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On Energy Inequalities and Regularity
of Solutions to Weakly Hyperbolic
Cauchy Problems

By

Takeshi MANDAT*

Introduction

In this paper, we study how the regularity of solutions to Cauchy
problem for a linear hyperbolic equation is affected by the multiplicity
of characteristic roots and by lower order terms of the differential
operator.

More precisely, we treat the following Cauchy problem for the
operator P= Y a;.(t, x) D{D%:

j+lelsm

Pu=f(t,z), T _=t=T,,
(0.1)

Dﬂjult=T«:gj(x) (J:O, 1:"'; 771’—1>,
where a;. are C”-functions and a,,,70. (Notations and definitions are
given later.)
First, we remark the following well-known fact.

Let P be a regularly hyperbolic operator on [T_,T.]XR" (see
Definition 1.1 (1)), then for any fC”([T-, T.] X R") and any g;
eC”(R"Y (=0,1, ---,m—1), there exists a unique solution wu(t,x) of
(0.1) and the following energy inequality holds:

©.2) DD MemasSC( [ 15, ) e

m—1
+ jZ_Joiig,-n.m_l_,) for T_<t<T,, scR.

Here C; denotes a constant independent of f,9; G=0, -, m—1).
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This inequality and other energy inequalities can be interpreted as
representations of the regularity of solutions (cf. the index of well-posed-
ness in [7]).

When we have a multiple characteristic root, (0.2) no longer holds.
That is, if we assume the inequality (0.2) for P, then we can prove
that P is regularly hyperbolic. Further, for some operators the regu-
larity-loss of solutions depends much on lower order terms.

The purpose of this paper is to study, by means of energy inequalities,
the difference between the degree of regularity of solutions and that of
the Cauchy data, when the operator P has multiple characteristic roots.

In Chapter 1, we treat the case where P has the constant principal
part or P is of constant multiplicity. In these cases the regularity of
solutions is exactly determined by the multiplicity. This fact has already
been known essentially, but we will give a sketch of the proof in order
to establish the results as strong as possible.

In Chapter 2, we treat general operators, and we concentrate our
attention on the multiplicity of the characteristic roots. In this case,
we can also say that as the multiplicity becomes larger, the regularity
of solutions becomes worse. But the regularity is not determined by the
multiplicity alone.

Chapter 3 is the most important and interesting chapter in this paper.
A phenomenon is known that lower order terms affect the regularity-loss
of solutions. (For references, see §3.1.) We will show that for oper-

ators of some types this phenomenon actually occurs.

Notations and Definitions

We introduce some notations.
(t,x) =z, -, Za), (T,6) = (7,61, 7, €n)
D= (D, D;) = (D, D;,, *-, Ds,),
D,= —i0,= —i(0/0t), D,;= —i0,,= —i(0/0x;) (j=1, -, n) etc.
For ACR"', ICR, we write A;={(t,x) €A; tcI} and
C”(A) ={p; there exists an open neighborhood U of A
and §=C”(U) such that @|,=¢},
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B=(A) = {peC”(A); any derivative of ¢ is bounded on A},
Cy (A) = {peCy (R™™) ; supp ¢ C A}.

|v]s denotes the Sobolev norm of order sER on R", and |v|arw de-
notes the Sobolev norm of order p (an integer) on AC R,

Let P= 3 a;4(¢t, x) D{Df be a partial differential operator on
A, where o (@ - q) EN (N={0,1,2, 1), @] =3 a;, D= Deeos
Dz* and a;,=C”(A), then ord. P denotes the ord;1 of P on A.

Further we write

P,(¢,z;1,8)= 2 a;.(t x)ré”,
J+1 n

where &*=¢¥...6%» and

P3¢, x5 7, §) = (01020108 P) (¢, x5 7, §).

Definition 0.1. (1) The roots of P,(¢ x;7,§) =0 as an alge-
braic equation with respect to ¢ is called the characiristic roots of P
at (¢, x; &), and the maximum of their multiplicities is called the multi-
plicity (of the characteristic roots) of P at (7, x; §).

(2) We call P hyperbolic in A, if P,(t,x; 1,0)5=0 in A and the
characteristic roots are all real at any (¢, x; §) e AXR"

The term “well-posed” has been used in various meanings. We adopt

the following definitions after Ivrii-Petkov [7].

Definition 0.2. Let V be an open domain in R"™' and P be a
differential operator with C”-coefficients on V. We assume P, (¢, x; 1, 0)
=0 in V.

(1) We say that the non-characteristic Cauchy problem for P
(abbreviated to “the C.P. for P” from now on) is well-posed in Vir_r
(T_-<LT.), if the [ollowing two conditions are satisfied.

For any feCy (V) which satisfies supp fCVir, .;, there exists
ue 9P’ (V)t such that

Pu=f in Viawra,

supp 4 CVir o -

(£)

T 9/(V) denotes the space of distributions on V.
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For any 6 [T_,T,], if uc D’ (V) satisfies

) supp #CViz ey, PuCy(V) and
Pu =0 in V(_w,a-] ,
then, #=0 in Viwe-

(2) We say that the C.P. for P has a finite propagation speed

in Vir_r3 if there exists a positive constant 7 such that the following
condition is satisfied.

For any (%, %) €V, 1., there holds
r(i, z;7) ﬂV[T_,T,]C Vir.ra
(F,) and, if ue D’ (V) satisfies

supp #CVir wy, Pu=0

in I'Gz;,nNV,
then, «=0

in I'G,z;mNV.
Here, I' (£, Z; 7) = {(¢t, x) e R™""; |vr—Z|<7y|t—1|, t<i}, and we write
ACEB if AcB and A is compact.

Now, the next theorem is well-known.

Theorem 0.3. If the C.P. for P is well-posed in Vi r., then
P is hyperbolic in Vir_ 1.

(For the proof in our situation, see [7] or [5].)

Remark 0.4. The proof of the theorem rests only upon the follow-

ing estimate, which is derived from the assumption of well-posedness.

For any compact set KC 'V, there exist a constant Cx and integers
b, q such that

[z ”H"(V[T_, ) <Cx| Pu|n ¥z, o

fb?' 24 EC‘Sa (K[T.,T,]), te [T_, T+].

Chapter 1. Operators with Constant Principal Part

or of Constant Multiplicity

In this chapter, we treat the operators with constant principal part or

of constant multiplicity, and prove that the regularity of solutions is
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exactly determined by the multiplicity of the characteristic roots.

§1.1. The Results

Definition 1.1. (1) A partial differential operator P on AC R"*!
of order m with C”-coefficients is called (a hyperbolic operator) of con-
stant multiplicity in A, if there exist positive integers r; (j=1, «--, )
and real-valued functions 4;(¢, x;6) €C”(AX (R"—{0})) (G=1, -, n)

such that
Pon(t, z;7,8) = Z/l (r—24;(¢, z: €))7 on AXRX (R"—{0}),
e

and
inf {|4;(¢, x; §) —Ae(L, 25 §) | (¢, ) €A, [§]=1, j7k} >0.

When ;=1 (j=1,--+,m), we call P regularly hyperbolic in A.
(2) Let P be of constant multiplicity in A. We say that P satis-
fies the Levi-Lax condition in A, if [or any j, any open subset U of A
and any ¢=C”(U) which satisfies
‘ 0up=12;(t, x; grad.)

on

l grad,p=+0

there holds
e PP (e £) =0(™") (p— + o) for any feCy;(U).

(8) Let P(r,§) be a polynomial of degree m w.r.t. (r,§) with
constant coefficients. Then P is called a hyperbolic polynomial, if

P,(1,0)=£0 and there exists a constant C such that

Pz, §)#0 for tel, |Imc|=C, §eR™.

Now, we consider the operator P on [0, 7] X R" (T'>0) with B~-

coefficients and we assume either of the following two conditions on P,

D (1) The principal part P, has constant coefficients with
P, (1, 0)==0.
(ii) For any fixed (£,2) [0, T1XR" P, Z;7,8&) is a hyper-
bolic polynomial in the sense of (3) in Definition 1. 1.
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L) (i) P is a hyperbolic operator of constant multiplicity on
[0, T] x R™
(ii) P satisfies the Levi-Lax condition on [0, T] X R".

Remark 1.2. In each case, under the condition (i), the condition
(ii) is equivalent to that the C.P. for P is well-posed and has a finite
propagation speed in [0, 7] X R". (See [7]. [23] and their references.)

The next theorem is the aim of this chapter.

Theorem 1.3. Under the above situation, there hold

(1) Assume that the multiplicity of the characteristic roots at
any (L, x; ) [0, TIXR*"X (R"— {0}) is not larger than r (1<r<m).
Then, for any non-negative integer p and any real number s, there
exists a constant C, s such that

(1.1.1)

ptm—r

|Diw(t, ) llsrm-r-;

j=0

<Cou{Ss || €= IDIPUC, ) msat
+ "5 IDI O, ) lumers

ISP R U R

= j=

for 0Zi<T, uesCy(R"™).

(2) Let U be an open subset of [0, T] X R" and p, d be integers.
If the following inequality holds, then the multiplicity of P is not
larger than d at every (t,x; §) [0, T] X R"X (R"— {0}).

(1.1.2)  |tlgrmeey<C|Pt|urw, for any ueCg(U).

Here, C is a constant independent of u.

Thus, in these cases, the regularity of solutions is exactly determined
by the multiplicity of characteristic roots.
The essence of Theorem 1,3 has already been known. But, no

inequality as strong as (1.1.1) seems to have been treated so far and
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the proof of (2) has not been stated. So, we will prove this theorem

briefly.

§1.2. Proof of Theorem 1.3 (1) in the Case (I)

First, we review some results from [19].

Definition 1.4. (1) Let P(r, &), O(r,§) be polynomials in (z, &)
with constant coefficients. We write Q<P, if there exists a constant

C such that

jZ Q99 (¢, §) ’=C 2 [PY? (¢, §)|*
for any (r,§) e R,

(2) When P,(1,0)£0, we write 7,(§), -+, T»(§) the characteristic
roots of P(r,§) at §&R". And, for £=0,1, .-+, m, we put

_ Pu@®) F

BNy | YO

=1P.@,0F° 2 -, N,

n(J)=m—

where 7n(J) denotes the number of elements of JC {1, ---, m}.

Note that L, is a homogeneous polynomial of degree 2(m—£) w.r.t.

(z, ).

