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A Coherency Theorem for Direct Images
with Proper Supports in the
Case of a 1-Convex Map

By

Akira FUJIKI*

Introduction

Let f:X—S be a morphism of complex spaces and % a coherent
analytic sheaf on X. If f is proper, then the higher direct image sheaves
Rif,F are coherent for all i==0 by Grauert [8]. Generalizations of
this theorem to certain classes of non-proper morphisms have also been
obtained by several authors, among which we shall mention the following
results, being of particular interest to us here (cf. also [22]). Let ¢==0
be an integer. Then: a) If f is g-concave, then R'f,F is coherent
for i<codh —dim S—qg—1 [17]. b) If f is g-convex, then R'f\F is
coherent for i<<codh & —dim S—gq [4], where /) denotes the direct image
with proper supports. ¢) If f is (1,1)-convex-concave, then R*f, S is
coherent for 1<{7<{codh & —dim S—2 [15]. (Note that here and in what
follows the terms ‘g-convex’ and ‘g-concave’ are used in such a way that
when S reduces to a point, they coincide with the notion of ‘fortement g-
pseudoconvexe’ and ‘fortement g-pseudoconcave’ respectively of Andreotti-
Grauert [1]. Hence they should be called ‘(¢—1)-convex’ and ‘(g—1)-
concave’ respectively in the terminology of [4], [17], [18] etc.) Though
these results are best possible as they stand, we could expect to improve
the bounds for 7 under the additional assumption that < is jf-flat, and
in fact in such a way that the condition is stable under base change.

The latter fact would indeed be useful in certain applications (cf. e.g. § 5

Received November 25, 1980.

* Research Institute for Mathematical Sciences, Kyoto University.
Current address: Yoshida College, Kyoto University, Kyoto 606, Japan.
Supported by the Sakkokai foundation.



32 AKIRA FUJIKI

below) and is in general not satisfied in the condition of the above men-
tioned results since the quantity codh ¢ —dim S is not stable under base

change. More precisely we raise the following:

Conjecture. Let 0<p, g<+oo. Let f: X—>Sbea (p,q)-convex-
concave map of complex spaces and & a coherent analytic sheaf on X.
Suppose that there exists a closed subset K of X such that K is proper
over S via f and & is f-flat on U=X—K. Let r=codhy,, (Z|v).
Then 1) R'f,¥F is coherent for p<<i<r—g—1, and 2) R'f\F is co-
herent for ¢<i<r—p.

For the precise definition of a (strongly) (p, q)-convex-concave map
we refer to [21] or [18] modulo the above remark, the case p=0
(resp. ¢=0) being understood to be the pure g-concave (resp. pure p-
convex) case. On the other hand, in general for a morphism of com-
plex spaces g: Y—T and a coherent analytic sheaf & on Y, codh,@ is
defined by codhgg=iré£(codhygg(y)). Hence when S is nonsingular, or
more generally, is Cyohen-Macaulay, the above results a), b), c¢) give
the conjecture under the respective assumptions (cf. (4.1)).

Now the main purpose of this paper is to prove 2) of the above
conjecture in a special case where f is l-convex, making use of the fact
that f is then a proper modification of a Stein morphism. We first
recall the precise definition of a l-convex map. Let f:X—S be a mor-
phism of complex spaces. Then we call F a l-convexr map if there
exists a real C”-map ¢: X— (—oo,c*), —oo<{c*< + oo, called the ex-
haustion function for f, such that 1) the set {r&X; ¢ (x)<c} is proper
over S via f {or every c¢<{c* and 2) there exists a real number cy<c*,
called a convexity bound for ¢, such that ¢ is strictly plurisubharmonic
on Xc#={xeX;go(x)>c#}. In this case for each d<lc* we set X*
={rxeX;p(x)<d}, S*=flxe: X*>S and fc#=flxc#:Xc#—>S. Then
the following holds ture.

Theorem. Letr f: X—-S be a l-convexr map with exhaustion
Sunction @:X—(—oo,c*) and F a coherent analytic sheaf on X.

Let cy€ (—o0,c*) be a convexity bound for ¢. Suppose that < is
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S-flat on X.,. Then for 1'<codhfc#(fﬂxc#), R N\F is coherent and
the natural map R'fFPF —->R G is isomorphic for de< (cg, c*).

Moreover combining the above theorem with the result of [6], in
the l-concave and (1, 1)-convex-concave cases we can also improve the
result of Ling [15] (cf. ¢) above) toward the above conjecture (cf.
Corollary 4,4 below).

Now we shall give a brief outline of the paper. First in Section 1
using the method of Siu-Trautmann [23] we prove a certain refinement
of a result of Andreotti-Grauert [1], which is essentially a generalization
of [1, Proposition 12] (cf. also its proof) to the case of a possibly singular
parameter space. Then in Section 2 again by the method of [23] we
show the coherency of certain direct image sheaves Rz with sup-
ports in B where m:.SX K (&) —S is the natural projection, B=Sx K(a)~
for some a<b and & is a coherent analytic sheaf on SX K(b) which
is w-flat on SX(K(6) — {O}) (cf. Notation below). Also we prove re-
sults on isomorphy of R'Zz%% when a varies. Next in Section 3 some
lemmas are proved which is needed for preliminary reductions of Theo-
rem; Lemma 3,2 is used to reduce the case of a general l-convex map
to the case of a Stein l-convex map with a special property, and then,
the latter case is {urther reduced to the case where f is isomorphic to
the projection @ above by Lemma 3.3. Once f is the projection, then
by the refinement of Andreotti-Grauert’s result together with the iso-
morphy of R'mz G, both mentioned above, we can finally reduce Theorem
to the above coherency result of R7z%. These reductions, and hence
the proof of Theorem, are given in Section 4. Finally in Section 5 we
obtain a relative version of the vanishing theorem of Grauert-Riemen-

schneider [9] as an application of the above coherency theorem.

Notation. l.et f:X—S be a morphism of complex spaces and F
an analytic sheaf on X. 1) For any morphism «: 7—S of complex spaces
we write Xo=XXT, fr=FfXsT: Xp—T and =¥ where n7: Xr
— X is the natural projection. In particular if 7'={s} is a point of S,
then we write X, f;, & instead of Xy, fig, & s respectively. On the
other hand, if T'=U is an open subset of S we often write X(U) instead
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of Xy. 2) Let B be a closed subset of X. Then we shall denote by
R'fpF the Ogmodule defined by the presheaf U—FHj, (X(U), F)
where U is any open subset of S and By,=BNX(U). R'fzn% can
also be defined as the Z-th derived functor of the functor fzS with
foF =R°fpF as above. 3) For any integer k2 we write S;(<)
={re T ;codh,F <k} and S;(X) =S5;(0x), where codh,F = + oo if xe&
supp%, supp denoting the support. 4) For a subset M of X, M~ denotes
the topological closure of M in X. 5) Let b= (&,---, by) € RY for some
N>0 where R,={c=R;c>0}. Then K(&) = {(wi, -, wy) €C"; |
<by, 1<i<<m}.

