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Introduction

In this paper, we study how the regularity of solutions to Cauchy

problem for a linear hyperbolic equation is affected by the multiplicity

of characteristic roots and by lower order terms of the differential

operator.

More precisely, we treat the following Cauchy problem for the

operator P= "£ ajia(t, x) D{Da
x\

(0.1)

where o/ f« are C"°-f unctions and amtQ^0. (Notations and definitions are

given later.)

First, we remark the following well-known fact.

Let P be a regularly hyperbolic operator on [T_, T+]xJRw (see

Definition 1.1 (1)), then for any /eC°°([T_, T+] X Rn) and any QJ

^C°°(Rn} (j = Q, 1, • • " , m — 1), there exists a unique solution u(t, x) of

(0. 1) and the folio-wing energy inequality holds:

(0.2) Jl\\Diu(t, .)||.+._1.^C.( f \ \ f ( t f , -) \\Jt'
j=Q \ Jr_

Pu=f(t,x), T_<t^T+,

for

Here Cs denotes a constant independent of f, QJ (j = Q, • • • , m — 1) .
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This inequality and other energy inequalities can be interpreted as

representations of the regularity of solutions (cf. the index of well-posed-

ness in [7]).

When we have a multiple characteristic root, (0. 2) no longer holds.

That is, if we assume the inequality (0. 2) for P, then we can prove

that P is regularly hyperbolic. Further, for some operators the regu-

larity-loss of solutions depends much on lozver order terms.

The purpose of this paper is to study, by means of energy inequalities,

the difference between the degree of regularity of solutions and that of

the Cauchy data, when the operator P has multiple characteristic roots.

In Chapter 1, we treat the case where P has the constant principal

part or P is of constant multiplicity. In these cases the regularity of

solutions is exactly determined by the multiplicity. This fact has already

been known essentially, but we will give a sketch of the proof in order

to establish the results as strong as possible.

In Chapter 2, we treat general operators, and we concentrate our

attention on the multiplicity of the characteristic roots. In this case,

we can also say that as the multiplicity becomes larger, the regularity

of solutions becomes worse. But the regularity is not determined by the

multiplicity alone.

Chapter 3 is the most important and interesting chapter in this paper.

A phenomenon is known that lower order terms affect the regularity-loss

of solutions. (For references, see § 3. 1.) We will show that for oper-

ators of some types this phenomenon actually occurs.

Notations and Definitions

We introduce some notations.

(t,x) = (t,xl9 — ,xn), (r ,f) - (r, &, • • • , ? „ ) ,

) y = l, -,») etc.

For AdR71^, JcJR, we write Az = {(t, x) eA; t^I} and

= {(p; there exists an open neighborhood U of A

and ^eC^CC/) such that <p\A = <P}9
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(A) = {(p^C°°(A); any derivative of (p is bounded on A},

(Rn+1); supple A}.

|| ??||, denotes the Sobolev norm of order s£ER on Rn, and H ^ H ^ u ) de-

notes the Sobolev norm of order p (an integer) on AdRn+1,

Let P— ^2 aj>a(t, x) D{D" be a partial differential operator on
j+|a|^m ' n

A9 where a= (al9 • • - , an) ^Nn (N= {0,1, 2, • • • } ) , \a\ = E ah D* = DZ\ —

D"\l and aJia^C°° (A), then ord. P denotes the order of P on A.

Further we write

where ?flt = ?f1- ••?;», and

P&8 (*, *; r, f ) - (djd&WP) (t, ̂ ; r, f ) -

Definition 00 1. (1) The roots of Pm(t9 x\ r? ?) =0 as an alge-

braic equation with respect to r is called the charactristic roots of P

at (£, .r; f ) , and the maximum of their multiplicities is called the multi-

plicity (of the characteristic roots) of P at (t,x\ £) .

(2) We call P hyperbolic in A, if Pm(t, x; 1,0)^=0 in A and the

characteristic roots are all real at any (t, x\

The term "well-posed" has been used in various meanings. We adopt

the following definitions after Ivrii-Petkov |~7],

Definition 0. 2e Let V be an open domain in Rn+1 and P be a

differential operator with C°°-coefficients on V. We assume Pm(t, x\ 1? 0)

7^=0 in V.

(1) We say that the non-characteristic Canchy problem for P

(abbreviated to "the C.P. for P" from now on) is well-posed in V^T_iT^

(T_<T+), if the following two conditions are satisfied.

/ For any /eCS°(F) which satisfies supp /CVcr_foo], there exists

^'OO1" such that

Pu=f in VV-oo.jvi.

supp

denotes the space of distributions on V.



, For any (tyx)^V^T.,T^ there holds

and, if we£D'(F) satisfies

oo), w- n

* then, «=0 in
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/ For any <Te[T_, T+], if we 4)'("7) satisfies

supp u dVLT_t oo), Pu e C5° (V) and

\ then, &=0 in V (_oo fo -

(2) We say that the C.P. for P has a finite propagation speed

in VfT-.TM]* *f there exists a positive constant 7? such that the following

condition is satisfied.

C*1,)

Here, F(i,£; 7}) = {(t, x) ^Rn+l; .r-x\<y\t-i\, t<i} , and we write

ACP if Ac5 and A is compact.

Now, the next theorem is well-known.

Theorem 0. 3, 7f the C.P. for P is well-posed in VLT.,T^ then

P is hyperbolic in VLT_iT+1.

(For the proof in our situation, see [7] or [5].)

Remark 0. 4. The proof of the theorem rests only upon the follow-

ing estimate, which is derived from the assumption of well-posedness.

For any compact set KdV, there exist a constant CK and integers

p, q such that

I! U || HP (VLT_t t;i) ̂ CK || Pu || Hi <y^T_t z

for

Chapter 1. Operators with Constant Principal Part

or of Constant Multiplicity

In this chapter, we treat the operators with constant principal part or

of constant multiplicity, and prove that the regularity of solutions is
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exactly determined by the multiplicity of the characteristic roots.

§ 1. 1. The Results

Definition 1.1. (1) A partial differential operator P on Ac R" +l

of order m with C^-coefficients is called (a hyperbolic operator) of con-

stant multiplicity in A, if there exist positive integers ry (J=19 • • • , / / )

and real-valued functions Aj(t, x;$) eC°° (A X (Rn- {0})) 0"=1» •",/')

such that

P»(*,*;r,£) = S (r-A,(*,*;f)) r ' on A x U x (IP - {0}),
y=i

and

inf {\l,(t,x; £)-^(*,.r; f ) | ; (*,:*)€= A |f |=l, j^=*}>0.

When r^ = l 0° — l,-",ra), we call P regularly hyperbolic in A.

(2) Let P be of constant multiplicity in A. We say that P satis-

fies /7ze Levi-Lax condition in A, if for any j, any open subset U of A

and any (p&C°°(U) which satisfies

on U ,
{ grad^T^O

there holds

^ (p-> + oo) for any

(3) Let P(r, f) be a polynomial of degree TTZ w.r.t. (r, f ) with

constant coefficients. Then P is called a hyperbolic polynomial, if

Pm (1, 0) 7^0 and there exists a constant C such that

for reC, |Im

Now, we consider the operator P on [0, T]xRn (T>0) with ̂ °°-

coefficients and we assume either of the following two conditions on P.

(I) (i) The principal part Pm has constant coefficients -with

Pm (1,0) =£0.

(ii) For any fixed (i, x) GE [0, T] X R\ P(i,£; r, f ) 75 a

polynomial in the sense of (3) in Definition 1. 1.
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(II) (i) P is a hyperbolic operator of constant multiplicity on

[0, T]xIT.

(ii) P satisfies the Levi-Lax condition on [0, T]xi?71.

Remark 1.2. In each case, under the condition (i) , the condition

(ii) is equivalent to that the C.P. for P is well-posed and has a finite

propagation speed in [0, T~]xRn. (See [7], [23] and their references.)

The next theorem is the aim of this chapter.

Theorem 1. 3. Under the above situation, there hold

(1) Assume that the multiplicity of the characteristic roots at

any (t, x\ ?) EE [0, T~\ xRnX (Rn~ {0}) is not larger than r (!<><» .

Then, for any non-negative integer p and any real number s, there

exists a constant CpiS such that

(1.1.1) 'l

.7--0

for

(2) Let U be an open subset of [0, T] X Rn and p9 d be integers.

