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A Posteriori Componentwise Error Estimate
for a Computed Solution of a

of Linear Equations

By

Tetsuro YAMAMOTO*

Introduction

Let x(0) = (jc®\ • • • , ~ti0)) * be a computed solution of a system of n

linear equations

(0.1) Ax = b

where A=(atj), x= (jcl9 • • • , xn)£ and b — (bly • • • , &n) J. Then a question

naturally arises as to whether the approximate solution x(0) is a satis-

factory one. Let A. be nonsingular and .L be an approximation for the

inverse of A. In practical computation, L may be chosen as a computer

result for A~l. Let R = In — LA and r = Ar(0) — b where IB denotes the

nXn identity. If R has the spectral radius which is smaller than one,

then L is nonsingular and

A-^Ck-l?)-1/,.

Hence, if we denote by X* the exact solution of (0. 1), then we have

(0. 2) x*-jc<f» = -A-1r= - (In-R) -'Lr,

or

(0.3) N*-J:<0)|l^ll(A-^)-1||-|l^r||^(l-||JR||)-1||Lr||

with some vector norm ||-| | , provided that ||jR||<Cl. Therefore, if \\Lr\\

and || 2? || are small enough, then we can conclude from (0.3) that x(0) is

accurate. However, if there are large and small values among |.r{0)|, • • • ,
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|.rn
(0)|, then (0.3) does not give a sharp estimate for a specified com-

ponent of x(0). Therefore, in such a case, the use of (0. 2) is desirable.

However, (0.2) requires the computation of the inverse of In— R9 which

is troublesome.

In this paper, we shall first prove a result for finding the component-

wise error bounds of x(0} without using (In — R)'1. Next, we shall per-

form its error analysis for a machine having a floating-point arithmetic

device with the base /? in which the results are chopped to t /?-digits.

The results of the analysis show that our method works well if

<1 and

is not large, where || • ||oo denotes the maximum norm. Further, based

on this result, we shall propose a practical algorithm for estimating rig-

orously the error of x(0). Finally, numerical examples are given, which

illustrate our results.

§ 1. Notation

Throughout this paper, we shall use the following notation (cf.

Urabe [5] and Yamamoto [8]) : Let x = (x^ • • • , x^)1 and y = (y^ •",yn)
t

be two vectors. Then we write x^y or y^x if Xi^yt for all z. We

put v[x\ = (\Xi\9 • • • , \xn\}
 l. The same notation is used for matrices A

= (ay) and B= (bij) : A^B or B^A if atj^btj for all t,j and we put

§ 2, A Besult

Let x(0) be an approximate solution of the system (0. 1) which has

the unique solution x* and L be an approximation for the inverse of A,

We put K = v\_In — LA\. Then we have the following theorem.

Theorem I. Let || • || be a mono tonic vector norm and 1C be a

vector such that

(2.1) A'.r<||.r||A:
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for all x>0. We assume that ||/c||<l and put

£ = v[L(Ax(0)-b)'],a=(l-\\K\\r1\\e\\ and a =

Then we have

Further, if -we define a sequence of vectors {a(k)} by

(2.2) a™ = a, a(^»=e + Ka(k\ 4 = 0,1,2,-,

then

and

That is, -we have

for every k^>0., where xf, x^ and a!i} denote the i-th component of

x*? ,r
(0) and a(]c\ respectively.

Proof. We first remark that ||J£|K1, because the norm is mono-

tonic and (2.1) implies \\Kx\\^\\x\\- \\fC\\ < \\x\\ for x=£0. Therefore, it

follows from (0. 2) that

(2.3)

— £ + aK = a ,

Next, the monotone decreasing property of the sequence {<X(k}} is proved

by induction on k: In fact, by noting that
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we have

and o^Xa'*"" implies that

a(fc+1) - £ +

Therefore, {a(k)} converges to a vector a*^>0, which satisfies

It follows from this that

a*= (7n-X)-1£=

Consequently we obtain from (2. 3)

y[x*-^(0)]<^<...<a(&><"'<^(1)<^(0)^^.
Q.E.D.

Remark. For the maximum norm || • !!«,, the z'-th component KL of

the vector K is given by

where £v denote the (i, j) elements of the matrix K. Hence, in this case,

we have ||«||.= ||X||..

§ 3a Floating«Point Error Analysis

In practice, we cannot obtain the exact values of the vectors a(fc) (k

J>0), because of the rounding errors made in the computation. So the

floating-point error analysis would be necessary. We shall call it out

for the result of Theorem 1 by choosing the maximum norm || • H^. We

assume that we work with a computer in which numbers are represented

in the form ±^/3"1 where /? is the base of the number system and d is

the mantissa consisting of t digits and 0<[fl?<O. We use the techniques

due to Wilkinson [6], [7], Forsythe and Moler [2] and Paige [3].

