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§ 0. Introduction

Pursell and Shanks [8] proved that a Lie algebra isomorphism be-

tween Lie algebras of all C°° vector fields with compact support on para-

compact connected C°° manifolds M and N yields a diffeomorphism be-

tween the manifolds M and N. Similar results hold for some other struc-

tures on manifolds. Indeed, Omori [6] proved the corresponding results

in the case of volume structures, symplectic structures, contact structures

and fibering structures with compact fibers. The case of complex struc-

tures was studied by Amemiya [1]. Koriyama [5] proved that in the

case of Lie algebras of vector fields with invariant submanifolds.

Recently, Fukui [4] studies the case of Lie algebras of G-invariant

C°° vector fields with compact support on paracompact free smooth G-

manifolds when G is a compact connected semi-simple Lie group. The

corresponding result is no longer true when G is not semi-simple or G

does not act freely.

In this paper, we consider Pursell-Shanks type theorem for orbit

spaces of smooth G-manifolds in the case of G a compact Lie group.

For a smooth G-manifold M, the orbit space M/G inherits a smooth

structure by defining a function on M/G to be smooth if it pulls back

to a smooth function on M, and the Zariski tangent space of M/G can

be defined. This smooth structure of the orbit space was studied by

Schwarz [9], [11], Bierstone [2], Poenaru [7] and Davis [3], Schwarz

[10] defined a Lie algebra 9£ (M/G) of smooth vector fields on the orbit
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space M/G, and proved n*(%G(M)) =3E(M/G), where %G(M) is the Lie

algebra of all G-invariant C°° vector fields with compact support on M

and 7T: M—>M/G is a natural projection.

The purpose of this paper is to prove the following:

Theorem. Let G and G' be compact Lie groups. Let M and

N be connected paracompact smooth G-manifold and G'-manifold

without boundary, respectively. There exists a Lie algebra isomor-

phism 0: 96 (M/G) -»3E (N/G') if and only if there exists a strata pre-

serving dijfeomorphism (T: M/G-+N/G' such that ® = ff*.

Main part of the proof of our theorem is to find maximal ideals of

3E (M/G). By the theorem of Schwarz, maximal ideals of 9£ (M/G) are

induced from those of IG(M). To determine the maximal ideals of

9£G(M), we use the parallel method to those of Pursell-Shanks [8] and

Koriyama [5].

§ 1. The Tangent Space of an Orbit Space

In this paper, we consider C°° smooth category. Let G and G' be

compact Lie groups. Let M and N be connected paracompact smooth

G-manifold and G'-manifold without boundary, respectively. Put M

= M/G, N = N/G'. The orbit space M has an induced smooth structure

such that a function f\ M—>R is smooth if the composition M->M-*R

is smooth, where TC is the natural projection. Let C°° (M) denote the

set of all smooth functions on M. A map h: M-+N is smooth if,

f°h^C°°(M) for any f^C°°(N), and we say that h is diffeomorphic

if h'1 is also smooth.

We can define a tangent space of the orbit space as usual. A tan-

gent vector v of M at p is a correspondense assigning to any smooth

functions f, Q around p real numbers v ( f ) , v(g) with the following

conditions:

(1) v(lf + jug)=lv(f)+t*v(9) h*
(2) v (fg) = v(f)g (p) +f(p)v (g).

Put r(M) - U tp(M).
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Given a^M, let Ga denote the isotropy group at a and Va be a

linear slice at a. Then Va is a Ga-module. Put p — TC(a) and Vp— Va/Ga.

Then Vp is an open neighborhood of p in M.

Proposition I.I (cf. Davis [3], Proposition 2.3).

(1) r,(Ji?)^rp(7p).
(2) Le£ 2UP denote the germs of smooth functions on Vp zvhich

vanish at p. Then rp(Fp) ^Hom (§JP/9KP
2, K) .

Let H be a compact Lie group and let V be an H-module. By a

theorem of Hilbert ([13], p. 275), the algebra of //-invariant polynomials

]H is finitely generated.

Theorem 1.2 (Schwarz [9]). Let {6l9--,6s} be a set of gen-

erators for R[V~]H, and let 6= (6l9 • • • , 0.) : V-+R*. Then

(1) 0*C"(£I)=CSOO.

(2) The orbit map 6: V/H-+R* of 6 is a topological embedding.

