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A Coherency Theorem for Direct
with Proper Supports In the

Case of a 1-Convex Map

By

Akira FUJIKI*

Introduction

Let f:X-*S be a morphism of complex spaces and 3 a coherent

analytic sheaf on X. If f is proper, then the higher direct image sheaves

Rtf#$ are coherent for all z'2^0 by Grauert [8]. Generalizations of

this theorem to certain classes of non-proper morphisms have also been

obtained by several authors, among which we shall mention the following

results, being of particular interest to us here (cf. also [22]). Let q^>Q

be an integer. Then: a) If f is (/-concave, then Rlf*<5 is coherent

for /<;codhff -dim 5-(?-l [17]. b) If / is g-convex, then R'ftf is

coherent for z<Jcodh S7 —dim S— q [4], where f\ denotes the direct image

with proper supports, c) If f is (1, 1)-convex-concave, then Rifj.S is

coherent for l<^/5jcodh 3 —dim S~2 [15]. (Note that here and in what

follows the terms '^-convex' and 'g-concave' are used in such a way that

when S reduces to a point, they coincide with the notion of 'fortement q-

pseudoconvexe' and 'fortement #-pseudoconcave' respectively of Andreotti-

Grauert [1]. Hence they should be called ' (q — 1)-convex and &(q — 1)-

concave" respectively in the terminology of [4], [17], [18] etc.) Though

these results are best possible as they stand, we could expect to improve

the bounds for i under the additional assumption that 3 is /-flat, and

in fact in such a way that the condition is stable under base change.

The latter fact would indeed be useful in certain applications (cf. e.g. § 5
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below) and is in general not satisfied in the condition of the above men-

tioned results since the quantity codh 2 — dim 5 is not stable under base

change. More precisely we raise the following:

Conjecture. Let 0<£5 <7<4-oo. Let /: X-*Sbea (p9 q) -convex-

concave map of complex spaces and 3 a coherent analytic sheaf on A".

Suppose that there exists a closed subset K of X such that K is proper

over S via / and 2" is /-flat on U=X—K. Let r = codh(W (3 u) .

Then 1) R*f*3 is coherent for p<>i<^r-q-l, and 2) R*f& is co-

herent for

For the precise definition of a (strongly) (/>, q) -convex-concave map

we refer to [21] or [18] modulo the above remark, the case p = Q

(resp. # = 0) being understood to be the pure <?-concave (resp. pure p-

convex) case. On the other hand, in general for a morphism of com-

plex spaces g: Y— >T and a coherent analytic sheaf 5 on Y, codhgS is

defined by codh-5 = inf (codhy^(y)) . Hence when S is nonsingular, or
yEY

more generally, is Cohen-Macaulay, the above results a) , b) , c) give

the conjecture under the respective assumptions (cf. (4. 1) ) .

Now the main purpose of this paper is to prove 2) of the above

conjecture in a special case where f is 1-convex, making use of the fact

that f is then a proper modification of a Stein morphism. We first

recall the precise definition of a 1-convex map. Let f:X->S be a mor-

phism of complex spaces. Then we call f a \-convex map if there

exists a real C°°-map q>: X-* ( — oo, c*) , — oo<^*<J+ oo, called the ex-

haustion function for /, such that 1) the set {x^X; <p(x) ^c} is proper

over S via f for every c<^c* and 2) there exists a real number c#<^c*,

called a convexity bound for q>, such that (p is strictly plurisubharmonic

on Xc = {x&X; (p(x) ^>c#}. In this case for each d<^c* we set Xd

= {x<=X-(p(x)<d}, /* = /U«:X*->5 and f, =f\z :XC#-*S. Then
# C# #

the following holds ture.

Theorem. Let f: X—>S be a \-convex map with exhaustion

function <p\ X-> (— oo, c*) and £F a coherent analytic sheaf on X.

Let c#^ (— oo, c*) be a convexity bound for (p. Suppose that 3 is



COHERENCY THEOREM FOR DIRECT IMAGES

f-flat on XCM. Then for /<codh/ (3 \x ), R*f^3 is coherent and
# c# c#

the natural map Rif^d(S—>Rif^(S. is isomorphic for

Moreover combining the above theorem with the result of [6], in

the 1-concave and (1, 1) -convex-concave cases we can also improve the

result of Ling [15] (cf. c) above) toward the above conjecture (cf.

Corollary 4. 4 below) .

Now we shall give a brief outline of the paper. First in Section 1

using the method of Siu-Trautmann [23] we prove a certain refinement

of a result of Andreotti-Grauert [1], which is essentially a generalization

of [1, Proposition 12] (cf. also its proof) to the case of a possibly singular

parameter space. Then in Section 2 again by the method of [23] we

show the coherency of certain direct image sheaves R^B+S with sup-

ports in B where n: Sx K(b) ~>S is the natural projection, B=SxK(d)~

for some a<^b and 3 is a coherent analytic sheaf on SxK(b) which

is TT-flat on Sx(K(b) — {O}) (cf. Notation below). Also we prove re-

sults on isomorphy of Rlfts*S when a varies. Next in Section 3 some

lemmas are proved which is needed for preliminary reductions of Theo-

rem; Lemma 3. 2 is used to reduce the case of a general 1-convex map

to the case of a Stein 1-convex map with a special property, and then,

the latter case is further reduced to the case where f is isomorphic to

the projection 7T above by Lemma 3. 3. Once f is the projection, then

by the refinement of Andreotti-Grauert's result together with the iso-

morphy of RlftB*3 9 both mentioned above, we can finally reduce Theorem

to the above coherency result of RlnB^2 . These reductions, and hence

the proof of Theorem, are given in Section 4. Finally in Section 5 we

obtain a relative version of the vanishing theorem of Grauert-Riemen-

schneider [9] as an application of the above coherency theorem.

Notation. Let f:X-*S be a morphism of complex spaces and F

an analytic sheaf on X. 1) For any morphism ct: T— > S of complex spaces

we write XT=XxsT, fT = fXsT: XT-*T and 3T = n}3 where 1ZT:XT

-*X is the natural projection. In particular if T= {s} is a point of S9

then we write Xs, fs, 3 , instead of X{s}, /{s}, 3"{g} respectively. On the

other hand, if T=U is an open subset of S we often write X(U) instead
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of Xu. 2) Let B be a closed subset of X. Then we shall denote by

R'fB& the Os-module denned by the presheaf U->H£ff(X(U) , S)

where U is any open subset of S and Bu = Bf}X(U). R*fs*3 can

also be defined as the i-ih derived functor of the functor fs*3 with

fs*S =R°fB*S as above. 3) For any integer k we write Sk(3)

; codhx3<,k} and St(X) =5*(0X), where codh.S = + oo if x&

, supp denoting the support. 4) For a subset M of X, M~ denotes

the topological closure of M in X. 5) Let b= (&!,•••,£#) eH+ for some

N>0 where R+= {c^R; c>0} . Then K(b) = {(w,, — , WN) (= €*; |

§ 1. Surjeetivlty Lemma of Andreolti-Granert
for a Flat (1, 1) -Complete Map

Let A (resp. A) be a domain of Cn (resp. C^) . Set m = n

and D = D1xD2^CnxCN=Cm. Let 7T: Z)-> A be the natural projection

Let <p\ D2-*R be a C°° strictly plurisubharmonic function on A and

= ^jf>2 where pz:D->D2 is the natural projection. Let £=(f i , £

and ?2eA, and r = ̂ (f) . Let Y= {^eZ>; («)>4 and Z =

Lemma 1.1. L^^ A be an analytic subset of A and a=dimSlA.

