L'Existence d'une Fonction Analytique sur une Variété Analytique Complexe à Deux Dimensions

Par

Toshio Nishino*

Introduction

La notion de variété analytique complexe ayant été introduite comme analogie de surface de Riemann, il y a entre elles quelques différences essentielles; en particulier, au contraire du cas d'une variable, il existe une variété analytique à dimension élevée qui n'admet aucune fonction analytique sur toute la variété. Les diverses conditions pour son existence ont donc été proposées par K. Kodaira [5], H. Grauert [4] et les autres. Le but de ce mémoire est de proposer une nouvelle condition par laquelle on peut former aussi une fonction analytique pour le cas de deux dimensions. Comme on le verra plus tard, ceci est essentiellement de la catégorie de la théorie des fonctions et applicable non seulement aux variétés compactes mais aussi à une sorte de variétés ouvertes.

Comme on le sait déjà, étant donnée une surface analytique compacte S satisfaisant aux conditions convenables, qu'on appellera dans ce mémoire surface générique, sur une variété analytique $\mathfrak M$ à deux dimensions, on peut toujours former une fonction holomorphe f, qui représente globalement S, dans un voisinage V de S. La fonction f ne peut pas, en général, se prolonger analytiquement en dehors de V. Mais la famille holomorphe de surfaces analytiques compactes donnée par la fonction f peut être prolongée analytiquement sans aucune restriction dans l'intérieur complet de $\mathfrak M$. Par suite, la famille s'étend sur tout $\mathfrak M$ lorsque $\mathfrak M$ sera supposé être compacte ou bien ouverte et pseudoconvexe. La famille étant paramétrisée analytiquement par une surface de Riemann R, grâce à la théorie des fonctions d'une variable complexe, on obtient une fonction méromorphe ou bien holomorphe sur toute variété $\mathfrak M$

Communiqué par S. Nakano, le 28 mai, 1981.

^{*} Faculté de Technologie, Université de Kyushu, Fukuoka 812, JAPON.

suivant que R est compacte ou non.

Le présent mémoire consiste en trois parties. Après quelques explications élémentaires sur les suites et les familles de surfaces analytiques, dans la partie préliminaire, on considérera, dans la deuxième, une famille holomorphe & de surfaces analytiques compactes sur M paramétrisée par le disque-unité C sur le plan d'une variable complexe z. l_{θ} étant le rayon de $\mathfrak C$ de la direction θ , $\mathfrak F_{\theta}$ étant la famille partielle de $\mathfrak F$ paramétrisée par $l_ heta$, on peut établir l'énoncé que $\mathfrak{F}_{ heta}$ sont toutes normales dans ${\mathfrak{M}}$ sauf pour les directions heta de l'ensemble de mesure nulle. C'est la partie essentielle de ce mémoire. Ceci sera déformé en peu pour faciliter l'application ultérieure. Dans la dernière partie, on rappellera d'abord la condition pour qu'une surface analytique compacte S sur M admette une fonction holomorphe qui représente S dans un voisinage de S. C'est la condition que satisfait une surface générique. Ensuite, on indiquera le fait que, si M admet une infinité non dénombrable de surfaces analytiques compactes ne se rencontrant jamais l'une l'autre, il existe au moins une surface générique parmi elles. Ceci nous permettra d'établir aisément notre énoncé principal indiqué plus haut. Dans tout la suite, nous nous bornons au cas où la variété considérée est à deux dimensions, même s'il n'y a aucune instruction.

I. Préliminaire

1. Les Familles de Surfaces Analytiques

Soit D un domaine quelconque dans l'espace de deux variables complexes x et y. On considère d'abord une surface analytique S dans D. Prenons un point $p_0 = (x_0, y_0)$ dans D et traçons autour de p_0 un dicylindre $\Delta : |x - x_0| < r$, $|y - y_0| < r'$, où r et r' sont des nombres positifs convenables, situé dans D. Grâce à Cousin, la partie de S dans Δ se représente par le zéro d'ordre un d'une fonction holomorphe f dans Δ . La fonction f sera appelée fonction adjointe de S dans Δ . Etant donnée dans D une suite $\{S_v\}$ (v = 1, 2, ...) de surfaces analytiques, elle sera dite fonction adjointe fonction adjointe fonction adjointe fonction de fonction peut prendre que la suite fonction une fonction adjointe fonction holomorphe fonction de manière que la suite fonction tende vers la fonction holomorphe fonction dans fonction sera appelée fonction dans fonction La surface analytique donnée par le zéro de fonction dans fonction sera appelée fonction de fonction la convergence sera dite fonction de fonction la suite fonction de fonction la convergence sera dite fonction de fonction la suite fonction de fonction la suite détermine fonction sera dite fonction de fonctio

une seule surface analytique dans D comme sa limite. Considérons ensuite une famille F de surfaces analytiques dans D. Elle sera dite normale dans D si, de toute suite infinie de surfaces de F, on peut extraire une suite partielle convergente dans D. Elle sera dite normale en un point P de P s'il en est ainsi dans un voisinage convenable de P.

Grâce à Oka [8], [7], on a l'énoncé que:

Pour que la famille F soit normale en un point p de D, il faut et il suffit qu'on puisse prendre un dicylindre Δ autour de p tel que les aires de surfaces de F dans Δ soient bornées uniformément.

Cette fois-ci, on décrit, pour un point $p_0 = (x_0, y_0)$ de D, une hypersphère $\Gamma: |x-x_0|^2 + |y-y_0|^2 < r^2$, où r est un nombre positif convenable, située dans D. Grâce à Rutishauser [9], on a l'énoncé que:

Si la surface analytique S passe par le point p_0 , l'aire de la partie de S dans Γ est supérieure à πr^2 .

La plus petite aire πr^2 est atteinte par la droite analytique passant par p_0 . Pour la suite $\{S_v\}$ (v=1, 2,...) de surfaces analytiques tendant vers une surface analytique S_0 dans D, on désigne par a_v (v=0, 1, 2,...) les aires des parties de S_v dans Γ . Grâce à Stoll [10], on a l'énoncé que

Si la convergence dans Γ est d'ordre un, la suite $\{a_{\nu}\}$ tend vers a_{0} .

Ce n'est pas exact dans un dicylindre pour une raison évidente.

2. Les Familles Parallèles de Surfaces Analytiques

Une famille F de surfaces analytiques dans un domaine D sera dite parallèle si les surfaces de F ne se rencontrent jamais l'une l'autre. Dans la suite, on suppose que F soit parallèle et de plus que toute surface de F soit connexe en tant qu'ensemble de points. Soit S_0 une surface de F et soit $\{S_v\}$ $\{v=1, 2, ...\}$ une suite de surfaces de F. Comme on peut le voir aisément, si la suite converge à la surface analytique connexe S^* dans D et que S^* et S_0 ont au moins un point commun, S_0 est contenue en entier dans S^* . Supposons maintenant que l'on ait $S^* = S_0$ et que la convergence soit d'ordre un. Prenons un point quelconque $p_0 = (x_0, y_0)$ de S_0 . Grâce à Weierstrass, en faisant une transformation linèaire de coordonnées, si nécessaire, on peut tracer un dicylindre $\Delta = (\delta_1, \delta_2)$: $|x-x_0| < r$, $|y-y_0| < r'$, où r et r' sont des nombres positifs convenables, dans lequel la partie $s_0 = S_0 \cap \Delta$ se représente par l'équation de la forme

$$F_0(x, y) = (y - y_0)^n + a_1(x)(y - y_0)^{n-1} + \dots + a_n(x) = 0,$$

où n est un entier convenable et $a_j(x)$ (j=1,...,n) sont des fonctions holomorphes, telles que l'on ait $a_j(x_0)=0$ (j=1,...,n), dans δ_1 . Alors, de l'hypothèse, pour tout ν plus grand qu'un certaine rang ν_0 , la partie $s_{\nu}=S_{\nu}\cap \Delta$ se représente aussi par l'équation de la forme

$$F_{\nu}(x, y) = b_{0\nu}(x)(y-y_0)^n + b_{1\nu}(x)(y-y_0)^{n-1} + \dots + b_{n\nu}(x) = 0,$$

où $b_{j\nu}(x)$ $(j=0, 1, ..., n; \nu \ge \nu_0)$ sont des fonctions holomorphes dans δ_1 . La suite des fonctions $\{F_\nu\}$ $(\nu \ge \nu_0)$ tend uniformément vers F_0 dans Δ . On en conclut que s_ν sont toutes irréductibles dans Δ à partir d'un certaine rang ν^* , puisque s_0 est connexe. De plus, on aura la

Proposition 1. Si s_0 et s_v ($v \ge v^*$) sont irréductibles et simplement connexes en tant qu'ensemble de points, s_0 n'admet aucun point singulier.

En effet, on suppose, pour le réduir à l'absurd, que le point p_0 soit un seul point singulier de s_0 . Pour tout point a de δ_1 , on désigne par L_a la droite analytique, donnée par l'équation x=a, dans Δ . Soit γ un cercle de la forme $|x-x_0|=r_0$ (0< r_0 <r) dans δ_1 et soit Γ l'ensemble produit $\gamma \times \delta_2$. Alors, l'intersection $C_0 = s_0 \cap \Gamma$ est une courbe simple fermée et, pour tout point a de γ , celle $s_0 \cap L_a$ consiste justement en *n* points. Soit $\mathfrak A$ un voisinage de C_0 sur Γ situé dans l'intérieur de Δ tel que, pour tout a de γ , l'intersection $\mathfrak{A}_a = \mathfrak{A} \cap L_a$ consiste aussi en n composantes connexes qui sont toutes simplement connexes et qui contiennent respectivement un et un seul point de $s_0 \cap L_a$. Maintenant, en prenant un nombre positif suffisamment petit ε , on considère le disque pointé $\mathfrak{C}': 0 < |w| < \varepsilon$ sur le plan de w et l'ensemble V' donné par $0 < |F_0(x, y)| < \varepsilon$ dans Δ de manière que, par l'application F_0 de V' sur C', on peut regarder V' comme un espace fibrè topologique localement trivial; c'est-à-dire, pour tout w de \mathfrak{C}' , la surface analytique σ_w donnée par $F_0 = w$ dans Δ est irréductible, non singulière et de même type topologique. A ce moment, σ_w n'est pas simplement connexe puisque s_0 admet un point singulier. De plus, on peut supposer que l'intersection $V' \cap \Gamma$ se trouve dans \mathfrak{A} ; par suite, celle $C_w = \sigma_w \cap \Gamma$ est homotope à C_0 dans \mathfrak{A} . Ici, on considère une surface analytique s_v ($v > v^*$) telle que l'on ait l'inégalité

$$|F_0(x, y)/F_v(x, y)-1| < 1/2$$

dans $\Delta - (V' \cup s_0)$. De l'hypothèse, elle existe certainement. Soit τ_t la surface analytique donnée par l'équation $F_0 - tF_v = 0$ dans Δ , où t est une variable réele

non positive ou $-\infty$. A ce moment, pour toute t, τ_t se trouve dans V' et l'intersection $C_t = \sigma_t \cap \Gamma$ dans \mathfrak{A} . Par suite, C_t est aussi homotope à C_0 dans \mathfrak{A} . Evidemment, on a $\tau_0 = s_0$ et $\tau_{-\infty} = s_v$. Ceci est en contradiction avec le fait que V' est l'espace fibré comme ci-dessus, puisque, de l'hypothèse, la courbe simple férmée C_v se réduit continûment à un point sur s_v . La proposition est donc démontré.