Proposition 1. 3 (cf. Davis [3] Lemma 2. 1) . Let R[V~]? denote

the algebra of H-invariant polynomials zvhich vanish at 0. Then

(i) §yfefl|y]f/(tf[y]f)'.
(2) If {$!, •••,(),} is a minimal set of generators for ^[V]?, then

the dimension of rQ(V/H) is s.

§ 2. Smooth Vector Fields on an Orbil Space

Let X: M— >r(M) be a section. For any /eC°°(M), we can

define a function X(f) : M-*R by X (/)(/>) =XP(/) . If X(/) e

C°°(M) for any f^C°°(M}, then we say X is a smooth vector field on

M. Let 5) (Af ) denote the Lie algebra of all smooth vector fields on

M. Let £>C°°(M) denote the set of all derivations of C°°(M). Using

Theorem 1.2 (1) we have:

Proposition 2.1. 3)(Af) zs isomorphic to DC00 (M) as a Lie

algebra.
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The orbit space M is stratified by its orbit type.

Definition 2.2 (Schwarz [11]). A smooth vector field X on M

is said to be strata preserving if Xp^rp(ffp) for any p^M, where (Tp

denotes the stratum of M containing p. Let 3£ (M ) denote the set of all

strata preserving smooth vector fields with compact support on M.

3E(M) is a Lie subalgebra of DC°° (M) . Let 3£fl(M) denote the set of

all G-invariant smooth vector fields with compact support on M. There

is a Lie algebra homomorphism TT*: £G(M)-»Z>C°C(M) defined by 7T*

where /eCe(M) and /is the orbit map o f f .

Theorem 2.3 (Schwarz [11]). The image of the homomor-

phism TT*: 3EG(M)-*DC°°(M) is £

§ 3. Maximal Ideals of £ (M)

Let a^M and put p = n(a)^M. Let Va be a linear slice at a.

Then -Na^GXe^a is equivalent to a linear tubular neighborhood of the

orbit G(a) of a. Let r(JVa) be the tangent bundle of the G-manifold Na,

and let rG(<c(Na)) denote the set of all G-invariant smooth sections of

r(JVa). Let r(Va) be the tangent bundle of the Ga-manifold Va, and let

/7
Ga(r(ya)) denote the set of all GL-in variant smooth sections of r(Va).

Then we have canonical isomorphisms FG (r (Na) ) = FGa (r (Na) \ Va) and

CG (Na) = Coa ( Va) . It is easy to see the following:

Lemma 3. 1. (1) For any X^ FGa (r ( Va) ) , there exists

such that Y=X on a Ga-invariant neighborhood Ua of a in Va.

(2) For any /eCoa(Va), there exists FeCG(M) such that

F=f on a Ga-invariant neighborhood Ua of a in Va.

Put MO={Q^M; Xq = 0 f o r any Xe3E(M)},and put M^M-M,.

Proposition 3. 2. M0 is discrete.

Proof. For any a^.M, let {xl5 • • • , xn} be a canonical coordinate of a
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linear slice Va of a. We can assume Ga acts orthogonally on Va. Then

the radial vector field X=£]?=1 Xi -- is a Ga-invariant smooth vector field
dxi

on V"tt. Let f\ Va— >R be a Ga-invariant smooth function defined by

f(xl,--,xn)=Xi-\ ----- '\-xn
z. By Lemma 3.1, there exist Ye£G(M) and

F^Cc(M) such that Y=X and F=fon a Ga-invariant neighborhood Ua

of a in Vtt, respectively. Put Up=Ua/Ga, Y = n*(Y) and let F be the

orbit map of F. Then Y(F)^0 on Up—{p}, and Proposition 3.2

follows.

Note that 7ta: Na-^G(a) is a G-vector bundle. The tangent bundle

t(Na) of Afa is isomorphic to ;ra* (r (G(a) ) 0£a as a G-vector bundle,

where fa is a bundle along the fibres of Na. Let ra be the composition

It is easy to see that ra is a Lie algebra homomorphism. Put -A?a(r(Va))0

= {XerCa(r(V f l));X0 = 0}. For XeE/\ (r (Va))0, we denote ^(X) the

r-jet of X at a (r = l,2, • • • ) . Put 7\ (r ( Va) )0
f c - {Xer0. (r ( Va) )0;

/a(X) =0 for l^r^} (l^^oo).

For q<=M0, choose a point b^7t'l(q). Let gIc6(V&) denote the set

of Gb-in variant endomorphisms of Vb. Note that, for Xe/Xr ( Vb) ) , j\(X)

defines an element of gI(V6) as usual. It is easy to see that j"J(X) e

I G (V & ) for

Lemma 3. 3. jj: rGb(r (V6)) ->gIG6(Vb) £5 a;? o;z£0 L/e algebra

homomorphism.