Let ZA — Zf}7t~l (A) . Then there exists a fundamental system of Stein

neighborhoods {Q} of ? zw D such that HzA(Q,0D)=0, i<m — a.

Proof, a. First we assume that A is smooth at flt If a — n, then

the result follows from [1, Prop. 12] since ^ is clearly strictly (;z+l)-

pseudoconvex on D in the sense of [1], So we assume that n^>a,

Take local coordinates Wi,--- , wn of A at £2 in such a way that z^a+i

= ...=^e;n = 0 is a system of defining equations of A at £IB Let
71 ^

0— Z] \wi\2 and 0 =07T. We may assume that Al= {|wf|<Cl, l<^'<^z}Ci A
i = a + l

and A is smooth in 4. Similarly take local coordinates Zi, •••, ZN of A

around ?2 in such a way that J2~ {\Zj <C1}C A- Let A — A^A^ For ^ = 2S

3, ••• we define (f>k = (p— (l/k) +^0, C/i= {^fe(^) >c} and J l fc={|

Put J fc-J l f cxJ2fc and C7fc = C7/
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Then Uk form an increasing sequence of open subsets of A — ZA=(d —

n~\AJ)C\YA such that Uk(^ Uk+l and A—ZA= U Uk. Consider the following
k

assertion:

) and HQ (Ak, 0D) = H\UKj 0D} if

m- (tf + l)2>l.

If we show (") for each k, then as in the proof of Lemma 2 of

[1, p. 222] it follows from [1, Prop. 9] that the assertion (") is also true

for A — ZA9 i.e., (") is true with Uk and Ak replaced respectively by

A-ZA and A. Since (") for A-ZA is equivalent to H 1
ZA (J, 0D) = 0,

i<^m — ay and since J with varying te^ and ^ form a fundamental system

of Stein neighborhoods of f , 1) follows. It remains to prove (") . Let

^:z/i--»A be denned by the projection along the linear subspace denned

by tvi = •-•= ?va = 0 regarding A as a subdomain of Ca (w^ * • - , iVa) . Let

p: Ujc— >A be the map induced by h = kn\ j\ A-* A. Consider p naturally

as a family of subdomains of CN+n~a — CN^n~a(zl, • • • , 2;^, ze;a+1, • • - , wn) over

A in the sense of [1, §3]. Then since (f>k is strictly plurisubharmonic

when restricted to each fiber Aki = A"1 (/) fl Akj t£E. A, of A we have

^ i(C/«,0^,)=0, 0<i<m-a-l and H° (^ 0 D) = H° (Ukh 0 D) by [1,

Lemma 2, p. 222], where Uki = p~l(t). From this (") follows just as in

part $ of the proof of [1, Prop. 12].

/9. Next in the general case let A0 be the singular locus of A and

A/ = A—A 0 . Let £7 be any Stein neighborhood of & and U' = U— A0.

Then A' is closed in t/x. Let J2 be any relatively compact polydisc in

Dz centered at $2. Then the proof in a shows that for each w^U'

there exists a fundamental system of Stein neighborhoods {N} of tw in

U' such that HJtA.(NxAi,0D) -0, and hence that R1T:ZA.^0D = Q on U',

i<^m — a, where ZA, — Z^\TC~l(A') and 7T =7r|p lXjz. Then from the stand-

ard spectral sequence £?'*: =HP(U', RqnZA,*0D) ^Hj^(Uf X J2? (?„)

we have H*ZA,(UxA^ 0D) ^H*ZA, (Z7'x J2, OD) -0, i<m-a. Since 17 and

J2 were arbitrary, from this follows the lemma by induction on a as in

the proof of [23, Prop. 1. 12]. Q.ED.

Now let V be an analytic subspace of Dl and set W= VxD2^D. Let

EF be a coherent analytic sheaf on W, identified with its extension by zero

to the whole D. Let nw = n\w: W-+V and r = codhs
(3;$i (cf. Notation).
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Proposition I. 2. Suppose that 3 is 7tw-flat. Then there exists

a fundamental system of Stein neighborhoods {Q} of $ in D such

that the following is true: 1) If r>2, then the restriction map

H°(Q9%)-»H°(Qr}Y,%) is isomorphic, and 2) H^QHY, 3) =0.

0<f<r-l.

Proof. Since Q is Stein, it follows that 1) and 2) together are

equivalent to the following: Hz(Q, 3) = 0, z<^r--l. Since £F is

there is an exact sequence

in a neighborhood of ? where l<^N—r (cf. [6]). Hence by descending

induction on r we can reduce the problem to proving the following: (*)

Hl(Q, Ow} = 0, i^N-l with Q as above (cf. [1, § 15]). To show (*)

we follow the method of Siu-Trautmann [23, § 1] ; in the notation of

Lemma 1. 1 we can prove successively the following two assertions.

1) HZA (Q, £) = 0, i<^codh^S — a for any coherent analytic sheaf Q

on D.

2) Let M be any coherent analytic sheaf on D! and S = 7t*t$£,

Let q^O be an integer. Suppose that dim^An^+g+i-^ (j?0<^ for every

integer k. Then JJJ4 (Q, 3) = 0, i<>q.

In fact, 1) follows from Lemma 1. 1 by induction on eodh^ by

exactly the same way as in the proof of Proposition 1.13 of [23],

Similarly the implication 1) ~»2) follows by the same method as in the

proof of Theorem 1.14 b) — »c) of [23], using induction on a and noting

that codh^ = N+codh?1^T0 Finally 2) implies (*) as follows. Let A

= A and 3C = 0S in 2) so that Q = 0W and ZA = Z. Further if we let

q = N— 1, then the assumption reduces to dlmSiSk (M) ^k for all k, which

is always true (cf. [23]). Thus (*) follows. Q.E.D,

Let f'.X-^S be a morphism of complex spaces. Then we call f

a (1, Incomplete map if there is a C°° strictly plurisubharmonic function

(pi X—> (c%, c*)5 — °o<c#<£*<I~l-oo, called the exhaustion function for

f, such that for any c^<^Ci<^c2<^c* the restriction of f lo {ci^fp^Cz}

is proper. For £*<£i<c2<£* we write Xc
c\= {x&X; Ci<<p (x) <C2} , and



COHERENCY THEOREM FOR DIRECT IMAGES 37

The following is a relative form of a result of Andreotti-

Grauert [1] analogous to [15, Prop. 2. 4. 3] (cf. also [20, Prop. 11. 12])

under flatness assumption.

Proposition 1. 3. Let f: X-*S be a (1, 1) -complete map of com-

plex spaces -with exhaustion function <p: X—> (<;#, c*) and 3 an f-flat

coherent analytic sheaf on X. Let r = codh/3' . 1) Let c*<>cf<Ldf<d"

<^c"<^c*. Then for each s^S there exists a fundamental system

{U} of Stein neighborhoods U of s such that the restriction map

H*(X$(U), 5)->H*(X!£(t7), 2") is surjectiveforl<Li<Lr-2. 2) Let

c*<^c<*d<c^c*. If r:>2, then the restriction map F(Xl(U)93)

, 2) is surjective -with U as above.