§ 1. Surjectivity Lemma of Andreotti-Grauert
for a Flat (1,1)-Complete Map

Let D, (resp. D;) be a domain of C* (resp. C¥). Set m=n+N
and D=D, XD, C"x C"=C™. Let w: D—D, be the natural projection.
Let ¢: D;—R be a C” strictly plurisubharmonic function on D, and @
=¢@p, where p,: D—D, is the natural projection. Let &= (§, &) D,
&eD, and &€ D, and c=§(£). Let Y={2€D; §(2)>c} and Z=D
—Y= {7 () <0

Lemma 1.1. Let A be an analytic subset of D, and a=dim, A.
Let Z,=ZN\w"'(A). Then there exists a fundamental system of Stein
neighborhoods {Q} of & in D such that Hj,(Q, Op) =0, i<m—a.

Proof. «. First we assume that A is smooth at §. If a=n, then
the result follows from [1, Prop. 12] since @ is clearly strictly (n+1)-
pseudoconvex on D in the sense of [1]. So we assume that n>a.
Take local coordinates wj,---, w, of D, at § in such a way that w,,
=...=w,=0 is a system of defining equations of A at &. Let
Y= :\_‘_, [w;|? and § =¢n. We may assume that 4, = {|w| <1, 1<i<n} € D,
andi—;flis smooth in 4,. Similarly take local coordinates zi, -+, 2y of D,
around &, in such a way that 4,= {|=;|<{1} € D,. Let 4=4,X 4,. For k=2,
3, .« we define 3,=3— (1/F) +kd, Ui={P:(x)>c} and dy= {|wi| <
1—QA/R)}, du=A{lz/<<1— Q/&)}. Put d,=4 X4y and U,=U,' 4.



COHERENCY THEOREM FOR DIRECT IMAGES 35

Then U, {form an increasing sequence of open subsets of d—Z,= (4—
7 '(A)N Y, such that U,€ Uy, and 4—Z,= U U,. Consider the following
assertion: ’
(" H'(Uy, Op) =0, 0<i<m— (a+1) and H°(4y, Op) =H(U,, Op) if
m— (a+1)=1.

If we show (”) for each £, then as in the prool of Lemma 2 of
[1, p.222] it [ollows from [1, Prop.9] that the assertion (”) is also true
for 4—Z,, i.e., (”) is true with U, and 4, replaced respectively by
4—Z, and 4. Since (") for 4—Z, is equivalent to Hj, (4, Op) =0,
i< m—a, and since 4 with varying w; and z; form a fundamental system
of Stein neighborhoods of &, 1) follows. It remains to prove (”). Let
A: 4i—> A be defined by the projection along the linear subspace defined
by w,=---=1,=0 regarding A as a subdomain of C*(wy, -+, w,). Let
0: Uy.— A be the map induced by A=Aan|,: 4~A. Consider o naturally
as a family of subdomains of CV*" *=CV"""%(zy, *+, Ty, Was1, ***, W,) OVer
A in the sense of [1,§3]. Then since @, is strictly plurisubharmonic
when restricted to each fiber AM=Z“’([) N4, te A, of 1 we have
H*(Uy, Oy,,) =0, 0<i<<m—a—1 and H°’(4y, Op) =H"(Uy, Op) by [1,
Lemma 2, p. 222], where U,,=07"(¢). From this (”) follows just as in
part 8 of the proof of [1, Prop.12].

(. Next in the general case let A, be the singular locus of A and
A’=A— A, Let U be any Stein neighborhood of & and U’'=U-— A,.
Then A’ is closed in U’. Let 4, be any relatively compact polydisc in
D, centered at §,, Then the proof in & shows that for each weU’
there exists a fundamental system of Stein neighborhoods {N} of w in
U’ such that Hj, (NX 4, Op) =0, and hence that R7,,,0p=0 on U’,
i<<m—a, where Z,, =ZNa"'(A’) and T=n|p,xs,- Then from the stand-
ard spectral sequence EF?%: =H?(U’, R, +Op) =>HZI (U’ X 4;, Op)
we have Hz, (UX 4, Op) =H}, (U’ x4, Op) =0, i<<m—a. Since U and
4, were arbitrary, {from this follows the lemma by induction on a as in

the proof of [23, Prop.1.12]. Q.E.D.

Now let V be an analytic subspace of D, and set W=V x D, D. Let
% be a coherent analytic sheaf on W, identified with its extension by zero

to the whole D. Let wy=n|p: W—V and r=codh,¥,, (cf. Notation).
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Proposition 1.2. Suppose that & is nw-flat. Then there exists
a fundamental system of Stein neighborhoods {Q} of & in D such
that the following is true: 1) If r=2, then the restriction map
H(Q, 9)—>H"(QNY,4) is isomorphic, and 2) H'(QNY,F) =0,
0<i<r—1.

Proof. Since Q is Stein, it follows that 1) and 2) together are
equivalent to the following: HZ(Q, F) =0, i<r—1. Since F is my-flat,

there is an exact sequence
0-08—- > O0p—>F —0

in a neighborhood of § where IXN—7 (cf. [6]). Hence by descending
induction on 7 we can reduce the problem to proving the following: (k)
HEi(Q, Oy) =0, i<N—1 with Q as above (cf. [1,§15]). To show (%)
we follow the method of Siu-Trautmann [23,§1]; in the notation of
Lemma 1.1 we can prove successively the following two assertions.

1) H:,(Q,9) =0, i<codh,G—a for any coherent analytic sheaf &
on D,

2) Let 4 be any coherent analytic sheaf on D, and &=n*JY.
Let g0 be an integer. Suppose that dim; A Se+q+1-v (H) <k for every
integer 2. Then H},(Q, 9) =0, i<q.

In fact, 1) follows from Lemma 1.1 by induction on codh.& by
exactly the same way as in the proof of Proposition 1,13 of [23].
Similarly the implication 1) —2) follows by the same method as in the
proof of Theorem 1.14 b)—c) of [23], using induction on a and noting
that codh,G =N+ codh, 4. Finally 2) implies (%) as follows. Let A
=D, and A =0s in 2) so that G=0Oy and Z,=Z. Further if we let
g=N-—1, then the assumption reduces to dim, S; (9) <% for all k, which
is always true (cf. [23]). Thus (%) follows. Q.E.D.

Let f:X—S be a morphism of complex spaces. Then we call f
a (1,1)-complete map if there is a C* strictly plurisubharmonic function
@: X (cg, €*), —00=Zc<c*< + oo, called the exhaustion function for
f, such that for any c¢,<{c;<lc,<lc* the restriction of f to {a=¢=<cs}
is proper. For c,<c,<e,<lc* we write Xi*= {reX; a;<<¢(x) <cj}, and
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c=f|x%. The following is a relative form of a result of Andreotti-
Grauert [1] analogous to [15, Prop.2.4.3] (cf. also [20, Prop.11.12])

under flatness assumption.

Proposition 1. 3. Let f: X—>S be a (1,1)-complete map of com-
plex spaces with exhaustion function ¢: X— (cy,c*) and F an f-flat
coherent analytic sheaf on X. Let r=codh;F. 1) Let c,<c'<d'<<d”
<c"<c*. Then for each s&S there exists a fundamental system
{U} of Stein neighborhoods U of s such that the restriction map
HY (X2WU), F)>H (XL WU), F) is surjective for 1<i<r—2. 2) Let
CxZeld<eZc*. If r=2, then the restriction map I'(XE(U), F)
->I'(XEWU), F) is surjective with U as above.