Proposition 1.5. Let P(r,§) be a polynomial of degree m w.r.t.
(c,§) with constant coefficients, then the following two conditions
are equivalent.

(i) P is a hyperbolic polynomial in the sense of (3) in Definition
1.1.

(i) P, is hyperbolic and P,_.<P, (k=1, .-, m).

Further, for a homogeneous polynomial Q(t, &) of degree m—=Fk (k=1
v, m), Q< P, if and only if there exisis a consiant C such that

Q(, §) ’=CLy(Pp; t,§) Sfor any (r,§) €R™.
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The argument in [18] combined with a result of [19] leads to the

following proposition.

Proposition 1.6. There exist A7 (u) (j=0,1, -, n;i=1, -, m)
which are real quadratic forms w.r.t. {D{DZu; j-+|a|=m—1i} such

that
(1.2.1) —Im{PE (D, D,)u-P$"(D,, D,)u}
=0, (A7 (u)) + E%(A?’“i(u))

for any uesC=(R™).

Further, if Q(r,§) is a homogeneous polynomial of degree m—i

and Q<P,, then there exists a constant C such that
12
(1.2.2)  |QD, Dut, ) =C( [ 47 ¢, 2)dz)
for any teR, use (R
Now, we sketch the proof of Theorem 1.3 (1) in the case (I).
Hereafter, C denotes a constant which may be different in each case.

Integrating (1.2.1) w.r.t. £ and using (1.2.2) for Q=P%”, we
have (by P&*<P,)

. 172 .
1.2.3) 0:< j‘ AT (w) (2, x)dx> ZC|PE™"(D,, D)yu(t, )l
for any ¢t€R, ucs S (R (i=1,.--,m).
Integrating this inequality w.r.t. ¢# and using (1.2.2), we have

1PE2 (D, DI, ) 1b=C( [ 457w ¢, 2 dz)
<c( ["1pe D, DIu, v

+ S IDI 0, ) niss)-

Successive uses of this inequality leads to

t L (R*"') denotes the Schwartz space on R™".
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; 12
(1. 2. 4) < jA:,“- () (¢, z) dx>

= { f (1) Po(Dy, D) (e, ) odt’

m—i i--1 m—i+h i
+ D ID O, ) iyt 2 3 1D, ) mtinf

In this inequality, we substitute D!(1+|D,|*)“ %y ([=0,1, ---, p) for u.
Then combining the obtained inequality with (1.2.2), we have the

following.

If Q is a polynomial of degree m—1i with constant coefficients and
O<P,, then

(1.2.5) 2 1DiQ (D, Dyu (2, ) |s-s
=C {Z f (=) DiPo(Dy, D) (e, ) |ls_sdt’

p+m—i
+ Jz—‘:o ”DZZ& (Os ')H&'+m—i—j

m—i+h

+ 27T IDI O, ) lemsin ]
for any [0, T], ue (R (E=1, -, m).
Now, from the assumption (I) and Proposition 1.5, we can write
(1.2.6) P=P,(D, D,) +R(t,z; D, D,)
—Pu(Dy D)+ 35,2, )0, (D,, D.),

where b;& B~ ([0, T] X R, Q; is a polynomial of degree at most m—1
with constant coefficients and Q,<P,. So, from (1.2.5), we have

(1.2.7) i_ ID{Ru(t, ) s, <C {i L”anPmu & ) [osdt’

=0

p+m—1
+SIDI O, ) lemosi}

and

P :
S 1 DEPair (2, ) -y
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<31 IDIPuE, ) st 33 IDIRECE, ) omy

=0

gg |DiPu(t, ) s +C {i ﬁ IDIPu () I ,dt

prm—1
+ ,-Z=o | D (0, ')”s+m_1_j}.
By Gronwall’s lemma (see, for example, [12; Lemma 3]), we have

(1.2.8) g‘o ﬁ,tllDmeu &, ) lls-sdt’

z ¢ ’ ’ Pzt l
<ciss [(1Dtpu, ) lsat + 75 DI (O, ) fuenin].

By the definitions of L, and 7, we have
Ly (Pn; 7,6) >0 for any (r,&) eR"'—{0}, if k<m—r.
Further, L,_; is homogeneous of degree 2k, so, by Proposition 1.5,
verLP, if jhlal<m—r.

Combining this with (1.2.5), (1.2.8), we have the desired result.
Q.E.D.

§1.3. Proof of Theorem 1.3 (1) in the Case (II)

Combining the arguments in [3], [10], we have

Proposition 1.7. If P satisfies the condition (II) and has B~-
coefficients, then there exists regularly hyperbolic operators R, with
B=-coefficients and partial differential operators B, with B -coeffi-

cients (k=1,---, 7= maxr;) such that
1sisu

P=R,--R,.+ i‘, BiR..:- R, (as differential operators)
k=1

ord. By<m+--+my—£k (my=ord. Ry).

Remark 1.8. (a) Conversely, it can be proved that if P has con-

stant multiplicity, 7= max 7; and P can be decomposed as above, then
1<j<n

P satisfies the Levi-Lax condition.
(b) The Levi-Lax condition in [10] is different from ours. But



ENERGY INEQUALITIES AND REGULARITY-LOSS 197

the argument in [3] shows that these are equivalent.
Now, we have only to prove the next theorem.

Theorem 1.9. Let R, be regularly hyperbolic operators on [0,
T X R* with B=-coefficients of order my and B, be differential op-
erators on [0, T X R™ with B-coefficients and ord. By<b,=my+ -
+me—k (B=1,--, 7). If we put

P:Rl"'Rr'l_ klekRk+1"'Rr )

then the inequality (1.1.1) holds for P, where m= ) m.
k=1

Remark 1.10. The C.P. for P which can be decomposed as above
is well-posed and has a finite propagation speed. ([10; Theorem 5.1.])

Proof of Theorem 1.9. We use the following well-known theorem.

Theorem 1.11. Let R be a regularly hyperbolic operator on
[0, T] X R* with B~-coefficients of order m. Then, for any non-nega-
tive integer p and any real number s, there exists a constant Cy

such that

(1.3.1)

ptm—1

1

S DI, Y eins ZCan {3 [IDIPu !, ) s

p+m—1 .
+" 5 IDI O, Y een s}

for any O0=:<T, ue S (R"™).

We substitute Ry.q--Ryu, Ry, p+biy, s+b,_, and my, for u, P, p,

s and m in (1.3.1). Then, we have

P+bg .
S ID Ry Rttt ) s
PHbe-y [T
<c {3 ["IDIR R (e, ) luso st

p+m—k
+ 5 ||Dzu<o,.>||s+m_k_j}, k=1, ).
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Successive uses of this inequality shows that if we write II,=R;--+R,
T

and R= ] ByR;.,-*R,, then
k=1

P+

.3.2) 2 IDIuE ) laimers
<c{f: [(e—o)y 1D, ).y’
=0 Jo

ptm—r
+ jZ=0 [D7u (0, ) |ssm—r-s

=l prmorih
+hZ=1t jZ=0 HDZU(O, ')”H—m—r.}.h_]},

and

L.3.3) D IDIRuC, ) =C{S (1D, 1, ar

+ 2 1D, ) famosesf

(1.3.3) is the same inequality as (1.2.7) in Section 1.2, except
that II,, replaces P,. So, we get (1.2.8) for II,, instead of P, as in
Section 1,2. Combining this with (1.3.2), we get the desired result.

Q.E.D.

§1.4. Proof of Theorem 1.3 (2)

We need the following lemma in [19].

Lemma 1.12. Let P be a hyperbolic polynomial of degree m
with constant coefficients, r be a positive integer and E€R* If

2ER is a root of P,(t,&) =0 with multiplicity r, then

P@2# 8 =0 for j+|a|l<r—k k=0,1,---,r—1.

Now, we assume that P has a characteristic root T of multiplicity
rat 2, 2;8) [0, T]xR*x (R"—{0}). In the case (I), we put ¢ (¢, z)
=2¢4+<€, 2>. In the case (II), we take ¢ as the solution of

0.=2;(t, x; grad ,p)
0@, x) =, x>, where A;(Z,2;8) =%.
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This solution can be found in a neighborhood of (£, Z) and we can take
this neighborhood U so small that 02,070 on U for some Joo We may

assume U =U. And in each case, we put
E, (1, z) =" (0=1).

In the case (I), for any f€Cy(U), by Leibniz’ formula,

Pui(f-E) = -1 (DIDf) P2 (E,)
jejla!

=3 L (DIDs) - PER (2,758, H) 0" I, (¢, 2).
ja JiC.
Here, by the assumption (I) (ii) and Lemma 1.12, we have

(1.4.1) P(f-E,) = "gpm—f—hFh ¢, 2 E, (¢, ),

where F,eCyU) (h=0,1,---,m—71).
In the case (II), by the Levi-Lax condition, we also have (1.4.1).
We will prove that if f#0, for any integers p, ¢, the following
estimates hold for sufficiently large p.

@ NS Elwrar=0-0" (0>0),
@ P E) may=C-0™"""".
If these are proved, from the assumption (1.1.2), we have

p+m—d<m—r+p, that is, r<d.

Now, when p=>0, ¢=>0, (1), (2) are almost trivial.
When »<0,

| f-E,|lzr@y= sup | (f-E,, ©) nw)| i

weCF ) (R PP
Here, we will take w=@ (¢, x) E, (¢, x) (®@=C,"(U)), then
lw|aran=0""|®|a>w, .

So

| W) 12
1f Bz sup 12D mwl oo oo} fl .
vecs @ | @ | a-ran

When ¢=<0, we take j, such that 8., 970 on U, and we solve the
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following equation asymptotically:

Dlal

Zjo

W =P(f-E,) =op™" hz;}op""FhEP :
We can write for ¢ =Cy (U),
la|
DE,($-E,) =E,0 3 070,($),

where @, is a differential operator of order A and

m(): (01']'0¢> I .
So, if we put

b4
W =0"""10'3} p-iw,E,
7=0
we have
N+lq| Iqi
D',quW=0m—r ZO O—ij‘B@k (w,-_k) 'Ell,7
J= =
(we take w_=w_;=-+=w_,=0).