Proof. It is enough to show that for a suitable {U} as above the

restriction maps r,: H*(X$(U) , 2") ->H*(X£(C7), 5) , l^£<>-2, and

r2:£T*(X*:(I7),SF)->ir l(X2:(C7),ff), O^^r-2, are surjective, where

c'^d'<d"<^cn are as in 1) . First of all the surjectivity of rt can be

proved just as in Andreotti-Grauert [1, Prop. 16] (cf. also [4, Lemme 1])

and the proof is omitted. On the other hand, in view of [1, p. 241, Lem-

ma] the surjectivity of r2 can be reduced to Proposition 1.2, Just in the

same way as the proof of [20, Prop. 11. 12] is reduced to (the proof of)

[20, Prop. 11. 8]. Q.E.D.

Corollary 1. 4, The restriction map R^c^S-^R1^^ is sur-

jective for !<>i<,r~2 in 1) and fl*3-*fj*S is surjective if r^>2

in 2).

Remark. The same proof applies without any change to the case

of a (p, q) -convex-concave map to yield the surjectivity of jH"*(Xc/(C7), 3")

->HL(Xd
d:(U), 5) for p<i<,r-q-l.

§ 2. Basic Coherency and Isoraorphy Results

Let S be a complex space and &eH+ for some N^>0, Let W=
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N (cf. Notation) and 7t: W-»S the natural projection. Let

W' = W- (Sx {0}) and TT' — TTl^. For 0<^a<b, i.e., *,<£, for !<>i<^N

we put Qa = SxK(a)~ where a= (al5 • • • , a#) and £ = (bl9 • • • , &,v) . Here

for a = 0, i.e., ^ = 0, 1<^°<^V, we understand that Qo = *Sx {0}.

Proposition 2. 1. Le£ 3 be a coherent analytic sheaf on W.

Suppose that £F zs it' -flat on W and codh^^SF w)^T for some K>0.

Then for every z<Jr — 1 1) £/i£ natural map jR%ga, * £F -^RinQa^
(S is

isomorphic for 0<^a'<^a<^b and 2) RinQa^
(S is coherent for 0<^

Proof, a. Since the problem is local on S, we fix a point

and consider everything around s. First by Lemma 2 of [6] after re-

stricting S around s if necessary, we may assume that there exists an

exact sequence of coherent CV-modules

(i) o->j:->osp-'->...->ofri5-*o

such that m = N—r and JI is locally free on W. (Taking b smaller

and using the excision we may assume that (1) is defined on the whole

W.) Using (1) we can readily reduce the proof by descending induc-

tion on r to showing that for i<^N—l and 0<^a<^, the natural map

RlnQQxJ?-^>RlnQaxJ? is isomorphic and Rl7CQa^J^ is coherent. For this pur-

pose, however, we have to treat a little more general situation. Let

d\~ (d^--, dq) , 0<^<^JV, be a <?-tuple of integers with cf^l. Let La

be the subspace of CN (ziy • • • , ZN) defined by the ideal (z?1, --',z%q). For

0 = 0 we understand that Li = CN. Set W«: = Wft (Sx La) =Sx (K(b)

Pi Z4) anc^ Wrf : — Wa — Q0. Then the above assertion is a special case

(q = 0) of the following one:

(*) Let JL. be a coherent analytic sheaf on Wd which is locally

free on W^. Then for i<^p: = N—q and 0<^a<^b, the natural map

R^Q^X-^R^Q^X is isomorphic and RlnQa^X is coherent.

The rest of the proof is then devoted to prove (*) .

/?. Restricting S around s and taking b smaller (cf. the remark

above) we may assume that S is a relatively compact subdomain of a

Stein space S' and EF is defined on *S /xX(^)~. Fixings we put Q — Qtt.

Let JT be the ideal sheaf of Q0 in W. Then we shall first prove the
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following assertion:

(A) Let U be any open subset of W. Then r(U9J)lH^(U9 X)

= 0, i<^pf for some sufficiently large I which is independent of U,

To prove (A), we have to consider a still more general situation.

Let A be any analytic subset of S' and QA = Qr\ K'1 (A). Identify S with

Qo and consider A also as a subset of W. Let <3A be the ideal sheaf

of A in W. Let S'k be the union of those irreducible components of

Sk(~C) which are not contained in A. Then (A) is a special case of

the following assertion:

(A) If dim(Ar\S'k+v)<^k for every k and some //J>0, then

r(U, <$AyHQA(U, X) = 0, /<#, for a sufficiently large I which is in-

dependent of U.

In fact, if in (A) we put A = S and jU = p, we get (A) since it is

always true that dim SH Sk+p — dim Sk(S) <^k for every k. Here the first

equality follows from the relation Sk =TC~l (5 fc_p(5)) , which can be seen

as follows: Since J? is locally free on Wa_9 we have Sk(_C)\w'd
 = Sk(W'd)

= n ' ~ 1 ( S J ( - p ( S ) ) . From this it follows that for any irreducible component

SjeiV of Sk(J^) with SjfiVf~}W'=^=0 there is a unique irreducible component

TkiV of Sk-p(S) such that SkjV = 7t~1 (TkiV). Conversely if TkiV is any ir-

reducible component of 5fc_p(5), then n'1 (TktV) is an irreducible compo-

nent of Sk since it intersects with W and coincides with an irreducible

component of Sk(Wa) D W'. Hence Sk=n~l (Sk-p) (S) .

Y. We shall show (A). We may assume that S is an analytic

subspace of a domain Dl of Cn for some ;z>0 [12]. Let D = D1xK(b)

and m = n + N=dimD. Let 5 be a coherent analytic sheaf on D and

S„ the ideal sheaf of SftJ.a-i(S) in D where Q<^jU<^m — a and a = dim A.

Then just as in the proof of [23, Lemma 3. 3] we deduce that F (U'f', cj7^)l

H1QA(U',£)=Q, i<^JU, for a sufficiently large / which is independent of

[/', where Ur is any open subset of JD. Indeed, in view of the vanish-

ing of RlflQA*0D, O^i^fn — a, (which follows from a lemma of Frenkel

[23, (0. 14) ] when A is nonsingular, and in the general case from this

special case as in Lemma 1.1 above), if we replace 5 and A by 3 and

QA respectively there, the same argument works. From this (applied

to Q — X) together with the above description of the sets S'fc9 we can

prove (A) by the same method as in the proof of Lemma 3.4 of [23],
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using the filtration of A by the subspaces Ak: = AC\ S'k+y

d. Finally we shall deduce (#) from (A). We proceed by induc-

tion on i, 0<jz<£. First we note that nQo*X =7tQ*X and Kq^Jd is co-

herent. In fact since X is locally free on W'&, 7tq*X = 7tQ^X = 7t* (E^QoX)9

and the latter is coherent since F_Qa(X) *s coherent and Q0~S (cf.