3. Les Familles de Surfaces Analytiques Compactes

Soit M une variété analytique complexe à deux dimensions. Elle sera supposée, dans toute la suite, être connexe et la réunion dénombrable des ensembles compacts, mais par ailleurs quelconque. Une partie ouverte et connexe de M est appelée un domaine sur \mathfrak{M} . Pour un ensemble quelconque E de points sur $\mathfrak{M}, \overline{E}$ est désigné l'adhérence de E sur \mathfrak{M} . Soit D un domaine sur \mathfrak{M} . On suppose que D se trouve dans l'intérieur complet de \mathfrak{M} . Pour un point p de \overline{D} , (x_p, y_p) étant un système de coordonnées locales en p, nous traçons deux hypersphères concentriques γ_p et γ_p^0 données respectivement par $|x_p|^2 + |y_p|^2 < 1$ et $|x_p|^2 + |y_p|^2 < 1/2$. D'après le théorème de *Borel-Lebesgue*, on peut choisir un nombre fini de points p_v (v=1,...,l) de \overline{D} de manière que, en désignant par γ_v et γ_{ν}^{0} les deux hypersphères correspondant à p_{ν} , \overline{D} se recouvre par la réunion de γ_{ν}^{0} . Etant donnée une surface analytique compacte S dans D, la somme de toutes les aires de $S \cap \gamma_{\nu}$ ($\nu = 1,..., l$) sera appelée norme de S par rapport au recouvrement $\{\gamma_{\nu}\}$ et sera désignée par |S|. Grâce à Rutishauser, il existe un nombre positif ρ_0 tel que, pour toute surface analytique compacte S dans D, on ait toujours l'inégalité $|S| > \rho_0$. On peut dire ensuite, grâce à Oka, qu'une famille F de surfaces analytiques compactes dans D est normale si et seulement s'il y a un nombre positif ρ^* tel que, pour toute surface S de F, on ait l'inégalité $|S| < \rho^*$. En général, pour une famille F de surfaces analytiques sur \mathfrak{M} , l'ensemble de tous les points contenus dans l'une des surfaces de F sera appelé support de F. F sera dite fermée si le support l'est aussi. Pour une famille F avec le support E, la famille F^* contenant F et ayant \overline{E} comme support, s'il existe, sera appelée fermeture de F. On aura alors la

Proposition 2. Soit F une famille de surfaces analytiques compactes dans le domaine D sur M. Si F est parallèle et normale elle admet toujours sa fermeture F* qui est aussi parallèle et normale.

En effet, soit q un point quelconque de \bar{E} , soit $\{q_{\mu}\}\ (\mu=1, 2,...)$ une suite

de points de E tendant vers q et soit $\{S_{\mu}\}$ ($\mu=1,2,...$) une suite de surfaces de F passant respectivement par q_{μ} . D'après l'hypothèse, on peut extraire de la suite $\{S_{\mu}\}$ une nouvelle suite convergente dans \mathfrak{M} . Soit S_q la surface de limite de cette suite-ci et soit \overline{F} la totalité des surfaces ainsi obtenues. Alors, le support de \overline{F} est évidemment \overline{E} . \overline{F} est normale puisque la norme d'une surface de \overline{F} ne peut jamais surpasser la borne supérieur de celles de surfaces de F. Mais, \overline{F} n'est pas toujours parallèle, car elle peut contenir deux surfaces distinctes S et S' telles qu'on ait $S \subset S'$. Une surface S de \overline{F} sera dite maximale si, pour toute surface S' de \overline{F} , $S \subset S'$ entraîne S = S'. Alors, pour toute surface S de \overline{F} , il existe une surface maximale S' telle qu'on ait $S \subset S'$ puisque \overline{F} est normale. Soit F^* la famille partielle de \overline{F} qui consiste en toutes les surfaces maximales. Ceci est la famille demandée. La proposition est donc démontrée.

4. Famille Holomorphe de Surfaces Analytiques Compactes

Soit V un domaine sur une variété analytique $\mathfrak M$ et soit Φ une application analytique propre de V sur une surface de Riemann R. On suppose que, pour tout point p de R, la surface analytique compacte S_p donnée par $\Phi^{-1}(p)$ est connexe. La totalité \mathfrak{F} de toutes les surfaces S_p $(p \in R)$ sera appelée famille holomorphe donnée par $\Phi: V \rightarrow R$. S_p s'appelle surface de \mathfrak{F} à valeur p. Toute surface S_p de \mathfrak{F} est irréductible, non singulière, d'ordre un et de même genre à l'exception d'une infinité dénombrable de celles qui ne s'accumulent pas dans V. La surface qui n'est pas ainsi est dite critique. De la définition, une famille holomorphe est tout parallèle. De plus, quand on prend une partie R_0 dans l'intérieur complet de R, la restriction de \mathfrak{F} dans $V_0 = \Phi^{-1}(R_0)$ est toujours normale. Deux familles holomorphes \mathfrak{F}_i (i=1, 2) données respectivement par Φ_i : $V \rightarrow R_i$ dans le même domaine V serons dites identiques l'une à l'autre si elles sont identiques comme les familles simples de surfaces analytiques. Considérons ensuite deux familles holomorphes \mathfrak{F}_i (i=1, 2) données respectivement par Φ_i : $V_i \rightarrow R_i$. Si $V_1 \cap V_2$ n'est pas vide et que \mathfrak{F}_i sont identiques l'une à l'autre dans $V_1 \cap V_2$ l'une sera applée prolongement analytique de l'autre. A ce moment, nous pouvons former une surface de Riemann R et une application analytique propre Φ de $V_1 \cup V_2$ sur R telles que la famille holomorphe $\mathfrak F$ donnée par $\Phi: V_1 \cup V_2 \rightarrow R$ soit identique respectivement à \mathfrak{F}_i dans V_i . On aura alors la

Proposition 3. Soient \mathfrak{F}_i (i=1,2) deux familles holomorphes données par Φ_i : $V_i \rightarrow R_i$. Si $V_1 \cap V_2$ n'est pas vide et s'il existe une surface S^*

appartenant à la fois aux \mathfrak{F}_i , l'une est le prolongement analytique de l'autre, même si $V_1 \cap V_2$ n'est pas connexe.

En effet, supposons d'abord que $V_1 \cap V_2$ soit connexe. Posons $p_2^* = \Phi_2(S^*)$ et $R_2^0 = \Phi_2(V_1 \cap V_2)$. Puisque S* se trouve dans l'intérieur de $V_1 \cap V_2$, δ étant un voisinage suffisamment petit de p_2^* dans R_2^0 , la partie $\mathfrak A$ donnée par $\Phi_2^{-1}(\delta)$ se trouve dans $V_1 \cap V_2$. Alors, toute surface S_p^2 de \mathfrak{F}_2 à valeur p de δ appartient à \mathfrak{F}_1 puisque l'image de S_p^2 par Φ_1 doit être un point. D'autre part, soit $\{S_v\}$ une suite de surfaces appartenant à la fois aux \mathfrak{F}_i (i=1, 2) qui converge à une surface S^0 dans $V_1 \cap V_2$. Alors, S^0 appartient aussi aux \mathfrak{F}_i (i=1, 2) à la fois. Il résulte que \mathfrak{F}_1 et \mathfrak{F}_2 sont identiques dans tout $V_1 \cap V_2$. On suppose ensuite que $V_1 \cap V_2$ ne soit pas connexe. D'après ce qui précéde, \mathfrak{F}_1 et \mathfrak{F}_2 sont indentiques dans la composante connexe \mathfrak{V}_1 de $V_1 \cap V_2$ qui contient S^* . Soit \mathfrak{V}_2 une autre composante connexe de $V_1 \cap V_2$, soit S^1 une surface de \mathfrak{F}_1 passant par un point p^1 de \mathfrak{B}_2 , et posons $p_2^* = \Phi_2(S^*)$, $p_2^1 = \Phi_2(p)^1$ et $S_2^0 = \Phi_2^{-1}(p_2^1)$. On trace maintenant une courbe linéaire L qui lie deux points p_2 et p_2^1 sur R_2 . Lorsqu'on fait varier un point p de p_2^* à p_2^1 le long de L, la surface S_p^2 de \mathfrak{F}_2 à valeur pvarie de S^* à S_2^0 . Par suite, il existe un point q sur L en lequel S_q^2 rencontre S^1 pour la première fois. Alors, S_q^2 coïncide avec S^1 . F_1 et F_2 sont donc identiques aussi dans \mathfrak{B}_2 , ce qui démontre la proposition.

On remarque ici que, étant donnée une famille holomorphe \mathfrak{F} donnée par $\Phi \colon V \to R$ sur \mathfrak{M} , la famille holomorphe obtenue par le prolongement analytique de \mathfrak{F} est toujours d'un feuillet.

II. Normalité des Familles Holomorphes

Soit $\mathfrak M$ une variété analytique complexe à deux dimensions. On considère sur $\mathfrak M$ une famille holomorphe $\mathfrak F$ donnée par $\Phi\colon V\to \mathfrak C$, $\mathfrak C$ étant le disque-unité: |z|<1 sur le plan d'une variable z, V étant un domaine dans l'intérieur complet de $\mathfrak M$ et Φ étant une application analytique propre de V sur $\mathfrak C$. Désignons par l_{θ} le rayon de la direction θ de $\mathfrak C$: $z=re^{i\theta}$ $(0\leq r<1,\ i=\sqrt{-1})$ et par $\mathfrak F_{\theta}$ la famille partielle de $\mathfrak F$ qui consiste en toutes les surfaces de $\mathfrak F$ à valeur z de l_{θ} . Le but de la partie actuelle est d'indiquer le fait que $\mathfrak F_{\theta}$ est normale dans $\mathfrak M$ sauf pour les directions θ de l'ensemble de mesure nulle.

1. Les Voisinages Speciaux des Points Frontières de V

Pour rechercher en détail des allures de surfaces appartenant à \mathfrak{F} tout près de la frontière de V, nous préparerons d'abord un système fini de dicylindres, qui couvrent la frontière de V comme suit. Nous prenons un point frontière quelconque p de V. Soit (X_p, Y_p) un système de coordonnées locales en p et soit U_p un voisinage de ce système. On décrit dans U_p trois dicylindres concentriques Δ_p , Δ_p^* et Δ_p^0 par rapport à un autre système de coordonnées locales x, y qui satisfait aux conditions suivantes.

- 1) Le dicylindre $\Delta_p = (A_p, B_p)$ de la forme |x| < 1, |y| < 1 se trouve dans l'intérieur complet de U_p et n'a aucun point de S_0 .
- 2) Le dicylindre $\Delta_p^* = (A_p^*, B_p)$ de la forme $|x| < \varepsilon_0$, |y| < 1 se trouve dans l'intérieur de V, ε_0 étant un nombre positif inférieur à un
- 3) Le dicylindre $\Delta_p^0 = (A_p^0, B_p^0)$ de la forme $|x| < \rho_0, |y| < \rho_0$ contient le point initial p, ρ_0 étant un nombre positif tel que l'on ait $\varepsilon_0 < \rho_0 < 1$.

Comme on peut aisément le voir, ceci existe certainement. Lorsqu'on considère, pour chaque point frontière de V, le trois dicylindres ainsi décrits, d'après le théorème de Borel-Lebesgue, on peut prendre un nombre fini de points p_j (j=1,...,N) de façon que, Δ_j , Δ_j^* et Δ_j^0 étant les dicylindres considérés pour les points p_j , la frontière de V puisse être couverte par la réunion de tous les Δ_j^0 (j=1,...,N). On les fixera dans toute la suite. Ceci posé, on peut trouver un nombre positif r_0^* inférieur à un, tel que toute surface S_z de \mathfrak{F} dont z remplit les inégalités $r_0^* < |z| < 1$ ne passe par aucun point de Δ_j^* (j=1,...,N). On fixera aussi le nombre r_0^* .

Enfin, pour le besoin ultérieur, on pose l'autre hypothèse suivante: U_j étant le voisinage initial de coordonnées locales (X_p, Y_p) en p_j , le dicylindre Δ_j décrit dans U_j et l'autre dicylindre Δ_k ne contiennent aucun point commun pourvu que Δ_k contienne au moins un point frontière de U_j . Cette condition sera toujours remplie si l'on trace chaque Δ_j (j=1,...,N) suffisamment petit.

2. Les Directions Singulières

Nous prenons l'un des triples Δ_j , Δ_j^0 et Δ_j^* (j=1,...,N) expliqués dans la section précédente, et les désignons à nouveau, par $\Delta=(A,B)$, $\Delta^0=(A^0,B^0)$ et $\Delta^*=(A^*,B)$ pour simplifier l'écriture. Dans la section présente et dans la suivante, nous nous bornons à faire des investigations sur ces dicylindres. Soit L_c la droite analytique donnée par l'équation y=c dans Δ , c étant un point de

B, et posons $L_c^0 = \Delta^0 \cap L_c$. Pour une surface S_z de \mathfrak{F} et une droite L_c , le nombre de points de $S_z \cap L_c$ sera désigné par n(z, c). Il est toujours fini, car, par l'hypothèse, S_z est compacte sur \mathfrak{M} . Nous poserons ensuite

$$N(\theta, c) = \lim_{z \in I_{\theta}} \sup n(z, c)$$
.

Ceci peut être infini. Lorsque $N(\theta, c)$ devient infini, θ sera appelé direction singulière à L_c , et l'ensemble de toutes les directions singulières à L_c sera désigné par E_c . On aura alors le

Lemme 1. Pour une droite L_c fixée, la mesure de E_c est nulle dans l'intervalle $I = [0, 2\pi]$.