Proof. Since TT (*) - g €E M0? TG6 (r ( Vb) ) = FGb (r ( Vb) ) 0. Then FGb (c

(Vb))/rG6(r(Vb))1
0^gIG6(Vb) and Lemma 3.3 follows.

By Proposition 3. 2, M0 is discrete. Then M0 is a countable set

{qil z'e/}. Choose a point bi<=n~l (qt) for each ^eM0. Put Jj(^)

— g!G&. (V6|) and put Jl(M) =J[i&IJl(M) which consists of those elements

having only finite number of non-zero factors. Then we have:



270 KOJUN ABE

Corollary 3. 4. The composition

J1: *

a;z on£0 Lze algebra homomorphism.

G&i-module y&£ is isomorphic to 0fi?^Wy. Here dy is a non-negative

integer and Wy runs over the inequivalent irreducible G&i-modules. Let

Xy be the real numbers R, complex numbers C or quaternionic numbers

H if dimagI0j|(Wy) =1, 2 or 4, respectively. Then fl(G>f (V6i)

Proposition 3.5. gl (rf, ^ ) ^ R®%i (d, R) ,

gl (rf, C)s

for K=R,C or H.

Proof. Note that gl (^, //) - {Xe gl (n, H) ; Re Tr (X) - 0} and

§1 ( d, H) is a simple Lie algebra. Other cases are similar to this.

Next we consider maximal ideals of rGa(t(Va)) foraeAfsuch that

n(a) =p^Mi. First we need the following:

Lemma 3. 6. Let H be a compact Lie group and let V be an

H-module. For Y^F(r(V^3 we define Y^FH(r(V)') byYp= f (A*Y)P
JH

dh for PEE V. Then [X, Y] - f A, [X, Y] dh for Xe/7* (r (TO ) . Here

Proof. Let {xly --,xn} be a canonical coordinate of V. For p(= V,

, we have:

= (f (E\ J j y \ < = i

=i;(f (*=i\ JH
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\dh= f (I] (
jH\i=l

= f (A*rJH

Then [X, ?],(/) =X,( f (A,r) (/)<ta) - f (h*Y}p(Xf}dh
\ JH / JH

= f (xp(Atj#

= f [X.A
.JjST

= (f K/
\ JH

Lemma 3.7. Suppose that 5ft zs a proper ideal of FGa (r ( Va) )

-which contains FGa (r ( Va) ) 0°° /or a e M 5«c/i ^/ia^ TT (a) —p^M^ Then

yi is contained in FGa('c(Va))Q.

Proof. Suppose there exists X^^l with Xa=^=0. By Koriyama [5]

Lemma 2.1, for any Z^FGa (r (Va) ) there exist a Ga-invariant neighbor-

hood U of a in Va and Yer(r(Fa)) such that [X, Y] = Z on C7. Put

?= f g*Ydg^TG (r(K)). By Lemma 3.6, we have [X, ?] =
J^a

f g*[X,Y]rfflr= f g*Z^g = Zon ?70 Put Zx- Z- [X, ?]. Then Zxe
J^a J^a

^G& (r ( Vtt) ) 0°° which is contained in 5R. Since 9J is an ideal, ZeEjJt. Thus

5JI — /^GO (r ( Va) ) which is a contradiction to SR a proper ideal.

By Lemma 3. 7, there exists a unique maximal ideal $ltt of /~ca (r ( Vtt) )

satisfying 7\ (r ( Va) ) 0°° c 5«ft C Aa (r ( Vfl) ) 0. Put ^fl = {Xe 3EG (M) ; ra (X)

Proposition 3.8. ^a is a maximal ideal of HG(M) .

Proof. Put Va(p) = {v^Va; \\v\\<p} for a positive number p. sjja(p)

= { Ye TCa (r ( K) ) ; supp Yc Va - Va (p) } is an ideal of FGa (r ( Va) ) which

is contained in FGa (T (Va) )0. Then 9^a(p) is contained in 91a. It is clear

that $a is an ideal of £G(
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Let 2JJ be a maximal ideal of 3EG(M) which contains £ytt. Suppose

that there exists Xe9J£ with ra(X)a^O. Similarly as in the proof of

Lemma 3.7, we can prove 2K = SG(Af), which is a contradiction. Then

ra(9K) is contained in FGa (r (Va))0 . Combining yia(p) c5Ua and Lemma

3.1, we see rtt(2JJ) 4-9?a is an ideal of rC a(r(Va)). Therefore ra(2Ji)

is contained in 5Ra, and SJJ^^a- Thus Proposition 3.8 follows.

