3.3.2. Let P(x,Q be a symbol defined in F. Let p

be a number such that 0<^<1 (resp. 0<p<[l) . Suppose that there
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exist positive constants hy C0, Q (resp. for each /C>0 there exist

positive constants C0, C^) s&£/z. £/za£

(3.3.1) Ciexp(-A|C|')^|JP(*,C)I^C1exp(;i|CI') for (ar.Oe/7.

Then there are holomorphic functions R^ (x, C), *S^a) (x, C) defined in

F for all aeZJ, u,// = 0, 1, • • - , |a|— 1 satisfying

(a) for each

d,aP (x, C) /P (x, C) - ' S? ̂ (a) (*, C)

(a2) d,"P (x, C) /P (a:, C) = ] S?5 (x, C)
0 = 0

(6) /or eac/i compact cone F'^F there exist positive constants

C, $1, (J25 W, A and MJ>2 (resp. for each compact cone F'^F there

exist positive constants C, dl9 82, M(l>2) and for each H^>0 there

exists A^>0) such that

|5?} (a;, C) |̂

for v, 0 = 0,1, -, |a| -1,

Proof of Lemma 3.3.2. Let />(x, Q be a holomorphic function

defined in F such that P (x, C) = exp (/> (x, s ) ) • Then we have

dSP(x, Q/P(x, C) =exp(-/»(a:, C))9c
a exp(/>(x, C))

= ( A, + M (^ O ) "' ..... (A. + ̂  (x, C) ) «»1

Here the last term is the homogeneous part of order 0 of the differential

operator (Z>c + gradc p(x, C) ) ff.

Set

^0
(a) (x, C) -^ca^(^ O =9C

B ^g P(x, C)

for |a|=l. Suppose that ^V
(Q:) is defined for each a such that |a|<^— 1

(/;>2), then we define J?y
(Q:) for \a\=l as follows: If a= (0, -•, 0, ah

aj+l9~-,an) with <Xr^O, put j8= (0, • • - , 0,^—1, ay+i, ---jO:,!) and set



24 TAKASHI AOKI

(3. 3. 2. 1) R& (x, 0 = dfjR& (x, 0 ,

(3. 3. 2. 2) ^ (*, 0 = 9cA- (*, 0 + 9fip (x, Q • J?<« (x, Q

for l<;v<;/-2,

(3. 3. 2. 3) J?<«> (x, 0 = 9fip (x, Q • SP (x, Q .

Then we have (#1) . Indeed,

, 0 ) (9/P (*, 0 /P (a:, Q )

1-2

v n 4- v fl /> (r n . T?(^ f-r n.•^5 Sy ~ ^_j ̂ ^jF\^9 s^ -tvj, v.^, sy

S Oc^i (^, 0 + 9c,/> (*, 0 • ̂  (^, 0)

Let us prove the estimate for R^ (x, C) by induction. Note that

Sublemma* Let f ( z ) be a holomorphic function of one variable z

-which is holomorphic in \z — zG\<^r (z0^C9 r>0), continuous and non

zero in \z — zQ\<^r. Then we have

f(z) it

for \z-z.\<r (t=V^l).

Proof of Sublemma. Apply the well known formula in the theory

of functions of one complex variable

— z

to (p(z) =log/(z) and operate — on the both members.
dz

Proof of Lemma 3. 3. 2 continued. The estimate for jR{a) (.r, C) for

|ct|=l is obtained by means of Sublemma; for a= (1, O , - - - , 0) , we have
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\log\P (x, ̂  + reie, C') | \1 d6
7T Jo r2

where C= (Ci, CO . If (XQeT'C/7, one can put r = ff2|C| for some
(J2>0. In view of (3. 3. 1) there exist positive numbers H, A (resp. for

each £T>0 there exists A>0) such that

where M is a constant

Suppose estimate (&0 for all a such that ja']<^— 1 (£>2) . Then

for each a such that | t f |=/ , we have from (3.3.2.2) that

I #">(*, 01

^ j

for l^v^/— 2. Since M^>1, and 52 is sufficiently small, one can choose

C independently of /, v such that

Therefore we have (&j) for l<Ji'<^ — 2. By the definition, it is clear

that

Thus (^) is also valid for y = 0 and y — /— 1. This completes the proof

of the estimate for R^ (.r, C) • In a similar way, one can define Sf} (x, C)

and have (^2) -
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Proof of Theorem 3.3.1. Put Q(x, C) =I/P(x, C), then we

have

I") for te

and thus Q(x, C) is a symbol defined in 7"1. Let Q(x, Dx} be the holo-

morphic microlocal operator defined by the symbol Q(x, C) • Consider

the composite operator L = P (x, Dx) Q (x, Dx) oiP(x,Dx) and Q(x, Dx) .