Proof. It is enough to show that for a suitable {U} as above the
restriction maps 7: H* (X5 (U), F) >H (X% (U), F), 1<i<r—2, and
7o HY(X%(U), F)->HY (XL (U), F), 0<i<<r—2, are surjective, where
'<d'<d"<c"” are as in 1). First of all the surjectivity of 7, can be
proved just as in Andreotti-Grauert [1, Prop. 16] (cf. also [4, Lemme 1])
and the proof is omitted. On the other hand, in view of [1, p. 241, Lem-
ma] the surjectivity of 7, can be reduced to Proposition 1.2, just in the
same way as the proof of [20, Prop.11.12] is reduced to (the proof of)
[20, Prop. 11. 8]. Q.E.D.

Corollary 1.4. The restriction map R'fo,F >R fi.F is sur-
jective for 1<i<r—2 in 1) and [fi.F — 5. F is surjective if r=2
in 2).

Remark. The same proof applies without any change to the case
of a (p, g)-convex-concave map to yield the surjectivity of H*(X& (U), 4)
>H (X$U),F) for p<i<r—q-—1.

§ 2. Basic Coherency and lsomorphy Results

Let S be a complex space and b= RY for some N>0. Let W=
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SX K(5)ZT Sx €Y (cf. Notation) and 7: W— S the natural projection. Let
W' =W— (Sx{0}) and 7’:=7x|w.. For 0<Za<ld,i.e., a;<lb; for 1<i<N
we put Q,=SX K(a)~ where a=(a, *», ay) and b= (b, -+, by). Here
for a=0, i.e., a;=0, 1<{<<N, we understand that Q,=SXx {0}.

Proposition 2.1. Let 4 be a coherent analytic sheaf on W.
Suppose that F is n’-flat on W’ and codh, (¢ |w.) =7 for some r=0.
Then for every i<r—1 1) the natural map R'Tg,F —>R'me F is
isomorphic for 0<a’<a<lb and 2) R'me,+TF is coherent for 0<a<lb.

Proof. «. Since the problem is local on S, we fix a point s&€.S
and consider everything around s. First by Lemma 2 of [6] after re-
stricting S around s if necessary, we may assume that there exists an

exact sequence of coherent Oy-modules

(¢)) 0—>,f—>@$j"'l——>---—>@#}»g—>0

such that m=N-—7 and [ is locally free on W’. (Taking & smaller
and using the excision we may assume that (1) is defined on the whole
W.) Using (1) we can readily reduce the proof by descending induc-
tion on 7 to showing that for {<XN—1 and 0<a<(b, the natural map
Rimg,« L —>R'mg, L is isomorphic and Ry, 4L is coherent. For this pur-
pose, however, we have to treat a little more general situation. Let
d:= (dy,"*,dy), 0<g<N, be a g-tuple of integers with &;=>1. Let Lq
be the subspace of CY(z,, :--, zy) defined by the ideal (2%, ---,2%). For
g=0 we understand that Ls=C". Set Wyg:=W (SX Ls) =SX (K(b)
NLg) and Wy:=Wy;—Q, Then the above assertion is a special case
(g=0) of the following one:

(x) Let L be a coherent analytic sheaf on Wa which is locally
free on Wy. Then for i<p:=N—q and 0<a<lb, the natural inap
Rimg L —>R'mg,« L is isomorphic and R'mg L is coherent.

The rest of the proof is then devoted to prove ().

B. Restricting S around s and taking & smaller (cf. the remark
above) we may assume that S is a relatively compact subdomain of a
Stein space S and ¢ is defined on 8’ X K(b) . Fixing « we put Q=0Q.,.
Let 4 be the ideal sheaf of Q, in W. Then we shall first prove the



COHERENCY THEOREM FOR DIRECT IMAGES 39

following assertion:

(A) Let U be any open subset of W. Then I'(U, 9)'H{U, L)
=0, i<p, for some sufficiently large [ which is independent of U.

To prove (A), we have to consider a still more general situation.
Let A be any analytic subset of S” and Q,=QON 7 '(A4). Identify S with
Q, and consider A also as a subset of W. Let J, be the ideal sheaf
of A in W. Let S; be the union of those irreducible components of
Se (L) which are not contained in A. Then (A) is a special case of
the following assertion:

(A) If dim(ANS,. )<k for every k and some p=0, then
I'(U,Y9,)'H}, (U, L) =0, i<y, for a sufficiently large | which is in-
dependent of U.

In fact, if in (ﬁ) we put A=.S5 and y=p, we get (A) since it is
always true that dim SN S;,,=dim S, (S) <k for every £ Here the first
equality follows from the relation S;=7""(S;—,(S)), which can be seen
as follows: Since [ is locally free on Wi, we have Sp (L) lw; =S: (Wh)
=7""1(8k-»(S)). From this it follows that for any irreducibleA component
Sk, of S (L) with S, W@ there is a unique irreducible component
Ty, of Se-p(S) such that S,,=n""(T%:,). Conversely if T}, is any ir-
reducible component of S;_,(S), then 7#7'(T%,) is an irreducible compo-
nent of S; since it intersects with W’ and coincides with an irreducible
component of S, (Wy) N W’. Hence Sy=7""(Sc-p) (S).

7. We shall show (A). We may assume that S is an analytic
subspace of a domain D, of C" for some 2>>0 [12]. Let D=D; X K(b)
and m=n+N=dim D. Let G be a coherent analytic sheaf on D and
J, the ideal sheaf of S,., (&) in D where 0<y<<m —a and a=dim A.
Then just as in the proof of [23, Lemma 3. 3] we deduce that 7' (U’, J,)*
H;, (U’, G) =0, i<u, for a sufficiently large / which is independent of
U’, where U’ is any open subset of D. Indeed, in view of the vanish-
ing of R'mg,+Op, 0<i<<m—a, (which follows {rom a lemma of Frenkel
[23, (0.14)] when A is nonsingular, and in the general case from this
special case as in Lemma 1.1 above), if we replace & and A by & and
Q. respectively there, the same argument works. From this (applied
to §=_) together with the above description of the sets S;, we can
prove (A) by the same method as in the proof of Lemma 3.4 of [23],



40 AKIRA FUJIKI

using the filtration of A by the subspaces Az:=AMN Sts,

0. Finally we shall deduce (*¥) from (A). We proceed by induc-
tion on Z, 0<{i<{p. First we note that mg L =74l and mg,L is co-
herent. In fact since . is locally free on Wy, oyl =g x.L =74 (¢, L),
and the latter is coherent since I'g,(.L) is coherent and Q,=S (cf.
[23, Prop.1.9]). So suppose that p>i>0. For each />0 we have an

exact sequence of (Oy-modules
2 0> K> L5 L )2 L—0

where a; is the multiplication by 2%, 2=2.4;, and K, is the kernel of a;.
In particular since L is locally free on Wy, the support of K, is con-
tained in Q, and hence is finite over S, so that 7o K,=m. K, and is
coherent, and that Rimg. K, =R'm,K,=0 for ©>0. On the other hand,
since z€I" (W, J), by (A) the map R'mg,L—>R'me.L induced by a,
are zero maps for 7<p and [>0. Hence from (2) we get for />0 the

exact sequence
(3) 0—>R"17EQ*I-—>Ri_17EQ*I/zl,E '—>Ri7fq*£‘—>0 , 1§i<p .

Note that L/2'.L is a coherent analytic sheaf on Wy =W Ls with
d’' = (dy, +++, dgy dgs1), dge1=1, which is locally free on Wg := W, —Q,.
By induction both R'ry, L and R 'mg,L/2'.L are coherent since i—1
<p—1=N—(g+1). Hence from (3) follows the coherency of Rmg,.L.
Similarly comparing the exact sequence (3) with the corresponding ones
with Q replaced by Q, (noting that a was arbitrary) we obtain the
isomorphy of the map R'mg,+F —R'me,F, i<p, by induction and five
lemma. Q.E.D.