En effet, soit f l'application analytique de $L_c \cap V$ dans $\mathfrak C$ entraînée de Φ et soit R la surface de Riemann de la fonction inverse g de f étalée au-dessus de $\mathfrak C$. Evidemment, pour tout z de $\mathfrak C$, il n'y a qu'un nombre fini au plus de points de R situés au-dessus de z, car les points de R au-dessus de z correspondent exactement aux points de $S_z \cap L_c$ par g. Mais, θ étant une direction singulière à L_c , il existe une suite infinie de points z_j (j=1,2,...) de l_θ tendant vers le point $\zeta_\theta = e^{i\theta}$ tels que les nombres de points de R au-dessus de z_j augmentent indéfiniment. On considérera seulement les directions θ telles qu'il n'y a aucun point critique de R au-dessus de l_θ . Alors, l'ensemble de tous les points de R au-dessus de l_θ consiste en une infinité de segments. Désignons-les par s_v (v=1,2,...) et par $|s_v|$ les longueurs de s_v . La suite $|s_v|$ (v=1,2,...) tend évidemment vers zéro. Or, si s_v contient un point qui correspond à un point q_v de L_c^0 par g, l'image \mathfrak{S}_v de s_v par g contient une courbe qui lie un point frontière de L_c à q_v . D'où, pour telle s_v , on a l'inégalité

$$1 - \rho_0 \le \int_{s_v} |g'| dr \qquad (z = re^{i\phi})$$

L'inégalité de Schwarz en entraîne l'inégalité

$$(1-\rho_0)^2 \leq |s_v| \int_{s_v} |g'|^2 dr,$$

et par auite,

$$\sum_{v} \int_{s_{v}} |g'|^{2} dr = \infty.$$

Si la mesure de E_c n'est pas nulle, d'après la raisonnement habituel, l'aire de $L_c \cap V$ devient infinie. Ceci est évidemment absurde. Le lemme est donc démontré.

Nous remarquons ici que, si la circonférence de L_c se trouve dans V ou bien $L_c \cap V$ consiste en nombre fini de composantes connexes et simplement connexes sans aucun point frontière non accessible, il n'y a aucune direction singulière à L_c . Même pour le cas général, ceci ne signifie pas que le lemme expose l'existence de la direction singulière à L_c .

3. L'Ensemble de L_c Admettant une Même Direction Singulière

$$\lim \mu(e_n) = \pi,$$

 $\mu(e_n)$ étant la mesure de e_n . On prend dans chaque e_n , un ensemble fermé e_n^0 de façon que tout point de e_n^0 soit régulier par rapport au problème de *Dirichlet* et que l'on ait aussi $\lim \mu(e_n) = \pi$. C'est toujours possible puisque, quant à la première condition, l'ensemble de points non réguliers par rapport au problème de *Dirichlet* est de capacité logarithmique nulle. On pose $\mathfrak{A}_n = B - e_n^0$. Ils sont ouverts et peuvent être partagées en plusieurs composantes connexes. Tout \mathfrak{A}_n contient, par hypothèse, le centre O: y = 0 de B. On forme dans chaque \mathfrak{A}_n une fonction harmonique $h_n(y)$ donnée par la solution du problème de *Dirichlet* pour les valeurs frontières suivantes:

$$h_n(p) = \begin{cases} 1 & \text{si } p \in \partial \mathfrak{A}_n \text{ dans l'intérieur de } B \\ 0 & \text{si } p \in \partial \mathfrak{A}_n \text{ sur la circonférence de } B \end{cases}$$

où $\partial \mathfrak{A}_n$ désigne la frontière de \mathfrak{A}_n . Cela posé, on aura l'énoncé que:

Pour tout nombre positif η_0 inférieur à un, on peut trouver un entier n_0 tel que l'on ait $h_n(0) \ge \eta_0$ pour $n \ge n_0$.

En effet, r étant un nombre positif inférieur à un, on désigne par B_r le disque donné par |y| < r et par C_r la circonférence de B_r . Alors, lorsque n augmente indéfiniment, la mesure linéaire de $C_r \cap \mathfrak{A}_n$ tend vers zéro, sauf l'ensemble de mesure nulle de r. Soient $u_n(y)$ les autres fonctions harmoniques dans B_r qui prend la valeur frontière zéro en $C_r \cap \mathfrak{A}_n$ et la valeur frontière un en l'autre.

Quand on prend r comme ci-dessus, $u_n(0)$ tend vers un. D'autre part, on a l'inégalité $h_n(y) \ge u_n(y)$ dans $B_r \cap \mathfrak{A}_n$. Car, par hypothèse, il en est ainsi pour tout point frontière de $B_r \cap \mathfrak{A}_n$; et en particulier, $h_n(0) \ge u_n(0)$. L'énoncé est donc démontré.

On remarque ici que, r_0 étant un nombre positif inférieur à un, l'inégalité $h_n(y) \ge \eta_0$ pour $n \ge n_0$ reste valable pour tout y dans $B_{r_0} \cap \mathfrak{U}_n$.

Ensuite, soient z_j (j=1,2,...) des points de l_{θ_0} qui tendent vers le point $\zeta_0 = e^{i\theta_0}$ et admettons que $n(z_j, \theta_0)$ augmentent indéfiniment. On suppose que l'on ait $|z_j| > r_0^*$, c'est-à-dire que toute S_{z_j} ne passe par aucun point de Δ_0^* . Désignons par S_j^0 la partie de S_{z_j} dans Δ et par \mathfrak{S}_j la projection de S_j^0 sur B regardée comme une surface de Riemann étalée au-dessus de B. A ce moment, au-dessus d'un point c de e_n^0 , il n'y a que n points au plus de \mathfrak{S}_j . Nous formons de nouveau, sur chaque \mathfrak{S}_j , une fonction harmonique $H_j(p)$ donnée par la solution du problème de Dirichlet pour les valeurs frontières suivantes:

$$H_{j}(p) = \begin{cases} 1 & \text{si } p \in \partial \mathfrak{S}_{j} \text{ au-dessus de points dans l'intérieur de } B \\ 0 & \text{si } p \in \partial \mathfrak{S}_{j} \text{ au-dessus de points sur la circonférence de } B \end{cases}$$

où $\partial \mathfrak{S}_i$ désigne la frontière de \mathfrak{S}_i . On aura alors l'énoncé que:

Pour tout nombre positif η^* inférieur à un, on peut trouver un entier m indépendant de j tel qu'on ait $H_j(p) > \eta^*$ en tout points de \mathfrak{S}_j situés au-dessus de O, sauf m points au plus.

En effet, on prend, d'abord, un nombre positif η_0 tel qu'on ait $\eta^* < \eta_0 < 1$, et l'on fixe un entier n_0 obtenu pour le nombre η_0 dans l'énoncé précédent. Comme on peut aisément le voir, il existe, pour chaque \mathfrak{S}_j , une surface de Riemann Σ_j d'un nombre fini m_j de feuillets, étalée au-dessus de B sans aucun point frontière relatif par rapport à B et contenant \mathfrak{S}_j . Soit Σ_j^0 la partie de Σ_j donnée par l'exception de tous les points situés au-dessus de $e_{n_0}^0$ et soit $K_j(p)$ une fonction harmonique sur Σ_j^0 qui prend la valeur frontière un en $\partial \Sigma_j^0 \cap \mathfrak{S}_j$ et la valeur frontière zéro en l'autre, où \mathfrak{S}_j désigne l'adhérence relative de \mathfrak{S}_j dans Σ_j . Ceci existe certainement. On a alors l'inégalité

$$H_i(p) + K_i(p) \ge h_{n_0}(p)$$

dans chaque $\mathfrak{S}_j \cap \Sigma_j^0$, où $h_{n_0}(p)$ est considérée comme une fonction sur Σ_j^0 . Je dis ici que:

Etant donnée un nombre positif ε plus petit que $\eta_0 - \eta^*$, on peut lui faire

correspondre un entier m tel que, pour tout point p de \mathfrak{S}_j situé au-dessus de O, on ait $K_i(p) < \varepsilon$ sauf m points au plus.

Car, n_j étant le nombre de points p sur \mathfrak{S}_j qui se trouvent au-dessus de O et tels qu'on ait $K_j(p) \ge \varepsilon$, on suppose, pour le réduire à l'absurde, que n_j augmentent indéfiniment. En désignant par $p_{j\mu}(y)$ ($\mu=1,\ldots,m_j$) les points de Σ_j situés au-dessus de y, on pose

$$k_j(p) = \frac{1}{n_j} \sum_{\mu=1}^{n_j} K_j(p_{j\mu}(y)).$$

Alors, on aura

$$\lim k_j(p) = 0,$$

puisqu'il en est ainsi pour la valeur frontière de $k_j(p)$. C'est en contradiction avec le fait que $k_j(0) \ge \varepsilon$, ce qui démontre l'énoncè.

Il s'agit d'indiquer l'énoncé initial. Chaque surface S_j se represente par une fonction holomorphe $\xi_j(p)$ sur \mathfrak{S}_j comme

$$x = \xi_i(p)$$
.

Posons

$$\phi_i(p) = \log |\xi_i(p)|$$
.

La fonction ϕ_j est, par hypothèse, harmonique sur \mathfrak{S}_j . De plus, elle remplit l'inégalité $\phi_j(p) \ge \log \varepsilon_0$ sur tout \mathfrak{S}_j et l'égalité $\phi_j(p) = 0$ en tout point prontière relatif de \mathfrak{S}_j par rapport à B puisque S_j ne passe par aucun point de Δ^* et que sa frontière se trouve sur la frontière de Δ . D'où, on a l'inégalité

$$\phi_i(p) \ge (1 - H_i(p)) \cdot \log \varepsilon_0$$
.

D'autre part, si l'on prend η^* comme

$$\log \rho_0 \ge (1 - \eta^*) \cdot \log \varepsilon_0$$
,

on entend qu'il n'y a que m points au plus sur \mathfrak{S}_j qui se trouvent au-dessus de O et qui correspondent aux points dans Δ^0 par ξ_j . C'est la contradiction que nous voulions obtenir.

D'après ce qu'on a vu jusqu'ici, on conclu le

Lemme 2. Si θ_0 est une direction singulière à L_0 , l'ensemble de tous les points c de B tels que L_c admette θ_0 comme une direction singulière est de mesure positive.

Rappelons encore une fois le raisonnement ci-dessus. Ceci indique de plus le

Lemme 3. Si une direction θ n'est pas singulière à L_c pour tout point c de B, on peut faire lui correspondre un entier m tel que l'on ait $N(c, \theta) \leq m$ pour tout point c de B^0 .

4. L'Ensemble Θ

Dans l'ensemble produit $\Omega = B \times I$, on considère l'ensemble E de tous les points (c, θ) tels que θ soit une direction singulière à L_c . On peut d'abord dire que

E est mesurable.

En effet, soit T la surface analytique donnée par $z = \Phi(x, y)$ dans le polycylindre (A^0, B, \mathfrak{C}) , $\Phi(x, y)$ étant la restriction de Φ dans $\Delta \cap V$, et soit v(c, c') le nombre de points de $T \cap L(c, c')$, L(c, c') étant la droite analytique donnée par y = c et z = c' dans le polycylindre. Pour un entier quelconque n, l'ensemble de tous les points (c, c') dans le dicylindre (B, \mathfrak{C}) donnés par $v(c, c') \ge n$ est toujours ouvert. D'où, en désignant par E_n l'ensemble de tous les points (c, θ) de Ω tels qu'il y a un point c' de l_{θ} pour lequel on ait $v(c, c') \ge n$, E_n est aussi ouvert dans Ω . Or, on a évidemment $E = \bigcap_n E_n$. E est donc mesurable.

Ensuite, désigons par Θ l'ensemble de tous les point θ de I tels qu'il y ait un point c de B pour lequel on a $(c, \theta) \in E$. On aura alors le

Lemme 4. L'ensemble Θ est de mesure nulle.

En effet, d'après le lemme 1, la mesure de E dans Ω est nulle puisque, pour tout point c dans B, l'ensemble de tous les points θ tels qu'on ait $(c, \theta) \in E$ est de mesure nulle. D'autre part, d'après le lemme 2, si l'ensemble Θ est de mesure positive, la mesure de E devient positive puisque, pour tout point θ de Θ , l'ensemble de tous les points c tels qu'on ait $(c, \theta) \in E$ est de mesure positive. Le lemme est donc démontré.

Nous appellerons Θ ensemble de directions singulières en Δ . Maintenant, pour chaque dicylindre Δ_j (j=1,...,N) qu'on a posé au début de la section 1, on désigne par $N_j(c,\theta)$ la même signification que $N(c,\theta)$ pour Δ , et on considère l'ensemble de directions singulière Θ_j en chaque Δ_j . La réunion $\Theta_{\mathfrak{F}}$ de tous les ensembles Θ_j (j=1,...,N) s'appellera ensembles de directions singulières pour \mathfrak{F} . Il est aussi de mesure nulle.