If the following inequality holds, then the multiplicity of P is not

larger than d at every (t, x\ £) GE [0, T] Xi?nX (Rn- {0».

(1.1.2) \\u\\H,~-*w<*C\\Pu\\H,w for any «eC0-(t/).

Here, C is a constant independent of u.

Thus, in these cases, the regularity of solutions is exactly determined

by the multiplicity of characteristic roots.

The essence of Theorem 1.3 has already been known. But, no

inequality as strong as (1. 1. 1) seems to have been treated so far and
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the proof of (2) has not been stated. So, we will prove this theorem

briefly.

§ 1. 2. Proof of Theorem 1. 3 (1) in the Case (I)

First, we review some results from [19].

Definition 1.4. (1) Let P(r, ?), Q(r , f ) be polynomials in (r, f )

with constant coefficients. We write Q<^P, if there exists a constant

C such that

'a> (r, <r) |2^C £ |P«"<> (r,
/,«

for any (r, f )

2

(2) When Pm (1,0)^=0, we write rx (f), ••• ,r r o(?) the characteristic

roots of JP(r, f) at <?<El?n. And, for £ = 0,1, • • • , m, we put

Lk(Pm; r, £) = XI
n (J) = k

where n(J) denotes the number of elements of </c{l, • • * , w}.

Note that Lk is a homogeneous polynomial of degree 2(m — k) w.r.t.

Proposition 1.5. Let P(r, f) be a polynomial of degree m w.r.t.

(r, f) w/^/i constant coefficients, then the following two conditions

are equivalent.

(i) P is a hyperbolic polynomial in the sense of (3) z';j Definition

1.1.

(ii) Fm £5 hyperbolic and Pm_fc<Pm (£ = 1, • • - , w).

Further, for a homogeneous polynomial Q(r ,«f) o/ degree m — k (k = I

•••,iri), Q<^Pm if and only if there exists a constant C such that

IQ (r, £) |2^CLS (Pm; r, f) for any (t, §) e R^1.
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The argument in [18] combined with a result of [19] leads to the

following proposition.

Proposition 1. 6. There exist A™~1 ' (u) (j — 0, 1, • • - , n\ z" = l, • • • , m)

which are real quadratic forms w.r.t. {DiD"u; j+\a\=m — i} such

that

(1. 2. 1) -Im{P2-^ (Dh Dx} u.p™ (Dh Dx} u}

for any

Further, if Q(r, <?) Z5 a homogeneous polynomial of degree m

and Q-^Pm, then there exists a constant C such that

(1. 2. 2)

/or a^y t^R,

Now, we sketch the proof of Theorem 1.3 (1) in the case (I).

Hereafter, C denotes a constant which may be different in each case.

Integrating (1.2.1) w.r.t. x and using (1.2.2) for Q = P%°\ we

have (by P

(1. 2. 3) 9,( J Af-*(u) (t, x}dxY^C\\Pg-1^ (Dh Dx} *(*,-) |

for any t*=R, utE^(Rn^ ( z= l , - f w)

Integrating this inequality w.r.t. t and using (1.2.2), we have

tx

Successive uses of this inequality leads to

+i) denotes the Schwartz space on Un+1.
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i-1 m-i +

+ X HA'«(0, OIU-^ + IX H IIAMO,
j=0 h = l j = 0

In this inequality, we substitute D\ (1-f \DX\Z) (s~l}/zu (1 = 0, 1, • • - , p) for u.

Then combining the obtained inequality with (1.2.2), we have the

following.

If Q is a polynomial of degree m — i with constant coefficients and

Q<Pm, then

(1.2.5) SH

') '-1 II A'P»( A,

S ||A'«(0

i-1 p + m-i + h

for any

Now, from the assumption (I) and Proposition 1. 5, we can write

(1.2.6) P = Pm(Dt,Dx}

= Pm(Dh Dx}

where ^e^°°([0, T] X J?n) , Q/ is a polynomial of degree at most m — 1

with constant coefficients and Qj<^Pm- So, from (1.2.5), we have

(1.2.7) f]||A'.R«(<, OII.-^CJI] I" || W»« (*',
J = 0 ( .7=0 JO

p + m — 1

+ E IIAWO,
and
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^ \\D>Pu(t, .)!._,+ \\DlRu(t,
J=0 3=0

By Gronwall's lemma (see, for example, [12; Lemma 3]), we have

(1.2.8)
.7=0 JO

\\DtPu (f,
y=o

By the definitions of Lk and r, we have

Lm-k(Pm; r , f )>0 for any (r, f) el?^1- {0}, if k^m-r.

Further, Lm_ fc is homogeneous of degree 2k, so, by Proposition 1, 5,

if ./-

Combining this with (1.2.5), (1.2.8), we have the desired result.

Q.E.D.

§ I. 3. Proof of Theorem 1. 3 (1) In the Case (II)

Combining the arguments in [3], [10], we have

Proposition 1. 7. If P satisfies the condition (II) and has <B°°-

coefficients, then there exists regularly hyperbolic operators Rk with

9$™ -coefficients and partial differential operators Bk with £B°° -coeffi-

cients (& = !,•••, r= max rj) such that

P=Rl---Rr+^BkRk+i'-Rr (,as differential operators)
k=l

ord. -Sfc^mH ----- \-mk — k (mk = ord. Rk) e

Remark 1. 8. (a) Conversely, it can be proved that if P has con-

stant multiplicity, r= max rj and P can be decomposed as above, then
i^j^/t

P satisfies the Levi-Lax condition.

(b) The Levi-Lax condition in [10] is different from ours. But
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the argument in [3] shows that these are equivalent.

Now, we have only to prove the next theorem.

Theorem I. 9. Let Rk be regularly hyperbolic operators on [0,

TJxi?71 -with 33°°-coefficients of order mk and Bk be differential op-

erators on [0, T~\xRn with 33°°-coefficients and ord. Bk<^bk = ml
jr •••

-\-mk — k (k = ~L,-",r). If -we put

r
T~) T) i X ' ~D 73 7?

— J\l' • -JL^r -h / i -OjfclVfc + r ' '-f^r ?
k=l

r

then the inequality (1.1.1) holds for P, -where m— ̂  mk.

Remark 1. 10. The C.P. for P which can be decomposed as above

is well-posed and has a finite propagation speed. ([10; Theorem 5.1.])

Proof of Theorem 1. 9. We use the following well-known theorem.

Theorem 1. lie Let R be a regularly hyperbolic operator on

[0, T] xRn -with 33°°-coefficients of order m. Then, for any non-nega-

tive integer p and any real number s, there exists a constant Cp>s

such that

p + m — l ( p rt

(1.3.1) 2 HAM*, OII.+.-i-^C',,, H \ \\DfPu(t', oil.-/***7

.7=1 U = 0 JO

for any O^^T, ^

We substitute Rk+1--Rru, Rk, p+bk-ly s^-bk^ and mk for u, P, p,

s and m in (1.3.1). Then, we have

^CJ'g' ^\\DlRk..-Rru(t',
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Successive uses of this inequality shows that if we write

and R= f}BkRk^'~Rr, then

(1. 3. 2) £

<C
7=0 o

r-l p + m-r+h

£** X! ||
/i=i y=o

and

(1.3.3) S

.7=0

(1. 3. 3) is the same inequality as (1. 2. 7) in Section 1. 2, except

that JIm replaces Pm. So, we get (1. 2. 8) for II m instead of Pm as in

Section 1.2. Combining this with (1.3.2), we get the desired result.

Q.E.D.

§ 1.4. Proof of Theorem 1.3 (2)

We need the following lemma in [19].

Lemma 1. 12. Let P be a hyperbolic polynomial of degree m

with constant coefficients, r be a positive integer and j^Rn. If

r e R is a root of Pm (r, £ ) = 0 with multiplicity r, then

P£2(?,l)=0 for j+\a\<r-k, A = 0,1, ».,r-l.