Put &, = 7^(30 and I (M) p={XeEl(J l f ) ;X p = 0}. Then $p is
contained in J(Af)p , and $p is a maximal ideal.

Lemma 3. 9. (1) £yp £5 #72 infinite co dimensional maximal ideal

o f H ( M } for PEL M l f

(2) For a maximal ideal 2 of J1 (M) , />«* 5IK = (J1)"1(8). TAcw

2)1 zs a finite codimensional maximal ideal of HG(M) .

Proof. (1) For a^7t~l(p}} there exists XerGa(r(Va)) with Xa

=^=0. Then there exists a Ga-invariant local one parameter group of

transformations 0; ( — e, e) X £/— > Va defined on a Ga-in variant neighbor-

hood U such that — ( t ^ i i ) = X ( f ) ( t i U ) . Let 5: ( — £ , £ ) — > Vtt be a map de-
\JU

fined by 0(£) =<j>(t, a). Since Xa^0, 0 is an embedding for a sufficiently

small number £. Let W be a Ga-in variant normal space of #(( — £ ,£ ) )

at a in Va. Then we may assume that 0: ( — £,£) X W— >V0 is a Ga-in-

variant embedding. Let {wly • • • , wn_!} be a canonical coordinate of W.

We have a local coordinate {x^ • • • , xn} of Va around a neighborhood

i = 0(( — e, e) X W) of a given by ^ (0(^, wl} • • - , wn-i)) = ^ Xi(0(t, wl

', wn-i)) — iVi-i for z" = 2, • • • , 7 2 . Note that X= - on C/i.

By Lemma 3.1. there are X1^IG(M) and /eCg(M) such that

X and/=^i on a neighborhood Uz<^Ui of a in Va, respectively. Let

and rB(Y) =2?., ffA on L/2. Then r^X,, Y]

= 23Li — — on C7,. Since r.[X,, Y] e5R., we have ^t(a) =0 for
oxi uxi dxi

dk£-
i = I, • • • , 7 2 . Inductively we have — — (a) =0 for i = l,-~,n and ^ = 1,2,

9^!fc

Let a: JG(M) — >^ [[̂ i]] be an ^-module homomorphism defined

by a(Z) =2*=l^ (a) x,* if r.(Z) =2?=1ff^- on 17. Since a(9fs) =0.
*
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the above map a induces an jR-module homomorphism (i : JG (M) /5»a~~ >

-R[[>i]]' Note that a(fJX^ =jlx^ for .7 = 1,2, ••- , and dim (Image /?)

= 00. Since QaZ)Ker 7T*, we have dim BE (M) /$p= oo.

(2) There is an index z'e/ such that £ does not contain J\(M) .

Since S is a maximal ideal, 8 + JJ (Af) = J1 (A/) • Then Jo(M)/2K

^J1(M)/S=JUM)/(SnJUM)). Since Jl(Af) is finite dimensional,

9Ji is finite codimensional. This completes the proof of Lemma 3. 9.

Proposition 3. 10. Let 2JI be a maximal ideal of 3£ (Af ) . Then

Wi = $Pfor p^M, or Tr;1 (2K) - (J1) "J (S) /or 5om^ maximal ideal %

of JJ(M).

Proposition 3. 10 plays a key role to prove our theorem. We shall

prove Proposition 3. 10 in Section 6.

§ 4. Stone Topology of Maximal Ideals of X (M)

Let Af* be the set of all maximal ideals of J (Af ) . Af* is de-

termined by Proposition 3. 10.

Definition 4.1 (Stone topology of Af*, cf. Pursell-Shanks [8]).

The Stone topology on Af* is defined by closure operator CL as follows:

(1) CL(0)=0.

(2) If B=£(f> is a subset of Af *, then CL(B)= {2«eM*; 2JJD n 5FI}.

Let 5 (M0) be the set of all subsets of M0. Let ?> (or simply r)

be a map from M* to Mx U S(MQ) defined as follows:

(1) r($P)=P for p^M,.