[23, Prop. 1.9]). So suppose that £>C>0. For each />0 we have an

exact sequence of O^-modules

(2) o-*Jti-+x*X
where (Xi is the multiplication by zl,z = zq+i, and JCt is the kernel of cxt.

In particular since X is locally free on WJ, the support of JCj is con-

tained in Qo and hence is finite over S, so that 7tQ*JCi = 7C*J{i and is

coherent, and that jR*7Te#JG = ,R*7r*JG = 0 for z>0. On the other hand,

since z^F(W,J)9 by (A) the map R^q^X-^R^Q^X induced by at

are zero maps for z</> and />0. Hence from (2) we get for />0 the

exact sequence

(3) 0-*R

Note that X/zlX is a coherent analytic sheaf on Wd/ = Wfl ̂  with

d' = (di, '••, dq, dq+i) 9 dq+i = l9 which is locally free on Wj/:=Wd / — Q0-

By induction both P^~litq^.X and R?~lltq*X/zlX are coherent since £ — 1

<;^_1=AT— (g + 1). Hence from (3) follows the coherency of Rl7Cq^X .

Similarly comparing the exact sequence (3) with the corresponding ones

with Q replaced by Q0 (noting that a was arbitrary) we obtain the

isomorphy of the map RirtQo*
(3: — ̂ R^q^ , i<ip, by induction and five

lemma. Q.E.D,

Using the previous notation, let <3 be the ideal sheaf of Q0 in Wo

For every 7t*0 ̂ -module M and every integer &>0 we define the sub-

module JV<&> of M by the submodule defined by the local sections an-

nihilated by 7r*

In particular for 0<#<& we can speak of the TT^CV-submodule

of R^QQ^S . On the other hand, we note that if M is coherent as an

Os-module via the natural inclusion Os^=W*Ow then <${<\ky also is a
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coherent C?s-module. In fact, by the definition of S we can find, for each

k, elements glt • • • , gt^F(W, jP) such that grf, when considered as sections

of 7t#t$k, generate K*3k as an n*0 ^-module at each point of 5. Then we

obtain an exact sequence of TT^CV-modules 0-^M^ky-^M-^M®1', where

the last arrow is defined by SC^h-^fah) <E^et. Hence M<ky also is a

coherent CVmodule.

Proposition 2. 28 The notations and assumption being as in Prop-

osition 2. 1 the following holds true: 1) The natural map RrnQgif^
(

~>R'nQa*3(ky is isomorphic for 0<X<a<& and 2)

is coherent for 0<^

Proof. Fixing 0<XO<£ we put Q = Qa and Q'=Qa>. We shall

prove the proposition by descending induction on r<^N. Suppose first

that r<^N. Consider the exact sequence (1) in the proof of Proposition

2.2 and let ^ = KerA. Then we have the long exact sequence on S

associated to the short exact sequence 0— >S— >0w — >3 — »0. Let

= v~l (Rr+lTCQxS(ky) . Then we get the exact sequence

(4) ^r7rQ^^7rQ*(3|^^

Then RrnQ*Q and RrnQ*0$ are coherent by Proposition 2. 1 and

Rr+1nQ*£(ky, and Rr+1nQOw(ky also are coherent by induction since Q\w is

Tr'-flat and codh(5|H-,) ^r+ 1. Hence J{k also is coherent. On the other

hand, we have £r7TQHs5<&>C:^fc and hence RrKQ*$<K> --=&*<£>. Hence

the coherency of R^Ttq* 3 <(&)> follows from that of MK by the remark just

before the proposition. As for 1), since for Q'\ = Q or Ow, we have

Rr+lnQ,*Q'(ky^Rr+lnQ*8'<ky by induction and have Rrnq.*S' ^R'n^G

by Proposition 2. 1, comparing the sequences (4) for Qf and Q we obtain

by the five lemma that Mf
k~SCk and hence &'(k)^3C(k) as desired

where <M'k is the ^fc in (4) with Q replaced by Q7.

Thus it remains to consider the case r = N. In this case 2 is locally

free on W. As in the proof of previous proposition we have then to

deal with the more general situation described there. Using the notation
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there for any coherent analytic sheaf JC on Wd,d=(dl9 • • • , ^ g ) , which

is locally free on W'd we prove the following assertions; 1) Rp7CQ'*~C(ky

= RpnQ*J!(ky and 2) RpnQ*J^(ky is coherent, by induction on p — N—q.

First, if p = 0, then Wa is finite over S so that 1) and 2) are immediate

to see. So assume that p^>0. Then as we have deduced (3) from (2)

in the proof of the previous proposition, for ^>1 we have from (2) an

exact sequence of 0s-modules

for every sufficiently large k, with ? injective for A>2. Since ak is

defined by the multiplication by cfc, z = zq±i, Rpnq*JI(ky is in the image

of S. Moreover by (A) in the proof of the previous proposition

Rp~lnq*-C is annihilated by n*Jki for some /&!>(). Hence Rp7lQ*£(ky is con-

tained in the image Mk of (Rp~lTCqj: /z*£)<k + *i> by d. Hence RpKQ*j:(ky

= Mk<ky. On the other hand, since JHk= (RP~1KQ* Jl /z*£)<k+k^/Im T

and (R^XQ^/z^Xk+hy (resp. Rp-lnQ^) is coherent by in-

duction (resp. by (*) in the proof of the previous proposition), Jttk is

coherent, where we note that Rp~lnQ* J? = (RP~17CQ*J?) <^+ k^. Thus

RpnQ*J^(ky is coherent as above. Moreover since RP~1TCQ^X— >Rp~l7rQ*J!

(resp. (Rp~lnQ^j:/zkj:)<k+kiy-^(Rp-17t^j:/zIcj:)<(k + kiy) is isomorphic

by (*) in the proof of the previous proposition (resp. by induction)

the natural homomorphism J?l'k->3Vlk is isomorphic where 3&'u is defined

analogously to JHk for Q'. Hence Rp7tQ,*£(ky-*Rp7CQx£(ky also is iso-

morphic. Thus the proposition is proved for £>0. Since Rp7tQ*~C(ky

= (RpnQ*J!(k'y)(ky for k'^>k in general, the general case follows from

the above special case. Q.E.D.

§ 3. Some Lemmas

Let X be a complex space and F a C-subalgebra of F (X, Ox) . We

recall briefly the theory of jp-quotient of X. For more detail see Wieg-

mann [24]. We denote by the same letter F the equivalence relation

defined by F on (the underlying topological space of) X's x^y€$h(x)

= h(y) for all h^F where jc,y£EX. Let Y=X/F be the topological

quotient space of X by F and ff-.X-^Y the quotient map. Then we

define the sheaf of local rings 0Y on Y as follows;
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0Y,y— lim{A(U) ', U open neighborhoods of y}, ye Y
— »

where A(C7) is the subalgebra of F (ff'1 (U) , 0*) such that 7ie

F (G~l (U) , Ox) is in A (£7) if and only if there exist a convergent

power series £] Ctl">ia,T\*"*T]f, cil...id^C, in ^ indeterminates T* for

some £f>0 and elements /i, --,fd^F with fi(x) = 0 for all .recf"1^)

such that 2J Ctv..iAfil'"fif converges and equals h on (f~l (U) . Then

we have the natural surjective morphism of local ringed spaces (T:X— >Y,

and then regarding F (Y, Or) as a subalgebra of F (X, Ox) via 0" we

have the natural inclusion jpC F (Y, OY) •

We call X F -convex if for every compact K^X its jP-convex hull

for all

is again compact. Then Wiegmann [24] proves the following:

If X Is F-convex, then Y=(Y,Oy) has the natural structure of

a Stein complex space such that (T is a proper surjective morphism

of complex spaces.