If we take wj; as
Ou) 0, = F, =3 0 (w,0) (G=0,1,, N
(F;=0 for j=zm-—r+1),
then w;eCy(U) (=0,1,---,N), and
DEW —P(f-E,) =pm"‘N‘1Ep';§010‘fRf ,
where R,&Cy”(U). Now,

1P(f-E) e an <IDEW |mean + | DEW — P(f+E)) | 1oy

Zj0

< sup | (DLq)aW, W) 1o | +C.prTV1
FwEC‘S"(U) ” D;%.‘ow ” L2(T)

< sup , (W, w) Li(U)l +C- pm—r—N-l
_wEC';“(U) “ZU” L2(U)

= ”W ” L2(U) + C . pm—T—N-1
<C.pm Tl

by taking N sufficiently large. Q.E.D.



ENERGY INEQUALITIES AND REGULARITY-LOSS 201

Chapter 2. The Relation between the Multiplicity of the
Characteristic Roots and the Order of Differentiation in

Energy Inequality for General Hyperbolic Operators

In the cases treated in Chapter 1, the regularity of solutions are
exactly determined by the multiplicity of characteristic roots. But in
general cases, this no longer holds. Typical examples are given in Chap-
ter 3. In this chapter, we study what can be said of the multiplicity
of characteristic roots from energy inequalities in general cases.

We consider general operators of the following form on Vi .

P= Z aj,a(t: JC)D{D?,

jtia=m

where a;,.E B*(Vor1)» ano=1, V is an open neighborhood of the origin

in R‘n+1

§2.1. The Results

The next fact stated in Introduction is well-known.

Theorem 2.1. If we assume
m—1 . t
@1D % D ) ey =C [[1Pu @, ) e
for any [0, T], usCy([0,T]xR"),
then P is regularly hyperbolic in [0, T'] X R™

First, we will extend this theorem as follows.

Theorem 2.2. Let d be an integer, 1<d<<m, and assume that
the following inequality holds:

(2.1.2) j:“(é, D" u (', +) [odt’ =C,s Ll =) Pu’, -) |odt’
for any t<[0,T], ucCyVy,ry).

Here, <€, D,>= ;lngI,, EcS*'={=R"; |€|=1}. Then, there exists
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a positive constant O which depends only on P,, C, and independent
of & such that the following holds:

For any (£,%) € Viory and for any tv; (=1, -, p) which are dis-
tinct characteristic roots at (£, %;€) with multiplicity r; and satisfy

“;afifj—fklgﬁ, there holds Zp]rjgd.
; j=1

Especially P has no characteristic root whose multiplicity 1is

larger than d.

Next we consider some wealker inequalities. That is, for non-negative

integers p, d, and £€S™,

@p, D) [[IG DY u(, Y =C [ =) |Pu, )t

(Ap, @), [[I€, Dy u (e, )it <C [ =) Puce’, ) it

for any ¢€[0,T], u€Cy V).

Further, we also consider the following inequality for integers p, gq.
(-2, @) ”u”H”(V[o,zj)écﬂPu ”H"(V[o,t])

for any ¢t€[0,T], usC; Vi, ry).

Remark 2.3. The difference between (I) and (II) is that of L'
norm and L*norm w.r.t. £. The example which satisfies (II) but

doesn’t satisfy (I) is given later.

Theorem 2.4. We assume that

(1) The C.P. for P is well-posed and has a finite propagation
speed in Vi

(2) P has a characteristic root © of multiplicity r at (, z; &)
€ Vi X S™L
If the inequality (I1—p,d); (resp. I1—p, d)e, (A11—p, q)) holds, then

r<2d—p (resp. r§2d———§, r<2(m—p+q)) when 0<ET,

r<8d—2p (resp. r<3d—p, r<3(m—p+q)) when t=0 or T.
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Remark 2.5. (a) Even if £=0 or T, if P, can be extended as
a hyperbolic operator with C”-coefficients in a neighborhood of (%, %),

then there hold the same results as in the case 0<Z<T.

(b) In (III-p,q), we may exchange |u|gryp,. for
z ~
18, Dy, e when p=0.
0

(I-d, d) is the same as (2.1.2), and the result is 7<d, which
coincides with the result in Theorem 2.2. On the other hand, in the
case (II-d, d), the results are ré%d (when 0<Z<T) and r<2d

(when £=0 or T). This difference actually occurs.

Example 2.6. We consider P=D:—tD.4a(t, x)D,+b(t, x) D,
+c(t,x) (a,b,ce B=([0, T]XR)). Let d be a positive integer. Then,
we have the following energy inequality for P%:

For any non-negative integer p and any real number s, there ex-

ists a positive constant C, s such that

p+d )
@13 S IDuE ) e
t
<C, {5 [ =y Dt . sar
ji=o0 Jo
p+d \
‘[‘j;) I D72 (0, -) llssas1-;

d-1  p+d+h
+22 SIDI O, ) et}
=51 i=o
for any t[0,T], ueCy(RY.
Especially, we have
m—d t t
S (1Dt @, s jar=c [(e-) 1P, - i
ji=o Jo [}
for any te[0,T], uCy([0,T]xR),

where m=ord. P’=2d. Thus, for P? (II—d, d); holds for any £, but,
by the result of Theorem 2.4., (I—d, d); never holds. The proof of
(2.1.3) is given in Appendix I.
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§ 2.2. Proof of Theorem 2.2

We use the method of Ivrii-Petkov [7; Theorem 1.1].
Let Te R, 4>0, 2=7—171#. And put

u, (¢, ) = v (¢, x) exp{io (zt+<&, D)},

where veCy (Vi,r), 01>>0. We substitute #z, for « in (2.1.2), then
[2
[[e=1Pu @, s’
i ~
< [[e=ornore( [1Pat, 2200 @, 2)
0
172
+O(™ |2dx> e’
¢ . 12
<o ["e-er e {( [1Patt, 23280 (¢, ) Idx)
0

+0@—¢) + O(p"l)}dt’ .
Here, we have
f (t—2') " e dt’ <Rl (pp) e (h=0,1, ).
So,
[[e-ore1pu, @, ar

o™ttt Al T Pa(ty 52, 8) v (2, ) o+ O (07D}

On the other hand, by || =1, we have for fixed £>>0,

[ Dym2u, @, o

> Lte"”" {( J]v ¢, ) |2dx) C_0@—1) —O(p-l)}dt'

zom =D {( [lo ¢ 2 faz) "~ 0.

Thus, by letting p— + oo, we have
2.2.1) Cod! | Pn(, 32,80, ) [1=]2@, ) o
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for any ¢t (0, T], veCy Vi, -
From this, we get
(2.2.2) |PuE, 2;2—ip, §)|=(Cod V) 1
for any #>0, (£,%;%) € Vi, X R.

Now, let (¢, %) € Vi,ry, and assume that t; (j=1, -, p) are dis-

tinct characteristic roots at (£, %;€) with multiplicity 7, Further we
P

assume »7;=>d+1 and we put A= max |r;—7;]. We have only to prove
j=1

2<i<p
that there exists a positive constant ¢ which is independent of (£, Z;¢)

and 7; (1<;<p) such that A>0. We may assume A=X1.
~ P
We can write P, (Z, Z;7,8) = 1] (t—t)™- F(r), where f(r) is a
P!
polynomial whose coefficients can be bounded by a constant independent

of (2,%;&) and r; (1<<j<p), because the characteristic roots of P, are

o~

bounded. Now, we substitute 7; for 7 in (2.2.2), then we get

vy
ﬂr‘jl:l; [oi—v;—ip|™| f(ci—ip) | = (Cod!) ~u® .

Thus, we have
WCur(A+p)* " for any pe (0,17,

where C is a constant independent of (£, Z;&) and 7; (1<;<p). We
take 4= A, then

Ad§C‘2m'Arl+m+rp.
So, by 7+ +7r,—d=1, we have

AZ=(C.2™) Q.E.D.

§ 2.3. Proof of Theorem 2.4

We need the following theorems.

Theorem 2.7. Let 2 be an open neighborhood of the origin in
R™ and put .={(t,x)€8; +t=>0}. We assume that P, has a
characteristic root © at (0,0;€) (E=R"—{0}).

1) If P, is hyperbolic in 2, then
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Py®5(0,0;2,8) =0 for j+|al+k+]|8I<r.
(2) If P, is hyperbolic in 2., then

PUR5(0,0;2,8) =0 for j+lal+2k+[8<r.

Proof. We get the result from Lemma 1.3.1 in [5] by settling

f(ty S1y 00 32"+1)

— {Pm(sl, R D 5n+2+§1: Tty 52n+1+§n) (case (1)),
P (L, 55, 00, Sni1; 24T, 5n+2+§1,"', 52n+1+§n) (case (2)).
Q.E.D.

The next theorem plays the key part in our proof.

Theorem 2.8. ([7; Theorem 4.1]) We devide the variables as
r= (x(l), x(Z)), &= (5(1), 5(2)) ,
2P = (zy, -+, ), 2P = (211, -+, ) (O0Zv<n—1) etc.

Let p=q>0 be rational numbers, r be a positive integer and (I, %)

& Vi,ry.  Further we assume
P& (2, %;0,0,6P) =£0 for any £€? e R"— {0},
P& 5 (2,2;0,0,62) =0 for any §P?R"™,
if J+lal+p &+ +4ql82<r.

If the C.P. for P is well-posed and has a finite propagation speed
in Vi, and if j+|a|+p(k+ 18V +qlB®|<r—h(1+p) (h=1, -, m),
then

PR a6 E 2;0,0,6§®) =0 for any §PeR"™.

Now, if P, has a characteristic root # of multiplicity 7 at (£, ;&)

(6=S™), then by a suitable orthogonal transformation

s=t
<y=a(t—f) +Ax—2)+z

(aeR", A is a orthogonal (72X 7)-matrix),

£, ¢ and (&, D,> are transformed into e,= (0, ---,0,1), 0 and {en, Dy»
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=D,,, respectively. So, we may assume that E=e¢, T=0.
From Theorems 0.3, 2.7 and 2.8, we have

Corollary 2.9. If the C.P. for P is well-posed and has a finite
propagation speed in Vi and P, has a characteristic root T=0

with multiplicity r at (¢,%; e,) ((¢,2Z) € Vi), then for h=0,1, ---, m,
1) when 0<E<LT,
2.3.1)  Pl%an( 2;0,e0) =0 for j+lal+k+|Bl<r—2h,
(2) when t=0 or T,
2.3.2) PY%Ruws@ 2;0,e,) =0
for jH+lal+2(k+Fit o+ Basr) + B —30 .
Now, we start the proof of Theorem 2.4. As is seen above, we

may assume (%,8) = (0,¢,), Z=0.