(2) If 3JI is a maximal ideal of 3E(M) such that J1^*-1^))

is a maximal ideal of J!(M), then r (3JI) = {^ e M0 ; t/
1^*"1^)) does

not contain Jg£(M)}. (Making use of Proposition 3.5, we see that

r(9Jl) does not consist of a single point.)

For a subset A of M, we denote the closure of A in M by cl (A) .

Lemma 4. 2. I/" cl (A) z's contained in Ml9 then CL (r"1 (A) )
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Proof. First we shall prove "c". Let Wl^CL^'1 (A)) . Assume

that r (3JJ) is not contained in cl (A) .

In the case 2Ji = $p for p^Mii We can find X<E£(M) such that

Xp^0 and supp Xfl cl (A) =0. Then X<EE f| Sp-cSR, which is a con-
p'e-A

tradiction to Xp^0.

In the case ^^(SK) - (J1) -1 (2) for a maximal ideal 8 of J1 (M) :

There exists Y<E3£G(M) such that J'OO €JE£. Let {il9 - • • , 4} be a set

{*e/; Ji,(r6f00)¥=0}. There exists 0<EC£(M) such that 0 = 1 on a

neighborhood of ^ 0/=1, • • • ,£ ) and 0-0 on 7T'1 (cl(A)). Put X=

Then J1(X)=J1(y), and 7r*(X)3E3K. Moreover TT, (X) e n S
P'GA

which is a contradiction.

Next we shall prove "D". Note that an ideal f| 9?= H ̂ p- is con-
_ r(5R)eA p'e^

tained in J(Af)p for any ^ecl(A). Then fl 9i is contained in a maxi-
_ _ r(^)G4

mal ideal $p and ^eCLCr'^A) ) for any pecl(-A). This completes

the proof of Lemma 4. 2.

If 0:%(M)-+Z(N) is a Lie algebra isomorphism, then ®* : M*

— »JV* is homeomorphic. Combining Lemma 3. 9 and Proposition 3. 10,

0* (r^1 (MO ) - rN~l (N,) and 0* (r^1 (M0) ) - rN~l (N,) . By Lemma 4. 2,

we have

Corollary 4.3. If 0: X(M)->X(iV) z's a Lie algebra isomor-

phism, there exists a homeomorphism 0~: Ml~^Ni defined by o~(p)

We shall extend the homeomorphism o~: Ml-^Nl to a homeomor-

phism from M to N .

Lemma 4.4. Let U be a neighborhood of q^M0 such that

cl(C7)

The proof of Lemma 4. 4 is similar to that of Lemma 4. 2.
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Proposition 4.5. The map (J:Ml-^Ni is extended to a homeo-

morphism from M to N .

Proof. For q^M0, let b<=M such that 7C(b)=q. Let V"b be a

linear slice at b. Put Uq=Vb/Gb, Uq=Uq-{q}. Since q<EMQ, it is

easy to see that Uq is connected. Note that H 31 = f! ?J. By Lemma

4.4,

Since @*:M*-+N* is homeomorphic and since (To

CL (r*-1 (a- (Z7Q°) ) ) = CL (0* (r*-1 (E7fl°) ) )

There exists a maximal ideal 501 eM* such that rjjf(2JJ) =^. Then

^ (CL (cN~l (0- ( t/g°) ) ) ) n Fo contains z> (0 (2Ji) ) , and, by Lemma 4. 2,

cl((T(C7g
0)) nF0^. Since (T(r/g

0) is connected, cl (<T(t7fl°)) H J70= fe'}

for some q'^N0. Let tT(g) =gx for q^MQ. Then it is clear that 0":

M-+N is homeomorphic.

§ 5. Proof of Theorem

In this section we shall prove our theorem. Let 0: 3E (.M) — >X (JV)

be a Lie algebra isomorphism. By Proposition 4. 5, we have a homeo-

morphism o~: M-»N such that ff(J>) =r>(<ZK3ip)) for />eMt.

Proposition 5.1. 0": M1~^N1 is diffeomorphic .

In order to prove Proposition 5. 1, we need the following lemma.

Lemma 5.2. For Xe9E(M) and p^Ml9 Xp^0 if and only if

Proof. Let aeM such that 7T(a) =/>. Assume that Xp^0. There

exists Xe3EG(M) such that Xa^0. By the similar argument as the
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proof of Lemma 3.7, we can prove that [X, 9EG (M) ] + %$a = 9EG (M) , and

[X, 3£(M)] + $p = J (M) . Conversely, suppose that Xp = 0. Moreover

we shall assume that [X, £ (M) ] + $p = 3£ (M) . There exists X e 3EG(M)

such that 7r*(X)=X. Put X'=ra(X)eErG o(r(Va)). Then [X',

/\ (r ( Va) ) ] + ma = rGa (c (Va) ) and X'a = 0. Let Va (0) and Va (1) be the

trivial and non-trivial direct summand of the Ga-module Va, respectively.