In this case we call Y, or (7, the Y -quotient of X. When F =

F (X, Ox) , ^"-quotient is called the Remmert quotient of X, and then we

have 0Y = ff*0A'.

:X-^5 be a 1-convex map of complex spaces with exhaustion

function (p\ X-» ( — oo, c*) . Then in what follows we shall use the fol-

lowing notation: Xc= {x^X; (p(x) ^>c}y Xc= {x^X; (p(x) <^c} for c<^c*

and X%1= {x^X; cl<^(p(x) <^c2} for C1<^c2<^c*. Suppose now that S is

Stein. Then by Knorr-Schneider [14] or by Siu [21] X is r(X,Ox)-

convex. Let (T0:X-*Y0 be the Remmert quotient of X. Since f*F(S, Os)

C^r (X, Ox) =r (Y, OY) and 5 is Stein, we have the natural morphism

g0: Y0-^S such that gQ(T0 = f.

Lemma 38 1* Let f:X-*S be as above. Let S be the coherent

sheaf of ideals of Ox such that the support A of Ox/^ is proper

over S -with respect to f. Let F=F(<3} be the subalgebra of F(Xy 0*)

generated by F (X, c5) and f*F (S, Os) • Then X is F-convex.

Proof. Let ff0: X-> Y0 be the Remmert quotient of X and Sf — <TOHsc?.
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Then 3' is a coherent sheaf of ideals of 0Yo such that the support of

0YJ3' coinsides with A''. = ffQ(A). Since o~0 is proper, it then suffices

to show that YQ is F(<$') -convex. This allows us to assume from the

beginning that X is Stein. Then, if we denote by r\ Ox—>0xred the na-

tural quotient homomorphism and set 3\ — r(S}, then F (X, 3} ~ >F (Xred,

3\) is surjective, where Xred is the underlying reduced subspace of X.

Hence we may further assume that X is reduced. Now note that since

A is proper over S, A^XC for some c<^c*. Then by Narasimhan [16,

Theorem 1] there is a holomorphic map h:= (hl9 • • • , hy) :X->CN for some

N such that h~l (0) =A and that h\x-x* is proper. Moreover the proof

shows that we can assume that hi €E F (X, 3} . Then H:= {hl9 • • • , hN}^F

so that if K is any compact subset of X, then KF^KH. On the other

hand, if we put n = siip{|/ii(.r) | ; x^K}9 then KH = h~l(A(r)) where A(r)

is the closed poly disc of multi-radius r= (rt) in CN with center the origin.

Hence by the property of h mentioned above KHf\ (X—XC) is compact.

Thus it remains to show that KFf}X° is relatively compact in X. In

fact, since Sis Stein and f^r(S9Os)^F9LF: = f(KF) is compact, and

hence KF^}Xc(^f~l (Lp) DXC) is relatively compact in X. Q.E.D.

Let /:X-»S and 3 be as in Lemma 3.1 and F=F(J). Let ff:

X-»Y be the resulting F-quotient of X. Since /T(S, 0S)£F and Y

and S are Stein, there is a unique Stein morphism g: Y-^Ssuch that g(T

= /. We call the map ff together with the map g, the 3 -quotient of X,

or of /.

Let f:X-*S be a 1-convex map of complex spaces. Then each fiber

X,, s^S, of f is a 1-convex space. Let J5S be the exceptional set of X,,

i.e., the maximal compact analytic subset of Xs of positive dimension.

Then E— U Es has the natural structure of a (reduced) analytic subset
ses

of X, called the relative exceptional set for /\ Moreover if <70 : X-» Y0

is the Remmert quotient of X, then 0"0 induces an isomorphism of X~E

and Y-(T0(E) (cf. [14]).

Lemma 3. 2. Le£ /: X-+S be a \~convex map of complex spaces

-with S Stein. Let A be an analytic subset of X such that f\A: A~*S
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is proper and that A contains the relative exceptional set E for f.

Then there exist a Stein morphism g: Y->S and a proper surjec-

tive S-morphism ff:X-*Y such that (?\X-A. X—A->Y—G(A) is isomor-

phic, and (T(A) is mapped isomorphically onto a subspace of S by g,

Proof. Let S be the ideal sheaf of A in X. Then by our assump-

tion on A and by Lemma 3. 1 we can take the cjT-quotient of f. So let

ff:X->Y with g: Y-»S be the ^-quotient. First, if X is Stein, then

F (X, (3) separates points of X — A and give local coordinates at each point

of X—A, so that from the above construction of 0Y it follows readily

that ff\x-A: X— A = Y— ff (A) . The general case can be reduced easily

to this case by using the Remmert quotient as in the proof of the previous

lemma if we note that E^A. Now we remark that since F (X, 3} is

an ideal of F (X, Ox)> every h^F can be written in the form h = hi + h2,

with hi^r(X9J) and /72e/*r(S, 0S), and hence that in the definition

of 0Y we can assume that each fi belongs to either F (X, 3} or

f*r(S, Os) . Then since F (Y, (T*J) ^F(X9 J) and ff*J is generated by

global sections on Y, Y being Stein, again from the definition of OY it

follows that S\ = 6*3 may be regarded naturally as an ideal of 0Y, and

that if we denote by A' the subspace of Y defined by 3 * then g induces

an isomorphism of A1 with g (A') . (Note that since F (X, 3) cannot

separate any two points of A, g\A,: A'->S is clearly injective.) Finally

A/ is reduced as well as A so that A'=(T(A)9 the latter given with the

reduced structure. This proves the lemma.

Remark. When f (A) = S, from the above proof we get the follow-

ing exact sequence of O^-modules

Lemma 3. 3* Let f:X-*S be a Stein \-convex -map with an ex-

haustion function <p:X-> (— oo, c*) with convexity bound c#e( — oo?

c*) . Let A be an analytic subset of X°# 'which is mapped isomorphi-

cally onto a subspace of S by f. Let s^S and c#<^c'<^Ci<^c2<^c"<^c*

be arbitrary. Then there exist a<^b in R+N for some AT>0, a rela-

tively compacl subdomain Pb of X, a neighborhood U of s in S and
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a holomorphic embedding 0: Pb->Ux K(b) , satisfying the following

conditions'. Let Qa = @~1(Ux K(d) ~) and Bd = {x^X\ (p(x) <,d} for

d<=(c#,c*}. Then 1) Bc/ (U) £Qa£^Cl (U) ££C2 (U) £P&QXC", 2) r$

= /|pft, r: Sx X(£) ->5 ££z>2g- *7i* natural projection and 3) 0'1 (C/X {0})

Proof. The lemma is essentially [15, Lemma 3. 1. 1] except for 3)

(cf. Remark below) . In particular we may assume that A=fc0 since

otherwise 3) follows immediately from that lemma. First we consider

the case S= {s} . In particular A. consists of a single point a€=iX. Take

and fix any c"<^c$<ic*. Then by the same technique as in parts (A)

and (B) of the proof of [15, Lemma 3.1.1] we can find /i, •••,/Qe

F(Xc\Ox) such that F~(fl9 ••-,/,) defines an embedding of Xc* into Cq

and, further, if we put QR= {x^Xc*; \fi(x) |<J^} for a suitable R:= (Rl9

— ,Rq)9Rt>I, and define W= {x^X- \ft(x) |<1}, then Bc'GWCXCl

CBc*CQxCXc". It then suffices to check that these ft can be taken

in such a way that ft (a) = 0 (cf. the proof in the general case below).