(1) When 0<{Z<T, we consider the coordinate transformation

s=p(—12)
yjszj (j:].,"',ﬂ—‘l)
Ya=0"Zn (0=1).

Under this transformation, P is transformed into

-Pp (S, Y, Ds’ Dy) =P(50_1+E’ ylp_l, "ty yn—lp_l, ynp—z;
pD-?) pDUn Y pDVn.q! pzD!/n) .

Here, for sufficiently large N, we have

Ponn(s,9;0,7) =Pp n(s07 +E 507, -+, ¥a_107Y, ¥.07%;

00, 071, ***5 0%n—1, 0°7n)

202(m_h)777"1}_hPm—h <Sp_1+2, ylp—ly Y ynp_z;

,,,0: L “ee 1";1_ 1)
R
:pz(m‘h)?ﬂlﬂ_h Z 17 . (Sp—l) k<y10—1) Bi,..

an=0,57161<¥ 7l ol kI B!
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. (ynp_g),9u< 1) >f“.<7]n_1>a:n-1
07 07n

X P;{L‘;E),(k,ﬁ) (27 0, 09 eﬂ) +Qm—h,p (5, ¥, 0_, 77)

— pim— 1 ’ z .
=t T P 5 (@,0;0,e,)
an=0,kr181<¥ jlol k! (!

X QTR e dmlelst y B iyttt M L O, (5, 950, 7),

where Q, -5, is a homogeneous polynomial of degree m—hA w.r.t. (0,7)
with coefficients which are bounded in C* when p—>+oc0. By (2.3.1),
we have P,=0" " "R,(s,y; D;, D,), where R,(s,y;0,7%) is a polynomial
of degree m w.r.t. (0,7) with coefficients which are bounded in C*
when p— + 0.

Now, for v&eCy (B) (B is the open unit ball in R*™'), we put
%, (¢, ) =v(0(¢—2), 01, -+, OTn1, 0°Tn) .
Then, #%,eC7 (Vi) for sufficiently large o and
(Puy) (¢, x) = (Ppo) (0(¢—1), 023, *++, 0°Zn) -
We substitute %, for « in (I-p,d):, (II-p,d)s, (III-p,g). Then, we
have

(1D @, Sty =oo ({1029 -0,

172
pxl, ttty pxn—l, p2xn) lzdx> dt,

— ni(m—d)—(n+3)/2 ot=b Dm—d ’ ’
~0 L 1Dz (¢, ) e
and
¢ , . 12
[[e=o([1@o) 0@ =D, 02, o) 1) “ar’

o(t—1) < t

=02m—r—(n+8)/2 I t_F_z\)p” (RP'U) (t’, _) “odt’

—pt

o(t—1) N
—pmresnn [T (=1 )7 (Ry0) @, ) I’
Thus, from (I-p, d), by taking ¢=Z+4p~! and letting p— 4 o0, we have

2(m—d) ——%3—§2m —r—p— %—3, that is, »<2d — p.
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We also have

12
(D, - par
0
t
—pn-o [ [1 Do) 0@ =), 021, -, 02 dd
0

__ pd(m—dy—(n+2) pe=b pDr-d ’ Y12
~0 Tty (@, ) e

and

L” ¢—t)? j| (P,v) (0(t' —2), 01y -, ') |'dzdt’

o(t—1)

= pHEm-n)—(n+2) j

—ot

(=5 =2) 1 ®Ro) @, 1

t—

i) ey

X | (R,0) @&, -) lodt” .

2@m—r)y—(n+2)—p o
=0

Thus, from (II-p, d);, by taking £=7+p0"" and letting p— + o0, we have
A(m—d) — (n+2) <2@m—1) — (n+2) — p, that is, rgZd—%.

For the case (III-p, g), we use the following lemma.

Lemma 2.10. For «=Cy (B), we put
u (ty JC) =u (pao (t—"f) ’ pwlxly Y pﬁ‘xn) 5

where 00,0, (j=1,:,n—1). Then, for t,=[0,T] and for an
integer h,

pour=(/ne

i u ” ;Lz) < ” i ” v, ta])gpmh_(l/zw ” u ” l(zl,)to s

—

where
%] zrcz, 0 (when  h=0),
o _
” 122 } Rt l (u, ZU) LZ(B,,,t)I (when h_ﬁ_()) )
weos@,n | Dz w| @,y
1Dz, | L3, (when hZ=0),
lul]li?=
Il zn s, (when h=0)
and

n
Bp,tzB[_,,aaE,pwo(t-i)], 0= .Z-‘{)Uf .
i=
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When h is a positive integer, we can exchange

to
[y For | IDLEIE.

Proof of Lemma 2.10. When A=0,
”ﬁ“Hh(V[o,:‘,])Z
121 ) N
e > (" [10tDmw) o =), 07, -
i+lai=a Jo

-, 0772, |’ d xdt

0(to—1)
~oert > [T (10D @ ) Pazar

i+Talsh J-plk

=0 ()",

and
to
”‘iz”H"(V[O,to])zz J; ”Dzuﬁ (t’ .) ”gdt
to
=p j j | (D},u) (07 @ ~1), -+, 0xs) I'dxds
0
070 to—1)
:pz.rnh—ﬁ j o J‘I (Dznu) (t, x) lzdxdt
—%}
=0 (Ju] 2.
When A=<0,

” 4 ” HR(Vro,t,7

. su I (ﬁ, ﬁj) Lz(Vfo,zn])l .

5050010 | Bl m-rrp,1p

Here, we take @ (¢, x) =w (0™ (¢—1), «++, 0™x,) for wely (B,;). Be-
cause # is the same form as @, we have, by using the result when
h=0 for @,

[z, 96 naza

N2 zncrge,ep=sup %
[0, 207 WECT B, tg) || w ”H"L(V[o, toD
£0—6+zrnh+(l/2)a su I (Zl, w) L2(By, 1)

weCs o) | Dintw zecs,, 10
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211
— po'nh—(l/Z)F “ u ” I(Ll)t
sbo
and
[l HR Vo, 14])
_ i [(u, w) '
gp—6+01;h+(1/2)3 su 1N ©F /L2 B0, 00 |
weECT By, tg) “ w ”H'h(pr to)
ngnn—(l/Z)?” u ”§L2>‘ Q E.D
), BN DR

We return to the proof in the case (IlI-p,gq). We have
(IR P = el £
and
[ Pu, |l aa vy, o 0™ "+~ "2 R0 | )

Thus, by taking ¢=£+p7" and letting 0— + o0, from (III-p, ¢), we have
2p—n+2_<_:27n—7‘+2q—n+2

, that is, 7<<2(m-+qg—p).

(2) When £=0 or 7, we perform the coordinate transformation
s=0'(t—1)
ijOBJCj (_]=1,,71—‘1)
Va= osxn .

As in the case (1), under this transformation, P is transformed into
P,=0""""R,, where R, is the same as in the case (1).
When =0, we take
Z{p(ty JC) :'Z)(pzt’ ple; Tt pzxn—ly pa-rn)
for veCy (Byq),

and, when £=T, we take
le(t, 1‘) =v (pz (t'_ T) 3y 102“1:1, 0y p:&xn)
for ve C8° (BE_L()]) .

Just as in the case (1), we get the desired results. Q.E.D.
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Chapter 3. The Effect of Lower Order Terms

§ 3.1. Results and Examples

In this chapter, we will consider the effect of lower order terms to
energy inequalities. Many authors have investigated weakly hyperbolic
equations. And as a method of proving the well-posedness, some showed
energy inequalities, in which the order of differentiation depends on lower
order terms. ([17], [12], [16], [14], [15], [9], [21], [6], [22], etc.)
Others constructed parametrices or fundamental solutions, which belong
to symbol classes depending on lower order terms. ([1], [2], [24],
[25], [11], [13], etc.) As is said in Introduction, these suggest that
the regularity of solutions may get worse depending on lower order terms.
The following example illustrates clearly that this phenomenon actually

occurs for some operators.

Example 3.1 (cf. [4], [17]). We consider the operator
3.1.1) P=D}+¢*D,D,+ait*'D,,
where a=N(k+1)+2 and %k N are positive integers. The C.P. for
P is well-posed for any a, and we can explicitly find « which satisfies
Pu=f(x)

(3.1.2)
Diu|,o=0 (7=0,1), where fe9P’'R),

in the form
N

B.1.3) u(t,z) = 2N AIEDROIf) (2),
i=o

where A; (0<j<XN) are positive constants independent of /. So, in
this unique solution, (8f) (x) actually appears and when a— + 00, N—
+oco. (This example is a variant of the example stated in [17], and

can be proved by putting (3.1.3) into (3.1.2).)

In this chapter, we consider the following energy inequality, and we study
the relation between (¢g—p) and P,_;. (If the C. P. for Pis well-posed,
this inequality holds for some p, g. See [7; Lemma 2.1].)
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(B.1.49 I | 2wy =C| Ptt | 2 v,y
for te['—To, T1], uECSQ(UTl>.
Here, [—70, 711 =[0, 7] (we call case (1)) or [—T,0] (case (ii))
(T>0), p, g are integers, U is an open neighborhood of the origin in
R, U=Upr,y [T, T1]).

About this problem, Ivrii-Petkov [7; Theorem 3] proved the follow-

ing result.

Theorem 3.2. If we assume
(i) Pa(0,0;2,8) =0 ((2,&) eRx (R"—{0})),
(i) gradezenPn(0,0;%,€) =0,

(ili)  the fundamental matriz of P, at (0,0;%,§),

. (06,02, Pn) o<i, j<n (06.06,Pm)ozi, j<n
FPm(Oy(),?yS): )s
\= (02,02,Pn) o<, 5<n  — (02,06,P ) 04, j<n

where x,=1t, &,=1, has non-zero real eigenvalues =+ u, (Hérmander

[5; Corollary 1.4.7] called such operators effectively hyperbolic),

(iv) the inequality (3.1.4) holds,

then

!Im Pms_l (O, 0,

| ] ?’é)!éc-n-(ﬁm—p)-

(3.1.5)

Here, C is an absolute constant, and Pj,_, is the subprincipal symbol

of P.

We will show some results of the same type for some operators.

First, we consider the operators of the following form in Ug,.

3.1.6) P, z;7,8)=0,0, x;7, &, t"€,)
N R D)
h=1

where Q; is a homogeneous polynomial of degree j w.r.t. (7,§) with
C™-coefficients and m, %k are positive integers and m=>2.