Now, we assume that P has a characteristic root r of multiplicity

rat (i, £;£) e [0, T]xlTx (1T-{0}). In the case (I) , we put

:)>. In the case (II), we take (p as the solution of

^ (?, x) = <?, J:> , where A,- (f , ̂  ; I ) = r .
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This solution can be found in a neighborhood of (i, x) and we can take

this neighborhood U so small that dXjQ(p=£Q on U for some j0. We may

assume U — U. And in each case, we put

In the case (I), for any f^C™(U), by Leibniz' formula,

- , .
s><* jlal

= ̂  -.-^ (D'Dlf) -P&2 ( t y x - ?5 £)p»-*-'-"*«E, (t, x).
j . " j l a l

Here, by the assumption (I) (ii) and Lemma 1. 12, we have

m-r

(1. 4. 1) P (/•£,) = £ p— '-**•»(*, x)E, (t, x},

where Ffte Co00 (t/) (fc = 0, I , - - - , m-r) .

In the case (II), by the Levi-Lax condition, we also have (1.4.1).

We will prove that if /^O, for any integers p, q, the following

estimates hold for sufficiently large p.

(1)

(2)

If these are proved, from the assumption (1.1.2), we have

p+m — d<^m — r-\-p, that is, r<^d.

Now, when p^>0, ^S^O, (1) , (2) are almost trivial.

When

II f. IT II _ qnnII/ '-&p \\H*(in — SUP

Here, we will take w = w (t, x) Ep(t, x) (w^C0°°(U)), then

\\W\\H-* (U)^P~P\\&\\H-P(U) •

So,

\\f-Ef\\a,m> sup
\\W\\H-pw

When ^^0, we take j0 such that dXjQ(p^O on U, and we solve the
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following equation asymptotically:

D^w=p(f-Ef) =p— • sy*J\

We can write for 0eC5°(£/)5

la l
Z^-£,)=£>5l£p-A0ft(0),

where 0h is a differential operator of order h and

<5,= (9,^)1".
So, if we put

T^= pm-r-|«l£jp-/W y£

y=o

we have
N+\q.\ Igi

Dl* W = p™-r I] p-' E <^* (wy-.) •0 y=o fc=o

(we take tw_1 = w_2 = ••• — w_lql =0} .

If we take iVj as

(^00) l4lw/=-F/-i;^(wy-*) 0' = 0,1,

CF, = 0 for j>m-r+l),

then WjS=C?(U) 0' = 0 , l , - - - , - Z V ) , and

lai- i

where Rj^C<T(U). Now,

sup

SUp

by taking N sufficiently large. Q.E.D.
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Chapter 2. The Relation between the Multiplicity of the

Characteristic Roots and the Order of Differentiation In

Energy Inequality for General Hyperbolic Operators

In the cases treated in Chapter 1, the regularity of solutions are

exactly determined by the multiplicity of characteristic roots. But in

general cases, this no longer holds. Typical examples are given in Chap-

ter 3. In this chapter, we study what can be said of the multiplicity

of characteristic roots from energy inequalities in general cases.

We consider general operators of the following form on V^.r:-

P= S aita(f,x)Dtir,,
J+\a\<jn

where % a GE .3 °° ( Y[0, rj) » am,o = l> V is an open neighborhood of the origin

in Rn+1.

§ 2. 1, The Results

The next fact stated in Introduction is well-known.

Theorem 2. 1. If °we assume

(2. 1. 1) x; \\Dtu (t, •) \\*+i<c [\\PU (f, •) \\0df
j = 0 JO

for any ^e[0,T], u e C0°° ( [0, T] X Rn) ,

P z's regularly hyperbolic in [0, T] X I?71.

First, we will extend this theorem as follows.

Theorem 2. 2. L#£ d be an integer, ~L^d<^m, and assume that

the following inequality holds:

(2.1.2) f'lKf.D^-M/', -)i|o^'<C0 {\t-t'Y\\Pu(t', 011,^'
Jo Jo

/or <m;y ^ e [0, T] , u^ C0°° (F[0, rn) .

Here, <£, Z),) = f}ijDx.9 f ^Sn~l = {$^Rn; |f | =1}.
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a positive constant d which depends only on Pm, C0 and independent

of i such that the following holds:

For any (i,x) Gi V^m and for any r/ (j = l, m-,P) 'which are dis-

tinct characteristic roots at (t,x;£) with multiplicity rj and satisfy
p

max|r/ — rk\<,d, there holds J^r^d.
J,k j=l

Especially P has no characteristic root whose multiplicity is

larger than d.

Next we consider some weaker inequalities. That is, for non-negative

integers p, d, and i<=Sn~\

(I-A^)i P ||<£, />,>»-*«(*', -)llo^'<C \\t-t'Y\\Pu(t>, Olio*',
Jo Jo

(ii-A^)i f 'll<£, £>.>"-"«(*', Oliy*'<c \\t-?y\\Pu(t', - ) l l^7 ,
Jo Jo

for any t e [0, T] , we C0°° (yco> n) .

Further, we also consider the following inequality for integers p, q.

(Ill-/*, a) ||«||H'(F|:of0)<C||P«||H.(FCofa)

for any t e [0, T] , e* e C^ (F[0, rj) .

Remark 2. 3. The difference between (I) and (II) is that of L1-

norm and Z/-norm w.r.t. t. The example which satisfies (II) but

doesn't satisfy (I) is given later.

Theorem 2. 4. We assume that

(1) The C.P. for P is well-posed and has a finite propagation

speed in VLO>T^.

(2) P has a characteristic root f of multiplicity r at (t,x;j)

If the inequality (I — p,d)f (resp. (II—p,d)s, (III — p,q)) holds, then

r<2d-p (resp. r<2d-2-9 r<2(m-p-\-q)) when 0<?<T,
£

2p (resp. r<3d-p, r^3(m — p+q)) zvhen f = 0 or T.
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Remark 2.5. (a) Even if ? = 0 or T, if Pm can be extended as

a hyperbolic operator with C°°-coefficients in a neighborhood of (?, x) ,

then there hold the same results as in the case

(b) In (III-/>, q) , we may exchange l l ^ l l /

f'||<£, #.>*«(*', Ollo^' when #>0.Jo

(I-d, d) is the same as (2.1.2), and the result is r<^d, which

coincides with the result in Theorem 2. 2. On the other hand, in the
3case (Il-dy d) , the results are r<C — d (when Q<^i<^T) and r<^
£j

(when t=0 or T) . This difference actually occurs.

Example 2.6. We consider P = D2
t- tD2

x + a(t, x) Dt + b(t, x) Dx

+ c(t,x) (a, b, ce5°°([0, T] XJ?)). Let J be a positive integer. Then,

we have the following energy inequality for Pd:

For any non-negative integer p and any real number s, there ex-

ists a positive constant CptS such that

p + d

(2.1.3) SI

y=o

h=l j=Q

for any t e [0, T], u e C0°° (I?
2).

Especially, we have

m-d Pt ft
V1 I II TV?/ fV' .^ II ^rlt'^C I fV t'^\d\\Pdi/(t' ^ H2/7/ /
/ ! i II x-Xj ££ ̂ t< j y || 77i_d_yt*.^ ^Lx I ^t' — ^y j| ut ^ \^ j / 0^^"

y=o Jo Jo

for any ^e[0, T], w eCj3 ([0, T] x U),

where m-ord. Pd = 2d. Thus, for Pd, (II-<^)? holds for any I, but,

by the result of Theorem 2.4., (I — d,d)§ never holds. The proof of

(2. 1. 3) is given in Appendix I.
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§ 2. 2. Proof of Theorem 2. 2

We use the method of Ivrii-Petkov [7; Theorem 1.1].

Let rejR, /0>0, z = i — iju. And put

up (t, x) = v(t, x) exp {ip (zt + <<?, x)) } ,

where v <E C£° ( F[0, r]) , p>0. We substitute wp for « in (2.1.2), then

< Jo' (<-*')' •?"«'"'( J I

1/2

Here, we have

f '(*-«')*• e'"'^'^A!C«P)~*~V" (A=0, 1,
Jo

So,

On the other hand, by | f |=l , we have for fixed

Thus, by letting p—>-f-oo, we have

(2. 2. 1) C0J!/r«||Pm(*, - ; z, i)
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for any t e (0, T~\ , v e C0°° (Y[0, n) .

From this, we get

(2. 2. 2) \Pm(l, £; r-zX I) |^ (CW !) -V

for any A>0, (?,£;?) e VJT,, I-: X JR.