Using the previous notation, let J be the ideal sheaf of Q, in W.
For every 74 Ow-module 4 and every integer 2>0 we define the sub-
module H<&> of 4 by the submodule defined by the local sections an-
nihilated by 7, J*C7,Ow;

JLEps={aeIHs; eI sa=0}; s&8S:

In particular for 0<{a<(b we can speak of the 7,Ow-submodule R'7q F<k>
of R'mg,»%. On the other hand, we note that if 4 is coherent as an
Ogmodule via the natural inclusion Os&7,.0n then J<E)> also is a
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coherent Og-module. In fact, by the definition of J we can find, for each
k, elements ¢, -+, g. I (W, 9*) such that ¢;, when considered as sections
of w49, generate 7, 9" as an m,Op-module at each point of S. Then we
obtain an exact sequence of 7,OQy-modules 0—H<k>— I —IH®, where
the last arrow is defined by 4 2h— (¢:h) € H®'. Hence <k also is a

coherent Qgmodule.

Proposition 2. 2. The notations and assumption being as in Prop-
osition 2.1 the following holds true: 1) The natural map R'mq,, . k>
= R'mo, «F k> is isomorphic for 0=Za’<la<lb and 2) R'me, Y <k
is coherent for 0<<a<<b.

Proof. Fixing 0<a’'<<a<(bt we put Q=0Q, and Q' =Q,.. We shall
prove the proposition by descending induction on 7<{N. Suppose first
that 7<{N. Consider the exact sequence (1) in the proof of Proposition
2.2 and let 9=KerAd. Then we have the long exact sequence on S

y
= R'ouOF > R'Tqu F >R ™'y &— R 1o Op—

. v
associated to the short exact sequence 0—>G—0F—>F —0. Let K
=y N (R"M7q,G<k>). Then we get the exact sequence

(4) > R70x G- R1auOF— I R0 Gk — R0, OBCES

Then R'7¢.% and R'mg,0f are coherent by Proposition 2.1 and
R4, G<ky, and R™'woOf<k) also are coherent by induction since G|y is
n’-flat and codh (&) =r+1. Hence 4, also is coherent. On the other
hand, we have R'mg, S <k>CS ¥\ and hence R'mg,F <E)>==9{{k>. Hence
the coherency of Ry (k> follows from that of 4, by the remark just
before the proposition. As for 1), since for G’:=¢ or OF, we have
R4, G’ <ky =R "1, G’<k> by induction and have R'7q G’ =R, G
by Proposition 2, 1, comparing the sequences (4) for Q' and Q we obtain
by the five lemma that H;=JY(; and hencc H'<k>=H<k> as desired
where Y} is the I, in (4) with Q replaced by Q’.

Thus it remains to consider the case »=N. In this case < is locally
free on W’. As in the prool of previous proposition we have then to

deal with the more general situation described there. Using the notation
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there for any coherent analytic sheaf [ on Wy, d=(d, -+, d,), which
is locally free on Wy we prove the following assertions; 1) Rmg...L<{k>
=R, L k> and 2) RPmg. L<k) is coherent, by induction on p=N—q.
First, if p=0, then W, is finite over S so that 1) and 2) are immediate
to see. So assume that p>>0. Then as we have deduced (3) from (2)
in the proof of the previous proposition, for p—>1 we have from (2) an

exact sequence of Og-modules
_ T _ . 0 a
=R 'y L >R gy L /2" L —>RPqy L5 RPTgs L —

for every sufficiently large %, with 7 injective for p=>2. Since a; is
defined by the multiplication by =, z==z,.,, R?T¢,.L<k) is in the image
of 0. Moreover by (A) in the proof of the previous proposition
RP'7y, [ is annihilated by 79" for some 4 >0. Hence R?mqy L <{k) is con-
tained in the image M, of (R?'mo L /2" L)k+ k) by 0. Hence RPmq..L<k)>
= M<(ky. On the other hand, since M= (R* gL /2" L)+ k)/Im7
and (RP 'WouL /2" L)k+ k> (resp. R*'mgel) is coherent by in-
duction (resp. by (%) in the proof of the previous proposition), M, is
coherent, where we note that R? ', = (R* 'geL)<{k+ k). Thus
RPry, L{k> is coherent as above. Moreover since R? '7g L —> R 1o, L
(resp. (RP 'y L /2" L)+ k>— (RP Ty L /2" L) {k+ k) is isomorphic
by (%) in the proof of the previous proposition (resp. by induction)
the natural homomorphism M;— M, is isomorphic where M} is defined
analogously to M, for Q'. Hence R?mg L {k>— R’mo,.L{k) also is iso-
morphic. Thus the proposition is proved for £2>0. Since R’mq. L <k
= (RPou Lk >)k> for K>k in general, the general case follows from
the above special case. Q.E.D.

§ 3. Some Lemmas

Let X be a complex space and F a C-subalgebra of I' (X, Ox). We
recall briefly the theory of F-quotient of X. For more detail see Wieg-
mann [24]. We denote by the same letter F' the equivalence relation
defined by F on (the underlying topological space of) X; x~y&h(x)
=h(y) for all h& F where x,yeX. Let Y=X/F be the topological
quotient space of X by F and 0:X—Y the quotient map. Then we

define the sheaf of local rings Oy on Y as follows;
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Oy,y=1m{AU) ; U open neighborhoods of y},yeY

where A((?) is the subalgebra of I'(G7'(U),Ox) such that he
'@ WU),0x is in AU) if and only if there exist a convergent
power series Y cj.;,Tie-Ti, ¢i,.i, €C, in d indeterminates 7; for
some d>0 and elements fi, -+, foa€F with f;(x) =0 for all x&d'(y)
such that X cy,..i, fi'-++ f4* converges and equals & on ¢ '(U). Then
we have the natural surjective morphism of local ringed spaces 0: X—Y,
and then regarding 7" (Y, 0,y) as a subalgebra of I'(X,0y) via 0 we
have the natural inclusion F& I'(Y, Oy).

We call X F-convex if for every compact K& X its F-convex hull
K pi={reX; |h(x)|<sup{|h () |;yeK} for all heF}

is again compact. Then Wiegmann [24] proves the following:

If X is F-convex, then Y= (Y,0y) has the natural structure of
a Stein complex space such that 0 is a proper surjective morphism
of complex spaces.

In this case we call Y, or 0, the F-quotient of X. When F=
I' (X, Oy), F-quotient is called the Remmert quotient of X, and then we
have Oy=0,0;.

Let /: X—.S be a 1l-convex map of complex spaces with exhaustion
function ¢: X— (—o0, ¢*). Then in what follows we shall use the fol-
lowing notation: X,={x€X; ¢(x) >c}, X°={xeX; ¢ (x) <c} for cc*
and Xg'={reX; < (x) <<c} for ;<c;<lc*. Suppose now that S is
Stein.  Then by Knorr-Schneider [14] or by Siu [21] X is I (X, Oy)-
convex. Let 0p: X— Y, be the Remmert quotient of X. Since f*I'(S, Os)
CTI'(X,0x) =I'(Y,Oy) and S is Stein, we have the natural morphism
¢o: Yo— S such that g,0,=f.