We assume
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(i) the coefficients of Q, are real-valued,
G.17 (i) Qa(0,0;%,0,1)=0 (f€R),
(i)  (0.Qw) (0,0; 7,0, 1) 0.

Theorem 3.3. Under the above situation, there exists a con-
stant C,, , which depends only on m and k, such that if the inequality
(3.1.4) holds, then

On1(0,052,0,1) + £ .2.(30,) 0,0:2,0, 1)
(3.1.8) +Im 03 (gfo;?’ oD
=Cunri(g+m—1-p),
where we take + in the case (1) and — in the case (ii).

A preciser result for C, ; is given in (3.2.14), but this value is far
from the best possible. (cf. [1], [2], [8], [24], [25], [13].)

Remark 3.4. (a) If we assume that P, (¢, x;7,§) =0, (¢, x; 7, &,
t*¢,), where Q. (¢, x; 1,0,0) 40, and that the coefficients of P are C™-
functions, and that the C. P. for P is well-posed with a finite propaga-
tion speed, then P must be written in the form (3.1.6). (This follows
from Theorem 4.1 in [7]. (See Theorem 2.8 in §2.3.))

(b) By a result in Chapter 2, if Q, (¢, x;1,0,0)5£0, and that the
coefficients of P are C%, then (¢+m—1—p)=0. (In Chapter 2, we
have assumed that the C.P. for P is well-posed and has a finite pro-
pagation speed. But we use these conditions only in Theorem 2.8. If
P has the form (3.1.6), the conclusion of Theorem 2. 8 is satisfied with-
out these conditions. So, we have g+m—1—p=>0.)

(¢) The condition that P can be written in the form (3.1.6) is

invariant under a coordinate transformation of the form
s=t¢
vi=filx,t) (G=1-,n-1)

L e, 2,

where f3(0,0) =0 (=1, ---,2z—1), f,(0) =0. Under this transformation,



ENERGY INEQUALITIES AND REGULARITY-LOSS 215

if we write the symbol of transformed operator as

PZQm (5, 950,75 7,) + hzls_hémdt (s, ¥50,7, s".),

then

0.(0,0;8,0,1) =0,

(0,0 (0,0;8,0,1)=0,

0,s(0,0;8,0,1) + X5 320, 0,0, 8,0,1)
(3.1.9) 2

(0,0.) (0,0;8,0,1)
QH&mﬁQD+§%®@@&mﬁQD
YA
(0.Q.) (0,0;7,0,1) ’

where 0= f4(0)2—72(0,0). So, the quantity in the left-hand side of
(3.1.8) has some invariance for P. (These are obtained by straight
calculations, so the proof is left to readers.) This quantity appeared
also in the arguments of Nakamura-Uryu [13] (their m,’s), and the

class to which their parametrix belongs is determined by this quantity.

We give some examples of operators for which the C.P. is well-

posed and can be written in the form (3.1.6).

Example 3.5. (1) Let Q(¢, x; 7, &) be strictly hyperbolic, and put
P, z;t,8)= 2 t7"Qnn(, 57, tM6, -, t"60),
h=0

where %; are non-negative integers. If the coefficients of P are C~, then
the C.P. for P is well-posed. ([20], etc.)

(2) As a special case of (1), we consider
P=D;—2a(t, ) *D,D,+b (¢, x) ** Dy +c (¢, x) *7' D,

where a,6,ceC”([—T,, T:] X R), and a, b are real-valued, and a(z, x)*
—b(t,z)>0 on [—T, T,] XR. In this case, we can take T=a(0,0)
++/a(0,0)*—5(0,0), and then

0.-1(0,0;7,0,1) =¢(0,0)

0.0x) (0,0;2,0,1) = +2va(0,0)*—5(0, 0)

(0:Qx) (0,0;7,0,1) =2

? b
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So, if (3.1.4) holds, we have

[Im ¢ (0, 0) — £a (0, 0) |
Va(0,0)?—5(0, 0)

=Ci(g+1—2) +k,

where C, is a constant which depends only on A The left-hand side
of this inequality coincides with that of (3.1.5), when £=1.

The operators we considered above have characteristic roots which
coincide with each other when #=0 with a finite order. Next, we con-
sider the case with infinite degeneracy.

Let

(3.1.10) a(?) =|t|"exp(—=B(@)[¢[™) on [-T, Ti],

where #R, ® is a positive integer and BeC”[—T,, 1], B(0)>0.
Note that a=C”[—T,, T;] and « is flat at #=0. Further,

o () /a(t) =b(2)|t]™7,

where b=C”[—-T,, T1], 6(0) = +wB(0) (+ in the case (i), — in the
case (ii)). (On the other hand, if we assume acC”[—T, 71i],
a' () /a(t) =b(2)|t)™" for some beC*[—T,, T,], +b6(0) >0, then «
is in the form (3.1.10) for some B, u.)

We may assume 6(2) <0 on [—Ty, T4].

We consider the operators of the following form in Ur,.

(8.1.11) PG, x;7,8) =0, z;7,&,a@®)E&,)
+ hijl (aﬁ’ (t) /a{ (t))th—h (t, zT, 51, th(t) En),

where Q; are the same as in (3.1.6).
By a technical reason, we impose stronger conditions on Q, than

B.1.7);

(1) the coefficients of Q,, are real-valued,
(ii) 7,eC=(Uy), 1 is independent of
3.1.12) x’ = (zy, -+, ZTn_1), and
On(t, z; 70(2, 2,),0,1)=0 in Uy,
(i)  (0.0n) (¢, z;70(, 24),0,1) 50 in Uy, .
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Theorem 3.6. Under the above situation, if (3.1.4) holds, then
(8.1.8) holds with C, =2, k=1, T=1,(0,0).

Remark 3.7. (a) Remark 3.4 (b) is also valid in this case.
(b) The condition that P can be written in the form (3.1.11)

is invariant under a coordinate transformation of the following form.

s=t¢
yi=fi(z,2) (G=1,-,2n-1)
Ya=fa(xs) +a()6(0) '|2|* R (¢, x) = H (¢, 2),

where f,(0,0) =0 (j=1,---,7n—1), f,(0) =0. Under this transformation,

if we put the symbol of transformed operator as

P :Qm (s, v;0, 77’, CK(S) Tn)
+ 31 @ ) /@©) B (5, 930, 7, 27,

then (8.1.9) is also valid. Further, if A(¢ x) depends only on (%, x,),
then

On(s, ¥500(s, ¥2),0,1) =0
06@n) (5, 93 0o (s, ¥4),0,1) 0,
where
00 (S, ¥u) = (02, F1) (5, 24 (S, ¥2) ) To (5, Za (S, Yn))
— (0.H) (5, 2a (s, 3m)) / (s)

Note that the second term in the right hand side belongs to C*(Uy,).

We give only a simple example. Many examples can be found in
[20].

Example 3. 8. We consider

P=D;—e¢*a(t, ) D+t e 'b(¢t, 2) D, ,

where a,6=C” ([0, T]XR), a(t,z)>0 on [0, T]XR. For this op-
erator, the C.P. is well-posed in [0, T]x R. ([15], [21], [6], [20],
etc.) In this case, as in Example 3.5 (2), we get
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|Im5(0,0) | _

from (3.1.4).

§ 3.2. Proof of Theorem 3.3

By Remark 3.4 (c), we may assume 7=0. Further, we have only

to consider the case where

m Qm—l (03 O; 07 0, 1) {>0 (case (l))a
(0.Qm) (0,0;0,0,1) <O (case (ii)).

Let w;=3 (=0,1, ---,n—1), w,=3k+4. And we perform the fol-

lowing coordinate transformation.
t=sp™"°
3.2.1
x.i:yjp_m! (j':l, Tty 72) (p>o)'

Then, P is transformed into P, which is a partial differential operator
on B_g, 7, for sufficiently large o. (B is the open unit ball and [—7,
T.1=1[0,1] (resp. [—1,0]) in the case (i) (resp. (i))). We have

(3.2.2)  P,na(s,y;0,7) =Pn_n(s07", y07°; 00", 70°)
=570 Qm_n (507, 07°; 00, 10, as"0" ")
= g ROt (@n—aok)(m—h) gk(m—R);m—h

X Qo (507%, y0~°; 05~ 75 pmetFoemon
7 sTEpg p Freemen 1)),

where 77’ = (771, Tt 77n—1) , etc.
We note that

Woh + (Wp—wok) (n—h) =4dm —1h
w;+0k—0,=—1 (j=0,--,2—1),
Q.(0,0;0,0,1) =0,

So, for any fixed positive integer N, we can write by Taylor expansion,

P,(s,y;0,7) =" [{s*™ Dy~ ((0.Qn) (050, €,)0

n—1
+ 23(06,Qn) (050, en) ;) +s* ™ 07270, _1(0; 0, ex)}
j=1
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N ~
+ E p_jAJ (S, ¥, 67 77) +p_(N+1)AN+1,p (S’ ¥, 69 7]}]3
where e,= (0, ---,0,1) € R" and

A;EF={f(s,9:0,)=25" 51 an.(s,5)0"7%

k+|aj=m-—

(lk,a S Cw (R"+1) } s

Ay, eF={f,(s,5;0,7) =25 3 al(s )0t

=0 k+|al=m-h
a, is bounded in C*(B_z,7,) when p— +oo}.
Further, A, does not include the term 7,”. So we have

e-iﬁﬂnoppoei"ynf — p5m—2[ {Sk(m~1) ((aer) Ds
n—1 N
+ Z(aEJQm> Dy;) +3k(m_l)_1Qm—1} + le p_ij (S’ Y5 DS: D")
j=1 i=

+p~N—1-§N+1,p (S, y; Ds, Dl/)]’

where B;(s,v; 0,7 €F (j=1, -+, N), By.1,(s,; 0,7) €F.
Now, for 6= C,

|5 Pa¢ 7m0 P, ot no 5| = 0" [ {55 ((0.Q.) D,

n—1
+ 2050w Dy)) 45507 Q=0 (0.00))}
i=

N ~
+ 2, 07E; (5,95 Dy, Dy) +07  Exi,, (5,95 D, Dy) ],

where E;(s,y;0,9)€F (G=1,--,N), EINH‘(,(s,y;O',ﬁ)EF. We take

0 as

Ony—i0(0.0,) =0, that is, o—=L Cno1

i (0.0

Finally, we perform the linear coordinate transformation

t=s
xj:yj_iggf]”.?_’z))‘.s (j:]_’ ...,;2_1>
Zpn=Yn N

t Q°R denotes the composition of operators Q and R. A function is considered as a
multiplication operator.
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then P, is transformed into P, and

ltl_"oe‘i’””"op,, oe'ro|t|’= p™ 2 {t*™ D (9.Qn) D,
+,§ 07'R; (¢, 3 Dy, D.) +07" "Ry, ¢, z; Dy, Do)},
where R;(z, x;7,8) €F (=1, -, N), Ry, (¢, x;7,€) eF. We put
L,=2"""(9.0x) Dot ]_ép"Rf 07 R

To solve L,u=0 asymptotically, we need the following lemma.