Now, let (£, £) e Vpj.n* an^ assume that r, 0"=1, ••- ,£) are dis-

tinct characteristic roots at (?, x;§) with multiplicity ?•> Further we
p

assume X] rj^6?H- 1 anc^ we Put ^— niax |ri — r^|. We have only to prove
y=i 2^y<P

that there exists a positive constant <? which is independent of (i,x'3j}

and TJ (1^/^P) such that A^5. We may assume A^l.
XX P

We can write POT(2, x\ r, ?) = JI (r — ry) r '-/(r), where /(r) is a

polynomial whose coefficients can be bounded by a constant independent

of (t,x;j) and r/ (l^j^^), because the characteristic roots of Pm are

bounded. Now, we substitute t1 for f in (2. 2. 2) , then we get

^n i f i - ry -^ l^ l /Cr i
J-2

Thus, we have

+"' + r2) for any

where C is a constant independent of (?, ̂ ; f) and r^ (!<^;"<^>)o We

take JU = A, then

So, by rH ----- hrp — J^l, we have

A^CC^™)-1. Q.E.D.

§ 28 3. Proof of Theorem 28 4

We need the following theorems.

Theorem 2. 7. Le£ $ #£ a;2 open neighborhood of the origin in

Rn+1 and put S± = {(t, x) ^S; ±^0}. We assume that Pm has a

characteristic root r at (0, 0 ; f ) (feHn

(1) If Pm is hyperbolic in $, then
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n',tf.«(0,0;?,£)=0 for j+\a\+k+\&\<r.

(2) If Pm is hyperbolic in $+, then

n';#«(0,0;?,?)=0 for j+\a\+2k+\p\<r.

Proof. We get the result from Lemma 1.3. 1 in [5] by setting

f(tj Slj "') S2n+l)

(1)),

n+2 + £l9 •••,*«+! + ?») (case (2)).

Q.E.D.

The next theorem plays the key part in our proof.

Theorem 2. 8. ([7; Theorem 4. 1]) We devide the variables as

be rational numbers, r be a positive integer and (t, x)

. Further we assume

£'°> (^ £; 0, 0, f ®) ̂ =0 /or a«y f ® efi"-- {0},

If the C.P. for P is -well-posed and has a finite propagation speed

in V[0,n, andifj+\a\+p(k+\p»\)+q\pw\<r-h(l+p) (h = l,-,m),

then

P23. (». « (2, ̂  ; 0, 0, f (2)) = 0 for any £ ® e ft— .

Now, if Pm has a characteristic root f of multiplicity r at ( f , x ; f )
71"1), then by a suitable orthogonal transformation

= a(t-?) +A(x-£)

n, A is a orthogonal (n X ri) -matrix) ,

f, r and <f , DX) are transformed into en= (0, • • - , 0, 1) , 0 and (en,
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= DVn, respectively. So, we may assume that $ = en, ? — Q.

From Theorems 0.3, 2. 7 and 2. 8, we have

Corollary 2. 9. If the C.P. for P is well- posed and has a finite

propagation speed in VLOiT^ and Pm has a characteristic root ? — 0

-with multiplicity r at (?, x\ en) ( (?, x) G VLQiT^ 9 then for 7i = 0, 1, • • • , m,

(1) -when

(2.3.1) P£i^ «(*,£; 0 ,c w )=0 for j+ \a\

(2) when t = 0 or T,

(2.3.2) P^. (*.„(?,£; 0 ,O=0

/or j

Now, we start the proof of Theorem 2. 4. As is seen above, we

may assume (?,£) = (0, en) , ^ = 0.

(1) When 0<?<C^ we consider the coordinate transformation

Under this transformation, P is transformed into

P, (s, y ; A, £>„) =P(jp~1 + ?, yiP"1, • • • , yn-iP"1, ^

pD,,pDVl,...9pDv^,p*DvJ.

Here, for sufficiently large N, we have

PP,m-h(s,y,ff, ff) =Pm-h(sp-ljri, y,p~\ • • - , yn-iP~\
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Q'ln '

X PU$, <*, n (t, 0 ; 0, O + Qm_A>/1 0, y ; ff, 7?)

_ n2m-r"

X pr-'*-*-!*!-/-.^-!-!^^/,^,-*-/-!

where Qm-h,p is a homogeneous polynomial of degree m — hw.r.t. ((T, ^)

with coefficients which are bounded in C°° when p— > + oo. By (2.3.1),

we have Pp = p2m~rRp(s, y; Ds, Dy) , where Rp(s,y,(JJ'rj) is a polynomial

of degree m w.r.t. ((T, r[) with coefficients which are bounded in C°°

when p— »4-°°.

Now, for t;eC0°°(5) (5 is the open unit ball in Rn+1) , we put

Then, up^C^ (V\0iT^) for sufficiently large p and

(Pu,) (t, x) - (Ppv) (p(t-t) , pj:lf • - . , p2*n) .

We substitute wp for u in ( I - p , d ) j , ( I I - p , d ) f , (III-£, q) . Then, we

have

4( J

dt'

fp(s-
«,-(»+.,/l ^

J-pt

and

r * / i f

Jo \ J p ' 1? '

J — pl \ p

f p(t — t")

\p (f ^
-p*

Thus, from (I-p9d)g, by taking t = i + p 1 and letting p-> + oo? we have

r-p-7^, that is,
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We also have

Jl (£>?,» (P (*'-*), P*l, -, P^n)

and

f*
Jo

f*p(t — f)

J — pt

2 2m-r - n + 2 - f ^
~= @ I

J—pi

Thus, from (II-A d) f, by taking t — t-\- p~l and letting p— > + oo9 we have

4(m — d) — (n + 2)<i2(2m — r) — (n + 2)—p9 that is, r<2d——«
~~ ~ 2

For the case (III-p, q) 9 we use the following lemma.

Lemma 2.10. For u^C^(B), -we put

u(t, x} = u ( p f f ° ( t - t ) , Q'*xl9 -, p'»:cB),

<><Tj<><Tn (j = l,—,n-I). Then, for t^ [0, T] and for an

integer h,

sup ^w^(gp, .) (wA^B h<ff),

I \u\Hh(Bp)t) (when A<^

and
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When h is a positive integer, we can exchange

l|2f||*»("co.«.i> f°r

Proof of Lemma 2. 10. When h^>0,

<tf">h £ r ri(A^«
J + |a[<ft JO J

p°C(o"° f
-p^oc J

and

= p2ff"" Jo'° J| (Dlnu

pp^tfo-o r
=P"-*-' ,. I

J— p °t J

When A<0,

= SUP
secy CFCO| t f f ln) -M FCOf to])

Here, we take z^ (*, jc) = w(^(T() (^ — 2) , • • • , P°nxn) for w <E C? (Sp, to) . Be-

cause ^ is the same form as w, we have, by using the result when

7i:>0 for w,

<Uo3> = SUP

t, x)dxdt

su
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and

g | (M, rcQL2(Bp>to)|

I$ 0 . Q-E.D.

We return to the proof in the case (III-/?, q) . We have

and

Thus, by taking t = i + p~1 and letting p— »-f oo, from (III-/>, g) , we have

-p).

(2) When i = Q or T, we perform the coordinate transformation

As in the case (1) , under this transformation, P is transformed into

Pp = p*m~rRp, where Rp is the same as in the case (1).

When 2 = 0, we take

Up(t, X) ^V(p*t, p2Xl9 • • - , p2Xn-i, P'XU)

for

and, when i = T, we take

for f

Just as in the case (1) , we get the desired results. Q.E.D.
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Chapter 3e The Effect of Lower Order Terms

§ 3. I. Results and Examples

In this chapter, we will consider the effect of lower order terms to

energy inequalities. Many authors have investigated weakly hyperbolic

equations. And as a method of proving the well-posedness, some showed

energy inequalities, in which the order of differentiation depends on lower

order terms. ([17], [12], [16], [14], [15], [9], [21], [6], [22], etc.)

Others constructed parametrices or fundamental solutions, which belong

to symbol classes depending on lower order terms. ([1], [2], [24],

[25], [11], [13], etc.) As is said in Introduction, these suggest that

the regularity of solutions may get worse depending on lower order terms.

The following example illustrates clearly that this phenomenon actually

occurs for some operators.

