Pursell-Shanks Type Theorem for Orbit Spaces of G-Manifolds

By

Kōjun Abe*

§ 0. Introduction

Pursell and Shanks [8] proved that a Lie algebra isomorphism between Lie algebras of all C^{∞} vector fields with compact support on paracompact connected C^{∞} manifolds M and N yields a diffeomorphism between the manifolds M and N. Similar results hold for some other structures on manifolds. Indeed, Omori [6] proved the corresponding results in the case of volume structures, symplectic structures, contact structures and fibering structures with compact fibers. The case of complex structures was studied by Amemiya [1]. Koriyama [5] proved that in the case of Lie algebras of vector fields with invariant submanifolds.

Recently, Fukui [4] studies the case of Lie algebras of G-invariant C^{∞} vector fields with compact support on paracompact free smooth G-manifolds when G is a compact connected semi-simple Lie group. The corresponding result is no longer true when G is not semi-simple or G does not act freely.

In this paper, we consider Pursell-Shanks type theorem for orbit spaces of smooth G-manifolds in the case of G a compact Lie group. For a smooth G-manifold M, the orbit space M/G inherits a smooth structure by defining a function on M/G to be smooth if it pulls back to a smooth function on M, and the Zariski tangent space of M/G can be defined. This smooth structure of the orbit space was studied by Schwarz [9], [11], Bierstone [2], Poénaru [7] and Davis [3]. Schwarz [10] defined a Lie algebra $\mathfrak{X}(M/G)$ of smooth vector fields on the orbit

Communicated by N. Shimada, April 20, 1981.

^{*} Department of Mathematics, Faculty of Liberal Arts, Shinshu University, Matsumoto, 390, Japan.

266 KŌJUN ABE

space M/G, and proved $\pi_*(\mathfrak{X}_G(M)) = \mathfrak{X}(M/G)$, where $\mathfrak{X}_G(M)$ is the Lie algebra of all G-invariant C^{∞} vector fields with compact support on M and $\pi \colon M \to M/G$ is a natural projection.

The purpose of this paper is to prove the following:

Theorem. Let G and G' be compact Lie groups. Let M and N be connected paracompact smooth G-manifold and G'-manifold without boundary, respectively. There exists a Lie algebra isomorphism $\mathfrak{O}: \mathfrak{X}(M/G) \to \mathfrak{X}(N/G')$ if and only if there exists a strata preserving diffeomorphism $\mathfrak{O}: M/G \to N/G'$ such that $\mathfrak{O} = \mathfrak{O}_*$.

Main part of the proof of our theorem is to find maximal ideals of $\mathfrak{X}(M/G)$. By the theorem of Schwarz, maximal ideals of $\mathfrak{X}(M/G)$ are induced from those of $\mathfrak{X}_{G}(M)$. To determine the maximal ideals of $\mathfrak{X}_{G}(M)$, we use the parallel method to those of Pursell-Shanks [8] and Koriyama [5].

§ 1. The Tangent Space of an Orbit Space

In this paper, we consider C^{∞} smooth category. Let G and G' be compact Lie groups. Let M and N be connected paracompact smooth G-manifold and G'-manifold without boundary, respectively. Put $\overline{M} = M/G$, $\overline{N} = N/G'$. The orbit space \overline{M} has an induced smooth structure such that a function $f \colon \overline{M} \to R$ is smooth if the composition $M \to \overline{M} \to R$ is smooth, where π is the natural projection. Let $C^{\infty}(\overline{M})$ denote the set of all smooth functions on \overline{M} . A map $h \colon \overline{M} \to \overline{N}$ is smooth if, $f \circ h \in C^{\infty}(\overline{M})$ for any $f \in C^{\infty}(\overline{N})$, and we say that h is diffeomorphic if h^{-1} is also smooth.