Lemma 3.1. Let f:X—>S be as above. Let 9 be the coherent
sheaf of ideals of Ox such that the support A of Ox/d is proper
over S with respect to f. Leit F=F(Y) be the subalgebra of I'(X, Ox)
generated by I'(X, ) and f*I'(S,Qs). Then X is F-convex.

Proof. Let 0,: X—7Y, be the Remmert quotient of X and J’ =0,,.
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Then 4’ is a coherent sheaf of ideals of Oy, such that the support of
Oy,/d’ coinsides with A’:=0,(A). Since 0, is proper, it then suffices
to show that Y, is F(J’)-convex. This allows us to assume {from the
beginning that X is Stein. Then, if we denote by 7: Ox—>0x,y the na-
tural quotient homomorphism and set J;=7r(Y), then I' (X, J)—I (Xre,
J,) is surjective, where X,.; is the underlying reduced subspace of X.
Hence we may further assume that X is reduced. Now note that since
A is proper over S, ACX® for some ¢<c*. Then by Narasimhan [16,
Theorem 1] there is a holomorphic map A:= (A, -+, hy) : X—C" for some
N such that 27'(0) = A and that h|x_x. is proper. Moreover the proof
shows that we can assume that ;&' (X, J). Then H:={hy, -+, Iy} &F
so that if K is any compact subset of X, then Kpgﬁy On the other
hand, if we put 7;=sup{|h:(x)|; x= K}, then Ry=n (4(r)) where 4(r)
is the closed polydisc of multi-radius 7= (+;) in C" with center the origin.
Hence by the property of 2 mentioned above R.n (X—X°) is compact.
Thus it remains to show that K}{]X‘ is relatively compact in X. In
fact, since S is Stein and f*I'(S, O5) CF, Ly:=f(Ky) is compact, and
hence KN X (S F'(Lr) NX°) is relatively compact in X. Q.E.D.

Let f:X—S and J be as in Lemma 3.1 and F=F(J). Let 0:
X—Y be the resulting F-quotient of X. Since f*I'(S,05)&EF and Y
and S are Stein, there is a unique Stein morphism ¢: Y—S such that go
=f. We call the map ¢ together with the map g, the J-quotient of X,
or of f.

Let f:X—S be a l-convex map of complex spaces. Then each fiber
X, s€S, of f is a 1l-convex space. Let E; be the exceptional set of X,
i.e., the maximal compact analytic subset of X; of positive dimension.
Then E=aLer E; has the natural structure of a (reduced) analytic subset
of X, called the relative exceptional set for f. Moreover if 6,: X— 7Y,

is the Remmert quotient of X, then ¢, induces an isomorphism of X—E

and Y—0,(E) (cf. [14]).

Lemma 3.2. Let f:X—S be a l-convex map of complex spaces
with S Stein. Let A be an analytic subset of X such that f|.: A—S
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is proper and that A contains the relative exceptional set E for f.
Then there exist a Stein morphism ¢:Y—S and a proper surjec-
tive S-morphism 0:X—Y such that 0|x-,: X— A—>Y—0(A) is isomor-
phic, and 0 (A) is mapped isomorphically onto a subspace of S by ¢,

Proof. Let J be the ideal sheaf of A in X. Then by our assump-
tion on A and by Lemma 3.1 we can take the J-quotient of f. So let
0:X—Y with g: Y-S be the J-quotient. First, if X is Stein, then
I' (X, J) separates points of X— A and give local coordinates at each point
of X— A, so that from the above construction of @, it follows readily
that O|y-4: X— A=Y —0(A). The general case can be reduced easily
to this case by using the Remmert quotient as in the proof of the previous
lemma if we note that E€ A. Now we remark that since I'(X, ) is
an ideal of I'(X, Ox), every A€ F can be written in the form A=h;+ h,,
with hel'(X,J) and h,e f*I' (S, Os), and hence that in the definition
of Oy we can assume that each f; belongs to either I'(X, ) or
F*I(S, Og). Then since I' (Y, 0,9) =I" (X, J) and 0, is generated by
global sections on Y, Y being Stein, again from the definition of Oy it
follows that J:=0,9 may be regarded naturally as an ideal of Oy, and
that if we denote by A’ the subspace of Y defined by 9, then g induces
an isomorphism of A’ with g(A4’). (Note that since I'(X,J) cannot
separate any two points of A, g|s.: A’—S is clearly injective.) Finally
A’ is reduced as well as A so that A’=0(A), the latter given with the

reduced structure. This proves the lemma.

Remark. When j(A) =S, {rom the above proof we get the follow-

ing exact sequence of ()gmodules

O"‘>j"‘> @Y—‘>Os'_>0 .

Lemma 3.3. Let f: XN—S be a Stein 1-convex map with an ex-
haustion function @:X— (—oo, c*) with convexity bound cye (—oo,
c*). Let A be an analytic subset of X*# which is mapped isomorphi-
cally onto a subspace of S by J. Let s&S and cp<c' <, <e,lc"<c*
be arbitrary. Then there exist a<lb in R*Y for some N>0, a rela-
tively compact subdomain P, of X, a neighborhood U of s in S and
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a holomorphic embedding ©: P,—UX K (b), satisfying the following
conditions: Let Q,=0"'(UxK(a)”) and B'={zxeX;p(x)<d} for
de (cg, c*). Then 1) B (U)CSQ.EB*(U)CB*(U)S P,CX", 2) t®
= flpy T: SX K (b) =S being the natural projection and 3) @~ (UX {0})
=AU).

Proof. The lemma is essentially [15, Lemma 3.1.1] except for 3)
(cf. Remark below). In particular we may assume that A=< since
otherwise 3) follows immediately from that lemma. First we consider
the case S={s}. In particular A consists of a single point a&X. Take
and fix any ¢”<{c;<{c*. Then by the same technique as in parts (A)
and (B) of the proof of [15,Lemma 3.1.1] we can find f;, -+, /€
I'(X*%, Ox) such that F:=(f;, -+, f,) defines an embedding of X* into C?
and, further, if we put Qr= {xE X®%; fi(x) |<<R;} for a suitable R:= (R,
-, R), R >1, and define W={xeX;|f:(x)|<1}, then B C WCX*
C B*C Q€ X*“. It then suffices to check that these f; can be taken
in such a way that f;(a) =0 (cf. the proof in the general case below).
In fact this follows readily from the construction in [15] together with
the following remark: For every ¢’ <lc<le,, B° is I' (X%, m,)-convex,
where #, is the maximal ideal at a. Proof. Let r,&X®— B°. Since
Bt is I' (X", Ox)-convex [12,IX,C8] we can find gl (X*, Ox) such
that r:=sup{|g(x)|; x€B}<|g(x)|. Let D,={z&C;|z|<7r}. Then
we can find §7(C, Of) such that |§(g(ax)) =3 and sup{l§(2)|; z€ D,}
<1 (cf. the proof of Theorem 1.3.1 (b)—(c) in [13,p.8]). Hence
if we put §=£(g) then we have 33232 (@) =G (x)|. Put ¢'=F—7(a)
el (X% m,). Then sup|g’ (x)|<|g'(x)| since ac B’ Hence B° is
I' (X, m,)-convex. =