Lemma 3.9. Let K be a compact set in R*. For any

N

(3.2.3)  f(t,2) =3 £ NEH@Dm(log ()i £, (¢, 7) (N20),

j=o

where f;€Ce={feC(—T. T:1xR";supp fFc[—T, T ]JxK} (=0,
o, N), a solution of ™ du=f in [—To, T:] X R can be found in
the form

N+1
(8, ) =3 ¢ THPEDED (logle]) g, ¢, ),

where ¢;€C (7=0,1, -, N+1).

Proof. We have only to prove that for any f&Cg and any [>1,
j=0, there exist g,€C% (h=0,1, ---,j+1) such that

(3.2.4) Itlr“ (log|z])? F (¢, z)dr
=711 33 (log£]) "0 (¢, 2) + (logl2) 770,15, 2)

¢e[—T, T.]) (+ inthe case (i), — in the case (ii)).

By Taylor expansion, we can write
N -1 = N ~
f@x)=2¢f.(x) +£f(,z), where f,€Cy(K), feCs.
y=0
So,

(3.2.5) rlr—l(logm) 1F (e, z)de
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Il

+

)lé) j\tlfV—l(log]fD jd?.'f,, (=) + j:l(loglfl)ff:(f’ z)dr.

Now,
Jt o~ (log]t ) /de = [—lﬁfy_m(l(’g]f') j]z
.1 ’ —1+1 =t
j 1 vt _1 i
. T 1 NI dr f OSV_<_Z—2,
v——l—}—l.[ﬂ UoglzD) B
and

¢ 1
™' (log| i) /dr=—"—(log|¢]) **.
J., 7 Goglepy e =— L dlogla)

Thus, the D -part in (3.2.5) is in the form (3.2.4). As for the last

term of (3.2.5), we can write
j’ F(e, ©)dr=F(t, z) =tG (¢, z), where F,GeCs.
0

So,

[} coglen e, 2y

&
— [Qogle) G (5, )]~ [ jllogle) "G (5, 2)ds .
+1
By induction, the last term of (3.2.5) is also in the form (3.2.4).
Q.E.D.
N
Now, we solve L,(> )07 (¢, 2)) =0 (0. That is,
1=0

(3.2.6;0) "™ DDy = —

1 1
5.0 j;l'R.i(ul—f) (Z:O’la,N)

First, (3.2.6; 0) is satisfied by any (¢, x) =¢p(x). We take ¢p&
Cy(K) and ¢(0) =1. (K is a compact neighborhood of the origin in
R" which is chosen later.) By Lemma 3.9, (3.2.6;) is satisfied by

1
(3. 2. 7) ul(t, x) =j;: == E+(m-1) (10g[t}>fgs_z) (t, x),

where ¢ €Cg ({=0,1, ---, N).
Let x€C”(R) such that x(¢) =0 (¢<1/2), x(z) =1 (¢21), and put
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x(gpveEDm=my - (p>1)  (case (i),

x @+ (5/4)) (case (ii)).

In the case (i), we have

1) =

(077) (2) = 7/ CE=DM=D) () (zp¥EEHD DY)
=745, (pYEEFD =1y

where supp ¥, C [1/2,1] (v=1,2, ---).
Put

N
Vi = 120 0 u, (¢, x)
U =er=t|'T (VP
We define B®, ¢ ({=0,1,---,N+1; N=1,2,---) as follows.
B§N) = {[;P (t, x) = “§te ¢; (t01/<2(k+1)(m—1>)> h,- (t, x)
(case () or=_ 31 9, G+ (/4 by (6,2) (case (i)
¢0;€Cr([1/2,1]), h;eCg} when I[N,
Bfh=1{b,(t,x) = 3, ¢;@pVCEI@"N R, (2, x)
J;finite
(case (i)) or= j.ﬁzni}te $;@E+ B/D) h,,; @, x)
(case (i1)); ¢;=9 or €Cy([1/2,1]), h,,; is bounded
in Cg when p—+ o0} when [=N+1,
!
G ={g, (¢, x) =3 ¢~ nED@Dm (logt|) 7b,,; (¢, x)
i=0
by €BS}  (=0,1, -, N +1).
Then, we have
3.2.8) P, (UM =0"|¢|%"**"L, GOV ¢, z))
N1
=" e |0 31 07IGER (¢, 2),
=0

where GReG®™ (1=0,1, .-, N+1).
Now, we have the following estimate for Pp from (3.1.4) by Lemma
2.10 in Section 2. 3.
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Lemma 3.10. There exists a constant C such that for suffi-

ciently large 0, the following estimates hold.
(3.2.9) || P, <Co-PC+b| P a|| &)

for any te[—T, T:], #€Cy¢(Br,), where

o]z a0 (¢=0)
o3& =
5t | (@, @) peol (<)
weor®@y | Dzlw| 1asy -
ol {”Dgn””mwn (»=0)
v t—
o]z, (r=0),

BV:B[—fu:t] (tE l:— TO, Tl]) .

Now, we fix 0<£,<1/2 and a compact neighborhood K of the origin
in R” such that [O, %] X Kc B. And we take

" (case (i))
_ top_l/(z(kﬂ)(m—l)) (Case (ii)) (O_Z_D .

Then, we can estimate U™, P,U™ as follows.

Lemma 3.11. There exist positive constants 0 and C such that

for sufficiently large 0 and N, there hold the following estimates.

{ 0-p° (case (i))

(3.2.10) [T
6_ pp—(ZReG+1)/(4(k+1)(m—1)) (Ca.s‘e (11)) .

Dylp==

(3.2.11)  |P,U™|®),

C‘05m—(5/2)—Re0/(2(k+1)(m—l))+q+(27n—1)/(4(k+1)(m—1)) (Case (1>)
=

C-pmite (case (i1)).

Note that we are assuming that Re0>0 in the case (i) and
Re 0<<0 in the case (ii).

Proof” of (3.2.10).
1) Case (), p=0. By w4, x) =¢(x) €Cy(K) and ¢(0) =1,

we have
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|e**=ne% (&) o (2, ) | 0,226 07 (9>0).

On the other hand,

¥ (t) -0 if Oétgz—lp—l/@(k+l)(m—l)) ,

so we can estimate ¢! by 20YC**P™-1)  Therefore,

|e#=% () 1, (2, 2) [P SC-07*¢  (I=1, -+, N).

Dlo=

So, we get the result.

(3.2.12)

2)

Case (i), p<<0. By definition, we have

IU@IP,= sup 1T @) aa,)]
vecr@,y  ||wlaea,)

If we take w=e"*™".v, veCy (B,), we have

So,

lw]ar@g=0""lv]a®wz.y (o=1).

[U® O, > sup |2V (&, x), v (¢, x))u(m.,)]

vECT By [vla2.4

For suitable v, we have

So,

So,

On

So,

[ (@@ us(t, ), v (2, x))m(a,.,)|>5>0
[ (% @) w1, ©) 12es,y | =C0¥ (I=1, -+, N).

we have

[USI0.=8-07 (0>0).
(3) Case (i), p=0. In {—2407VCE MMz — g7V EETDETY,
have

|[£]°| =5 pRe/arhm=my  (§0),

” eipl'nltlo% (t) Uy (t, .Z') ”1(’%)%

>0 pP-RY/@UADm-D)-/UED M=) (§30),

the other hand,

”esznltl ”zllm <Cpp Ref/(2(k+1) (m—1))+1/2 (l=1, ey N)

D, tp=

we get the result.
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(4) Case (i), p<0. In (8.2.12), if we take w= ™y (¢nu¥@E+ D m-D)
x), veCy ((—24, —t,) X K), then

20| g2 5,y SO7PVAEEDED N || on (ot gy k) -

So, as above,

(Ko P25
> sup | (21°ZV D, v @V D™D, £)) sy,
C vECR((~2to, —to) X K) ” 'U“ H™P (=280, —20) X K)

X pZJ +1/(4(k+1) (m—1))

>(‘)‘ . 0P+1/(4(lc+l) (m—1))—Reb/@2(k+1) (m—1))—1/2(k+1) (m—1)) (6>O>

Proof of (3.2.11).

(1) Case (i), ¢=0. In (3.2.8), P,(UM) =0 when <
2—10—-1/(2(k+1)(m—1))' And, GL(,A;):O (lgN), Whel’l p—l/(z(kﬂ)(m—n)gtgto, so,

in this interval, we have

HP U,(,N) “Hq<Cpsm—2—N—1+q+(N(k+1)(m—l)+nz)/(2(k+1}(m——1))
P =

gcpﬁm—sdrq-—(N/Z)—f(m/A) .
1 _ew - —1/¢ -
In {_2_0 VeEEEy M- <p < g/t L e have

9,1 N
1% =Gy [ e
<C0—Re€/(2(k+l)(m—1))+q+((l—l)(lc+1)(m—l)+m)/(2(lc+1)(m—l))—l/(4(k+1)(m—l))
So, in this interval,
“ Pp U‘(;N) ”Hq écpﬁm—z-—ReG/(Z(k+l)(m—l))+q—(I/Z)+(2m—1)/(4(k+1)(m—1)) .
(2) Case (i), ¢==0. In {—1/4<t<t}, G® =0 (I<N). So, in
this interval, we have
”PPUéN)HHq§C05m—Z—N—l+q+(N(lc+l)(m—l)+m)/(2(lc+1)(m—l))-Re&'/(Z(k+1)(m—l))
<Cpsm—3+q—(N/2)+m—Re9/(2(lc+1)(m—1))
In {—1<t<—1/4}, we have

“ P’P UgN) ” - gcpsm—uq .
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Therefore we have the result.
3) When ¢<0. We solve

(3.2.13) DEW® —P,UM=0(p~ """+,

We put
N 5 2 | 6,1 y l
W[S ) — 0 m—--—lqultl et,u‘nlzu 0~ Hl,p (lf, x>,
then,
1l 77 () Sm—2) 4|8 ,ipx el
DIILWP =0 |t| ¢ lZO 0 (Hl,P_I-D-TnHl—LP—i—.“

+DRH,_q,,), (H_y,==H_,,=0).