Then ^(.X') can be expressed as A@B, where Aegl(Va(0)) and

£€EgrCo(Ya(l)). Since [^ /,r0.(r(Va))]+SRB = /T
f i.(r(Va))> we can prove

that A is invertible. Then we have [^, r f f.(r(ya))0]+SR0 = /T
0.(r(Va))o>

which implies that a linear mapping

0:9k (V.) //. (Si.) ->g(Ga (V.) //> 0».),

defined by $(C + j\ (5Ra)) - [jl
a(X'), C] +/B (5RB) for CegICa (Va), is iso-

morphic. But this is impossible because j l
a ( X f ) eja(3^a). This completes

the proof of Lemma 5. 2.

Proof of Proposition 5.1. Let f be any smooth function on N.

Put ff=/o<T. We have fY-f(ff(p» Ye 36 (F) ,(p) for any

^eMj and hence, using Lemma 5.2, ®~l(fY) -g(p)®~l(Y)

for any p^M,. Thus we have 0'l(fY) =g®~1(Y) for any

For any p^Ml9 there exist ye3E(F) and h<=C°°(M) such that 0"1

(Y)(A)=^=0 on a neighborhood U of p in M. Then g = 0~1(fY)(h)

(0-1(y) (A))"1 on C7, and g is smooth on U. Thus /"o0" is smooth on MI

for any f^C°°(N), and (T is smooth on MI. Similarly o"1 is smooth

on NI, and Proposition 5. 1 follows.

Now we shall prove that o": M—>N is diffeomorphic. By Proposition

5. 1, it is sufficient that o~ is smooth at q^MQ. Let f be any smooth

function on N, and put g = foff. As in the proof of Proposition 5.1,

g®~l(Y} =0'1(fY) for any Ye3E(F). Since 0 is a Lie algebra iso-

morphism, gX(A)<EC°°(M) for any Xe3E(M), AeC°°(M). Let b be

a point of M such that ?r(£) =q, and let V be a linear slice at £. Let

H be the isotropy subgroup at b, and put V = V/H. It suffices to prove

the following:

Proposition 5. 3. Let g be a continuous function on V such that
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gX(h)<=C"(V)foranyX^r(r(V)), h^C°°(V). Then g is a smooth

function,

Let {0j, • • - , 6S} be a minimal set of homogeneous generators of

(see Davis [3], Lemma 4.6). Let {x^--, xn} be a canonical coordinate

of V such that H acts orthogonally on this coordinate. Since q£EMQ,

r(r(F)) =r(r(F))o. It is easy to see that deg0*>l for z = l, — , 5.

Then we can assume Ql = xl
z-{ ----- h^n2- Let X be a radial vector field

jy=1xt— . Then X(0t) - (deg000t for z = l, • • • , 5, and Proposition 5.3
9^

follows from the following:

Proposition 5. 4. Le£ g be an H-invariant continuous function

on V such that 6ig^Cn(V) f°r * = 1> '", s. Then g is an H-invariant
smooth function.

Proof. Since 6ig^.Cs(V), it is sufficient to prove that g is smooth

at 0. Put gl = dig e CH (V) . First we consider the case 5 = 1. In this

case V is a half line R+, it follows from Theorem 1.2 that g1 = xg is

a smooth function on R^., where gi and g are functions on R+ such that

gi=gi°6i and g = g°6i, respectively. By Koriyama [5] Lemma 6.2, ge

C°°CR+), and hence geCS(V).

Now we consider the case s^>2. Put R[V]? = {h^R[V]H; deg A

= z}. From Taylor's formula, for an integer w2>2, there exist Pm(x)

^Ik^rnf and ̂ (^eS^-^j/C-Cy) such that gl(x)=Pm(x)

+ Rm(x), where af^x^ — xj* and |/| =z"i+ ••• + in. Put g2 = 62-g1, k =

deg02+m. Then 02Pme£2<^fc .R[y]f and 02^m(x) eX]m=fc

Let 4 = 2]?^— be the Laplacian, and put Hk (V) = {f e .R \V ] fc ;
dj*2

= 0}. Here we need the following result:

Theorem 5. 5 (cf. [13] § 14) .