Example 3.1 (cf. [4], [17]). We consider the operator

(3.1.1) P=Dl+tkDtDx + aitk-lDx,

where a — N(k-\-Y) -f 2 and k, N are positive integers. The C.P, for

P is well-posed for any a, and we can explicitly find u which satisfies

( Pu = f(x)
(3. 1. 2)

( £>,'«|«-, = 0 (.7=0,1), where

in the form

(3. 1. 3) u (*, x) =
.7=0

where Aj (O^j^N) are positive constants independent of f. So, in

this unique solution, ( d x f ) (x) actually appears and when a— » + 00, N— >

+ 00. (This example is a variant of the example stated in [17], and

can be proved by putting (3.1.3) into (3.1.2).)

In this chapter, we consider the following energy inequality, and we study

the relation between (q — p) and Pm-i. (If the C. P. for Pis well-posed,

this inequality holds for some £, q. See [7; Lemma 2.1].)



ENERGY INEQUALITIES AND REGULARITY-LOSS 213

/o -i ^\ \\U\\ <^.C^ II P?L II

for t GE [ - To, TJ, u e Co00 (l/ri) .

Here, [-T0, Tx] = [0, T] (we call case (i)) or [-T, 0] (case (ii))

(T*^>0), p9 q are integers, U is an open neighborhood of the origin in

Rn , ^t =z f^c-r0 , t] (^^ L — ^OjTij) .

About this problem, Ivrii-Petkov [7; Theorem 3] proved the follow-

ing result.

Theorem 3. 2. If we assume

( i )

(")

(iii) the fundamental matrix of Pm at (0,0;?,?) ,

where x0 = t, £Q = r, has non-zero real eigenvalues ±//, (Hormander

[5; Corollary 1.4.7] called such operators effectively hyperbolic),

(iv) £/i£ inequality (3. 1. 4) holds,

then

_

Here, C is an absolute constant, and Ps
m-\ is the subprincipal symbol

of P.

We will show some results of the same type for some operators.

First, we consider the operators of the following form in UTl.

(3. 1.6) P (t, x • r, £ ) = Qm (t, x;r,£', **£,)

where Qj is a homogeneous polynomial of degree j w.r.t. (r, £) with

C°°-coeiricients and m, k are positive integers and

We assume
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(3.1. 7)

(i) the coefficients of Qm are real-valued,

(ii) Q r o(0,0;r,0,l)=0 (refl),

(iii) (9rQm) (0,0;?, 0,1) =£0.

Theorem 3. 3. Under the above situation, there exists a con-

stant Cmik which depends only on m and k, such that if the inequality

(3. 1. 4) holds, then

Qm_, (0, 0 ; r, 0, 1) + A • r • (9?Qm) (0, 0 ; r, 0, 1)
(3-L8) ±Im --- ---

zuhere we take + in the case (i) and — in the case (ii) .

A preciser result for Cm>k is given in (3.2. 14), but this value is far

from the best possible, (cf. [1], [2], [8], [24], [25], [13].)

Remark 3. 4. (a) If we assume that Pm (t, x\ r, f ) = Qm (t, x; r, $',

tk?n), where Qm(t, x\ 1, 0, 0) =£0, and that the coefficients of Pare C°°-

functions, and that the C. P. for P is well-posed with a finite propaga-

tion speed, then P must be written in the form (3.1.6). (This follows

from Theorem 4.1 in [7]. (See Theorem 2.8 in §2.3.))

(b) By a result in Chapter 2, if Qm(t, x\ 1, 0, 0) =/=0, and that the

coefficients of P are C°°, then (q-\-m — \—p)'^$. (In Chapter 2, we

have assumed that the C.P. for P is well-posed and has a finite pro-

pagation speed. But we use these conditions only in Theorem 2. 8. If

P has the form (3. 1. 6), the conclusion of Theorem 2. 8 is satisfied with-

out these conditions. So, we have q 4- m — ~L — j>^0.)

(c) The condition that P can be written in the form (3. 1.6) is

invariant under a coordinate transformation of the form

where //(O, 0) -0 0/=1, • • • , n-1) , /n(0) -0. Under this transformation,
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if we write the symbol of transformed operator as

m ^

P = Qm (*, y ; ff, v', ^O + £ *-*Q«-» (s, y • a, T?', 5*7?n) ,
7i = l

then

'Q«(0,0;? ,0 , l )=0,

(9,Q«) (0,0;?, 0,1)^=0,

(3.1. 9)
.-i (0, 0 ; ff, 0, 1) + A • ff • (9jQra) (0, 0 ; ff, 0, 1)

2z

Q»-i (0, 0; ?, 0,1) + A. ?. (9X2,,) (0, 0; ?, 0,1)

(9,0.) (0,0;?, 0,1)

where d = f'n (0) f — 7i(0, 0) . So, the quantity in the left-hand side of

(3. 1. 8) has some invariance for P. (These are obtained by straight

calculations, so the proof is left to readers.) This quantity appeared

also in the arguments of Nakamura-Uryu [13] (their ra/s) , and the

class to which their parametrix belongs is determined by this quantity.

We give some examples of operators for which the C.P. is well-

posed and can be written in the form (3.1.6).

Example 3. 5. (1) Let Q(t, x\ r, f) be strictly hyperbolic, and put

m

P (t, x • r, f ) = £ r*Qm_h (t, x • r, **•&, • • -, **»£.) ,
/i = 0

where kj are non-negative integers. If the coefficients of P are C°°, then

the C.P. for P is well-posed. ([20], etc.)

(2) As a special case of (1) , we consider

where a, b, ceC°°([ — T0, TJ X R) , and a,b are real-valued, and a(t, x)z

-b(t,x)>Q on [-To, T,]xJ?. In this case, we can take ? = a(0, 0)

±Ja(0, Oy-b(0, 0), and then

Q»-i(0,0;?,0,l)=c(0,0)

(9,Q.) (0, 0; ?, 0, 1) = ±2V«(0, 0)2-&(0, 0)

(932.) (0,0;?, 0,1) =2
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So, if (3. 1. 4) holds, we have

Q)̂ ~~

where Ck is a constant which depends only on k. The left-hand side

of this inequality coincides with that of (3.1.5), when k = \.

The operators we considered above have characteristic roots which

coincide with each other when £ = 0 with a finite order. Next, we con-

sider the case with infinite degeneracy.

Let

(3. 1. 10) a(t) = |*!*exp(-B(0 |*|-) on [-T0, TJ,

where jU^R, ft) is a positive integer and 5eC°°[ — T0, TJ, J3(0)>0.

Note that aeC°°[ — T0, Ti] and a is flat at * = 0. Further,

where £eC°°[ —T0, TJ, 4(0) = ±o>B(0) (+ in the case (i), - in the

case (ii)). (On the other hand, if we assume (X^C°°\_ — T0, TJ,

ct'(t)/a(f) =b(t)\t\-*~l for some ieC°°[-T0, TJ, ±*(0)>0, then a

is in the form (3.1.10) for some B, ju.)

We may assume b(t)^=Q on [ — T'o, T^].

We consider the operators of the following form in UTl.

(3.1.11) P(t,x; r, f) =Q,(<, *;r, f, a (Of.)

+ S («' (0 /«(0) "Q-* (*, ^; r, f', a (f) £„),

where Qy are the same as in (3.1.6).

By a technical reason, we impose stronger conditions on QOT than

(3.1. 7) ;

( i ) the coefficients of Qm are real-valued,

(ii) r0eC00([72.I), r0 is independent of

(3.1.12) < xf = (xl9 • • •, *„_!), and

(iii) (9rQTO) (t, x\ r0 (*, j:n), 0, 1) ̂ 0 in UTi .
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Theorem 3. 6- Under the above situation^ if (3. 1. 4) holds, then

(3.1.8) holds with Cm,k = 2, yfe = l, ? = r0(0,0).

Remark 3. 7. (a) Remark 3. 4 (b) is also valid in this case.

(b) The condition that P can be written in the form (3. 1. 11)

is invariant under a coordinate transformation of the following form.

s=t

where /j(0, 0) ^0 O' = l»'", ** — l),/n(0) =0. Under this transformation,

if we put the symbol of transformed operator as

+ S («' W /« W ) *Qro-A 0, y ; ff, TI', a (s) ?,) ,
ft = l

then (3. 1. 9) is also valid. Further, if h(t,x) depends only on (t, xn) 9

then

where

^o (^, yn) = (9XnH) (s, xn (s, yn) ) r0 (5, xn (5, yn)

Note that the second term in the right hand side belongs to C°°(UTj).