Next in the general case apply the above consideration to the pair
(X, ¢lx,) and obtain f3, -+, f,& " (X3, m,) having the properties described
above, where #, is the maximal ideal of Oy, at a:=ANX,. Restricting
S, we may assume that .S, and hence X* also, are Stein. Then X©
also is Stein (cf. [21]). Take ¢, (X%, J) extending f;€l (X3, m,)
where J is the ideal sheaf of A in X. Let Pr={reX®;|g:(x) |<<R:}
and P,={rxeX%;|g:(x)|<1}. Then if we take a neighborhood U of s
in S sufficiently small, we have B*(U)CS P, N X" (U)X (U)CB*U)
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CP.NX“(U)CTX"(U). Put b=R, a=1:=(1,--+,1), and P,=P;
X“(U). Define @: P,—>Ux K(6) by @ =(£,(g1,"**, 95))- Then @ is proper
and hence by (the proof of) [11, VIII, Lemma 2.2] @ is an embedding
if we restrict U to a smaller neighborhood of s since @y, is one. More-
over Q,=(P,N X* (U))", the closure being taken in P,, and the conditions
1) and 2) are immediately verified. Further by our construction AC
O (Ux {0}). Then adding ¢gu),++-, 9. € '(X¥(U), J) to ¢; which generate
J on P, with |g;(x)|<<1 on P, (after eventual restriction of U) so that
P, and Q, remain invariant, we finally obtain the desired embedding @
with @71 (UXx {0}) =AU). Q.E.D.

Remark. Let P,y=P,—Q,=0""(Ux (K(b) —K(a)~")). Then from
the above proof it follows readily that for any U"€CU’'€U we have
Xe(U"MEP.p(UHEXT.

§ 4. Proof of Theorem

Let f:X—S be a morphism of complex spaces and & a coherent
analytic sheaf on X. Let Si(¥, f) ={reX;codh,F ;,,<k}. Suppose
that & is f-flat. Then S,(¥, f) is an analytic subset of X [2]. More-
over the following equality holds [10,IV,6.3.1]:

(5) codh, =codh;S+codh, ¥ ;y, xEX

(Thus the bounds for 7 in the conjecture in the introduction is obtained
by replacing dim .S by codh .S in those appearing in the mentioned results
a), b) and ¢). In particular both coincide when S is Cohen-Macaulay.)

In general let A={xeX; 4 is not f-flat at x}. Then A is an
analytic subset of X by [5]. Let U=X-—A.

Lemma 4.1. The closure T, of Si(S v, flv) in X is analytic
in X.

Proof. Let X,=71""(S,(S)) and V,=X,—X,.. Let T,,=
VauNSn+i(F). Then by virtue of (5) we have S |y, flo)=U Tos
Hence it suffices to show that the closure 775, of 717, in X, is analytic

for each %k In fact, T, is easily seen to be the union of some of the
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irreducible components of X, (N S,:x (). Q.E.D.

Let F: X—S be a l-convex map of complex spaces with exhaustion
function ¢:X— (—o0,c*) with convexity bound cz& (cy, c*). Let &
be a coherent analytic sheaf on X such that ¢ is f-flat on Xc# and
codh;% =7 on Xc# for some r=>0.

Let Ai={x€X;¥ is not fflat at x} and A;={xreX-—A;;
codh,F,,<r}. A; and A; are analytic subsets of X and X—A, re-
spectively. Let A, be the closure of A; in X. Then A, is an analytic
subset of X by Lemma 4.1. Let E be the relative exceptional set for f.
Then we set A=A, UA;UE. By our assumption AC X% and hence is
proper over S. As before, for d&(cy, c*) we set B*={xeX; p(x)<d}.

Theorem 4.2. Let cE (cg,c*), Then for i<r—1 the following
hold: 1) The natural map Rf,,F —> R 5 F is isomorphic and 2)

Rif5..F is a coherent analylic sheaf on S.
We need a lemma.

Lemma 4. 3. Suppose that f is Stein. Then for any cp<c'<c
the natural map RfpeyF —>Rifpeo F is surjective for i<r—1.

Proof. Since fis Stein, the connecting homomorphism R*™'(flyx,) + F
—> R34 F is surjective for any c;<d and i=>1. Hence the lemma fol-
lows from Corollary 1.4 when i==1. Thus it suffices to show that when
>0, fasxF —=fpasF is surjective for any d>cy. In fact let %5~0 be a
section of ¥ on X(U) for some open subset US.S with its support
T=T(y) contained in B*(U). Suppose that T% A and take s U with
T,EA;,. T consists of a finite number of points since X; is Stein. It
then follows that codh,f ;=0 for x& (T;— A;) %9, which is a contra-
diction. Hence TC A. Q.E.D.

Proof of Theorem 4.2. Since the problem is local on S, we fix
a point s&€S and consider everything around s.

a. First we assume that f is Stein and A is mapped isomorphically
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onto a subspace of S. TFor the given ¢ take c,<c'<coi<c<lce,<lc"<c*
arbitrarily. Then with respect to this data we can apply Lemma 3.3
to f. So let @: P,~>UX K (b) and Q, be as in that lemma. Since the
problem is local on S, we may assume that U=S. By 1) of the lemma we
have Q. BC P,, where B=B’. Hence by excision R5,% = R*(f|s,) 5
(41p,). Thus replacing X by P, with P, identified with its image
in Sx K(b) by @, and then & by its trivial extension to SX K (&) we
may assume that N=SX K (b), f is the natural projection SX K (&)—S,
and further that A=Q,:=S8X {0}. We shall then show the following:
(¥) the natural homomorphim Rify .F — R F, i<r—1, are isomor-
phic. In fact, this would imply the theorem in our special case in view
of Proposition 2.1. Now by 1) of Lemma 3.3 B°SQ,EBCEQ,C X if
we take a’ sufficiently near to b with a’<b (after eventual restriction
of S). Then for () it suffices to show that the natural map Rifq &
—>Rf..+F (resp. RifpersF —RifpeF), i<r—1, is injective (resp. sur-
jective). Indeed, this follows from Proposition 2.1 (resp. Lemma 4. 3).
Thus (%) is proved. Note also that since the natural map R'f,, S (&>
=R fo,+F {k> is injective by Proposition 2.2 (in the notation there with
7 replaced by ), Rf4xd<k>— R f5,F k> also is injective. Further
R'f,+% (k> is coherent by Proposition 2, 2.

. We consider the general case. As in pari & we put B=B". Now
A satisfies the condition of Lemma 3.2. So let ¢: Y—S and 0: X—Y
be as in that lemma. Let A’=0(A) and 4’'=0,%. Then ¥’ is g-flat
on Y— A’ and codh, (¥ '|y-4) =7. Then replacing S by a small neighbor-
hood of s we can construct an exhaustion function ¢’ on Y which makes
g l-convex and with the following property; ¢’=¢-0~' on 0(Xe,) and
sup{p’(y); veo (B#)}<c. Then if we set B'={yeY;¢’ (y)<c}, then
07" (B’) =B and ¢’ is strictly plurisubharmonic in a neighborhood of the
boundary of B’ in Y. Then applying part a to ¢g: Y—S with the ex-
haustion function ¢’ we get the following: For i<r—1, Rig,.F’
—R'g5,F "’ is isomorphic and R'gp ¥’ is coherent. Moreover for £>0,
A R4 F {kp—>R'gp.F '<k> is injective and R'g4.,F (k> is coherent.
Here R4+ (%> is defined to be the ¢,Oy-submodule of R"g, ¥’ an-
nihilated by ¢4J’* and R'¢p. .S <> is defined similarly where 9’ is the

ideal sheaf of A’ in Y, and the result follows from the last remark in
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part .