En résumé.

Proposition 4. Pour une famille holomorphe de surfaces analytiques compactes \mathfrak{F} donnée par $\Phi\colon V\to C$, l'ensemble de directions singulieres $\Theta_{\mathfrak{F}}$ est de mesure nulle.

Proposition 5. Si une direction θ n'appartient pas à $\Theta_{\mathfrak{F}}$, on peut lui faire correspondre un entier m_{θ} tel que, pour tout j et pour tout c, on ait $N_{j}(c, \theta) \leq m_{\theta}$.

5. Normalité d'une Famille de Surfaces Analytiques

Dans la présente section, on verra un critère de la normalité des familles de surfaces analytiques. Considérons, dans l'espace de deux variables complexes x et y, le dicylindre fermé $\Delta = (A, B)$: $|x| \le 1$, $|y| \le 1$ et celui $\Delta^* = (A^*, B)$: $|x| \le \varepsilon$, $|y| \le 1$, ε étant un nombre positif inférieur à un. Pour le point c de B, C désigne la droite analytique donnée par C dans C. Soit C une famille de surfaces analytiques irréductibles ou non dans C qui satisfait aux conditions suivantes.

- 1) Toute surface de F ne passe par aucun point de Δ^* .
- 2) Il existe un entier n tel que, pour toute surface S de F et pour tout point c de B, $S \cap L_c$ consiste en n au plus de points.
- 3) Il existe deux entiers g_0 et n_0 tels que, pour toute surface S de F, chaque composante irréductible de S soit de genre inférieur à g_0 et n'admette que n_0 composantes frontières.

Nous allons indiquer par la suite que F est normale dans l'intérieur de Δ . Pour une surface S de F, on désigne par $\mathfrak S$ la projection de S sur le plan de y comme une surface de Riemann étalée au-dessus de B. Elle consiste en une ou plusieurs composantes connexes. Soit p un point de $\mathfrak S$ et soit c la projection de p dans p. Pour un nombre positif suffisamment petit p, on peut toujours trouver une partie connexe qui contient p et qui se trouve justement au-dessus du disque fermé $\delta: |y-c| < \eta$, sans aucun point frontière relatif par rapport à δ . La limite supérieure de tels nombres p, qu'on désigne par p p0, s'appellera distance frontière de p par rapport à $\mathfrak S$. p0 étant un nombre positif inférieur à un, on considère un dicylindre fermé p0 et ant un nombre positif inférieur à un, on considère un dicylindre fermé p0 de la forme p1 et soit p2 la partie de p3 correspondant à p4, et soit p5 la partie de p5 correspondant à p6, et posons

$$D(S^{\rho}) = \inf_{p \in S^{\rho}} d(p).$$

On l'appellera aussi distance frontière de \mathfrak{S}^{ρ} par rapport à \mathfrak{S} . L'inégalité $\rho < \rho'$ entraîne évidemment celle $D(\mathfrak{S}^{\rho}) \leq D(\mathfrak{S}^{\rho'})$.

Nous supposons, maintenant que, pour tout nombre positif ρ (ρ <1) il existe un nombre positif D_{ρ} , indépendant de surfaces de F, tel que l'on ait $D(\mathfrak{S}^{\rho}) \geq D_{\rho}$. On aura alors l'énoncé que

F est normale dans l'intérieur de 1.

En effet, on prend un point quelconque c dans B et l'on pose $\rho = (1 + |c|)/2$. Soit δ le disque fermé de la forme

$$|y-c| \leq \min(D_o/2, \rho-|c|)$$

et soit S^* la partie d'une surface S ($S \in F$) dans le dicylindre (A, δ). Elle peut consister en plusieurs composantes irréductibles qu'on désigne par s_v ($v=1,...,v_0$). A ce moment, si s_v passe par un point de Δ_ρ , la partie \mathfrak{S}_v de \mathfrak{S} qui correspond à s_v n'a aucun point frontière relatif par rapport à δ . Par suite, la totalité de telles composantes s_v est représentée dans (A, δ) par l'équation de la forme

$$f(x, y) = x^{\lambda} + a_1(y)x^{\lambda-1} + \dots + a_{\lambda}(y) = 0,$$

où $a_i(y)$ $(i=1,...,\lambda)$ sont des fonctions holomorphes dans δ et λ un entier plus petit que n. Par suite, la famille de fonctions f ainsi obtenues pour toutes les surfaces de F est normale dans (A, δ) et n'admet aucune fonction limite identiquement nulle. F est donc normale dans l'intérieur à Δ .

Il s'agit maintenant de prouver l'existence de nombre positif D_{ρ} pour la famille F. Supposons, pour le réduire à l'absurde, qu'il y ait un nombre positif ρ inférieur à un, tel qu'on ait $D_{\rho} = 0$; autrement dit, on peut extraire de F une suite de surfaces S_j (j = 1, 2,...) de manière que, \mathfrak{S}_j étant la projection de S_j sur le plan de y et \mathfrak{S}_j^0 étant la partie de \mathfrak{S}_j qui correspond à $S_j^0 = S_j \cap \Delta_{\rho}$, on puisse prendre un point p_j dans \mathfrak{S}_j^0 pour lequel $d(p_j)$ tend vers zéro. On suppose ici que la projection de p_j dans B soit l'origine de B. Ceci ne restreint pas la généralité. Soit $\hat{\mathfrak{S}}_j$ la composante connexe de \mathfrak{S}_j contenant le point p_j et soit \hat{S}_j celle irréductible de S_j correspondant à $\hat{\mathfrak{S}}_j$. g_j est le genre de $\hat{\mathfrak{S}}_j$ et le nombre de composantes frontières de $\hat{\mathfrak{S}}_j$.

Grâce à Ahlfors [1], on peut trouver une surface de Riemann R_j qui s'étale au-dessus du disque-unité \mathfrak{C}_t : |t| < 1 sur le plan de t sans aucun point frontière relatif par rapport à \mathfrak{C}_t et que l'on peut faire correspondre à \mathfrak{S}_j de façon

analytique et biunivoque. Le nombre N_j de feuillets de R_j remplit les inégalités $n_j \leq N_j \leq n_j + 2g_j$. Par suite, d'après l'hypothèse, le nombre de feuillets et celui de points critiques de R_j sont inférieurs à un entier indépendent de j tous les deux. On suppose ici que le point P_j de R_j correspondant à p_j se trouve audessus de l'origine de \mathfrak{C}_t . C'est toujours possible. Soient

$$x = \phi_j(p)$$
 et $y = \psi_j(p)$

les fonctions holomorphes sur R_j qui représentent la surface S_j dans Δ . \mathfrak{S}_j est alors l'image de R_j par la fonction $\psi_j(p)$.

Maintenant, on suppose que la suite \hat{S}_j (j=1, 2,...) satisfasse aux conditions suivantes.

- 1) Toute surface de Riemann R_j a le même nombre de feuillets et le même nombre de points critiques.
- 2) La suite R_j (j=1, 2,...) tend vers une surface de Riemann qu'on désigne par R_0 .
- 3) Deux suites des fonctions ϕ_j (j=1, 2,...) et ψ_j (j=1, 2,...) tendent respectivement vers les fonctions ϕ_0 et ψ_0 sur R_0 .

En extrayant de la suite \hat{S}_j une nouvelle suite, si nécessaire, on peut toujours poser les hypothèses sans perdre la généralité.

On remarque ici que la surface de Riemann R_0 peut se séparer de plusieurs composantes connexes, de plus, il y a un cas où la suite de points P_j n'admet pas une seule limite sur R_0 .

Soient $a_{j\mu}$ ($\mu=1,...,l$; j=1,2,...) les projections de points critiques de R_j dans \mathfrak{C}_t . Lorsqu'on prend convenablement le deuxième indice μ de $a_{j\mu}$, chaque suite $a_{j\mu}$ (j=1,2,...) tend vers un point de \mathfrak{C}_t . On désigne par a_{μ} ($\mu=1,...,l'$) les limites distinctes et l'origine de \mathfrak{C}_t , s'il n'est pas une limite, et on décrit, pour chaque a_{μ} , un disque γ_{μ} : $|y-a_{\mu}|< r$, r étant un nombre positif suffisamment petit, de manière que les disques ne se rencontrent jamais l'un l'autre. Soient R_j^* (j=0,1,2,...) les parties de R_j données par l'exception de tous les points audessus de γ_{μ} ($\mu=1,...,l'$). Lorsque R_0 consiste en m composantes connexes $R_{0\nu}$ ($\nu=1,...,m$), R_j^* (j=1,2,...) se séparent aussi en m composantes connexes $R_{j\nu}^*$ ($\nu=1,...,m$) dès que j surpasse un certain rang j_0 , puisque k_0^* consiste en k_0^* composantes connexes k_0^* ($\nu=1,...,m$) des que k_0^* consiste en k_0^* consiste en k_0^* ($\nu=1,...,m$) des que k_0^* consiste en k_0^* consiste en k_0^* ($\nu=1,...,m$) des que k_0^* consiste en k_0^* consiste en k_0^* ($\nu=1,...,m$) des que k_0^* consiste en k_0^* consiste en k_0^* consiste en k_0^* ($\nu=1,...,m$) et que k_0^* ($\nu=1,...,m$) ont les mêmes formes que k_0^* à partir d'un certain rang. Soient k_0^* ($\nu=1,...,m$) toutes les composantes k_0^* qui touchent à k_0^* . Lorsque k_0^* tend vers zéro, k_0^* tend vers un nombre

fini de points de $R_{0\lambda}$ que l'on regarde comme la limite de P_j . On désigne par $\phi_{j\nu}^*(p)$ et $\psi_{j\nu}^*(p)$ ($j_0 < j$, $\nu = 1,...,m$) la restriction de $\phi_j(p)$ et de $\psi_j(p)$ sur $R_{j\nu}^*$ respectivement et par $\phi_{0\nu}$ et $\psi_{0\nu}$ ($\nu = 1,...,m$) la restriction de $\phi_0(p)$ et de $\psi_0(p)$ sur $R_{0\nu}$ respectivement. Nous pouvons ici dire que:

L'une des $\psi_{0\lambda}$ ($\lambda = 1, ..., m'$) doit être identiquement nulle.

En effet, sinon, l'image de R_j par ψ_j , c'est-à-dire $\hat{\mathfrak{S}}_j$, contient une partie qui se trouve au-dessus du disque indépendant de j autour de l'origine de B, qui n'admet aucun point frontière relatif par rapport à ce disque et qui contient le point p_j . C'est en contradiction avec l'hypothèse que $d(p_j)$ tend vers zéro.

Supposons donc que la fonction $\psi_{01}(p)$ soit identiquement nulle et désignons par ω_j les parties du contour de R_{j1} $(j_0 < j)$ qui correspondent par $\psi_{j1}^*(p)$ à celles de $\hat{\mathfrak{S}}_j$ situées au-dessus de la circonférence de B. Alors, on peut dire que:

Les mesures de ω_i $(j_0 < j)$ tendent vers zéro.

En effet, supposons, pour le réduire à l'absurde, que ce ne soit pas vrai. On prend un nombre η tel qu'on ait $1/2 < \eta < 1$ et on décrit le cercle B_{η} : $|y| = \eta$ dans B. Alors, on peut déterminer la partie $\widetilde{B}_{j\eta}$ de la courbe sur $\widehat{\mathfrak{S}}_{j}$ qui se trouve au-dessus de B_{η} et qui correspond par ψ_{j1}^* à la courbe $L_{j\eta}$ tracée sur R_{j1}^* . D'après l'hypothèse, la longueur de $\widetilde{B}_{j\eta}$ est bornée supérieurement par un nombre indépendant de j et η , et celle de $L_{j\eta}$ est bornée inférieurement par un nombre positif indépendant aussi de j et η . D'où, d'après le raisonnement habituel utilisant l'inégalité de Schwarz, il résulte que l'aire de la partie de R_{j1}^* qui correspond par ψ_{j1}^* à celle de $\widehat{\mathfrak{S}}_{j}$ située au-dessus de la couronne 1/2 < |y| < 1 ne peut jamais tendre vers zéro. Ceci est en contradiction avec le fait que la fonction ψ_{01} est identiquement zéro. L'énoncé est donc démontré.