We give only a simple example. Many examples can be found in

[20].

Example 3. 8. We consider

where a, ^eC°°([0, T] X R) , a(t,x)>0 on [0, T] X J». For this op-

erator, the C.P. is well-posed in [0, T]XjR. ([15], [21], [6], [20],

etc.) In this case, as in Example 3.5 (2), we get
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va(09 0)

from (3.1.4).

§ 3. 2. Proof of Theorem 3. 3

By Remark 3.4 (c) , we may assume f = 0. Further, we have only

to consider the case where

Im Q.-I (0.0; 0.0.1) }>0 (case (i)),
(9rQ«) (0,0; 0,0,1) 1<0 (case (ii)).

Let o)j = 3 (.7 = 0,1, • • • , 7 2 — 1), o)n = 3£+4. And we perform the fol-

lowing coordinate transformation.

f t=sp-{0°
(3.2.1)

Then, P is transformed into Pp which is a partial differential operator

on ^[-fo.fj for sufficiently large p. (B is the open unit ball and [ — T0,

^i] = [M] Osp. [-1,0]) in the case (i) (resp. (ii) ) ) . We have

(3. 2. 2)

•yvhere f> ;— (??i ••• fi 1) etc

We note that

o)Qh + (tin — (DQk) (m — h)= 4m — h ,

(Dj-^-o^k~0)n= —1 (.7=0, • • • , n — 1),

Q w (0 ,0 ;0 ,0 , l )=0 .

So, for any fixed positive integer N, we can write by Taylor expansion,

PP (X y,G,y)= P4m-1 [ {5*(w~1)^j"1 ((9rQm) (0; o, ^n) G
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+ IJ p-'A^s, y ; <M) +p-(N+1)AN+1,f(s, y • ff, ?)],

where en= (0, • • • , 0, 1) <=Rn and

2
or |=m- h

a$a is bounded in C0 0( JBc_f0 jf l3) when p— > + oo}.

Further, Ax does not include the term yn
m. So we have

where Bj(s,y, (T,^)eF (j=I,~-,N), BN+1,p(s,

Now, for 06EC,

+ IJ p-'Ef & y; A, A,) + p-*"1 !̂,, (s, y • D» Dy) ],

where £^(5, y; (T, ff) eF (; = 1, • • - , N), EN+1>p(s, y; (T,y) ^F. We take

(9 as

QT O_i-zfl(9 rQm)=0, that is, e-^-^^FV-

Finally, we perform the linear coordinate transformation

t=s

Q°-R denotes the composition of operators Q and -R. A function is considered as a
multiplication operator.
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then Pp is transformed into Pp, and

+ i: P-'RJ (*, x ; A, £g + P-^RN+I,? & x ; A, zg > ,
/=!

where R3(t, x\r^) E^F (j=l,~-,N), RN+i,P(t, x\ r, ?) eF. We put

L^^-^^QO A+ Sp-^/H-p-^-^+i,, •

To solve Lpu = Q asymptotically, we need the following lemma.

Lemma 3. 9. Le£ K be a compact set in Rn. For any

(3. 2. 3)

•- . ,JV), a solution of tk(m~l)dtu=f in [-T0, Tj] X l?n ^a^ be found in

the form

u(t, x)
j = 0

where Qj^CZ (j = Q, 1, • • • , N+l) .

Proof. We have only to prove that for any /eCj and any

j^>0, there exist gh^C% (/i = 0, 1, • • - , j+1) such that

(3.2.4)
±i

OGE[-TO, Tj]) (+ in the case (i), - in the case (ii)).

By Taylor expansion, we can write

f(t, x) = § tvfv(x) + *'/(*, x), where fv e C0°° (Jf), /e C; .
v = 0

So,

(3.2.5) (V'(log|r|)'/(r,;0<*r
J±i
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)+ (" (lo
J±l

Now,

p — l + l ±i

; j ± i
and

Thus, the ][>part in (3.2.5) is in the form (3.2.4). As for the last

term of (3. 2. 5) , we can write

f /(r, x}dr = F (t, x) - *G (*, x) , where .F, G e C^ .
Jo

So,

r(log|r|)'/(r,*)drJ±i

|)^G(r,x)]£
xl- f j

j±i

By induction, the last term of (3. 2. 5) is also in the form (3. 2. 4) .

Q.E.D.

Now, we solve Lp( f] p~lid(t, x) ) =O (p~N~^ . That is,

(3. 2. 6;

First, (3.2.6; 0) is satisfied by any Uo(t, x) =(p(x) . We take

C5° (K) and 0> (0) =1. (.K is a compact neighborhood of the origin in

Rn which is chosen later.) By Lemma 3.9, (3. 2. 6; /) is satisfied by

(3.2.7) Ul(t,x} =I]r<
.7=0

where gJl)eCS (/ = 0, 1, • • • , N) .

Let %eC°°(ll) such that %(0 =0 (/<l/2), X(0 =1 te>l) , and put
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fe(*p'A«<*+»(— 1») (p^l) (case (i)),

X(0 =
lx(*+(5/4)) (case (ii)).

In the case (i) , we have

(9?%) (0 =

where supp %,,c [1/2, 1] (v = l, 2, • • • ) •

Put

We define B,w, Gt
OT (/ = 0, 1, • • • , AT+1; AT=1, 2, • • • ) as follows.

Bf*> = {A, (t, *) =
j; finite

(case (i)) or= S h(t+ (5/4»h,(t,x) (case (ii));
/; finite

0,eC5-([l/2,l]), A,eCS} when /^Ar ,

^5i= {*, (*, *) = E
^; finite

(case (i)) or= ^ 0,(i+ (5/4»hflJ(t, x)
j; finite

(case (ii)); 0^=% or eCS°([l/2, 1]), hplj is bounded

in Cx when p-> -f 00} when / =

Then, we have

(3. 2. 8) P, (C7««) = p5™-2 1 * |

where Gffi<=Gl*> (Z = 0, 1, -.,

Now, we have the following estimate for Pp from (3. 1.4) by Lemma

2. 10 in Section 2. 3.
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Lemma 3. 10. There exists a constant C such that for suffi-

ciently large p, the following estimates hold.

n 9 Q^I i i?/ n ( 4 )
p \ < L , t ,

for any t e [ — T0, TI] , u e C™ (B? ̂  , where

II (3) - sup

Bt = BL_?0jti (£e [— TO, T^]) .

Now, we fix 0< ^^1/2 and a compact neighborhood ^ of the origin

in Rn such that |~0, — ~\xKc:B. And we take

(case ( i))

i)) (case (ii)) (p^l) .

Then, we can estimate Uf\PpU
(^ as follows.

Lemma 3* 11. There exist positive constants S and C such that

for sufficiently large p and N, there hold the following estimates.

d-pp (case ( i ) )

( i ) )

C-p5 m~2 + 5 (^^ (ii)).

we are assuming that Re 0>0 /TZ ̂ A^ c^5^ (i)

Re S<CO m ^/ig case (ii) .

o/ (3. 2, 10) .

(1) Case (i), £>0. By i^0(^, ^:) =^(^:) eCS° (X) and

we have
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|| e^t'l (0 «, (t, x) \\%^3 • p' (S>0) .

On the other hand,

2(0=0 if 0<^2-1p-V(2(*+1)(m~1)) ,

so we can estimate iT1 by 2p1/(2aJ-1Hm-1». Therefore,

So, we get the result.

(2) C2££ (i) , P^O. By definition, we have

(3.2.12) 11^11$.=

If we take w = e*pj;n • w, weC? (St0), we have

I lw l l f f - ' cB
So,

For suitable v, we have

I («'X (0 ««,»)

So, we have

(3) Case (ii), ̂ 0. In

we have

So,

On the other hand,

So, we get the result.
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(4) Case (ii) , £<;0. In (3. 2. 12), if we take w = eipXnv(tpl/^k+

.r), ueC;°(( — 2*0, —to) XK), then

So? as above,

sup

of (3. 2. 11) .