On the other hand, ¢7'(B’) =B implies that fg,=¢5s 0% Hence
fexF =0p+S’ and the theorem is proved for i=0. So we assume that
i>0 and hence that r=>2. Consider the spectral sequence FEf% =
RPgp R0 YF = R, & associated to the composite functor fay =gp 40 4.
First of all, since the support of R'0,%, ¢g>>0, is contained in ¢ (E) & A’
and hence is finite over S, we have R?gp., (R0, ) = R?g, (RW0,.S) =0

if p>>0. Therefore we obtain the long exact sequence

© 0= Rpy G '~ Rigors T '~ Rifpu F
=04 (R'0,F) > R"gp . F '~ .

By the same reasoning as above ¢, (R'0,F) is coherent for every i=>1.
Since Rigp+F’ is coherent for i<<r—1, we get from (6) that R'f5,F
is coherent for {<<r—2. Next consider the natural map into (6) from

the exact sequence
- Rg G ’*‘)Rth*g —0x (R0,F)—>R"g,,F '~

which is obtained in the same way as (6) using the relation fiy =04 404.
Since RigssTF ' =RigpF’, 1<i<r—1, R4 F = Ri5,F for i<r—2
by the five lemma. Thus it remains to consider the case i=7r—1. Note
first that R"7'0,< has support in A’ and hence g, (R"7'0,%) is coherent
and is annihilated by ¢4J’* for some k,>>0 in a neighborhood of s.

Hence we have the following commutative diagram of exact sequences.

SR Ty F' SR T s F =04 (R0 F) >R Gurs F oy
N l ” L
SR ey F SR T 5 F =05 (R0, F) >R 5. F ooy
Since 1 is injective, the isomorphism R, F =R "'f5,F follows again
by the five lemma. Then the coherency of R"'f3,F follows from that
of R %4x%, which in turn follows from the top line of the above

diagram in view of what we have proved above. Q.E.D.

Proof of Theorem. By the definition of R, we have the natural
isomorphism lim R¥Y%,F =R/ F. By 1) of Theorem 4.2 all the

—
cE(e y,0"
homomorphisms in the inductive system {Rffgc*&‘}ce(c#,c*) are isomorphic.

Hence we have R¥fuF =R'fAiF for every c& (cg, c*). From this
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follows the coherency of R'fiF by 2) of Theorem 4.2. Since for d
€ (cu,c*) if we take any ¢ (cy, d), then we get that RYuF = R4, F
=R fiF, Theorem follows.

Remark. From the proof it also follows that the natural map

R4 F - R G, i<r—1, is isomorphic, where A is as in Theorem 4, 2.

Proposition 4.4. Let [ N—S be a (1,1)-complete map of com-
blex spaces with S Stein and with exhaustion funclion ¢: X— (cy, c*).
Let 4 be an f-flat coherent analylic shea/ on X. Let r=codh,5.
Suppose that f admits a Stein completion f:X—S (cf. [158]) and G
admits a coherent extension & to X. Then: 1) The restriction map
R F - Ry G is isomorphic for 0<i<r—2 and d< (cy, c*) where
Ji=Fflxs- 2) RY TG is coherent for 1<i<r—2. 3) The natural map
HY (X, $)—>H(S, R'fF) is isomorphic for 0<i<r—2.

Proof. For any d& (cy,c*) we construct a ' extension § of
@lye 10 X for some c<<d’<d such that P(X—Xy)E(—o0,d’]. Then
f becomes a l-convex map with exhaustion function @ with convexity
bound d’. Then we can speak of B* with respect to this . Then we

have the standard exact sequence
(7)d ﬁRide*g—)Rif*g‘—)Rifd*g—>Ri+1f3d*g">

where R'f,& =0 since 7 is Stein and RifBa*g is coherent for 1<i
<r—1 by Theorem 4.2. Hence Rf,,F =R"'f3.,F is coherent for
1<i<r—2. Moreover by 1) of Theorem 4,2, considering the natural
morphism from (7). to (7), for cy<c<d, it follows from the five lemma
that the restriction map R¥.sd — R4 G is isomorphic for 0<i<r—2.
(For the given ¢ and d take d’ above in such a way that d’<c.) Then
by [20, Lemma 4.1] R¥%, % —R'f;,4,F also is isomorphic. In particular
R G is coherent for 1<{4<{r—2. This proves 1) and 2).

We show 3). We may assume that >3 and />0. Consider the
Leray spectral sequence for f and & ; Ef?:=H?(S, R, 4 )=H" (X, F).
Since R, is coherent for 1<q<r—2 and Sis Stein, H? (X, RY, )
=0, p>0, 1<g<r—2. lence it is enough to show that for all p>0,
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H?(S,fxS) =0, or equivalently, H?(S, f4+F) =0 for some d& (c,, c*)

by 1). Consider the short exact sequence
(8) O%de*grﬁf*g_)fd*g">le3¢*§7‘—)0 .

Since Rifpa,F is coherent for 0<i<r—1 and Sis Stein, H?(S, R' f 3, &)
=0, p>>0. Hence, in view of (8), it suffices to show that H?(S, f*gr)
=0, p>0. Considering the Leray spectral sequence for f~ and & and
noting the fact that f is Stein, we get that H? (S, f*g) =H?" (X, g)
=0 since X is Stein. Q.E.D.

Combining the above proposition with the main results of [6] we

obtain the following:

Corollary 4.5. Let f:X—>S and 9 be as above. Let o€ S.
Then the conclusion of Proposition 4.3 is true in a neighborhood of
o if the following condition is satisfied: Let (X,)~ be the maximal
Stein completion of X, and (¥F,)~ the maximal coherent completion
of F, to (X,)~ (¢f. [6]). Then codh(F,)~=3.

Remark. The above results are immediately generalized to the case
of a (1, 1)-convex-concave map. However for the conjecture in the intro-
duction in this case it still remains to consider the case where codh & ,=>3
and codh (¥ ,)~=2. In view of the above proposition this case can be
reduced to a conjecture on Stein completion of (1,1)-complete maps and

coherent extension of sheaves (cf. [6]).

Corollary 4.6. In the above proposition suppose further that
G is F-flat and codhfggr. Then R, F =0, 0<i<r—2, and the

restriction map foF —foF is isomorphic.

Proof. For 0<i<r—2, Rf,F =R fga, & =R 7, F in the no-
tation of the proof of Proposition 4.4 with A as in Theorem 4.2. On
the other hand, our assumption implies that we can take A=@. Hence
R¥,% =0. Further form (8) it follows that F.G =F.9F. Q.E.D.
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§ 5. A Relaiive Vanishing Theorem

Let f: X—S be a morphism of complex spaces and & an fflat co-
herent analytic sheaf on X. Let g0 be an integer and 0&.S a point.
If f is proper, then from the vanishing of H%(X,, %,) follows the vani-
shing of R%, < in a neighborhood of o (cf. [3]). We shall generalize

this as follows.

Propesition 5.1. Let f: X—S, 4, g and oS be as above.
Suppose that for every locally closed analytic subspace TZS the q-Lh
direct image sheaf RYp,.F . (resp. RYnGFr) is coherent. Then if
HY(X,, $o) =0 (resp. Hi(N,, F,) =0), R/, F =0 (resp. RAG =0) n
a neighborhood of o.