R[V]i = 6lR[y]i-2@Hi(V) for an integer z^2.

From Theorem 5.5, there exist Qm^J2i^jc-2 R[V]i and T

such that e2Pm = 61
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Proposition 5. 6. Tm = 0 (m = 2,3, • • • ) .

Proof. It is easy to see the following:

(1) For f^Hl(V), A>(f/01)=N(p,[)f/01*
+1, where N(p,l)

(2) For JVeC-OO with |I|=4 + 1, put J?

Then we have ^(F/ej =*£»+} f** /OS for some

Now we assume that Tw = 2?=dTm* such that T^EEH^V) and Tm
d

. Let <^ be an integer such that d=2d1
Jr~L or 2^ + 2. To see Prop-

osition 5. 5, we can assume that k is an even integer, and hence k^>2di

+ 2. By the definitions of g, and g2, Otg = gt/Ol = Qn + Tm/Ol + OiRm/Ol.

Since 02g is a smooth map, Tm/61 + 62Rm/61 is also a smooth map.

Put F = 62Rm. Applying (2), we have ^ (F/6J =Z%£1Fd»q/01
q for

some F*»*(x) ^^^^-^-^zfC00 (V) . Let a= (al9 • • • , an) e F with a

^=0 and f be a positive real number. Since k — 2di — 1>0, it is easy to

see that

(3) lim

It follows from (1) that

(4) liniMo^1(

We can write

Tm
M'+1(j:)=i;i/l_Ml+1W for

for

Then Jdl (Tm
2^+1 (x) A + Tm

2^+2 (^) A) U_,B - (N(d,9 2d, + 1)

^ + 2)S/^)/lkl|idl"i. Note that N(^, 2^

Since Tm/6l + F/6l is smooth, it follows from (3) that

the limit lim^0^
dl (Tm/6^ x=?a exists. From (4) we have h = fo = Q for

any /, J. Then Tm
d = Q, which is a contradiction. Therefore Tm = 0.

Proof of Proposition 5. 4 continued. From Proposition 5. 6, we

have d2Pm = 61Qm. Since {0i, ~-,6s} is a minimal set of generators, there

exists an //-invariant polynomial Pm' such that Pm = 6iPm'. Then Q = Qi/di

= /V + JV01 for ^(^Sui-m+i^C"^) (w = 2,3f •-), and g is a smooth
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map. This completes the proof of Proposition 5. 4.

To complete the proof of our theorem, we shall prove that dJ = o~*.

Similar way as in the proof of Proposition 5.1, for any f^C°°(M)9

, we have <0(/X) - (f°(rl)0(X). Then <0(X) (foff~l)(D(X)

- 0 (X) (/otr1) 0 (X) . Hence 0 (X) (/o<T ') 0 (X) = <0 (X) (/o(T ') 0 (X) ,

and we see 0(X) (/°O =X(/) off-1. Then, for any geC°°(F),

Xe3E(M) ,<P(X)(g)=X(go( f )o( r - 1 = tr1 |c(X)(g), and hence (5 = ̂ . This

completes the proof of our theorem.

Remark. We can prove that (T is strata preserving.

§ 6. Proof of Proposition 3. 10

In this section we shall prove Proposition 3. 10. The proof is paral-

lel to those of Pursell-Shanks [8] and Koriyama [5]. We start with

some lemmas.

Lemma 6.1 (Sternberg [12]). Let X be a radial vector field

on Rn defined by X=Y^t=i^i - • Let Y be a smooth vector field on
dxi

Rn such that jl(X)=j\(Y). Then there exists a local coordinate

system (yi, • • • , yn) defined on a neighborhood U of 0 such that Y=

£ ? = i y < - - on U.

Lemma 6, 2, Let 2H be an ideal of 9£ (M) such that for any

l there exists Fe2JJ such that Yp^0. Then 9ft contains an

ideal $1 = {X e 3E (M) ; supp X c M,} .

Proof. Put m = n*-1(m), ^i-TT^CSx). We shall prove that 9K

contains ^. Similarly as in the proof of Lemma 3. 9, for any point a

^TC~l(M^) there exist a local coordinate system (x1? ->9xn) around a

Ga-invariant neighborhood Ua of a in Va and YeSUl such that ra(Y)

on Ua. Xi is extended to a G-invariant smooth function / on M.
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Put Yl=Y-ra(Y) on Va. Then 7T J | t(y i)=0 on F«. Using a partition

of unity, we can find Y"2eKer Tt^dWl such that Y2=Y1 on Ua. Put

y3=y-y2. Then y3=ra(y)=— on ua and yseE2Jt.
Let XeQi. To prove Xe3JJ we can assume that supp X is contained

in GXcaVa by using arguments of invariant partition of unity. Moreover,

we can assume that ra(X) =X on Ua since Ker ft* is contained in 2Ji.