In fact this follows readily from the construction in [15] together with

the following remark: For every c' <^c<^c3, Bc is F (X°\ ma) -convex,

where ma is the maximal ideal at a. Proof, Let xQ^Xc*-— B°. Since

Bc is r (Xc\ Ox) -convex [12, IX, C8] we can find gtEF(Xc*,Ox) such

that r: = sup{\g(x)\;x<=EBc}<\g(x0) . Let D r={zeC; z <Lr} . Then

we can find f eT(C, Oc) such that |f (gCr0)) ^3 and sup {If (z) ;zE^Dr}

^1 (cf. the proof of Theorem 1.3.1 (b) -> (c) in [13, p. 8]). Hence

if we p u t g ( = ?(flO then we have 3 sup \g (x) |^Jgf (j:0) . Put g'=g — g(a)
xEiBc

ma}. Then sup |gx (^) |<|g7 (x,) \ since ae.Bc. Hence Bc is
JJGBc

) -convex.

Next in the general case apply the above consideration to the pair

(Xs,(p\x,') and obtain/!, - • , f q^ F (Xc
s\ ma} having the properties described

above, where ^a is the maximal ideal of Oxs at a: = Af~]Xs. Restricting

S, we may assume that S, and hence Xc also, are Stein. Then Xc*

also is Stein (cf. [21]). Take gt^r(Xc\J) extending fi

where J is the ideal sheaf of A in X. Let PR={x<=Xc*i |

and Pl= {x^Xc»; \Qi(x) |<1}. Then if we take a neighborhood U of 5

in S sufficiently small, we have Bc' (U} C^fl Xc" (17) gXc< (J7) £5C2 (C7)
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Put b = R, a = l:=(l, -,1), and Pb = PRC(

XC"(U\ Define 0: Pb-*UxK(b) by «=(/,(gi, — , £<?))• Then $ is proper

and hence by (the proof of) [11, VIII, Lemma 2, 2] 0 is an embedding

if we restrict U to a smaller neighborhood of s since (5|^t is one. More-

over Qa = (P1f}X°1' (Uy)~9 the closure being taken in Pb, and the conditions

1) and 2) are immediately verified. Further by our construction ACI

fl-'Ct/X {0}). Then adding g^,--, gt(=F(Xc"(U\ J) to g, which generate

c5 on Pb with |g^(.r)Kl on Pb (after eventual restriction of C7) so that

P& and Qa remain invariant, we finally obtain the desired embedding 0

with 0~1(Ux {0}) = A(U). Q.E.D.

Remark. Let Pa.b = P6-Q« = (5~1(^X (X(£) -X(a)-)). Then from

the above proof it follows readily that for any U"GU'CU we have

§ 4. Proof of Theorem

Let fiX-^S be a morphism of complex spaces and 2 a coherent

analytic sheaf on X. Let Sk(5 , f) = {x^X\ codhx3 f^^k} . Suppose

that 5 is /-flat. Then Sk(S , f) is an analytic subset of X [2]. More-

over the following equality holds [10, IV, 6. 3. 1] :

(5) codh^S" =codh/u,5+codha.3'/(J;) , x^X.

(Thus the bounds for i in the conjecture in the introduction is obtained

by replacing dim S by codh S in those appearing in the mentioned results

a) , b) and c) . In particular both coincide when S is Cohen-Macaulay.)

In general let A= {x^X; 3 is not /-flat at x} , Then A is an

analytic subset of X by [5]. Let U=X— A.

Lemma 46 1. The closure Tk of Sk(2 \u, f l u ) in X is analytic

in X.

Proof. Let Xm = f~l (SnL (5)) and Va=Xa-Xn.l. Let Tm,k =

Vmf}Sm+k($}. Then by virtue of (5) we have Sk(3 \U9 f\^= U Tm,k.
m

Hence it suffices to show that the closure T^>k of Tm>l! in Xm is analytic

for each k. In fact, T^jfc is easily seen to be the union of some of the
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irreducible components of Xmr\Sm+k(3). Q.E.D.

Let f:X-*S be a 1-convex map of complex spaces with exhaustion

function <p: X— » ( — oo, c*) with convexity bound c#& (c*9 c*) . Let 3

be a coherent analytic sheaf on X such that 3 is /-flat on Xc and

codh/EF ^>r on Xc for some r2>0.

Let A!= {.reX; 2- is not /-flat at ^} and A£ = {x&X— AI\

codha?£F/U)<r}. ^ and A'% are analytic subsets of X and X— Aj re-

spectively. Let A2 be the closure of A% in X. Then Az is an analytic

subset of X by Lemma 4. 1. Let .E be the relative exceptional set for /.

Then we set A = Ai\JAz\JE. By our assumption A^XC# and hence is

proper over S. As before, for d^(c#, c*) we set Bd= {x^X; <p(x)<Ld} .

Theorem 4. 2, Let c^. (c#, c*), Then for i<^r—l the following

hold: 1) The natural map #*/4*S -*#*/*»* 5 w isomorphic and 2)

is a coherent analytic sheaf on S.

We need a lemma,

Lemma 48 3. Suppose that f is Stein. Then for any

the natural map -R^/ic^EF ->-R!/ic#S" z's surjective for i<^r—I.

Proof. Since /"is Stein, the connecting homomorphism R1'1 (f\xd) *£F

# 2" is surjective for any c#<^d and fc'Sjl. Hence the lemma fol-

lows from Corollary 1. 4 when z"2>l. Thus it suffices to show that when

r>0, /A#EF— >/j3*#9" is surjective for any d*^>c#. In fact let ^^0 be a

section of 2- on X(U) for some open subset U^S with its support

T=T(tf) contained in Bd(U). Suppose that T^A and take 5^17 with

TS^AS. Ts consists of a finite number of points since Xs is Stein. It

then follows that codhj?2's = 0 for x^ (Ts-~ As)=^=0, which is a contra-

diction. Hence TCI A Q.E.D.