We can define a tangent space of the orbit space as usual. A tangent vector v of \overline{M} at p is a correspondense assigning to any smooth functions f, g around p real numbers v(f), v(g) with the following conditions:

- (1) $v(\lambda f + \mu g) = \lambda v(f) + \mu v(g)$ for $\lambda, \mu \in R$,
- (2) v(fg) = v(f)g(p) + f(p)v(g).

Put
$$\tau(\overline{M}) = \bigcup_{p \in \overline{M}} \tau_p(\overline{M})$$
.

Given $a \in M$, let G_a denote the isotropy group at a and V_a be a linear slice at a. Then V_a is a G_a -module. Put $p = \pi(a)$ and $\overline{V}_p = V_a/G_a$. Then \overline{V}_p is an open neighborhood of p in \overline{M} .

Proposition 1.1 (cf. Davis [3], Proposition 2.3).

- (1) $\tau_p(\overline{M}) \cong \tau_p(\overline{V}_p)$.
- (2) Let $\overline{\mathbb{M}}_p$ denote the germs of smooth functions on \overline{V}_p which vanish at p. Then $\tau_p(\overline{V}_p) \cong \operatorname{Hom}(\overline{\mathbb{M}}_p/\overline{\mathbb{M}}_p^2, R)$.

Let H be a compact Lie group and let V be an H-module. By a theorem of Hilbert ([13], p. 275), the algebra of H-invariant polynomials $R[V]^H$ is finitely generated.

Theorem 1.2 (Schwarz [9]). Let $\{\theta_1, \dots, \theta_s\}$ be a set of generators for $R[V]^H$, and let $\theta = (\theta_1, \dots, \theta_s)$: $V \rightarrow R^s$. Then

- $(1) \quad \theta^* C^{\infty}(R^s) = C_H^{\infty}(V).$
- (2) The orbit map $\bar{\theta}$: $V/H \rightarrow R^s$ of θ is a topological embedding.

Proposition 1.3 (cf. Davis [3] Lemma 2.1). Let $R[V]_0^H$ denote the algebra of H-invariant polynomials which vanish at 0. Then

- $(1) \quad \overline{\mathfrak{M}}_0/\overline{\mathfrak{M}}_0^2 \cong R[V]_0^H/(R[V]_0^H)^2.$
- (2) If $\{\theta_1, \dots, \theta_s\}$ is a minimal set of generators for $R[V]_0^H$, then the dimension of $\tau_0(V/H)$ is s.

§ 2. Smooth Vector Fields on an Orbit Space

Let $X \colon \overline{M} \to \tau(\overline{M})$ be a section. For any $f \in C^{\infty}(\overline{M})$, we can define a function $X(f) \colon \overline{M} \to R$ by $X(f)(p) = X_p(f)$. If $X(f) \in C^{\infty}(\overline{M})$ for any $f \in C^{\infty}(\overline{M})$, then we say X is a smooth vector field on \overline{M} . Let $\mathfrak{D}(\overline{M})$ denote the Lie algebra of all smooth vector fields on \overline{M} . Let $DC^{\infty}(\overline{M})$ denote the set of all derivations of $C^{\infty}(\overline{M})$. Using Theorem 1.2 (1) we have:

Proposition 2.1. $\mathfrak{D}(\overline{M})$ is isomorphic to $DC^{\infty}(\overline{M})$ as a Lie algebra.

The orbit space \overline{M} is stratified by its orbit type.

Definition 2.2 (Schwarz [11]). A smooth vector field X on \overline{M} is said to be strata preserving if $X_p \in \tau_p(\sigma_p)$ for any $p \in \overline{M}$, where σ_p denotes the stratum of \overline{M} containing p. Let $\mathfrak{X}(\overline{M})$ denote the set of all strata preserving smooth vector fields with compact support on \overline{M} . $\mathfrak{X}(\overline{M})$ is a Lie subalgebra of $DC^{\infty}(\overline{M})$. Let $\mathfrak{X}_{\sigma}(M)$ denote the set of all G-invariant smooth vector fields with compact support on M. There is a Lie algebra homomorphism $\pi_* \colon \mathfrak{X}_{\sigma}(M) \to DC^{\infty}(\overline{M})$ defined by $\pi_*(X)(\overline{f}) = X(f)$, where $f \in C_{\sigma}^{\infty}(M)$ and \overline{f} is the orbit map of f.