In view of [19] (resp. Theorem) the above proposition yields the

following:

Corollary 5.2. Let [:X—S8 and G be as above. 1) Supposc
that f is p-convex for some p>0 (cf. [19] modulo the remark in the
introduction). Then if H*(XN,, F,) =0 for some 0S8 and some q=p,
RS =0 in a neighborhood of o. 2) Suppose that f is 1-convex
and HI(X,, $,) =0 for some o&S and some g<codh F,—1. Then
RUf\F =0 in a neighborhood of o.

When f is l-convex, 1) is due to Riemenschueider (cf. Comment.
Math. Helv., 51(1976)). The following is a relative form of the vanish-
ing theorem of Grauert and Riemenschneider [9] in the 1l-convex case,

which has an application to a stability problem of exceptional divisors

[71-

Corvollary 5.3. Let f:X—S be a smooih 1-convex map of com-
plex spaces and £ a locally free coherent analytic sheaf on X. Sup-
pose that for some o= S the vector bundle corresponding to £, is semi-
negative in the sense of Nakano (cf. [9]). Let r=dimX, Then
RY\E =0 in a neighborhood of o for q<r—1. In particular RS0
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=0, ¢<r—1, in a neighborhood of o.

Proof. Let ¢: X— (—o0,c*) be an exhaustion function for the
strongly pseudoconvex manifold X,. Let ¢4 be a convexity bound for ¢.
Take c= (cy, c*) in such a way that the boundary &6X{ of Xj:=(X,)°®
is smooth. Then by [9] HI(X: &,) =0, ¢g<r—1. Hence HI(X,, &,)
=H{(X;, &,) =0, ¢g<r—1. The corollary then follows from 2) of the

above corollary.

Proof of Proposition 5.1. Let m=dim,S. We proceed by induc-
tion on m. Suppose first that m=0. Then just as in the proof of [3,
p. 120, Cor. 3. 5] we see more generally that for any coherent analytic
sheaf G on S, R (F Ro,f*E) =0. So suppose that m>0. First con-
sider the case where codh,$>>0. Then we can find a neighborhood o€ U
and t&l (U, m,) which is not a zero-divisor in Qg for any s€ U, where
m, is the maximal ideal of Og at 0. Since & is f-flat, we have an exact
sequence 0—>€£fiff—>£f/tff—>o on X(U) where « is defined by the

multiplication by ¢ From this we obtain the long exact sequence

SR, FERS G SRSy (F /6T )

on U where &’ is defined by the multiplication by # Let S’ be the
subspace of S defined by #=0 and f’:X’—S’ the induced morphism.
Then dim,S’<7n. Hence by induction R (F /tF) =R f (F /tF) =0
in a neighborhood of 0. On the other hand, by virtue of the above
exact sequence RY,F /tRY,F injects into R, (% /tF) and hence itself
vanishes. Since RI%,% is coherent, by Nakayama R%,S$ =0 as was
desired. Next suppose that codh,S=0. Then we may write uniquely
S=5US; in a neighborhood of 0 where dim,S;=0 and codh,8:=>1 (cf.
[6]). Let Xi=X,, ¥:=Y9s and f;: X;—S; be the induced morphisms,
i=1,2. Let J be the ideal sheaf of O defining S, in S. Then we have
the obvious short exact sequence 094 — 4 — % ,—0 and the resulting

long exact sequence
SR IT >R foF —>RUf Ty

First of all, R, ¥ ,=R%,%,=0 as we have proved above. Thus it
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suffices to show that R%,JF =0. Since J is already an (g -module,
by the flatness of & we get IF = IR o, F = IR0,,05R0sF =IR 05,71
Then since dim,S;=0 and H(X,,,, F1,0) =H*(X,, F,) =0, by what we
have remarked above R%,(IQos,F1) =0. Hence R, JF =0 as was

desired. Finally replacing * by ! in the above argument we obtain the

assertion for R Y, too. Q.E.D.
References

[1] Andreotti, A. and Grauert, G., Théoreme de finitude pour la cohomologie des
espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.

[2] Banica, C., Un théoréme concernant les familles analytiques d’espaces complexes,
Rev. Roumaine Math. Pures Appl., 18 (1973), 1515-1520.

[3] Banica, C. and Stanasila, O., Algebraic methods in the global theory of complex
spaces, Editura Academiei and John Wiley & Sons, 1976.

[4] Ermine, J. L., Cohérence de certaines images directes a supports propres dans le
cas d’'un morphisme fortement p-convexe, Ann. Scoula Norm. Sup. Pisa, Ser. 1V,
6 (1979), 1-18.

[5] Frisch, J., Points de platitude d'un morphisme d'espaces analytiques complexes,
Inventiones math., 4 (1967), 118-138.

[6]1 Fujiki, A., Flat Stein completion of a flat (1,1)-convex-concave map, to appear.

[7] — , Stability of exceptional divisors. o appear.

[8] Grauert, H., Ein Theorem der analytischen Garbentheorie und die Modulriume kom-
plexer Strukturen, Publ. Math. IHES, 5 (1960).

[9]1 Grauert, H., and Riemenschneider, O., Kihlersche Mannigfaltigkeiten mit hyper-g-
konvexem Rand, in: Gunning, G. C., Problems in analysis, papers in honor of S.
Bochner, Princeton Univ. Press, 1970, 61-79.

[10] Grothendieck, A., Elements de géométrie algébrique: 1V (seconde partie), Publ.
Math. THES, 24 (1963).

[11] — » Technique de construction en géométrie analytique, Séminaire Cartan,
13° année (1960/61).

[12] Gunning, R. C. and Rossi, H., Analytic functions of several complex variables,
Prentice Hall, Englewood Cliffs, N.J., 1965.

[13] Hoérmander, L., An introduction to complex analysis in several variables, second
edition, North Holland, 1973.

[14] Knorr, K. and Schneider, M., Relativexzeptionelle analytische Mengen, Math. Ann.,
193 (1971), 238-254.

[15] Ling, H.-S., Extending families o pseudoconcave complex spaces, Math. Ann., 204
(1973), 13-48.

[16] Narasimhan, R, On the homology groups of Stein spaces, Inventiones math., 2
(1967), 377-385.

[17] Ramis, J.-P. and Ruget, G., Résidus et dualité, Inventiones math., 26 (1974), 82-131.

[18] Ramis, J.-P., Théoreme de separation et de finitude pour ’homologie et la cohomo-
logie des espaces (p, ¢)-convex-concave, Ann. Scuola Norm. Sup. Pisa, Ser. 111, 27
(1973), 933-997.

[19] Sieglried, P., Un théorgme de finitude pour les morphismes g-convexes, Comment.
Math. Helv. 49 (1974), 417-459.

[20] Siu, Y.-T., A pseudoconcave generalization of Grauert’s direct image theorem: I

and II, Ann. Scuola Norm. Sup. Pisa, 24 (1970), 278-330, 439-489.



56 AKIRA FUJIKI

[21] ————, The 1l-convex generalization of Grauert’s direct image theorem, Math.
Ann., 190 (1971), 203-214.
[22] ————, A pseudoconvex-pseudoconcave generalization of Grauert’s direct image

theorem, Ann. Scuola Norm. Sup. Pisa, Ser. 111, 26 (1972), 649-664.
[23] Siu, Y.-T. and Trautmann, G., Gap-sheaves and extension of coherent analytic sub-
sheaves, Lecture Notes in Math., 172, Berlin-Heidelberg-New York, Springer, 1971.
[24] Wiegmann, K.-W., Uber Quotienten holomorph-konvexer komplexer Riume, Math.
Z., 97 (1967), 251-258.