(1) Case (i), g:>0. In (3.2.8), PP(U™) =0 when *<:

2-ip-i/(2(*+i)cm-i))> And? G$y=0 (/^A^), when p-1/(8(*+1)(w-1})^^^ so,

in this interval, we have

g

have

So, in this interval,

Hi <

(2) Cas^ (ii), q^O. In {-1/4^^^}, G^=0 (/^N) . So, in

this interval, we have

IIP [/(^)||Hg<<Cp5m-2-^-1+« + (^(A+1)(m^

— 1/4}, we have
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Therefore we have the result.

(3) When g<;0. We solve

(3. 2.13) D™Wf > - Pp U™ = O (p-*-'+

We put

f] p-'H,,, (*, *),

then,

So, (3. 2. 13) can be solved by

l?i
H,,, =GK' - E ^BH,_y,, (1=0, 1,-,N).

If we take Htip as these, we have Hii(,EiGiN\ Further, we have

Pp U<P - D^Wp = p-^-1^-2 1 1 \ 'eif*»3p ,

where H^^G^.

(3-1) Ca5e (i) . As in the case gSrrO, we have

i« 5

On the other hand, from the energy inequality for D^9

\\™\\ wBt^C\\D^w\\L,(Btai for any

we have

So, we have

Now,

So, we have
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II p TT( t f ) | j (3 ) <-pn5m-(5/2) + g-Re5/(2(fc + l)(m-l)) + (2m-l)/(4(fc + l)(m-l))
II -* p^ P \\q,tQ = *-'lJ

(3-2) Case (ii) . As in the case <?^0, we have

And, as in the case (i) , we have

II P nw— n | 9 lW (^ll (3 )
\\r

 PV p UXnVV p \\qitp

-1) 4

So, we have the result. Q.E.D.

From Lemma 3. 10, 3. 11, we have

2m —1 f x . N N— — (case (i)),

Re<9

(case (ii)).

So,

±Re <9<:6(&4-l) (* + 2) (m-1) (g+m-1-^)

(+ in the case (i), — in the case (ii)).

If we put

(3.2.14) CWifc = 6(£ + l)(£ + 2)(m-l),

we get (3.1.8). Q.E.D,

§ 3o 3. Proof of Theorem 3, 6

We can solve

(d,ff) (t, xn) = a (0 r» (t, xn) (dXnH} (i, xn)

H (0, xn~) = xn
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in a neighborhood of the origin in UTi. And by Lemma in Appendix II,

this solution H can be written as

So, by Remark 3. 7, we may assume r0=0. Further, we have only to

consider the case where

Im Q.-. (0,0; 0,0.1) |>0 (case (i))
(d,Qm) (0, 0 ; 0, 0, 1) l<0 (case (ii) ) .

The essential idea is the same as in the proof of Theorem 3. 3. But,

we can not perform a sympletic dilation like (3. 2. 2) . So, we skip to

the next step and this is the reason why we need (3.1.12).

First, we have

e-lf"opoe^*-=P(f, x; Dt,

where

= (a' (0 /a (0 ) "Qm_, (ttx;r,$',a (fy (p + £.)

= (a' (0 /a (0 )

x Qm

Now, we have

Qm (t, x\ 0, 0, f n) - 0 for any (t,x',£n).

So, by Taylor expansion w.r.t. (r, f), we have

P («, * ; r, f ', p + £„) = P"1-1 {« (/) m-J ( (9,QTO) («, ̂  ; 0, *„) r

+ S (^Qm) (*, x ; 0, en~) £ ,) + a' (0 a (*) OT-2Qm_i (*, x ; 0, <?„)

+ S P~la (0 m-i-1 (a' (0 /a (0 ) '«$, (t, *;*,&},

where Si is a polynomial of degree (/+!) w.r.t. (r, f ) with (^-coeffi-

cients (note that a(f)/a' (£) eC°°[-T0, T,]), and eB= (0, • • • , 0, 1)

Next, we solve
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(9,Qm) (t, x-Q,en}dtfh+ (9f,Qm) (*, x ; 0, O 9,, /» = 0

This can be solved in a neighborhood of the origin in UTl, and

is a coordinate transformation in a neighborhood of the origin in UTl.

We put

^Q^-xfe^ fey); Q,Q,-- — -, •
tfoO, y)

Under the above transformation, if we write the transformed operators

as P, Si, then e~lpxnopoeipx* is transformed into

+ g1 P~la (s) -1-1 («' (5) /a (5)) l+13, (5, y; A, A,) > •

We may assume that this operator is defined on UTi,

Hereafter, we will write (£, x) instead of (s, y).

We take

P of (u} . P b(u)S0(u x

J±i a(eO ° ' J±i w j w + 1

By Taylor expansion, we can write

ft)

b (it} Sn (.U x} '— ^ ' U^ C • (.X*} ~^~ If-^^^C (U X*}

So, we have

where ^eC°°(C7r i), JUELC~(UX) (Ux={x^Rn- (0 ,^r)eC7}), and

- ±— i(0)5)(0, x) =
ft)

(ii) ) . And, we have

- ±— i(0)5)(0, x) =iB(0)SQ(0, x) (+ in the case (i) , - in the case
ft)
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e-f"t-*°Sl°el"t-*> = *j-«+1)(-+1)CHi + (logl *])#,),

where HhHi are differential operators of order (/-fl) with C°°-coeffi-

cients. Therefore, if we fix a positive number 5, we have

= pm~l{a00m~laQ(t, x)Dt+ X] p~la(0w"1"1"8At>,
1=1

where At is a differential operator of order (7+1) with C°°-coefficients.

We need the following lemma instead of Lemma 3. 9.

Lemma 3.12. Let /eC°°([-T0, TJ Xi?n), supp/c [-T0, T^

;^T z*5 a compact subset of Rn). Then, a solution of

can be found in the form

u(t,x)

where geC°°([-T0, TJ Xi?n), supp gc [-T0,

Proof. We have only to consider

(+ in the case (i), — in the case (ii)).

There holds

^1 for 0^\t\<\u\^l.
a(u)

So, GeC°°(([-T0, TJ-iO}) Xi?n) and bounded when *->0. Further,

and by induction,

d{G= \t\-^(a}(t, x)G(t, x^+b^t, x»,

where a3, b,^C°° ([-T0, Tt] X-R"), supp ay, supp ^C [-T0, T,] X X. So,

^, x) eCT ([-T0, T,] x JT). Q.E.D.
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(As a matter of fact, we can prove that u can be taken in the form

u = a(trv\trlg(t,x}, where gGEC~([-T0 , TJ X IT), supp gc[-T0, TV]

X K, by the method in Appendix II.)

We put

Lp = a(f)n-1a0(t, x} A

and we will solve

^(Sp- l«.)z=o

That, is,

-| m-l

(3.3.1-1) a(tr-lDtUl=- / XlaCO"1-'-1-'A, («i-,)
<20(£, x) y=l

(K-I = - = B-W+I = O), 1=0,1,-.;N.

First, (3. 3. 1; 0) is satisfied by any u0 (t, x) =(p(x) eCS° (Rn). Now,

we fix 5 which satisfies 0<(J<C|Im -50(0, 0) |/2, and we take a neighbor-

hood U of the origin so small that

on U I - T ^ T A ,

where v (t, x) = - C(t> X} ^C°°(UTl). Further we take Te (0, T] and

a compact neighborhood K of the origin in Rn such that [ — T0, T\]

xKdU, where [-T05 T3] - [0, T] (resp. [-T,0]) in the case (i)

(resp. (ii)), and we take (p^.C^ (K), <^(0) = 1. Then, (3.3.1) is solved

by means of Lemma 3. 12 in the form

where g;eC£ = {/eC~ ([-t0, TV] X JT) ; supp /C [-T0, t,] X A'}.

Let %eC°°(JR) be as in the proof of Theorem 3.3, and put

%(aOOpwa+8S))) (case (i))

2(0 =
(ii)).z /

In the case (i), we have
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where tf> eC0~ ([1/2, 1]), 4"eC-(«) (v = l,2, • • • ) •
Put

^p-lul(t,x)= f] (pa (01+")

We define E, E as follows.