Theorem 2.3 (Schwarz [11]). The image of the homomorphism $\pi_*: \mathfrak{X}_G(M) \to DC^{\infty}(\overline{M})$ is $\mathfrak{X}(\overline{M})$.

§ 3. Maximal Ideals of $\mathfrak{X}(\overline{M})$

Let $a \in M$ and put $p = \pi(a) \in \overline{M}$. Let V_a be a linear slice at a. Then $N_a = G \times_{G_a} V_a$ is equivalent to a linear tubular neighborhood of the orbit G(a) of a. Let $\tau(N_a)$ be the tangent bundle of the G-manifold N_a , and let $\Gamma_a(\tau(N_a))$ denote the set of all G-invariant smooth sections of $\tau(N_a)$. Let $\tau(V_a)$ be the tangent bundle of the G_a -manifold V_a , and let $\Gamma_{G_a}(\tau(V_a))$ denote the set of all G_a -invariant smooth sections of $\tau(V_a)$. Then we have canonical isomorphisms $\Gamma_G(\tau(N_a)) \cong \Gamma_{G_a}(\tau(N_a) | V_a)$ and $C^\infty_G(N_a) \cong C^\infty_{G_a}(V_a)$. It is easy to see the following:

Lemma 3.1. (1) For any $X \in \Gamma_{G_a}(\tau(V_a))$, there exists $Y \in \mathfrak{X}_{G}(M)$ such that Y = X on a G_a -invariant neighborhood U_a of a in V_a . (2) For any $f \in C^{\infty}_{G_a}(V_a)$, there exists $F \in C^{\infty}_{G}(M)$ such that F = f on a G_a -invariant neighborhood U_a of a in V_a .

Put $\overline{M}_0 = \{q \in \overline{M}; X_q = 0 \text{ for any } X \in \mathfrak{X}(\overline{M})\}$, and put $\overline{M}_1 = \overline{M} - \overline{M}_0$.

Proposition 3.2. \overline{M}_0 is discrete.

Proof. For any $a \in M$, let $\{x_1, \dots, x_n\}$ be a canonical coordinate of a

linear slice V_a of a. We can assume G_a acts orthogonally on V_a . Then the radial vector field $X = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$ is a G_a -invariant smooth vector field on V_a . Let $f \colon V_a \to R$ be a G_a -invariant smooth function defined by $f(x_1, \dots, x_n) = x_1^2 + \dots + x_n^2$. By Lemma 3.1, there exist $Y \in \mathfrak{X}_G(M)$ and $F \in C_G^\infty(M)$ such that Y = X and F = f on a G_a -invariant neighborhood U_a of a in V_a , respectively. Put $\overline{U}_p = U_a/G_a$, $\overline{Y} = \pi_*(Y)$ and let \overline{F} be the orbit map of F. Then $\overline{Y}(\overline{F}) \neq 0$ on $\overline{U}_p - \{p\}$, and Proposition 3.2 follows.

Note that $\pi_a \colon N_a \to G(a)$ is a G-vector bundle. The tangent bundle $\tau(N_a)$ of N_a is isomorphic to $\pi_a^*(\tau(G(a)) \oplus \xi_a$ as a G-vector bundle, where ξ_a is a bundle along the fibres of N_a . Let r_a be the composition

$$\mathfrak{X}_{G}(M) \xrightarrow{\operatorname{restriction}} \Gamma_{G}(\tau(N_{a})) \cong \Gamma_{G_{a}}(\tau(N_{a}) | V_{a})$$

$$\xrightarrow{\operatorname{projection}} \Gamma_{G_{a}}(\xi_{a} | V_{a}) \cong \Gamma_{G_{a}}(\tau(V_{a})).$$