Thus, if o denotes any of the four arithmetic operations -f , — , X , /,

then a = fi(b°c) means that a, b and c are floating-point numbers and a

is obtained from b and c using the appropriate floating-point operation.
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We assume that n^>2,

(3.1) fl(ao&)=

and

(3.2) 1.006 (;z +

Note that (3. 1) reflects a machine in which the results are chopped to

t /^-digits. If we consider a machine in which the results are rounded

to t /9-digits, then we should replace 01'1 in (3.1) and (3.2) by 2~ 1 /? I~ f ,

and the inequality <C in (3. 1) by <I. Observe also that (3. 2) means

that £1-f<0.01/3.018<0.0034.

In the following, for the sake of convenience, we shall write 071

= n{31~t and use the following inequalities:

(3. 3) If 0<«a<0.01 , then (1 + a) ?l<Xltt<l + 1 .006;** .

The following two lemmas are essentially proved in Wilkinson [6].

Lemma J. If al9 / — I, 2, • • • , ; / are the floating-point numbers, then

•where

C«=l)
(3.5)

(3. 6) fl (a, + • - • + a^ - a, <1.006fln_, j

*-0-Jfl (<*!+'

Proof. The equality (3.4) is proved by induction on n. (3. 6)

follows from (3.4) since (3.3) and (3. 5) imply that

Q.E.D.
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Lemma 2. If ai and bt are the floating-point numbers, then

fl (^ + • • - 4- anbn) = £] ajbi (1 + f <)

with \-<lt\, IC/K/S1-', » =1,2, -..,», j=2, • • - , » .

so that, if atbt^Q, then

S a A< (1 - 1.0061?,) -1 fl (a A + - + a »*») .
t=i

In the following, we denote by 2z the computer result for an ex-

pression a. Thus, if a is a number, then a means the floating-point

representation of a in the machine. For simplicity, we assume that 3;(0)

= x(Q\ A=A, b = b and L = L.

Lemma 3. Let r = Ax(0) — b and

(3. 7) c = 1.006v[A]v[o;(0)] +1.004n~1r .

Then

Proof. Let r= (n, ••- , rn)' and 5*= £] ay-rj8. Then we have

where ifoK^1"** fj are defined in Lemma 2 and
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Hence

\8rt{<l.Q060n X; \anjxf \ + (1 -fl1-')-1^1"'

<i.oo60n s k«l • !^0)l + (i-o.oo34)-1f<»-10ff

where c^ denotes the z-th component of the vector c defined In (3. 7) .

This implies v[5r]=^0nc where Sr= (dr^ - • - , Srn) '.

Q.E.D.

Lemma 4. Let s = v[Lr\ and

d= (1.006||r|U+ ||c||.)v[L] (1, ..-, 1)'.

Proof, Let £/ and ^ be the £-th components of the vectors £ and d

respectively and set L=(/y). Then we have from Lemma 2

80 tha i

ISf-S^I |fl(g/«/,) -Ig

«/! {9»c, + ;r,| (1.0065.)} ̂ A - Q.E.D.

Lemma 5e

E = 1.006V [L]v[ -A] +1.004;* -1

Then we have
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Proof. We denote the (i,j) element of a matrix M by Mtj, etc.

Then we have

/=!

where 5^ denotes the Kronecker symbol. Therefore

fl (/„- LA) „ = (/.- il) a + ff«,(/»- LA) «7i (IV

= (7. - LA) „ - f] llkakj£lkj + d{j (In - LA) „?,
fc = l

so that we can write

where

<fl JSiy . Q.E.D.

Lemma 6. Le£ /Ci ^e defined as in the remark at the end of

Section 2 and e= (e^ • • • , e^)1 where

*t= SJE*y + 1.006 S« i / Bj-=i j=i

Then we have

Proof. We have
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where

n n
^^i==2mJ C^-*^/ ij ~\~ 2lj ^ij* 3 •

J=L /=!

Hence

Lemma 7- Let

1-11*11.
and

(3 8) /=1004qg-i|00^" » I O I I O Q + ^ H * I I ° Q + .
I i-il^lU i-||^|U (i-l

Then we have

a^a + da. \8a\<fOa .

Proof, Let e= (£ls • • - , £ „ ) '

^ = £0 and

Then

Sev^8ep+ (ep — eg) =sp —

so that

Hence we can write S-p^ + ^Soo or

where |(?Soo|^||^||oo^72. Similarly we have

Q-E.D.
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where |flAJoo|^||e||oo0n. Therefore we have

fl(l-11*11.)