So, (3.2.13) can be solved by
lai
Hy, =G~ 3 DLH ,, (=0,1,N).
i=1

If we take H,, as these, we have H,,&G{". Further, we have
PP U,EN) _ D',%lW,EN)= p—IV—1+5m—-2ltl€eip.z‘",HéN) ,

where H™ € G{),.

(3-1) Case (i). As in the case ¢=0, we have

HW;N) “ LB )<Cpsm—2—1q|—Reﬂ/(?(k+l)(m—l))—(I/Z)+(2m——1)/(4(k+1)(m—1))
tg) =— N

On the other hand, from the energy inequality for D,

lwllzsz,p =CI| D&w] 125,y for any weCy(B,),
we have
[v] —fé)n,noécll || L2(Byy) -

So, we have

”PP U{EN) _D‘Izglwélv)”éag <C0-N—1+5m——2+(N(Ic+1)(m—l)+1n)/(2(lc+1)(m—1))
n y Yo °

Now,

® = sup | (DEW ™, w) LBy |
b 0

wECP By [ chq,lw I L2(Byy)

N
| DEW

SIWiPl ey -

So, we have
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”ﬁ U‘gN) “é:;)t <Cp5m—(5/2)+q—-Reo/(Z(k+1)(m—l))+(2m—1)/(4(lc+1)(m—1))
P ) lo=— .
(3-2) Case (ii)). As in the case ¢g==0, we have
(& 5m—2—
W 1@,y <Co™ 10,
And, as in the case (i), we have
p (¢4 lg| () 11(3)
12, U = DEW g,
<C0—-N—-1+57n——2+(N(k+1)(m—1)—(-m)/(Z(k+1)(m—-l))—ReG/(?(k+1)(m—l))
= H

IDEWPIE=IW " 2aey -

So, we have the result. Q.E.D.

From Lemma 3.10, 3.11, we have

5 Red
<(g— 3k+4) +o5m — = — i
p=(g=2)( ) " 2 2(k+1) (m—1) e
+ 2m =1 (case (1)),

4(k+1)(m—1)
Red 1

C2(k+D) (m—1)  4(k+D) (m—1)

<(g—2) Bk+4)+5m—2+q (case (i})).

So,
+Re 6<6(k+1) (B+2) (m—1) (g+ m—1—p)
(+ in the case (i), — in the case (ii)).
If we put
(3.2.14) Cpon=6(k+1) (E+2) (m—1),
we get (3.1.8). Q.E.D.

§3.3. Proof of Theorem 3.6

We can solve

(0.H) (¢, za) = () T (¢, z4) (02, H) (¢, )
H, x,) =x,
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in a neighborhood of the origin in Ur,. And by Lemma in Appendix II,

this solution H can be written as
H(t, x,) =xa+a () |t|°VH (¢, z,), HeC™.

So, by Remark 3.7, we may assume 7,=0. Further, we have only to

consider the case where

0.-1(0,0;0,0,1) {>0 (case (i))
0.0,)(0,0;0,0,1) (<0 (case (ii)).

The essential idea is the same as in the proof of Theorem 3.3. But,
we can not perform a sympletic dilation like (3.2.2). So, we skip to
the next step and this is the reason why we need (3.1.12).

First, we have
e~ *#*no Pog*n=P (¢, x; Dy, Dy, 0+ Dy,)
where
Py w(t,z;7,§,0+60)
= (&' () /a(£)) " Qu-n(t, z; 7, &, () (0+£4))
= (&’ (@) /a (@) a@m """
T ¢ 14 En>

a@®o’ a®e’ o

X Qn-n <t, x;
Now, we have
Qn.(t, 2;0,0,¢6,) =0 for any (¢ x;&.).
So, by Taylor expansion w.r.t. (r,§), we have
P, z;7, 8, 0+8:) =p""H{a @)™ ((0.0.) (¢, 2;0, ea) T
n—1
+§ (anQm) (ta o 07 eﬂ) $J) +a, (z)a(t) m_2Qm—1 (ty x5 O: e")
m—1
+ 207 la@m @ @) /e @) S (¢, x5 T, )}
=1
where S; is a polynomial of degree (/+1) w.r.t. (r,&) with C -coeffi-

cients (note that a(z)/a’ () eC”[—Ty, T1]), and e,= (0, ---,0,1) € R".

Next, we solve
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(0.0n) (¢, 250, ¢2) 0uf 0+ 2}1 (0:,Qm) (£, 230, €4) 05, /=0
SO, )=z, (Ah=1,-,n—=1).

This can be solved in a neighborhood of the origin in Uy, and

s=t
y/:fj(x,t) (j=1,"',71—1)
Va=%Zn

is a coordinate transformation in a neighborhood of the origin in Uy,
We put
gy (S, y) = (arQ‘m) (S, x(s, y) 5 O’ O: 1)

Sos, v) = Om(s, J;((ss yy)); 0,0,1)

Under the above transformation, if we write the transformed operators

as P, S, then e %*m0Poe™ is transformed into

e~ ino Pogtttn = 0™ oy (5) ™24, (s, ¥) ((s) Dy +So (s, ¥) &’ (5))
+ 307 )" @ (9 /() 8i(5, v3 Dy D}

We may assume that this operator is defined on Ug,.

Hereafter, we will write (¢, x) instead of (s, 7).
We take

Bem= i [ CW s, mau=i [[ L0804y,

By Taylor expansion, we can write

b(0)Ss(u, ) = 3 ule, (z) +u**le(u, ).

ji=o

So, we have

B (¢, x) =c(t, x) |t| ™+ p(x)logit|,
where ceC”(Uy), p=C>(U,) (U,={xeR"*; (0,x) €U}), and c(0, x)
= i—:;b(O) S (0, £) =7B(0)S,(0, x) (+ in the case (i), — in the case
@i1)). And, we have

e "o (a(t) Di+a’ (£) So(t, x)) oef "™ = (¢) D, ,
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e—g(z,z)ogloee(t,z) — |t| —+D (@+1) (Hz + (10g| tD ﬁl) ,

where H,, H, are differential operators of order (I+1) with C™-coeffi-

cients. Therefore, if we fix a positive number §, we have

=BG g o=ipTng PoplrTng pB(t2)

m—1
=pm—-1 {a(t) m—lao(t’ .Z‘) D;‘l‘ Z p“a(t) m—l—l-sAl},
l=1

where A, is a differential operator of order ([41) with C*-coefficients.

We need the following lemma instead of Lemma 3. 9.

Lemma 3.12. Let fFeC~([—T, T:] X R", supp fc[—To, T1]
X K, v>>0, 0>0 (K is a compact subset of R™). Then, a solution of

Du=a(t)f
can be found in the form
u(t, x) =a () g (¢, 1),

where g C*([—T, T1] X R"), suppgc[—T,, T1] X K.

Proof. We have only to consider

Gt ) —a ) j:la(u) ~f(u, 2)du = Y (“(‘) )"f(u, z)du

o)
(+ in the case (i), — in the case (ii)).

There holds

0<%® <1 for 0<|t|<|u]<1.
o (u)

So, GeC”(([—T,, T1] — {0}) X R™ and bounded when £—0. Further,

8,G =y li 1<le0+ £t ),

and by induction,
0IG=1t| 1" (a; (¢, )G (¢, x) +b;(t, x)),

where a;, b, C”([—T,, T1] X R™), supp ay, supp b;C [— T, T1] X K. So,
a()°G(t, x) €eC™([— Ty, T\] X R™). Q.E.D.
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(As a matter of fact, we can prove that z can be taken in the form
u=ca () "1t1°7'G (¢, x), where geC”([— Ty, T1] X R™), supp g [ — Ty, T3]
X K, by the method in Appendix IIL.)

We put

m—1
L,=a@®)™'a,(t, ) D+ > 0 @)™ 14,
i3

and we will solve

N

L, (% 07'u) =0 (™" ).

That, is,

(3350 @O Du=— )'"; a(®)™ I A ()

(u_l:...z _m+1_0)’ ,1,...,N.
First, (8.3.1;0) is satisfied by any (¢ x) =¢(x) €C7(R"). Now,

we fix 0 which satisfies 0<{0<|Im §,(0, 0)!/2, and we take a neighbor-
hood U of the origin so small that

v (t, ) —v(0,0)|<<0 on Upr,r,
where V(¢ x) = _c(t x) eC”(Uyr,). Further we take Te (0, T] and

B(2)
a compact neighborhood K of the origin in R™ such that [—7, 1]

x KcU, where [—T,, T.]=1[0,T] (resp. [——T,O]) in the case (i)
(resp. (ii)), and we take ¢ =C7 (K), ¢(0) =1. Then, (3.3.1) is solved

by means of Lemma 3.12 in the form
w (t, x) =a(t) g, (¢, x),

where ¢,€Cgx= {fEC“’([—To, T.]xR™; supp fC [——To, T.]xK}.
Let x=C”(R) be as in the proof of Theorem 3.3, and put

7 (@) Vet ) (case (1))

1) = X(%‘"‘%) (case (ii)).

In the case (i), we have

Ny
07 (2) =[] 7" 334 (@ () 0V dR (8),
h=1
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where ¥ Cy ([1/2,1]), dP¥eC~(R) (v=1,2,---).
Put
N N
V=3 07w (¢, ) = 3 (pa (1)) 7'q. (¢, ),
=0 =0

Ny __ ipxy BT N
U; ) = gtron o8 )X(t)V§ )_

We define E, E as follows.

E={tx)= > ¢;,@@e"*) ;¢ z) (case (1))

or = j;g‘_.m b; <% + %> h; (2, x) (case (ii));

¢;€Cr([1/2,1]), h;€Cx},

E=0,6,9= ¥ 4,00k, 2) (case (i)

or = 3 0y (7 +2)hG ) (case (i) ;
¢;=y or €Cy([1/2,1]), h;€C%}.