E={bf(t,x)= S ^.(aOOPV(1+2S))^-(^) (case (i))
/; finite

or = S 0 , - + - * , * ) (case ("));
j; finite

^,^) (case ( i))
j; finite

or = £ ^ + AX*,^) (case (ii));
j; finite

0y = X or

Then, we have

where B^E (1 = 0,1, • • • , N), B^E (1 = JV+1, • • - , .

We have the estimate (3.1.4) for P when U, [ —T0, TJ are re-

placed by U, [ — TO, T I ] , We take tp as follows.

J Case (i) ^ = T1=t (>0)

Pnco (\\\ f ^T\ rv(f \ n~V(2(1+2S))
I vydoC \-''-*-/ "p "^^.^y \ fl / r^

(tp is uniquely determined).

Note that for any 5>0, there exist g, /ieCcx>([ — T0, TJ X Rn) such

that

e*<'' *> = a (0 K£' *> ~sg (^, j:) = a (0v(''r) •

and, if 0<ff<|Im 50(0, 0) |/2, we have, in C7f1 = C7c_f0,f j,
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(case ( i ) )

Rev(t,x) + <J<;Rey(0, 0) +2d = ImS0(0, 0) +2d<0 (case (ii)).

Now, we will estimate U^ and PUpN} as follows.

Lemma 3. 13. There exist positive constants S and C such that for

sufficiently large p and N, there hold the following estimates,

(3.3.2)

d-p" (case ( i))

(3.3.3) II PC/HI*' <^>

C-pm-1+9 (case (ii)).

The proof goes on as the proof of Lemma 3. 11, so we only point

out the different points.

Proof of (3. 3. 2).

(1) Case (ii) , p^fl. Note that Re y (t, x) + 5^Re y (0, 0) + 28 and

Re y (*, x) - <?:>Re y (0, 0) - 28. By

we have

So, we get the result by Re V (0,0) = Im 50 (0, 0) .

(2) Case (ii) , /><|0. We have, by definition,

Here, we take w(^, x) =eipXn(p(t, x), then
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and so,

. P-(ReKO,0)+2S)/(2(H-28))-5

<?/ (3. 3. 3) .

(1) Case (i), <?;>0. We have only to note that

= 0 when a(0 ^— P~1/(2(1+2S))

Bt = 0 (1=0, 1, .... AT) when

and

Re v (*, ̂ ) -5^Re v (0, 0) -25>0 .

(2) W7i£?2 Q'^O. As in the proof of Lemma 3. 11, we can solve

D^wp -PUW - o (p-*-1^-1) ,
as

where J?, = a(0'('>*)+"~1"'(1+>n~I'-5z,^»e£ (/ = 0, 1, • • - , N). And then,

j; finite

where Ej^E. Further, as in the proof of Lemma 3. 11,

So, estimating || W^m \\L*(ut > as m tne proof of Lemma 3.11, we get the

result. Q.E.D.

From the above lemma, we have

P^m-l + q-— ~-~ (ImS0(0,0)-3ff + ro-l) (case (i)),
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ImS0(0,0) -2g<m-l + g (case (ii)).
2(1 + 25) —

So, by letting 5-^ + 0, we have

± Im S0 (0, ty<2(q + m-I-p)

( + in the case (i) , — in the case (ii) ) .

Q.E.D.

Appendix I. Proof of (2. 1.3)

The case d—\ follows from the result of Ivrii [8]. But we will

give a simple proof.

(1) When P=P2 = Dl-tDl, d=I, p = Q. First, we fix *0e (0, T),

and for u<E.& (R2) we put

f to

w(t,x) = u{t',x)dt' .

Then,

w(*0, J:) =0 , dtw(t, x) = —u(t, x).

Now, we have

2 Re J ° |P2e^ • ^w^dxdt

= 2Re J f««^^^- r° ^tdt(\wxai\*)da:dt

= 2Re Jtt^ze^cl ° + 2Re J ° \ut^xdxdt--\t {\wxx\

+ ° \\'wxx\
zdxdt=-2RQ utx(Q9x)wx(j^~x)dx

{\wxx

° J| w^]2^^-2 Re f

Here,
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so,

f|ie;,(0, x)\2dx<T P [\ux(t,x)\
J — Jo J

Thus, we have

J |tf*(*o,*)|2^+ f° ( wt *dxdt

By Gronwall's lemma, we have

(A. 1) \\ux(t^ x} \2dx<,C J f ° {\Ptu\'dxdt

+ J|^,(0,^)|2^+ J|^£,(0,^)i2^j for ^Oe(0, T).

Next,

-2 Re P (pzu-u'tdxdt/

= 2 Re f (ut&tdxdt'-2Re P f^w^J^^

= T ^dt(\ut\
2)dxdt' + 2Re f' p^^^J^

= J W ,(^,

,(0,x)|Vx- f

Thus,
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}\2dx^ I" (\P2u\*dxdtr

' (\ux\*dxdtf + (\ut(0,x}\2

+ [' f | ««(*', -r) *dxdt'

+ f|«,,(0,jc) *dx}

By Gronwall's lemma, we have

(A.2) J |« ((^x)|2Jx^CJ f

Lastly, we have

f / f£ f P \
( A "3^ I I 11 (1- *r\ ^ rl T* <^~ (~* I I i I 11 ( ff T-\ I ^ rl r/3V J- I ti (C\ T-\ I ^/r7 r iV^/i.. Oj I I t* {Ly JL J CIJL ^ -̂O I I I J t* j \i> 9 JL j I LlJLLiL ~r | t* \^? •"*•'/ | ^•^ I «

J \ JO J J /

From (A. 1), (A. 2), (A. 3), we have

i] HZ>M*, oiiLy^cf [\\pzu(t\ oiiy^+s IIA^CO, oi i i 'y-o \ Jo /=o y

for O^^T, ^e^(I?2)0

By substituting (1 + D£) s/2w for ^, we have the result.

(2) Wfcerc P=PZ, d=I9 p>0. We prove by induction on p. By

induction hypothesis, we have

2
+2-y

/ p p . ^ P
== \y=o Jo * 2 ' S~J y

Here, by P2Dt = DtP2 — iD2
X9 we have (by substituting Dtu for e<:

^.-=0 J ' s+1--7= |^=0 JQ « 2 , s-.?

+ f] f£ | |A^(^OIIs+ 2-^
j=o Jo Sy=o
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Therefore, we have

P+2 (p+i rts \\D{u(t, .)ii;+i_/^c x; \\D3
tp,u(tf, oiu+i-^'

y-o [y=o Jo

+ E f ll^«(«, •)II\+i-,dt' +^3IIAy«(o, OIIJ+»-J .
y-o Jo j=o j

Again by Gronwall's lemma, we have the case p+1.

(3) General case. For Q = a(£, x) Dt + b(t, x) Dx+c(t, x) (a,b,c

e^°°([0, T ] X J R ) ) , we have

f; ||A'(M*, OIILy^c j f ] f'liD/P^C^,
y=o U=o Jo

So, as in Section 1.2, we get the result for P=P2+Q, d=l. Successive

uses of this result for d=~L allows us to get the result for <^>1. (See

the proof of Theorem 1.9.) Q.E.D.

Appendix II

In this appendix, a(t) and [ — T0, TJ are the same as in Section

3.1.

Lemma. For any /*eC°°([ — T0, Ti] X Rn) and any positive num-

ber y, there exists FeC°°([-T0, TJ xRn) such that

ra(uy

for

Proof. By

a /(0=*(0kl" -"1a(0. * (0=^=0 for

we have

[a(uYf(u, x)du = ro;(«)'.-l^pi./(«,
J» L vZ>(«)

- fa (a) •«•/!(«, a:) af« for /xsC'CC-T,, T,] XjR») .
Jo
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Thus, by induction, for any positive integer N, there exist FN, fNEi

C~([-T0, TV] XIT) such that

r i ct

Jo ' Jo

We put

We have only to prove that for any positive integer M9 there exists

positive integer N such that GN^CM([-T0, TJ X Rn).

First,

and,

\C

So, we have

Next,

By induction, there exist gh &i e C°° ( [ — T0, Ti] X JRn) (/ = 0, 1, • • • ) such

that

t9 x}

So, we have

Thus, if JVft>-a>-M(ft>+l)>0, we have G^eCJ/([-T0, TJ X Rn),

Q.E.D.
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