(1-11*11.-**.
so that

(1-f l ffH.) (1-||*||.)

It follows from this that

where /" is defined in (3. 8) . Q.E.D.

We are now in a position to prove the following theorem,,

Theorem 2, Let a be the vector defined in Theorem 1 with

the maximum norm. Then, under the assumption of Theorem 1, ive

have

-where

(3.9)

Proof. We have

where |£|, I^K/S1"'. Hence

\ai~at\<di6n+ael6n+

< {di + ae< + /^ + TtKiTT1 + 1 .004ai-n~1} 6n

which means



ERROR ESTIMATE FOR A COMPUTED SOLUTION

where da is defined by (3.9). Q.E.D.

We have from Lemmas 3-7 that

< [ (1.006 + 1.004W-1) \\f ||. + 1.006 1| A \\. \\ *<°> ||.] || L |

and

e,<||£||00 + 1.006(1-1.006^) -'

Therefore, we can say that, if H ^ H ^ C l and

is small enough, then each component of the vector da is small as com-

pared with that of a and our method works welL Observe also that,

for our purpose, we need not know the exact Sa. It suffices to know

the order of each component. Hence, in practice, the following result

may be useful :

Theorem 3B Let

+ 0.50211^1100,

^o, -=1.03 (£„ A M + ^o.) -f 0.502 max Kit

Further, assume that e^Q^Ji and there exists a positive number m

such that ic^l — m^ — e^dn. Set

/oo = 1.004 (m~l
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and

Then

Proof. We obtain from Theorem 2,

<1.006(l-1.006071_1)"
1A00||.r

(0)||00<?00,

,^11 L|U (1.006 ||r||oo+|k||oo)<

and

Ik IU< II E |U + 1.006 (i - 1 .

<1 .006 (1 - 0.01) -1!*, (1 - 0.01) -^oo + 0.502 max )c« + 1

Moreover, if £L<O — m~l — ejd^ for some m>0, then we have

and

Hence

and

The result now follows from Theorem 2. Q.E.D.
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§4. Numerical Examples

We shall illustrate our results by simple examples.

Example 1. Consider the linear system Ax = b given by

0.51273^ + 0.62137.r2 = 0.14012

0.41835*! + 0.50701.r2 - 0.34827

which is due to Peters and Wilkinson [4]. As is remarked there, this is

extremely ill-conditioned and has the exact solution vector ** = ( — 15977.

7406-• •, 13184.4264"-)*. We solve this system by Gaussian elimination.

A single precision computation (chopping the results to 6 hexadecimal

digits in the mantissa) on FACOM 230-28 computer of Ehime University

yields

(4.1) *(0) - (-15594.90,12868.53)f .

The matrix Ly a numerical result for A"1, is also given by

0.5439359£ + 5 - 0.6666244£ -f 5

~~ ' - 0.4488187£ + 5 0.5500726£ + 5

We then compute K = v[I2 — LA], e = v[L(Ar(0) — £)] and a, etc,, with

double precision arithmetic (chopping the results to 14 hexadecimal digits

in the mantissa). Then [|£||oo ( = £00) =0.028---<1 and Theorem 1 is appli-

cable. The results are shown in Table 1.

Table 1. Error bounds for ^(0) given by (4.1).

i

1
2

a

384.5585...
317.2004...

«<*>

382.8805...
315.9270...

£

373.669..-
308.326...

f

0.686.-E-2
-0.226...E-5

Next, we apply Theorem 3 to estimate the effect of the errors made in

the computation. Observe that, in our computer, /? —16 and £ = 14.

Then we have

<?«, = 0.558-••£-+• 5, £„, = 0.141 •••£+6, /CC3<0.5-O?,? etc.,

so that we take m — 2 for simplicity to compute f^ and obtain

7^^0.74.-.£+5 and ||43|U = 0.252»-£-5<0.253£--5.
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This implies that

1 \ / 384.5586 \
<

1 / \ 317.2005 /

or

-15979.46 \ ^ /-15210.35

12551.32/"^ A 13185.74

On the other hand, if we use the double precision arithmetic to compute

x(0) and L, then we have

(4. 2) *(0)= (-15977.74063..-, 13184.42647••-)',

0.557288- - -E + 5 - 0.682989- - - JE + 5 \

-0.459836-••£ + 5 0.563575•••£ +5 ) '

and

£., = 0.109—£-10.

The large change of *(0) from (4.1) to (4.2) (as well as L) reflects

the ill-conditionality of the system. The results of Theorem 1 applied

to x™ given by (4. 2) and the above L are shown in Table 2.