Il s'agit maintenant de la fonction $\phi_{01}(p)$ sur R_{01} . En général, sur le contour de R_j , l'inégalité $|\psi_j(p)| < 1$ entraı̂ne l'égalité $|\phi_j(p)| = 1$ puisque la frontière de S_j se trouve sur la frontière de Δ . D'autre part, $\phi_j(p)$ ne prend pas la valeur nulle dans R_j . Il en résulte que la fonction $\phi_{01}(p)$ se réduit à une constante b de module un. D'où, chaque fonction $\phi_{0\lambda}(p)$ ($\lambda=1,\ldots,m'$) prend la même valeur b en tout point de $R_{0\lambda}$ situé au-dessus de l'origine de C_t et regardé comme la limite de P_j . Ceci est en contradiction avec le fait qu'on a pris les points p_j dans \mathfrak{S}_j^0 .

On en conclut le

Proposition 6. La famille de surfaces analytiques satisfaisant aux conditions qu'on a posée au début de cette section est normale dans l'intérieur de Δ .

On remarque ici que, pour la famille F comme ci-dessus, le nombre de composantes irréductibles de surface S de F qui contient au moins un point de Δ_{ρ} est borné supérieurement par un nombre entier dépendant seulement de ρ .

6. Théorème Fondamental

Nous nous rappelons encore la famille holomorphe \mathfrak{F} donnée par $\Phi \colon V \to \mathfrak{C}$ et le système de dicylindres Δ_j , Δ_j^0 et Δ_j^* . Nous pouvons maintenant démontrer le fait que, si une direction θ n'appartient pas à l'ensemble Θ de directions singulières pour \mathfrak{F} , la famille \mathfrak{F}_{θ} est normale dans \mathfrak{M} . Pour cela, on appliquera la proposition 6 à la famille \mathfrak{F}_{θ} dans chaque dicylindre Δ_j^0 . De la façon de former le système de dicylindres Δ_j etc. et de la proposition 5, la partie de \mathfrak{F}_{θ} dans chaque dicylindre Δ_j^0 remplit déjà les conditions 1) et 2) de la proposition 6. Il s'agit donc ici de la condition 3).

Considérons l'un quelconque des Δ_j et soit Δ_1 . On prend une suite de points z_j (j=1, 2,...) de l_{θ} tendant vers le point $\zeta_{\theta} = e^{i\theta}$. Soient S_j les surfaces de \mathfrak{F}_{θ} à valeur z_j . Les parties \hat{S}_j de S_j dans Δ_1 consistent en composantes irréductibles \hat{S}_{jv} $(v=1,...,v_j)$. g_{jv} est le genre de \hat{S}_{jv} et n_{jv} est le nombre de composantes frontières de \hat{S}_{jv} . Alors, g_{jv} sont tous inférieurs au genre g de surface générale de \mathfrak{F} . Pour la condition 3), il suffit donc d'indiquer que n_{jv} sont aussi bornés. Supposons, pour le réduir à l'absurde, que n_{j1} augment idéfiniment.

Soient $\gamma_{j\mu}$ ($\mu=1,\ldots,n_{j1}$) les contours de \hat{S}_{j1} qui limitent respectivement une aire simplement connexe $\delta_{j\mu}$ de $S_j - \hat{S}_{j1}$. Par hypothèse n_{j1} augment aussi indéfiniment puisque le nombre de composantes non simplement connexes de $S_j - \hat{S}_{j1}$ ne peut pas surpasser 2g. Envisageons la partie $\delta_{j\mu}$. D'après le moyen de former les dicylindres Δ_j qu'on a remarqué à la fin de la section 1, la partie $\delta_{j\mu}$ passe par un point dans l'autre dicylindre Δ_j^0 tel que Δ_j n'ait aucun point commun avec Δ_1 . Soit Δ_{j1} l'un de ces Δ_j . Si $\delta_{j\mu} \cap \Delta_{j1}$ est simplement connexe, on fait correspondre le dicylindre Δ_{j1} au contour $\gamma_{j\mu}$. S'il n'en est pas ainsi, le contour de $\delta_{j\mu} \cap \Delta_{j1}$ consiste en deux courbes au moins et parmi elles il y a une courbe qui limite dans $\delta_{j\mu}$ une aire simplement connexe $\delta'_{j\mu}$ de $\delta_{j\mu} - (\delta_{j\mu} \cap \Delta_{j1})$. Alors, pour la même raison que ci-dessus, $\delta'_{j\mu}$ passe par un point dans l'autre dicylindre Δ_j^0 tel que Δ_j n'ait aucun point commun avec Δ_{j1} . Soit Δ_{j2} l'un de

ces dicylindres et si $\delta'_{j\mu} \cap \Delta_{j2}$ est simplement connexe, on fait correspondre le dicylindre Δ_{j2} au contour $\gamma_{j\mu}$. S'il n'en est pas ainsi, on continue de la sorte. Comme on peut facilement la voir, ce procédé ne peut pas se continuer indéfiniment. Donc, il correspondre à chacun des contours $\gamma_{j\mu}$ un dicylindre, à nouveau désigné par $\Delta_{j\mu}$, tel que $\delta_{j\mu} \cap \Delta_{j\mu}$ soit simplement connexe.

Or, il n'y a qu'un nombre fini de dicylindre Δ_j dans \mathfrak{M} . D'où on peut trouver un dicylindre, désigné par Δ_2 , tel que le nombre de composantes irréductibles de $S_j \cap \Delta_2$ passant par un point de Δ_2^0 et simplement connexes augmente indéfiniment. Ceci est un contradiction avec la proposition 6 puisque les surfaces analytiques S_{j2}^* dans Δ_2 , qui consistent respectivement en toutes les composantes irréductibles et simplement connexes de $S_j \cap \Delta_2$, forment une suite remplissant les conditions de la proposition 6. La famille \mathfrak{F}_0 est donc normale dans l'intérieur de Δ_1 .

En résumé

Théorème I. Soit \mathfrak{M} une variété analytique à deux dimensions et soit \mathfrak{F} une famille holomorphe de surfaces analytiques compactes données par Φ : $V \rightarrow \mathbb{C}$, V étant un domaine dans l'intérieur complet de \mathfrak{M} et \mathbb{C} étant le disque-unité sur le plan de z. Alors, toute famille \mathfrak{F}_{θ} est normale dans \mathfrak{M} sauf pour les directions θ de l'ensemble Θ de mesure nulle dans l'intervalle $I = [0, 2\pi]$.

7. La Frontière d'une Famille Holomorphe

D'après le théorème I, on peut entendre que prèsque toute la frontière de la famille holomorphe consiste en surfaces analytiques compates. On le verra plus précisément dans la suite. En conservant les mêmes significations des notations que précédement, pour une direction θ de l'intervalle $I = [0, 2\pi]$ n'appartenant pas à Θ , on considère la fermeture \mathfrak{F}^*_{θ} de \mathfrak{F}_{θ} dans \mathfrak{M} . D'après la proposition 2, celle-ci existe certainement et elle est normale et parallèle. On pose $H_{\theta} = \mathfrak{F}^*_{\theta} - \mathfrak{F}_{\theta}$ et on l'appelle limite de \mathfrak{F}_{θ} . A ce moment, pour deux directions θ_1 et θ_2 , les limites H_{θ_1} et H_{θ_2} peuvent coïncider. Pour un ensemble quelconque ε de $I - \Theta$, on pose $H_{\varepsilon} = \bigcup_{\theta \in \varepsilon} H_{\theta}$. Alors, on aura la

Théorème 1. Si l'ensemble ε est de mesure positive, H_{ε} contient une infinité non dénombrable de surfaces analytiques distictes.

En effet, comme on peut le facilement voir, s'il y a une direction θ de ε tel que H_{θ} contienne au moins deux surfaces analytiques distinctes, H_{θ} contient un continuum à trois dimensions réeles qui consiste en une infinité non dénombrable

de celles-ci. Par suite, on suppose que, pour toute θ de ε , H_{θ} consiste en une seule surface analytique et, pour le réduire à l'absurde, que H_{ε} ne contient qu'une infinité dénombrable au plus de celles distinctes, qu'on désigne par S_{μ} (μ =1, 2,...). Soient ε_{μ} (μ =1, 2,...) les ensembles de toutes les directions θ de ε telles que H_{θ} coïncident avec S_{μ} . Alors, l'un des ensembles ε_{μ} est de mesure positive. On le désigne à nouveau par ε_0 et par S_0 la surface analytique qui constitue H_{ε_0} . P étant un point régulier quelconque de S_0 , on prend un système de coordonnées locales x, y en P de manière que la droite analytique L donnée par y=0 dans le voisinage de coordonnés croise transversalement la surface S_0 en un seul point P. Soit δ un disque sur L donnée par $|x| < \eta_0$, où η_0 est un nombre positif suffisamment petit, tel que l'image de $\delta^0 = \delta \cap V$ par Φ se trouve dans la couronne Γ : 1/2 < |z| < 1. Désignons par $\phi(x)$ la restriction de Φ sur δ , par g(z) la fonction inverse de ϕ et par R la surface de Riemann de g étalé au-dessus de Γ . On peut alors trouver un sous-ensemble ε_0^* de ε_0 satisfaisant aux conditions suivantes.

- 1) ε_0^* est fermé et de mesure positive.
- 2) Pour toute θ de ε_0^* et pour tout z de l_{θ} , le nombre de points de R situés au-dessus de z est inférieur uniformément à un entier positif n_0 .

Soit \mathfrak{A}_{θ} l'ensemble de tous les points de R qui se trouvent au-dessus de l_{θ} dont θ est de ε_0^* et posons $W = \bigcup_{\theta \in \varepsilon} \mathfrak{A}_{\theta}$. La mesure de W sur R est évidemment finie. Soit W^* l'ensemble de points dans δ^0 qui correspond à W par ϕ . La mesure de W est donnée par

$$\int_{W^*} |\phi'(x)|^2 \eta \cdot d\eta d\psi \qquad x = \eta e^{i\psi} .$$

D'autre part, soit γ_{η} le cercle sur $L: |x| = \eta$, η étant un nombre positif inférieur à η_0 et posons $\gamma_{\eta}^0 = \gamma_{\eta} \cap \delta^0$ et $W_{\eta}^* = W^* \cap \gamma_{\eta}$. Par hypothèse, le nombre donné par

$$\int_{W_n^*} |\phi'(x)| d\psi$$

est uniformément supérieur à un nombre positif puisque, pour chaque θ de ε_0^* , l'image de \mathfrak{A}_{θ} par g coupe W_{η}^* au moins en un point. D'où, d'après le raisonnement habituel, la mesure de W devient infinie. Ceci est en contradiction avec le fait qu'elle est finie. Le théorème est donc démontrée.

Pour simplifier le raisonnement, on a traité jusqu'ici seulement une famille holomorphe & paramétrisée par le disque-unité. Mais, pour établir le théorème

de la normalité, ceci n'est toujours indispensable. Maintenant nous allons proposer, pour facilité l'application ultérieur, l'autre forme du théorème comme ce qui suit.

Soit \mathfrak{C} un disque-unité fermé $|z| \leq 1$ sur le plan de z, soit e^* un ensemble fermé de points qui se trouve dans l'intérieur complet de C et soit C* la partie de C donnée par l'exception de tous les points de e*. On suppose que l'origine de \mathbb{C} n'appartienne pas à e^* . Pour chaque direction θ ($\theta \in [0, 2\pi]$), on désigne par l_{θ}^{*} le segment, qui se trouve dans \mathbb{C}^{*} , de la forme $z = re^{i\theta}$ $(r_{0} < r \leq 1)$ dont le point initial $z_{\theta} = r_0 e^{i\theta}$ appartient à e^* ou bien est l'origine de \mathfrak{C} . On désigne par E l'ensemble de toutes les directions θ telles qu'on ait $z_{\theta} \in e^*$. Nous considérons ici une famille holomorphe §* de surfaces analytiques compactes donnée par $\Phi^*: V^* \to \mathbb{C}^*$, sur une variété analytique \mathfrak{M} , où V^* est un domaine l'intérieur complet de \mathfrak{M} et Φ^* une application analytique proper de V^* sur \mathfrak{C}^* . Quant à la circonférence $\partial \mathbb{C}$ de \mathbb{C} , on suppose que \mathfrak{F}^* soit donnée même dans un voisinage convenable de $\Phi^{*-1}(\partial \mathfrak{C})$. On désigne par W l'ensemble de tous les points frontières p de V^* tels que, quand on prend une suite quelconque de points q_n (n=1, 2,...) de V^* qui tend vers p, $\Phi^*(q_n)$ tend vers un point de e^* . Soit \mathfrak{F}^*_{θ} la sous-famille de \mathfrak{F}^* qui consiste en toutes les surfaces de \mathfrak{F}^* à valeur z de l_{θ}^* . Alors, d'après le même raisonnement que la démonstration du théorème I, toute famille \mathfrak{F}_{θ}^* est normale dans \mathfrak{M} sauf pour les directions θ de l'ensemble Θ^* de mesure nulle. L'ensemble $E-\Theta^*$ étant de mesure positive, d'après aussi le même raisonnement que la démonstration du théorème 1, W contient une infinité non dénombrable de surfaces analytiques compactes. On a donc le

Théorème 2. Si l'ensemble E est de mesure positive, la frontière W contient une infinité non dénombrable de surfaces analytiques compactes.