Proof of Theorem 4. 2. Since the problem is local on S9 we fix

a point s^S and consider everything around s.

a. First we assume that / is Stein and A is mapped isomorphically
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onto a subspace of S. For the given c take £*<<~'<

arbitrarily. Then with respect to this data we can apply Lemma 3. 3

to/. So let 0: Pb-*UxK(b} and Qa be as in that lemma. Since the

problem is local on S, we may assume that U=S. By 1) of the lemma we

have Qagj3CPb, where B=BC. Hence by excision RlfB*<3 ^Rl(f\Pl)B*

(2|p t). Thus replacing X by Pbl with P& identified with Its image

in Sx K(b) by $, and then £F by its trivial extension to SxK(b) we

may assume that X=SxK(b),fis the natural projection SxK(b)-*S,

and further that A — Q0: = Sx {0}. We shall then show the following:

(*) the natural homomorphim RifQa*
(3: ->/?*/** 2- , i<?r— 1, are isomor-

phic. In fact, this would imply the theorem in our special case in view

of Proposition 2.1. Now by 1) of Lemma 3.3 Bc'^Qa^BC.Qa,C:X if

we take a' sufficiently near to b with a' <^b (after eventual restriction

of S) . Then for (*) it suffices to show that the natural map RifQa^3

->#*/<?.,* 2" (resp. R*/^'*^ -*Rifn*3), z<>— 1, is injective (resp. sur-

jective) . Indeed, this follows from Proposition 2. 1 (resp. Lemma 4. 3) .

Thus (*) is proved. Note also that since the natural map RrfA* 3 <(£)>

~^RrfQa^2 </e> is injective by Proposition 2.2 (in the notation there with

n replaced by /) , RrfA*3 (ky-*Rrfs*3 <&> also is injective. Further

RrfA*3(ky is coherent by Proposition 2.2.

/?. We consider the general case. As in pan a we put B = BC. Now

A satisfies the condition of Lemma 3.2. So let g: Y-*S and ff:X~^Y

be as in that lemma. Let A'=0(A) and 2 ' /=(T+£F. Then 3 ' is g-flat

on Y— A' and codh^(£F '\Y-A') 2j?~- Then replacing S by a small neighbor-

hood of s we can construct an exhaustion function cpf on Y which makes

g 1-convex and with the following property; (f)'=(p-ff~l on $ (Xc#) and

sup{(p'(y);y^(T(Bc#)}<,c. Then if we set B' -= {ytE Y; <p' (y) <^}y then

ff'1 (B') =B and (p' is strictly plurisubharmonic in a neighborhood of the

boundary of Bf in Y. Then applying part a, to gi Y-^S with the ex-

haustion function <p' we get the following: For z^/'—l, RiQA'*($f

-> R* g B, ̂  ' is isomorphic and R'gB'#3' is coherent. Moreover for k^>0,

Z:RrgA<*S'<ky-*RrgB,*S'<k> ^ injective and RrQA>*3'<ky is coherent.

Here RrgA'*S'(ky is defined to be the g^CV-submodule of RrgA-*S ' an-

nihilated by g,Hc5/fc and RrgB^(2\ky is defined similarly where 3' is the

ideal sheaf of A' in Y, and the result follows from the last remark in
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part a.

On the other hand, 0~~1(B')=B implies that fB*=gB>*tf*' Hence

fB* 2" = QB-* 2 ' and the theorem is proved for z" = 0. So we assume that

f>0 and hence that K>2. Consider the spectral sequence E%>q: =

RpgB'*R9&*2 =$Rp+qfB*S associated to the composite functor fB#=g B'*G*-

First of all, since the support of Rqff^.3 , #>0, is contained in ff(E)^A'

and hence is finite over S, we have RpgB>* (Rqff*3) = Rpg* ( R 9 f f # 3 ) =0

if p^>0. Therefore we obtain the long* exact sequence

(6) 0-»R1g]l.t3'-+"~+Riga.tg'-+RlfBtg

-*g*(Rlff*<S)-*RMgB,*%'^.

By the same reasoning as above g* (R1Q~* 2" ) is coherent for every z^l.

Since RigB'*($' is coherent for z<> — 1, we get from (6) that Rifs*
(S

is coherent for z<Jr — 2. Next consider the natural map into (6) from

the exact sequence

which is obtained in the same way as (6) using the relation fA* = QA'*6 *•

Since KgA'+Z'^RgB'+Z', 1^'^r-l, RpA+g =R'f**3 for z^r-2

by the five lemma. Thus it remains to consider the case z = r— 1. Note

first that jR7""1^^^? has support in A' and hence g^.(Rr~1(T^3) is coherent

and is annihilated by g#<3'k° for some k0^>0 in a neighborhood of 5.

Hence we have the following commutative diagram of exact sequences.

-**r-1' 3 ' -+Rr~l 3

Since X is injective, the isomorphism Rr~1fA*2 ^Rr~lfs#S follows again

by the five lemma. Then the coherency of Rr~1fs*
<3: follows from that

of Rr~1fA*S , which in turn follows from the top line of the above

diagram in view of what we have proved above. Q.E.D.

Proof of Theorem. By the definition of Rlf{ we have the natural

isomorphism lim RifSc*<S =Kf\Z . By 1) of Theorem 4.2 all the

homomorphisms in the inductive system {KLfBc*
(±}c^c^ are isomorphic.

TT'

Hence we have R^Bc+S =R*fi3 for every r e (^ # ) r* ) a From this
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follows the coherency of Rlfi5 by 2) of Theorem 4. 2. Since for d

e (c#,c*) if we take any ce (c#, d) , then we get that RLfdi
(3 ^

, Theorem follows.

Remark. From the proof it also follows that the natural map

#2— ».#*/! 2, f^r— 1, is isomorphic, where A is as in Theorem 4,2,

Proposition 4.4. Let f:X-*S be a (1, 1) -complete map of com-

plex spaces with S Slein and with exhaustion function <p: X-* (c#y c*) .

Let 3 be an f-Jlat coherent analytic sheaf on X. Let r = codh/EF.

Suppose that f admits a Stein completion f:X-*S (cf. [15]) and 2

admits a coherent extension *3 to X. Then: 1) The restriction map

Rtf*(3-*Rifd*<S is isomorphic for 0<^<> — 2 and <r/G (c*, £*) -where

fa — f\xd- 2) JRy^.2 is coherent for !<^/<[r-- 2. 3) The natural map
r) 75 isomorphic for 0<z'<r-2.

Proof. For any <r/G (^*, r*) we construct a C"° extension ^ of

^Uv 10 X for some c<df <d such that ^ (X-AV) £ ( — oo, d']. Then

/ becomes a 1-convex map with exhaustion function cp with convexity

bound dr . Then we can speak of Bd with respect to this (p. Then we

have the standard exact sequence

(7),

where Rlf*3<=0 since f is Stein and R1/]}**^ is coherent for

^r~l by Theorem 4.2. Hence R*fd*3 =R^ lfB**3 is coherent for

If^z'^r— 2. Moreover by 1) of Theorem 4.2, considering the natural

morphism from (7) c to (7)d for c#<^c<^d, it follows from the five lemma

that the restriction map -RVC*2— >Rifd^3 is isomorphic for 0<^z"<Jr— 2.

(For the given r and rf take d' above in such a way that d'<^c.) Then

by [20, Lemma 4.1] 'K'f^Z ~^RJ'fd^3 also is isomorphic. In particular

R*f*S is coherent for l^z'<Jr — 2. This proves 1) and 2).

We show 3). We may assume that 7*^>3 and ?>0. Consider the

Leray spectral sequence for/and 3 ; Ej>q: = Hp(S, Rqf*S)=*H*+9(X, 2").