Then L is expressed as (see Theorem 2. 2. 2)

where Y] Lj (j:, C) is a formal symbol defined by
z=o

£« (^, 0 = S ^ 0f
 ttP (or, 0 • 0/Q (x, C) for

Apply Lemma 3.3.2 to P(x, C) and Q(x, Q respectively. Then

one can find R™(x,Q, Sj?° (*, C) for

|a| — 1 such that

r? aP(r n I"!-1f -=

and that estimates (6) in the lemma is valid.

It is clear that L0(.r, C) =1- When £>1, LL(x,^) can be written as

Observe that R^ (x, C) S^ (x9 C) satisfies the following estimate in virtue

of (b) in Lemma 3.3.2

(3.3.3) I^C
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for Cr,Qer'CA Here we set 8=(8ld2)».

Put

Kk (x, 0 = S S ^T- S #a) (*, Q sr (*, 0 ,

then the sum converges locally uniformly in I\ Indeed, in view of

(3. 3. 3) , we have

(3.3.4) \Kk(x,Q\

•

X

for k = 2m (w=0,l ,2, • • • ) ,

22"l+2C2
m +2m ! | C I -m~2 (H | C ! ' + A) 3

for k = 2m-rl (m=Q, 1, 2, • • • )

in /". Here we set C2 = 4«C25""1. Because p^l/2, there is a constant

Cs>0 such that

exP(C2(/f|CI"-1/2 + A|Cr1'2)2)^C3 for (x,

Since

1 -r ̂ 0 (x, C) = exp ( - g 9^/> (x, C) ' 9,,P (*, C) ) ,

there exist constants C4^>0, C5>0 such that

C^ll + AoUO+^iUOI^C. for (x,C)er'.

Therefore if one sets

for
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then Xj Km (x, C) is a formal symbol which satisfies the condition of
m=0

Theorem 3. 1. 1. On the other hand, we have

£ Km (x, DJ = 1 + £ Kk (x, Dx)

Thus L(x,DI) has the inverse (L(.r, AO) "' in £f..

Now set U=Q(x, Dx~) (L(x, A,))"1, then £7 is the right inverse of

P(x,Dx).

The construction of the left inverse V of P(x, Dx) is left to the

reader. It is easy to see U=V. Hence P(x,Dx) is invertible in <5JE.

At the same time, we obtain the following theorem which was sug-

gested by Kataoka (see (3. 3. 4) and Theorem 2. 3. 4) .

Theorem 3« 3« 3» Let p be a number such that l/2^p<Cl. Let

P(x, C) #£ ^ symbol of growth order (p) defined in F '. Assume that

there exist positive constants h, C0, Ci such that

CoexpC-AICIO^ i^PC^OI^GexpC/ i lCr ) for (x,Q^F.

Set Q(x, C) =l/P(x, C) . TAgw ^/ie composite operators P(x, Dx)Q(x,

Dx) and Q (x, Dx) P ( x9 Dx) are of growth order at most (2p — 1) at

3,4. Let M be a real analytic manifold, X a complexification of

M, and T%X the conormal bundle of M in T*A". We denote by <gN

the sheaf on TJX of microfunctions. Since ^j/ is a left <?*] r*^--module9

Theorem 3.3. 1 implies the following theorem.

Theorem 3. 4.1. Let x* be a point in T^X and P a holomorphic

microlocal operator defined in a neighborhood of x*. Assume that

the symbol P(x,Q of P (by a local coordinate system) satisfies the

condition of Theorem 3. 3. 2. Then
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P . C^7 % C2?
. & M~^ & H

is bijective at x*.
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