III. L'Existence d'une Fonction Analytique

1. Surface Générique

Considérons, sur une variété analytique à deux dimensions \mathfrak{M} , une surface analytique compacte S. On suppose que S soit irréductible et non singulière. S se recouvre alors d'un nombre fini de voisinages $\{V_j\}$ (j=1,...,n) comme suit.

1) Chaque voisinage V_j se trouve dans l'intérieur d'un voisinage de coordonnées locales x_j , y_j et se représente de la forme $|x_j| < 1$, $|y_j| < 1$.

2) Dans chaque voisinage V_j , la surface analytique $v_j = S \cap V_j$ est donnée par l'équation $y_j = 0$.

Le système $\{V_j\}$ s'appellera revouvrement canonique de S et la réunion $V=\bigcup V_j$ voisinage canonique de S. Le système $\{v_j\}$ est un recouvrement fini sur S. Une fonction ϕ sur v_j est regardée, sous le même lettre, comme une fonction dans V_j qui ne dépend pas de y_j . Au contraire, pour une fonction f dans une aire δ sur \mathfrak{M} , la restriction de f sur $\delta \cap S$ sera désignée par $f|_S$.

Considérons, dans un voisinage canonique $V=\bigcup V_j$ de S, une donnée (\mathfrak{p}) du 1er problème de Cousin par rapport à $\{V_j\}$, c'est-à-dire, un système de fonctions méromorphes g_j dans V_j telles que toute fonction $g_{jk}=g_j-g_k$ soit holomorphe dans $V_j\cap V_k$, s'il n'est pas vide. La donnée (\mathfrak{p})= $\{(g_j,V_j)\}$ sera dite $r\acute{e}soluble$ sur S si l'on peut trouver dans chaque v_j une fonction holomorphe ϕ_j telle qu'on ait $g_{jk}|_S=\phi_j-\phi_k$ sur tout $v_j\cap v_k$. Le système $\{(\phi_j,v_j)\}$ sera appelé $solution\ de\ (\mathfrak{p})\ sur\ S$. Elle est déterminée uniquement à l'addition d'une constante près. Tout pareillement, considérons une donnée (\mathfrak{z}) du $2^{\grave{e}me}$ problème de Cousin par rapport à $\{V_j\}$, c'est-à-dire, un système de fonctions holomorphes f_j dans V_j telles que toute fonction $f_{jk}=f_j/f_k$ soit holomorphe et non nulle dans $V_j\cap V_k$, s'il n'est pas vide. La donnée (\mathfrak{z})= $\{(f_j,V_j)\}$ sera dite $r\acute{e}soluble\ sur\ S$ si l'on peut trouver dans chaque v_j une fonction holomorphe et non nulle ψ_j telle qu'on ait $f_{jk}|_S=\psi_j/\psi_k$ sur tout $v_j\cap v_k$. Le système (ψ_j,v_j) sera appelé $solution\ de\ (\mathfrak{z})\ sur\ S$. Elle est déterminée uniquement à la multiplication d'une constante près.

On prend, dans chaque v_j , une aire v_j^0 donnée par $|x_j| < r$, r étant un nombre positif inférieur à un, de manière que le système $\{v_j^0\}$ soit aussi un recouvrement fini sur S. Pour une donnée $(\mathfrak{p}) = \{(g_j, V_j)\}$ du $1^{\mathfrak{er}}$ problème de Cousin, on pose

$$|(\mathfrak{p})| = \max_{j,k} \{ \limsup_{p \in v_j^0 \cap v_k^0} |g_{jk}(p)|_S \}$$

et on l'appelle *norme* de (p) par rapport au recouvrement $\{v_i^0\}$.

On aura alors l'énoncé que:

Il y a un nombre positif K tel que, pour toute donnée (\mathfrak{p}) $\{(g_j, V_j)\}$ du $1^{\mathfrak{er}}$ problème de Cousin résoluble sur S, on ait une solution (ϕ_j, v_j) sur S remplissant les inégalités $|\phi_j| < K|(\mathfrak{p})|$.

D'après le raisonnement habituel, on peut le démontrer facilement. Une surface analytique compacte S sur \mathfrak{M} sera dite *générique* si elle remplit les conditions suivantes.

- 1) S est irréductible et non singulière.
- 2) Toute donnée (p) du 1^{er} problème de *Cousin* par rapport à $\{V_j\}$ admettant un seul pôle S est résoluble sur S.
- 3) Toute donnée (3) du $2^{\text{ème}}$ problème de *Cousin* par rapport à $\{V_j\}$ admettant un seul zéro S est résoluble sur S.

Où $\{V_i\}$ est un recouvrement canonique de S.

D'après la définition, lorsque S est générique, le système $\{(y_j, V_j)\}$, étant une donnée du $2^{\text{ème}}$ problème de Cousin, a une solution $\{(\psi_j, v_j)\}$ sur S. Par suite, on peut toujours prendre, pour une surface générique S, un recouvrement canonique $\{V_j\}$ tel qu'on ait $y_j/y_k|_S=1$ sur tout $v_j \cap v_k$. En général, étant donnée une donnée $(\mathfrak{Z})=\{(f_j, V_j)\}$ du $2^{\text{ème}}$ problème de Cousin admettant un seul zéro S d'ordre un, telle qu'on ait $f_j/f_k|_S=1$ sur tout $v_j \cap v_k$, si, pour un entier positif v, on a les égalités

$$f_j - f_k = h_{jk} \cdot f_j^{v+1}$$
,

dont h_{jk} sont des fonctions holomorphes et non nulles dans $V_j \cap V_k$, le système $\{(1/f_j, V_j)\}$ forme une donnée du 1 er problème de *Cousin*. De plus, quand on pose $g_{jk} = 1/f_j - 1/f_k$, on a les égalités

$$v \cdot g_{ik}|_{S} = h_{ik}|_{S}$$

sur tout $v_i \cap v_k$. L'inverse est aussi vrai.

2. Propriété Principale des Surfaces Génériques

Par définition, si une surface analytique compacte, irréductible et non singulière S sur \mathfrak{M} est donnée par le zéro d'ordre un d'une fonction holomorphe dans un voisinage de S, elle est toujours générique. Grâce à Kodaira et Spencer [6], l'inverse est aussi vrai. Mais, on va le démontrer, pour compléter l'explication de ce mémoire, suivant une idée dûe à M. Ueda [11].

Soit S une surface générique sur \mathfrak{M} . On prend un recouvrement canonique $\{V_j\}$ tel qu'on ait $y_j/y_k=1$ sur tout $v_j\cap v_k$. Dans chaque v_j , on prend une aire $v_j^0\colon |x_j|< r$, r étant un nombre positif, comme le système $\{v_j^0\}$ forme aussi un recouvrement sur S. K désigne le nombre qui a été expliqué dans l'énoncé de la section précédente. Les relations entre x_j, y_j et x_k, y_k dans $V_j\cap V_k$ sont dénotées par

$$x_k = \phi_{ki}(x_i, y_i)$$

$$y_k = \psi_{ki}(x_i, y_i) = y_i + a_{ki2}(x_i)y_i^2 + \cdots$$

où $a_{kj\nu}(x_j)$ ($\nu=2, 3,...$) sont des fonctions holomorphes sur $v_j \cap v_k$. A ce moment, d'après le théorème de Cauchy, on peut prendre un nombre positif R tel qu'on ait $|a_{kj\nu}| < R^{\nu}$ ($\nu=2, 3,...$) dans $v_j^0 \cap v_k^0$. Supposons ici qu'on puisse obtenir une fonction holomorphe u admettant un seul zéro S d'ordre un dans un voisinage de S. Alors, la fonction y_j sera représentée de la forme

(1)
$$y_i = f_i(x_i, u) = u + c_{i2}(x_i)u^2 + c_{i3}(x_i)u^3 + \cdots,$$

et deux fonctions f_i et f_k remplissent l'égalité

(2)
$$\psi_{ki}[x_i, f_i(x_i, u)] = f_k[\phi_{ki}(x_i, f_i(x_i, u)), u]:$$

c'est-à-dire,

$$f_j(x_j, u) + a_{kj2}(x_j) (f_j(x_j, u))^2 + a_{kj3}(x_j) (f_j(x_j, u))^3 + \cdots$$

= $u + c_{k2} [\phi_{kj}(x_j, f_j(x_j, u))] u^2 + c_{k3} [\phi_{kj}(x_j, f_j(x_j, u))] u^3 + \cdots$

Pour obtenir une fonction demandée, il suffit évidemment que l'on forme les fonctions f_i remplissant cette égalité-ci. On pose ici

(3)
$$\sum_{v=2}^{\infty} h'_{kjv}(x_j)u^v = \sum_{v=2}^{\infty} a_{kjv}(x_j) (f_j(x_j, u))^v$$

et

(4)
$$\begin{cases} c_{k\nu}[\phi_{kj}(x_j, y_j)] = c_{j\nu}[\phi_{kj}(x_j, 0)] + \sum_{\mu=1}^{\infty} \gamma_{kj\nu\mu}(x_j)y_j^{\mu} \\ \sum_{\nu=2}^{\infty} h_{kj\nu}''(x_j)u^{\nu} = \sum_{\nu=2}^{\infty} [\gamma_{kj\nu1}(x_j)f_j(x_j, u) + \gamma_{kj\nu2}(x_j)(f_j(x_j, u))^2 + \cdots]u^{\nu} \end{cases}$$

et, de plus

$$h_{kjv}(x_j) = h''_{kjv}(x_j) - h'_{kjv}(x_j)$$
.

Alors, on a les égalités

(5)
$$c_{iv}(x_i) - c_{kv}(\phi_{ki}(x_i, 0)) = h_{kiv}(x_i),$$

où l'on a $c_{k\nu}(x_k) = c_{k\nu}(\phi_{kj}(x_j, 0))$ sur $v_j \cap v_k$. D'autre part, quand on considère les fonctions $u_{j\nu}$ ($\nu = 1, 2, ...$) données implicitement par

$$y_j = u_{j\nu} + c_{j2}(x_j)u_{j\nu}^2 + \dots + c_{j\nu}(x_j)u_{j\nu}^{\nu},$$

on peut avoir aisément les égalités

$$u_{iv} - u_{kv} = H_{kiv}u_{iv}^{v}$$
 et $h_{kiv} = H_{kiv}|_{S}$

où H_{kjv} sont des fonctions holomorphes dans un voisinage de $S \cap V_j \cap V_k$. D'où et par hypothèse, on peut trouver de proch en proch les fonctions $c_{jv}(x_j)$ (v=2,3,...) remplissant les égalités (5). Il en résulte que l'on peut obtenir la série de formulaire (1). Nous allons indiquer que la série converge uniformément dans un certaine voisinage de $S \cap V_j$. Supposons ici que toute série f_j soit majorée par la série

$$A(u) = u + A_2 u^2 + A_3 u^3 + \cdots$$

dont les coefficients sont des nombres positifs convenables, dans v_i . Alors, de l'égalité (3), on a, d'abord

(6)
$$\sum_{v=2}^{\infty} h'_{kjv}(x_j) u^v \ll \sum_{v=2}^{\infty} R^v (A(u))^v = \frac{R^2 (A(u))^2}{1 - RA(u)},$$

où « signifie que le membre gauche est majoré par le droit dans $v_j^0 \cap v_k^0$. D'autre part, d'après le théorème de Cauchy, l'inégalité $|c_{kv}[\phi_{kj}(x_j, y_j)]| \leq A_v$ entraîne celles $|\gamma_{kjv\mu}(x_j)| \leq A_vQ^\mu$ dans $v_j^0 \cap v_k^0$, où Q est un nombre positif convenable. D'où et de l'égalité (4), on a

(7)
$$\sum_{v=2}^{\infty} h_{kjv}''(x_j) u^v \ll \sum_{v=2}^{\infty} A_v [QA(u) + Q^2(A(u))^2 + \cdots] u^v$$
$$= A(u) \frac{QA(u)}{1 - QA(u)}.$$

Par suite, on a

$$\sum_{v=2}^{\infty} h_{kjv}(x_j) u^{v} \ll \frac{2N(A(u))^2}{1 - NA(u)},$$

où N est un nombre positif plus grand que R, R^2 et Q. D'après l'énoncé de la section précédente, il suffit, pour que A(u) soit une majorante de f_j , que A(u) satisfait à l'égalité

$$A(u) - u = K \frac{2N(A(u))^2}{1 - NA(u)}$$
.