Put X=^2i=1$i - on Ua. Since xl is a Ga-invariant function, we see
dXi

that f j is a Ga-invariant function. Similarly as in the proof of Koriyama

[5] Lemma 2. 13, we can prove that X is an element of 2Ji. This com-

pletes the proof of Lemma 6. 2.

Put 3eG

Lemma 6. 3. Le£ 3JJ £e an zVfea/ of%(M) such that J\n*

= J1(M) and for any p^. MI there exists an element Y^^SR such that

Then an ideal m = n^1(^ of HLG(M) contains an ideal

Proof. Since J1^) = JJ(M), there exists an element -X"e3Ji such

that j\i (rb. (X) ) =jli (3t*) . Here Sft^ is a radial vector field on V6f defined

by 3ti = Zj?=i^ on ^&-» where {yly "-,^71} is a canonical coordinate of
9yj

Vbi. Since 931 contains Ker 7T*, we can assume that X=^21j=iyJ on
dyj

Ut.

As in the proof of Koriyama [5] Lemma 2.13, for any element

Z(=%G(M)Q°°, there exist vector fields Yt, i^I9 such that [X, yj =rbf (Z)

on a Gbi-invariant neighborhood Wi C C/i of bt and supp Y^ C Uif Put

?«= f ff^y^e/1^ (r(V6|)). By Lemma 3. 6, we have [X, ?J =rb£(Z)
»/Gr6^

on W*. By Lemma 3.1 (1), we can assume Yi^JiG(M) and supp Yt is

contained in GXG6.L^. Since supp Z is compact, there is a finite index

set {*!,-••,4}e7 such that supp Zfl GxGf i . V6</=^=0. Put ? = ?<t+ —

+ yifc. Since Ker TT^ is contained in 9Ji, there exists an element

such that Z0 = Z-r6i/(Z) on Wtj for j = I, —,*. Then Z^ Z-Z0-[X,

is an element of ^ in Lemma 6.2, and ZjeSUt. Thus we have
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and this completes the proof of Lemma 6. 3.

Lemma 6. 4. Let 2Ji be a maximal ideal of 36 (M ) such that for

any p^Mi there exists an element Ye3JJ such that Yp^=0. Then

a maximal ideal of J1 (M) , where 2ft = TTJ1 (2K) .

Proof. Suppose J1 (9K) - J1 (M) . We shall prove that Ker J1 is

contained in 3Jt. By Lemma 6. 2, it is enough to prove that an element

ZeKerJ1 satisfying supp ZcGXc6 . V"6i is an element of 9JI. Since Ker

Tl* is contained in 9Ji, we can assume Z = r&i(Z) on V6i. As in the proof

of Lemma 6. 3, there exist XeSHi and a local coordinate system (xl9 • • • , .rn)

defined on a Gbf-invariant neighborhood Ut of ^ in V6< such that

*=S^i*i^- ^ C74.0^
From the proof of Koriyama [5] Lemma 2. 10, there exists a smooth

vector field Y on Vbi such that Z^ Z- [X, Y] GET (r (VB<))0
00 . Put

?= f g^Y^g. ThenZ-[X,Y]- f g^ffer^OrCVOV8. By Lemma
J^i J^i

3. 1 (1), we can assume Ye3EG(M), and Z- [X, Y] e9eG(M)0
00. Then it

follows from Lemma 6.3 that Ze3Jl. Thus Ker J1 is contained in 5K.

Since J1(^Jl)=J1(M)9 aft-3EG(M). This is a contradiction, and this

completes the proof of Lemma 6. 4.

Proof of Proposition 3. 10. Let 2Jt be a maximal ideal of 3£ (M ) .

If there exists a point p^Ml such that 2Ji is contained in 3E(Af)p, then

2JJ = QP. Suppose for any point p^M1 there exists an element Xe2Jt

such that Xp=^0. By Lemma 6. 4, J1 (7TJ1 (2JJ) ) is a maximal ideal of

J1 (M) . This completes the proof of Proposition 3. 10.
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