Table 2. Error bounds for x<0) given by (4.2).

i

1

2

a

0. 392526-. E-7
0. 323868- E-7

ffd)

0.392526-. E-7
0.323868- -E-7

S

0.392526-.. E-7
0.323868-. E-7

f

0.181-.E-11

0.909-E-12

In this case, we have e^ =0.144---jE+6 and again take m=2 to compute

/oo. Then we obtain || Aa\«, = 0.260-••£— 5 (which is larger than that of

the single precision arithmetic). Thus we can assert that

/-15977.74064 \ /-
)<**<

\ 13184.42646 / \

*-15977.74064 \ ^ ^ ^/-15977.74062 \

13184.42648 J

Example 2. Consider the linear system given by

0.876543^ + 0.617341.r2 + 0.589973.r3 - 0.863257

0.612314^ + 0.784461x2 + 0.827742x3 = 0.820647

0.317321*! + 0.446779;r2+ 0.476349*3 = 0.450098
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which is found in Wilkinson [7] and is discussed also in Yamamoto [9].

This system is ill-conditioned, too. We again solve this by Gaussian

ellimination with single precision arithmetic. Then we obtain a numerical

solution

(4.3) x™ = (0.6363233, -0.2946413E-1, 0.5486381)'.

At the same time, we have a matrix L, approximation for A'1, such

that L^— 0.657--£+5 (see Yamamoto [9]). In this case, by the double

precision computation, we have

/L-0.967- »E-2 and *«, = 0.150---£+ 6.

The vectors a, a'(1), e and r are shown in Table 3.

Table 3. Error bounds for x^ given by (4.3).

i

I

2
3

a

0. 573591- -.E-5
0. 427810..- E-4

0. 362315... E-4

«< l )

0.570495... E-5
0.426081. -E-4

0.361321. ..E-4

£

0.560957... E-5
0.423670-. -E-4

0.359655... E-4

f

0.192-.E-7
0.303-.E-7
0.165...E-7

Further, if we apply Theorem 3 by taking m = 2, then we have

Ja, = 0.150-..£-l<0.151E-9

which implies that

0.573607£-5\

0.427813E-4 ,

00362317.E-4/

or

0.6363177 \ / 0.6363291

-0.295069JB-1 <a;*=<[ -0.2942135E-1 .
0.5486019 / \ 0.5486743

If we compute x(Q) and L by the double precision arithmetic, then we

have

(4.4) ^= (0.63632896--., -0.29506656-..E-l, 0.54867420".)',

and
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The double precision computation yields K00 = 0.272"'E~liI and £«, = 0.151

•-E+6. The vectors a and a(1), etc., are shown in Table 4.

Table 4. Error bounds for #(0) given by (4. 4).

i

1 0
2 0
3 0

Further

a.

.157211-. .E-14

.126332... E-13

.108600... E-13

we have

where we have taken

»[* -* _K

*<«
0.157211... E-14
0.126332... E-13
0.108600... E-13

Jo:* — 0.151 •••!£— 9

m = 2 to compute j

il\
,a + 0.152 -^jj-

8 f

0. 157.. -E-14 -0. 138-..E-16
0.126... E-13 0.416...E-16
0.108-. -E-13 0.277...E-16

r
TO. Thus we obtain

/ I N
<S (\ 1 C»Q IT Qi 1

\17

Example 3. Consider the linear system

33^ + I6xz -f 72xs = 152.833

- 24^ -Wx2- 57 x, = - 94.324

- Sxl - 4xz - 17 x& = - 38.308

which has the exact solution x* = (-0.001, 10, -0.1) '. Then, by the

single precision computation, we obtain

(4. 5) x™ = (0.1018889E-2, 0.9999983£-f 1, -0.1000051) '

and

/- 9.667— -2.666.-- -32.001--^

L = \ 8.003--- 2.500... 25.501-..

\ 2.666... 0.666--. 9.00Q.

so that the system is well-conditioned. The double precision computation

yields

and the vector a, a(l) and e, etc., are shown in Table 5. Further we

have from Theorem 3

o = 0.869— J5-10<0.87£- 10.
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Table 5. Error bounds for x^ given by (4.5).

i

1
2

3

a

0. 188865-.. E-4

0. 171678-. E-4
0. 515085-. E-5

ad)

0.188848-. E-4
0.171674-. E-4
0.515052-. E-5

£

0.188825-. E-4
0.171667... E-4
0.515004-. E-5

f

-0.223... E-4
0.120-.. E-4
0.515-.. E-5

Therefore, our method works well in this case, too.
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