Then, we have

PUM = pn-igirenef&a L (5()V (¢, z))
— gt N%_lp—ta(t) m-1-lA+ =3B (¢ ),
1=0

where B.eE (I=0,1,-,N), BeE (I=N+1, -, N+m—1).
We have the estimate (3.1.4) for P when U, [—T,, T.] are re-
placed by U, [—T,, T.]. We take ¢, as follows.

Case (i) ¢,=T:=T (>0)
Case (i) £,<0, a(z,)=p Vea+™
(¢, is uniquely determined).
Note that for any §>0, there exist g, hECw([——TO, Tl] X R™ such

that

ePD = o (£)* D0 (¢, z) = o () @D+
) (¢, x) ) W o)

and, if 0<<0<|Im S,(0, 0)|/2, we have, in Uz, =U; 5,71
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Re v (¢, £) —0=>Rev(0,0) —20 =Im S, (0,0) —20>0 (case (i))

Rev (¢, x) +0<Re v (0, 0) +20=1Im S (0, 0) +20<<0 (case (ii)).

Now, we will estimate U and PU® as follows.

Lemma 3.13. There exist positive constants & and C such that for

sufficiently large 0 and N, there hold the following estimates.
(3.3.2) UL urw,,
% (case (i))
=
o g,pp—(lmso(m0))/(2(1+28>)—2 (case (i),

Y

(3.3.3)  |PUM|me,,

C . pm—-1+q-—(Ims.,(0,0)—38+m—1)/(2(1+28)) (case ( l))
<

C.pm1te (case (ii)).

The proof goes on as the proof of Lemma 3.11, so we only point

out the different points.

Proof of (3.3.2).
(1) Case (i), p==0. Note that Rev (¢, x) + 0<<Re v (0, 0) +2¢ and
Re v (¢, ¥) —0=>Re v (0,0) —20. By

gCZ ) Reu(0,0)+25§,eﬁ‘(t,z) |<Ca () Re »(0,0) —28 (5\'>0) ,
we have
” eipz‘"eﬁ(t,x)z (t) 2 (t, x) “Hp(mo)zgpp—qze €0, 0) +28) /(2(1+28)) —& ,
” gipz'neﬁ(t,l‘)z (t) ul(t, x) ”Hp(.ﬁcp)gcpp—(Rev(ﬂ,ﬂ)+28)/(2(1+25))+(l/2)
(I=1, .-, N).

So, we get the result by Rey(0,0) =Im S,(0,0).
(2) Case (i), p<0. We have, by definition,

Uy = sup 1T @) mdiol
tp

weey @'y _il_w | H 2Ty,

Here, we take w(¢, x) =e* ¢ (¢, x), then

lwlzr @ =077 ¢l a2@., »
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and so,

B(t.2)5 @) ~
sup (e OV ,(/’)Lz(utp)lpp

0cCT ey lollzr@,.»

1T o @p=

_>_§ . P~ Rev(5,0)+28)/(2(1+28)) -3 (§> 0).

Proof of (3.3.3).
(1) Case (i), g=0. We have only to note that

UM=0 when a(f)<Lpewsm
= 2 b

B,=0 (I=0,1,.--,N) when pVea+™<q(s),

and
Rev (¢, x) —0=Rev(0,0) —25>0.
(2) When ¢<0. As in the proof of Lemma 3,11, we can solve
DEW M —PUM =0 (o=,
as

N
W = pri-lalgieen 2 0~'R. (2, x),
where R,=q (z)*@2+m-1mtas0-2. B B eFE (I=0,1, -+, N). And then,

D.Lq,I,Wp(N) _ PU[SN) =0—N—1+m—1611p.1:"

NA0) (¢, Z) +m—1— (N +m—1) (1+25)—38 Z E;(t, ),

j; finite
where E,EE. Further, as in the proof of Lemma 3.11,
| N ~ N ~
IDEW P me @ g S WP | ity -

So, estimating || W |22, as in the proof of Lemma 3.11, we get the

result. Q.E.D.
From the above lemma, we have
p<m—14g—— (ImS,y(0,0) —30+m—1) (case (i)),

2(1+20)
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_ ImS,(0,0)
2(1+29)

—20<m—1+g¢ (case (ii)).
So, by letting 0—+0, we have
+Im 5 (0,0) <2(q+m—1—p)
(+ in the case (i), — in the case (i1)).

Q.E.D.

Appendix 1. Proof of (2.1.3)

The case d=1 follows from the result of Ivrii [8]. But we will

give a simple proof. _
(1) When P=P,=D;—tD:, d=1, p=0. First, we fix {,€ (0, T),
and for u€.% (R*) we put

to
w(t, x) = j‘ u(t’', x)de .
t
Then,

w(t, x) =0, 0,w(t, x)=—u(t,x).

Now, we have

to -
2 Re J‘ JPgu-w”d:cdt
0
to N to
~2Re j jumw,dxdt— f jta,qw,zyz)dxdz
(] 0
r R 1) to -
=2 Re[ uu'wzdx} 4+ 2 Re J ju,,u,dxdt— [t j]w“|2dx]
0 0

to
0

ty -
+ f .. |"dzdt = —2 Re ju,,(o, 2)w,(0, 2)dx
o J

+ f" jat([u,JZ)dde fo“ flwuizczxdt
- j]u,(to, 2) [tz — j{u,(O, z) 'dx

+ JW J‘Iwmlzdxdt——Z Re fu,x(o, z) w,(0, x)dx .
(]

Here,
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w.(0,2) = [, D),
[1w.0, )zt [ [lu. e, ) pazar.
Thus, we have

et 2+ [ [lwialiazae
gj;toijzulzdxdt+ L‘“ f]w,zlzdxdt+ j;ux(o, 2) Mz
+ (1w @) e+ 7 (7 [1uate, 2) e
By Gronwall’s lemma, we have
(A.1) I}ur(to, .r)l%lxéC{J;Luijzu]?dxdt
+ flu,(o, 2)'dz + jm,z(o, :c)i“’dx} for tye (0, T).
Next,
—2Re j jqu wdzdt’
—2Re Ltju,,dedt’—Z Re f Jt'u,@dxdz'
- L‘ Jan([utlz)dxdt’ +2Re ﬁt jt’uzu_ﬂdxdt’
= [l D raz— (1,2 paz+ [ (0.l dzar
= [lut, @) Pde = (1w, 2 paz+ [t [luapias)
= [ [1wapazar = (1, o 1de+e [lu.t, ) ez

= (10, 2y paz— [ [Juapazar.

Thus,
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j]u,(t, o) fdr< L‘ j|P2uizdxdt’+ Lt jm;(z', 2) 'dxdt’
+ f Jlux}zdxdt’ + qu;(O, 2) 'dz<C f ‘[}qu|zdxdt’
+ J;tj]u,(t’, x)|2dxdt’+C{j]uz(O, 2) Mz
+ jlum(O, x) Izdx} + jlut(o, z) |*dzx .
By Gronwall’s lemma, we have
(A.2) Jiu,(t, x)|2dxgc{£‘j[PZqu.rdwr j[u,(O, 2) ['dz

+ (10 2+ [1uie(, )]
Lastly, we have
(A.3) Jlu(t, .r)|2d:c§C<J: j|u,(t',x)|2czxczz'+ j|u(o, x)12dx>.
From (A.1), (A.2), (A.3), we have
2Dt ) i =C( [[1Pa, e + 231D 0, ) 12)
for 0<i<T, ue.F(R).

By substituting (1 + D2)*?x for u, we have the result.

(2) When P=P,, d=1, p>>0. We prove by induction on p. By

induction hypothesis, we have
p+l ) .
Pl PO
P ¢ R , 9 , p+l1 ) N
<c(% [ 10tPae, Y 1isar + 101w, Yy,
Here, by P,D,=D,P,—iD;, we have (by substituting D,z for u)
p+1 . P t
>3 IDE (e, ) e =C {3 [ 1D P, i ,av
j= =

P i . pHL i
+33 [1Dt e, it sar +E 1D 0, )
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Therefore, we have

31Dt ) = {3 [(1DIPa @, e

+ 2 1Dt ) e de + 2 1D O, e

Again by Gronwall’s lemma, we have the case p-+1.
(8) General case. For Q=a(t, ) D,+b(t, x) D,+c (¢, x) (a,b,c
e B=([0,T]x R)), we have

S IDIOu (e, ) [ =C {3 [IDtPa, 1y
j=0 i=0Jo

p+l . .
+ 31Dt (0, ) 2.

So, as in Section 1.2, we get the result for P=P,+Q, d=1. Successive
uses of this result for d=1 allows us to get the result for 4>1. (See
the proof of Theorem 1.9.) Q.E.D.

Appendix II

In this appendix, a(¢) and [—7T,, 7:] are the same as in Section
3. 1.

Lemma. For any feC”([—Ty, 1] X R") and any positive num-
ber v, there exists FeC”™([—T,, T1] X R") such that

ﬂ“(u)”f(u, x)du=a(t)'t"*'F (¢, z)
Jor (¢, x)e[—T, Ti] X R
Proof. By

a’ (&) =b()|t]™ (), b()#0 for te[—T,, T1],

we have

fa(@#(u,x}du:[a(u) |zg]( )f( ’ )]L

—fa(u)vmfl(u,x)du for fieC™([—Ts, T\] x RY).
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Thus, by induction, for any positive integer N, there exist Fy, fyx&E
C”([—T, T1] X R™) such that

jfa(u)“f(u, 2)du=a ()t Fy(t, z) + j () fy(u, 2)du .
We put

Gr(t, %) :E(7>1ﬁ Lta(uyum Fulu, ©)du .

We have only to prove that for any positive integer M, there exists

positive integer N such that Gy CY([—T,, T1] X R").
First,

Gy(t, x) = f (a(w)/a()) (u/t)*  u™ " fy(u, x) du,
and,
loe () /o () 11, |u/t|<1 for O<|u|<|¢].
So, we have
Gy(t, x) =0@™™*) (¢—0).
Next,
0.Gy=— b () 1t]° 7+ (0+1) T} Gy + 777y (¢, 2).

By induction, there exist g;, ,€C”([—T,, T1] X R") ({=0,1, ---) such
that

Gy =15 D G (4 2y f oty (4 2y (1=0,1, ---).

tl(m+l)
So, we have
(GG (£, 2) = O (™) (1-50).

Thus, if No—o— M(w+1) >0, we have GyeC*([-T,, T:] X R"),
Q.E.D.
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