Since ^5/^2 is coherent for l^g^7"-2 and S is Stein, Hp(X,Rqf*S)

~0» A>0, l^g^r — 2. Hence it is enough to show that for all
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H*(S,f*3)=0, or equivalently, Hp(S,fa*S) =0 for some rfe (c*, c*)

by 1) . Consider the short exact sequence

(8) 0->/B**3-+f*3-+f**3 -»&&**$ -»0 .

Since RlfB**3 is coherent for 0<^r-l and 5 is Stein, £P(S, RlfB^)

= 0, £>0. Hence, in view of (8), it suffices to show that Hp(8,f#5)

= 0, p^>0. Considering the Leray spectral sequence for f and 3 and

noting the fact that / is Stein, we get that H* (S, /* ff ) - Hp (X, 5 )

= 0 since X is Stein. Q.E.D.

Combining the above proposition with the main results of [6] we

obtain the following:

Corollary 4« 58 Let f:X-*S and £F be as above. Let

Then the conclusion of Proposition 4. 3 is true in a neighborhood of

o if the following condition is satisfied: Let (Xo)^ be the maximal

Stein completion of X0 and (2r
0)"' the maximal coherent completion

of 3Q to (X0)~~ (cf. [6]). Then

Remark. The above results are immediately generalized to the case

of a (1, 1) -convex-concave map. However for the conjecture in the intro-

duction in this case it still remains to consider the case where codh SF0^3

and codh (3" 0)^ = 2. In view of the above proposition this case can be

reduced to a conjecture on Stein completion of (1, 1) -complete maps and

coherent extension of sheaves (cf. [6]).

Corollary 4.6. In the above proposition suppose further that

3 is f-flat and codh^^r. Then J?*/s|62'=0, 0<z^r-2, and the

restriction map /*ff->/**2 is isomorphic.

Proof. For 0<t^r-2, R'f+3 QzRt+lfB<*§ ^Rt+1fA+& in the no-

tation of the proof of Proposition 4. 4 with A as in Theorem 4. 2. On

the other hand, our assumption implies that we can take A = 0, Hence

=Q9 Further form (8) it follows that f*3=f*3. Q.E.D.
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§ 5o A Relative Vanishing Theorem

Let f:X->S be a morphism of complex spaces and 3 an /-flat co-

herent analytic sheaf on X. Let ^SjO be an integer and oEiS a point.

Tf f is proper, then from the vanishing of H q (X0, EF0) follows the vani-

shing of Rqf* 2 in a neighborhood of o (cf . [3] ) . We shall generalize

this as follows.

Proposition 5.1. Lei f:X—>S, 2, q and o^S be as above.

Suppose that for every locally closed analytic sub space T^S the q-lh

direct image sheaf RqfT^lT (resp. R^T&T) is coherent. Then if

Hq(X0, 50) =0 (resp. Ha
c(X0, £?0) =0), R*f*3 -0 (resp. Rqf^ = 0) in

a neighborhood of o,

In view of [19] (resp. Theorem) the above proposition yields the
following:

Corollary 5« 2, Let f:X—>S and 3 be as above, 1) Suppose

that f is p-convcx for some p^>0 (cf. [19] modulo the remark in I he

introduction). Then if Hq (X0y 2"0) =0 for some Qe5 and some <7^>A

Rqf*S =o in a neighborhood of o. 2) Suppose that f is 1 -convex

and Hl(X0, EFo) — 0 for some o^S and some #<^codh 30 — 1. Then

Rqf\2 =o in a neighborhood of o.

When f is 1-convex, 1) is due to Riemenschu eider (cf. Comment.

Math. Helv., 51(1976)). The following is a relative form of the vanish-

ing theorem of Grauert and Riemenscbneider [9] in the 1-convex case,

which has an application to a stability problem of exceptional divisors

[7]-

Corollary 5.3. Let f:X~*S be a smooth \-convex map of com-

plex spaces and Q a locally free coherent analytic sheaf on X. Sup-

pose thai for some o^S the vector bundle corresponding to C0 is semi-

negative in the sense of Nakano (cf. [9]). Let r = dimX0. Then

Rqf[G =0 in o neighborhood of o for q<^r—l. In particular Rqf\0x



54 AKIRA FUJIKI

= 0, q<Lr— 1, i?i a neighborhood of o.

Proof. Let <p:X-^-( — oo, £*) be an exhaustion function for the

strongly pseudoconvex manifold X0. Let £# be a convexity bound for <j?.

Take ce(c#,c*) in such a way that the boundary bX€
0 of XC

0: = (X0)
c

is smooth. Then by [9] Hq(Xl <?0) -0, ?<>-!. Hence Hq(X0,£0)

= Hq(Xc
0,£0)=Q, 2<>-l. The corollary then follows from 2) of the

above corollary.

Proof of Proposition 5.1. Let ra = dim05. We proceed by induc-

tion on m. Suppose first that m = Q. Then just as in the proof of [3,

p. 120, Cor. 3. 5] we see more generally that for any coherent analytic

sheaf 3 on 5, Rqf* (3®oxf*3) =0. So suppose that w>0. First con-

sider the case where codh0<S'>>0. Then we can find a neighborhood o^U

and t€=r(U9#t0) which is not a zero-divisor in 0$, s for any sEiU, where

m0 is the maximal ideal of Os at 0. Since £F is /-flat, we have an exact

sequence 0-» 2" — >E?-^ S/tS — >0 on X(U) where O^ is defined by the

multiplication by £. From this we obtain the long exact sequence

-»£«/* SF ̂ JfJ'/* 5 ^-K8/* ( 3 It 5 ) -»

on C7 where C^' is defined by the multiplication by £. Let <S" be the

subspace of S defined by £ = 0 and f'\X'-*S' the induced morphism.

Then dim0S'O. Hence by induction R*f* (<S/tS) =Rqf* (3/tS) =0

in a neighborhood of 0. On the other hand, by virtue of the above

exact sequence Rqf^2/tRqf^3 injects into Rqf*(3/t3) and hence itself

vanishes. Since Rqf^,3 is coherent, by Nakayama Rqf^3 =0 as was

desired. Next suppose that codh05=0. Then we may write uniquely

S=Si\JS2 in a neighborhood of 0 where dim05i = 0 and codho/S^Sjl (cf.

[6]). Let Xi = XSi, 3i=2Si and fii Xt-+ St be the induced morphisms,

x = l, 2. Let S be the ideal sheaf of Os defining Sz in S, Then we have

the obvious short exact sequence 0— ><JT£F — >EF — >EF2~>0 and the resulting

long exact sequence

-»/? V*^ ->£«/» 5 ->^?4/* 5 , ->.

First of all, Rqf^(Sz = Rqfz^z — ̂  as we have proved above. Thus it
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suffices to show that Rqf*JS =0. Since S is already an 0^-module,

by the flatness of 3 we get 3<$ ^J®0sS = J®oSlOSl®osS =<3®o,&.

Then since dim^^O and Hq(X1>0, £Flf0) =Hq (X0,30) =0, by what we

have remarked above Rqf^ (<9<8)o8l%i) =®- Hence Rqf*J<3: =0 as was

desired. Finally replacing * by ! in the above argument we obtain the

assertion for Rqfi^, too. Q.E.D.
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