La fonction A(u) existe certainement. On a donc la

Proposition 7. Soit S une surface générique sur une variété analytique \mathfrak{M} . Alors, il y a une fonction holomorphe dans un voisinage de S qui admet le seul zéro S d'ordre un.

3. Une Condition pour Surfaces Génériques

Soit S_0 une surface analytique compacte sur une variété analytique \mathfrak{M} .

On suppose que S_0 soit irréductible et non singulière. De plus, supposons qu'elle soit une limite d'ordre un d'une suite $\{S_v\}$ (v=1, 2,...) de surfaces analytiques compactes qui ne rencontrent pas S_0 . Alors, on peut dire que la surface S_0 est générique. Ceci ayant été remarqué par M. Suzuki, on le démontrera ici puisqu'il n'est écrit nulle part.

Prenons un recouvrement canonique $\{V_j\}$ de S_0 . Alors, à partir d'un certain rang, la partie de S_v dans V_j se représente de la forme

$$y_j = \xi_{jv}(x_j)$$

 $\xi_{j\nu}$ étant une fonction holomorphe sur v_j . On suppose donc qu'il en soit ainsi pour toute surface S_{ν} , si nécessaire, à l'exception de S_{ν} jusqu'à un certain rang.

Considérons d'abord une donnée $(\mathfrak{p}) = \{(g_j, V_j)\}$ du 1^{er} problème du *Cousin* par rapport à $\{V_j\}$ qui admet un seul pôle S_0 . Pour chaque surface S_v , en prenant un nombre complexe α_v et en posant $\phi_{jv}(x_j) = g_j[\xi_{jv}(x_j)] + \alpha_v$, on considère un système (ϕ_{jv}, v_j) sur S_0 . Posons

$$A(\alpha_{\nu}) = \max_{j} \left\{ \sup_{x_{j} \in v_{j}} |\phi_{j\nu}(x_{j})| \right\}$$

et

$$A_{\nu} = \lim_{\alpha_{\nu} \in C} \inf A(\alpha_{\nu})$$
.

Il existe évidemment un nombre complexe α_v^0 tel qu'on ait $A_v = A(\alpha_v^0)$. Soit (ϕ_{jv}^0, v_j) le système donné par le nombre α_v^0 . Les fonctions ϕ_{jv}^0 étant bornées uniformément en module, on peut extraire de la suite des systèmes $\{(\phi_{jv}^0, v_j)\}$ (v=1, 2,...) une suite partielle $\{(\phi_{ju}^0, v_j)\}$ $(\mu=v_1, v_2,...)$ de manière que toute fonction $\phi_{j\mu}^0$ tend vers une fonction holomorphe ϕ_{j0} dans chaque v_j . Le système $\{(\phi_{j0}, v_j)\}$ est évidemment une solution de (\mathfrak{p}) sur S_0 , puisque toute fonction $\phi_{j\mu}^0 - \phi_{k\mu}^0$ tend vers $(g_j - g_k)|_{S_0}$ sur $v_j \cap v_k$. La surface S_0 satisfait donc à la deuxième condition pour être générique.

Soit ensuite $(\mathfrak{z}) = \{(f_j, V_j)\}$ une donnée du $2^{\mathrm{ème}}$ problème de *Cousin* par rapport à $\{V_j\}$ qui admet un seul zéro S_0 . Pour chaque S_v , on prend un nombre complexe β_v tel que, en posant $\psi_{jv}(x_j) = \beta_v f_j [\xi_{jv}(x_j)]$, on ait l'égalité

$$\max_{j} \left\{ \sup_{x_{j} \in v_{j}} |\psi_{jv}(x_{j})| \right\} = 1.$$

Alors, de la suite des systèmes $\{(\psi_{j\nu}, v_j)\}$ $(\nu=1, 2,...)$, on peut extraire une suite partielle $\{(\psi_{j\mu}, v_j)\}$ $(\mu=v_1, v_2,...)$ de manière que toute fonction $\psi_{j\mu}$ tend vers une fonction holomorphe ψ_{j0} dans chaque v_j . Le système $\{(\psi_{j0}, v_j)\}$ est évidemment une solution de (\mathfrak{z}) sur S_0 , puisque toute fonction $\psi_{j\mu}/\psi_{k\mu}$ tend vers $f_j/f_k|_{S_0}$

sur $v_j \cap v_k$. La surface S_0 satisfait donc à la troisième condition pour être générique. La première condition ayant été supposée, on a la

Proposition 8. Soit S une surface analytique compacte sur une variété analytique M. Si elle est une limite d'ordre un d'une suite de surface analytiques compactes ne rencontrant pas S, la surface S est générique.

4. L'Existence des Surfaces Génériques

Considérons, dans un domaine V dans l'intèrieur complet de \mathfrak{M} , une famille F de surfaces analytiques compactes et connexes. On suppose que F soit parallèle et contienne une infinité non dénombrable de surfaces. Nous allons voir le fait que la famille F contient au moins une surface générique. On rappellera ce qu'on a dit dans la section 3 de la partie F. Les notations F, F, F0 et F1 ont les mêmes significations que précédemment. Soit F1 la famille partielle de F1 qui consiste en toutes les surfaces F2 de F3 telles qu'on ait F3 et an étant un entier positif quelconque. On peut alors trouver un entier F3 telle que F4 famille F5 contienne une infinité non dénombrable de surfaces. Grâce à F4 on peut former la fermeture de F5 no Donc, on suppose dès le début que F5 soit normale, fermée et parallèle dans F4.

On peut d'abord dire que:

On peut extraire de F une suite $\{S_v\}$ (v=1, 2,...) de surfaces qui est convergente et dont la convergence est d'ordre un.

En effet, α étant un nombre rationnel, on considère la famille partielle F_{α} de F qui consiste en toutes les surfaces S telles qu'on ait $\alpha \leq |S| \leq \alpha + \rho_0/3$. Alors, il y a entre elles au moins une famille contenant une infinité non dénombrable de surfaces. Soit F_0 l'une de ces familles. Elle n'est pas toujours fermée. Mais, on peut aisément en extraire une suite $\{S_v\}$ de surfaces qui tend vers une surfaces S_0 appartenant aussi à F_0 . La convergence est d'ordre un puisque sinon on a l'inégalité $|S_v| > |S_0| + 2 \cdot \rho_0/3$ à partir d'un certain rang, ce qui démontre l'énoncé.

On peut ensuite dire que:

Toute surface de F est irréductible et non singulière sauf une infinité dénombrable au plus de celles-ci.

En effet, supposons, pour le réduir à l'absurde, qu'il existe une infinité non

dénombrable de surfaces n'étant pas ainsi. Soit $F(g_1,...,g_n;m)$ la famille partielle de F qui consiste en toutes les surfaces constituées par n composantes irréductibles de genre g_v (v=1,...,n) et admettant m points singuliers, n et m étant des entiers non négatifs, l'un des deux positif. Alors, parmi elles, il existe au moins une famille qui contient une infinité non dénombrable de surfaces. Soit F* l'une de ces familles. D'après l'énoncè ci-dessus, on peut en extraire une suite $\{S_{\nu}\}\ (\nu=1, 2,...)$ de surfaces qui tend vers une surface S_0 appartenant aussi à F^* et dont la convergence est d'ordre un. Soient p_{μ} ($\mu=1,...,m$) les points singuliers de S_0 . En prenant, pour chaque point p_{μ} , un système de coordonnées locales x_{μ} , y_{μ} en p_{μ} , on décrit une hypersphère δ_{μ} : $|x_{\mu}|^2 + |y_{\mu}|^2$ $<\eta^2, \eta$ étant un nombre positif suffisamment petit, de manière que $S_{0\mu} = S_0 \cap \delta_{\mu}$ admette un seul point singulier p_{μ} et que toute composante irréductible de $S_{0\mu}$ soit simplement connexe. Soient S_{ν}^* ($\nu = 0, 1, 2,...$) les parties de S_{ν} données par l'exception de tous les points dans δ_{μ} ($\mu=1,...,m$). Alors, S_{ν}^{*} est toute homéomorphe à S_0^* , dès que v surpasse à un entier convenable v_0 . Il en résulte que, pour tout v ($v > v_0$) et pour tout μ ($\mu = 1, ..., m$), $S_v \cap \delta_\mu$ admet un seul point singulier et consisten en même nombre que $S_{0\mu}$ de composantes irréductibles simplement connexes. Grâce à Weierstrass, $S_v \cap \delta_u$ est irréductible. De plus, d'après la proposition 1, elle n'admet aucun point singulier. L'énoncé est donc démontré.

D'après deux énoncés ci-dessus et la proposition 8, on a la

Proposition 9. Si une variété analytique M admet une famille parallèle F d'une infinité non dénombrable de surfaces analytiques compactes et connexes, F contient au moins une surface générique.

5. L'Existence des Fonctions Analytiques

Il s'agit maintenant de montrer le fait que toute variété analytique compacte ou bien ouverte et pseudoconvexe admet toujours une fonction analytique uniforme pourvu qu'elle contienne une surface générique.

A. Cas d'une Variété Analytique Compacte

Soit \mathfrak{M} une variété analytique compacte admettant une surface générique S_0 . D'après la proposition 7, on a une famille holomorphe \mathfrak{F}_0 de surfaces analytiques compactes et connexes contenant S_0 dans un voisinage convenable V_0 de S_0 . Nous allons prolonger \mathfrak{F}_0 analytiquement, au dehors de V_0 , autant que possible sur \mathfrak{M} . Soit \mathfrak{F} celle ainsi obtenue, qu'on dira maximale. Elle

est donnée par $\Phi: V \to R$, V étant un domaine sur \mathfrak{M} et R étant une surface de Riemann abstraite. Lorsque R est compacte, V coïncide évidemment avec \mathfrak{M} . Soit G une fonction méromorphe sur toute R. D'après la théorie classique, elle existe certainement. Posons $f = G(\Phi)$. C'est une fonction méromorphe sur toute variété \mathfrak{M} . On suppose donc que R soit ouverte.

On peut d'abord dire que:

Le genre de R est fini.

En effet, soit $H_1(\mathfrak{M})$ le groupe d'homologie de dimension un de \mathfrak{M} . Le rang d de $H_1(\mathfrak{M})$ est fini puisque \mathfrak{M} est compacte. Supposons, pour le réduir à l'absurde que R soit de genre infini. Soit R' une partie ouverte dans l'intérieur complet de R qui est bordée par un nombre fini de courbes simples fermées γ_i (j=1,...,1) et de genre supérieur à d+1, soit \mathfrak{M}^0 la partie de \mathfrak{M} donnée par $\Phi^{-1}(R')$ et soit R'' la surface compacte donnée par le fait de compactifier R', pour chaque composante frontière, en ajoutant respectivement un point p_j au lieu de γ_i . $H_1(R'')$ désigne le groupe d'homologie de dimension un de R''. Décrivons, sur R'', d+1 1-cycles C_v (v=1,...,d+1) ne passant par aucun point ajouté p_i , de manière qu'ils soient indépendants dans $H_1(R'')$. Alors, on peut tracer, pour chaque C_v, un 1-cycle dans M qui corresponde de façon homéomorphe à C_{ν} par Φ . On le désigne par \tilde{C}_{ν} . Par hypothèse, il y a d+1 entiers a_{ν} (v=1,...,d+1) tels qu'on ait $\sum a_v C_v = 0$ dans $H_1(\mathfrak{M})$; c'est-à-dire, il y a une 2-chaîne \tilde{B} telle qu'on ait $\partial \tilde{B} = \sum a_{\nu} \tilde{C}_{\nu}$. Soit B la fermeture de l'image de $\tilde{B} \cap \mathfrak{M}^{o}$ par Φ dans R''. Evidemment $\partial B = \sum a_{\nu}C_{\nu}$. Ceci contredit l'hypothèse; ce que démontre l'énoncé.

Comme on le sait, toute surface de Riemann de genre fini peut être regardée comme une partie d'une surface de Riemann compacte bien qu'elle ne soit pas toujours déterminée uniquement. On suppose donc que la surface de Riemann R soit la partie de celle compacte R^* . On pose $e=R^*-R$. On peut alors dire que:

L'ensemble e est un ensemble négligeable de la classe $N_{\rm D}$ au sens de la théorie des fonctions.

En effet, décrivons dans R une courbe simple fermée de Jordan Γ qui limite une aire simplement connexe $\mathfrak A$ contenant tous les points de e de R^* . On fait correspondre $\mathfrak A$ de façon analytique et biunivoque au disque-unité $\mathfrak C$: |z| < 1 sur le plan de z. Soit $z = \zeta(p)$ cette application et poson $e^* = \zeta(e)$ et

 $\mathfrak{C}^* = \mathfrak{C} - e^*$. A ce moment, on suppose que l'origine de \mathfrak{C} n'appartienne pas à e^* . En posant $\Phi^* = \zeta(\Phi)$ et $V^* = \Phi^{*-1}(\mathfrak{C}^*)$, on considère la famille holomorphe \mathfrak{F}^* donnée par $\Phi^* \colon V^* \to \mathfrak{C}^*$. Les notations z_θ , l_θ^* et \mathfrak{F}_θ^* ont les mêmes significations qu'on a dit dans la section 7 de la partie II. On peut alors dire que l'ensemble E de toutes les directions θ telles qu'on ait $z_\theta \in e^*$ est de mesure nulle. Car, s'il en n'est pas ainsi, d'après le théorème 2, il y a une infinité non dénombrable de surfaces analytiques compactes et connexes sur la frontière de V. La famille \mathfrak{F} étant maximale, ceci contredit la proposition 9. Il en résulte que la mesure de e^* dans \mathfrak{C} est aussi nulle. D'après le théorème de Ahlfors et Beurling [2], ceci signifie que e est un ensemble négligeable de la classe N_D puisque ce resultat-ci est balable sans dépendre de la façon de former la compactifiée R^* de R. L'énoncé est donc démontré.

On vera ensuite le fait que:

L'application Φ se prolonge analytiquement sur toute $\mathfrak M$ en tant qu'une application sur R^* .

En effet, soit p un point frontière de V. En prenant un système de coordonnées locales x, y, on trace le dicylindre Δ : |x| < 1, |y| < 1 de manière que, pour tout nombre complexe c (|c| < 1) la droite analytique L_c : y = c dans Δ contienne au moins un point de V. La restriction de Φ sur $L_c \cap V$ est regardée comme une fonction d'une variable x. Désignons la par $\phi_c(x)$. Je dis ici que la fonction peut être prolongée analytiquement sur toute L_c . Décrivons dans $L_c \cap V$ une courbe simple fermée de Jordan γ . On suppose que γ soit analytique. On désigne par γ^* l'image de γ par ϕ_c . Ceci est une courbe analytique de Jordan tracée dans R et limite un nombre fini de parties qui ne se superposent pas l'une l'autre dans R^* . On les désigne par B_v (v=1,...,m) et on pose B_v^0 $=B_{\nu}\cap R$. En désignant par $\mathfrak A$ la partie de L_c qui est limitée par γ , on posc $\mathfrak{A}^0 = \mathfrak{A} \cap V$ et $\alpha = \mathfrak{A} - \mathfrak{A}^0$. Considérons ici la fonction inverse $\xi_c(p)$ de la restriction de $\phi_c(x)$ dans \mathfrak{A}^0 . La surface de Riemann R_c de ξ_c étalée au-dessus de R, c'est-à-dire, l'image de \mathfrak{A}^0 par ϕ_c , n'admet aucun point frontière relatif par rapport à R que celui au-dessus de γ^* . Par suite, chaque partie connexe R_{cv} de R_c située justement au-dessus de B_v^0 a le même nombre n_v de feuillets au-dessus de tout point de B_{ν}^{0} aux projections de points critiques de $R_{c\nu}$ près. Envisageons la forme de R_{cv} . On prend, dans B_v , nombre fini de parties connexes et simplement connexes δ_{μ} ($\mu=1,...,n$) qui sont limitées respectivement par une courbe simple fermée dans B_{y}^{0} , qui ne rencontrent pas l'une et l'autre et qui recouvrent

tous les points de e. Alors, d'après la formule de Hurwitz, quelque grand que n soit, la partie de R_{cv} située justement au-dessus de δ_v se sépare en n_v composantes connexes sauf $2n_v - 2$ au plus de δ_v , puisque R_v est genre zéro. Par suite, en ajoutant les points au-dessus de e, on peut avoir une surface de Riemann \tilde{R}_{cv} qui contient R_{cv} et qui n'admet aucun point frontière relatif par rapport à B_{ν} . Ceci posé, la fonction $\zeta_c(p)$ se prolonge analytiquement sur toute $\tilde{R}_{c\nu}$ puisque l'intégrale de Dirichlet de ξ_c est fini et que e est un ensemble négligeable de la classe N_D . Ceci signifie que la fonction ϕ_c se prolonge analytiquement dans toute \mathfrak{A} . Soit \mathfrak{B} une composante connexe de $L_c \cap V$ et soit $\tilde{\mathfrak{B}}$ une partie simplement connexe de L_c donnée en ajoutant tous les points de α , qui sont entourés par une courbe simple fermée de Jordan tracée dans $L_c \cap V$, à \mathfrak{B} . La fonction ϕ_c devient holomorphe dans toute \mathfrak{B} par le prolongement analytique. On peut ici dire que \mathfrak{B} coïncide avec L_c . Car, s'il y a un point q situé dans L_c de la frontière de $\tilde{\mathfrak{B}}$, elle contient un continuum qui lie q à un point de la circonférence de L_c . Ceci contredit le théorème de Riesz puisque ϕ_c y prend une seule valeur frontière. Il s'agit maintenant de la analyticitée de Φ dans Δ . D'après le théorème de Hartogs, la fonction dans \(\Delta\) qui est holomorphe par rapport à une variable x sur chaque L_c et holomorphe par rapport aux deux variables xet y en un point de chaque L_c est holomorphe dans Δ . Φ est donc holomorphe dans Δ . Le point p étant pris arbitrairement sur la frontière de V, Φ se prolonge analytiquement sur toute variété \mathfrak{M} en tant que l'application sur R^* .

Toute paraillement ce qu'on a dit au cas où R est compacte, on peut former une fonction méromorphe sur toute variété \mathfrak{M} .

B. Cas d'une Variété Analytique Ouverte et Pseudoconvexe

Un domaine D dans l'intérieur complet d'une variété analytique \mathbb{M} est dit pseudoconvexe s'il existe, dans un voisinage U de la frontière de D, une fonction plurisousharmonique ϕ telle que la partie $D \cap U$ soit donnée par l'inégalité $\phi < 0$. Une variété analytique \mathbb{M} sera dite pseudoconvexe s'il existe une suite de domaines D_v (v=1, 2,...) tels qu'on ait $D_v \in D_{v+1}$ et $\lim D_v = \mathbb{M}$. Dans la suite, on suppose que \mathbb{M} soit pseudoconvexe et admette une surface générique S_0 . De la même façon qu'on a indiquée pour A, on forme une famille holomorphe \mathfrak{F}_0 contenant S_0 dans un voisinage V_0 de S_0 , on la prolonge analytiquement au dehors de V_0 autant que possible dans un domaine pseudoconvexe D_v ($S_0 \subset D_v$) et on obtient une famille holomorphe \mathfrak{F}_v qu'on dira maximale dans D_v . Elle est donnée par Φ_v : $V_v \to R_v$, où V_v est un domaine dans D_v et R_v est une surface

de Riemann ouverte. On peut alors dire que:

Le domaine V_{ν} coı̈ncide avec D_{ν} .

En effet, la surface de Riemann R_{ν} est aussi de genre fini, puisque D_{ν} se trouve dans un domaine sur M dont le groupe d'homologie de dimension un est de rang fini. On considère donc R, comme une partie d'une surface de Riemann compacte R_{ν}^* et l'on pose $e_{\nu} = R_{\nu}^* - R_{\nu}$. Soit e'_{ν} l'ensemble de tous les points de e_{ν} tels qu'il y ait un voisinage δ ce point pour lequel $\Phi_{\nu}^{-1}(\delta \cap R_{\nu})$ se trouve dans l'intérieur complet de D_{ν} et posons $e''_{\nu} = e_{\nu} - e'_{\nu}$. Je dis ici que e'_{ν} est vide. Prenons un point q de e'_v et décrivons une courbe simple fermée de Jordan Γ qui limite une aire $\mathfrak A$ contenant q sans aucun point de e_v'' . Supposons d'abord que Γ se trouve dans R_v . En posant $\mathfrak{A}^0 = \mathfrak{A} \cap R_v$, on considère une famille holomorphe donnée par $\Phi^0: V^0 \to \mathfrak{N}^0$, où $V^0 = \Phi_{\nu}^{-1}(\mathfrak{N}^0)$ et Φ^0 est la restriction de Φ_{ν} dans V^0 . V^0 se trouvant dans l'intérieur de D_{ν} , d'après le même raison que précédemment, l'application Φ^0 se prolonge analytiquement à tout point frontière de V^0 . Cela veut dire qu'il n'y a aucun point de cette sorte de e'_{ν} . Soit \mathfrak{A}^* une composante connexe de $\mathfrak{A} \cap R_{\nu}$. Ceci est simplement connexe. De plus, quand on fait correspondre à \mathfrak{A}^* un disque-unité $\mathfrak{C}: |z| < 1$ sur le plan de z de façon analytique et biunivoque, l'ensemble de tous les points, qui correspondent aux ceux de e'_{ν} , de la circonférence de \mathfrak{C} est de mesure positive. Ceci contredit, d'après le théorème 1, le fait que \mathfrak{F}_{ν} est maximale dans D_{ν} . e'_{ν} est donc vide. Supposons qu'il y ait un point frontière p de V_y qui se trouve dans D_{v} . En prenant convenablement un système de coordonnées locales x, y, onconsidère un dicylindre Δ : |x| < 1, |y| < 1 dans l'intèrieur complet de D_y et une droite analytique $L_0: y=0$ dans Δ . On suppose que $L_0 \cap V_y$ ne soit pas vide. Alors, l'image de $L_0 \cap V_v$ par Φ_v se trouve dans l'intérieur complet de $R_v^* - e_v''$, puisque, d'après l'hypothèse que D_v est pseudoconvexe, tout surface de F_v qui passe par un point de $L_0 \cap V_v$ se trouve uniformément dans l'intérieur complet de D_{v} . Ceci est absurde. L'énoncé est donc démontré.

Il en résulte que la famille holomorphe initial \mathfrak{F}_0 peut être prolongée analytiquement sur toute variété analytique \mathfrak{M} . La famille \mathfrak{F} ainsi obtenue est donnée par $\Phi \colon \mathfrak{M} \to R$, R étant une surface de Riemann ouvert abstraite. D'après le théorème de Behnke et Stein [3], on peut former une fonction holomorphe non constante sur toute R. Désignons-la par H et posons $f = H(\Phi)$. Elle est fonction holomorphe sur toute \mathfrak{M} . En conclusion, on a le

Théorème II. Soit M une variété analytique à deux dimensions. Supposons que M soit compacte, ou bien ouverte et pseudoconvexe. Alors, on peut toujours former une fonction analytique sur toute M, pourvu qu'elle admet une surface générique.

Bibliographie

- [1] Ahlfors, L., Open Riemann Surfaces and Extremal Problems on Compact Subregion, Comment. Math. Helv., 24 (1950), 100-134.
- [2] Ahlfors, L. and Beurling, A., Conformal invariantes and Function-theoretic Null-set, Acta Math., 83 (1950), 101-129.
- [3] Behnke, H. und Stein, K., Entwicklung analytischer Funktionen auf Riemannschen Flächen, *Math. Ann.*. **120** (1948), 430-461.
- [4] Grauert, H., Über Modifikationen und exzeptionelle analytische Mengen, *Math. Ann.*, **146** (1962), 331–368.
- [5] Kodaira, K., On kähler varieties of the restricted type, Ann. Math., 60 (1954), 28-48.
- [6] Kodaira, K. and Spencer, D. C., A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math., 81 (1959), 477-500.
- [7] Nishino, T., Sur les familles de surfaces analytiques, J. Math. Kyoto Univ., 1 (1962), 375–377.
- [8] Oka, K., Note sur les familles de fonctions analytiques multiformes etc., J. Sci. Hiroshima Univ., A4 (1934), 94–98.
- [9] Rutishauser, H., Über die Folgen und Scharen von analytischen und meromorphen Funktionen mehrerer Variablen, sowie von analytischen Abbildungen, *Acta Math.*, **83** (1954), 287–304.
- [10] Stoll, W., Normal families of non-negative divisors, Math, Z., 84 (1964), 154-218.
- [11] Ueda, T., On the Neighborhood of a Compact Complex Curve with Topologically Trivial Normal Bundle, *A paraitre*.