It is easy to see that r_a is a Lie algebra homomorphism. Put $\Gamma_{\mathcal{G}_a}(\tau(V_a))_0$ = $\{X \in \Gamma_{\mathcal{G}_a}(\tau(V_a)); X_a = 0\}$. For $X \in \Gamma_{\mathcal{G}_a}(\tau(V_a))_0$, we denote $j_a^r(X)$ the r-jet of X at a $(r = 1, 2, \cdots)$. Put $\Gamma_{\mathcal{G}_a}(\tau(V_a))_0^k = \{X \in \Gamma_{\mathcal{G}_a}(\tau(V_a))_0; j_a^r(X) = 0 \text{ for } 1 \leq r \leq k\}$ $(1 \leq k \leq \infty)$.

For $q \in \overline{M}_b$, choose a point $b \in \pi^{-1}(q)$. Let $\mathfrak{gl}_{G_b}(V_b)$ denote the set of G_b -invariant endomorphisms of V_b . Note that, for $X \in \Gamma(\tau(V_b))$, $j_b^1(X)$ defines an element of $\mathfrak{gl}(V_b)$ as usual. It is easy to see that $j_b^1(X) \in \mathfrak{gl}_{G_b}(V_b)_b$ for $X \in \Gamma_{G_b}(\tau(V_b))$.

Lemma 3.3. $j_b^1: \Gamma_{G_b}(\tau(V_b)) \rightarrow \mathfrak{gl}_{G_b}(V_b)$ is an onto Lie algebra homomorphism.

Proof. Since $\pi(b) = q \in \overline{M}_0$, $\Gamma_{G_b}(\tau(V_b)) = \Gamma_{G_b}(\tau(V_b))_0$. Then $\Gamma_{G_b}(\tau(V_b)) / \Gamma_{G_b}(\tau(V_b))_0^1 \cong \mathfrak{gl}_{G_b}(V_b)$ and Lemma 3.3 follows.

By Proposition 3.2, \overline{M}_0 is discrete. Then \overline{M}_0 is a countable set $\{q_i; i \in I\}$. Choose a point $b_i \in \pi^{-1}(q_i)$ for each $q_i \in \overline{M}_0$. Put $J_i^1(M) = \mathfrak{gl}_{G_{b_i}}(V_{b_i})$ and put $J^1(M) = \prod_{i \in I} J_i^1(M)$ which consists of those elements having only finite number of non-zero factors. Then we have:

Corollary 3.4. The composition

$$J^{1} \colon \mathfrak{X}_{G}(M) \xrightarrow{\prod_{i \in I} r_{i}} \prod_{i \in I} \Gamma_{G_{b_{i}}}(\tau(V_{b_{i}})) \xrightarrow{\prod_{i \in I} j_{b_{i}}^{1}} J^{1}(M)$$

is an onto Lie algebra homomorphism.

 G_{b_i} -module V_{b_i} is isomorphic to $\bigoplus_j d_{ij}W_{ij}$. Here d_{ij} is a non-negative integer and W_{ij} runs over the inequivalent irreducible G_{b_i} -modules. Let K_{ij} be the real numbers R, complex numbers C or quaternionic numbers H if $\dim_R \mathfrak{gl}_{G_{b_i}}(W_{ij}) = 1$, 2 or 4, respectively. Then $\mathfrak{gl}_{G_{b_i}}(V_{b_i}) \cong \bigoplus_j \mathfrak{gl}(d_{ij}, K_{ij})$.

Proposition 3.5.
$$\mathfrak{gl}(d,R) \cong R \oplus \mathfrak{gl}(d,R)$$
, $\mathfrak{gl}(d,C) \cong C \oplus \mathfrak{gl}(d,C)$ and $\mathfrak{gl}(d,H) \cong R \oplus \mathfrak{gl}(d,H)$,

where $\mathfrak{gl}(d, K) = [\mathfrak{gl}(d, K), \mathfrak{gl}(d, K)]$ for K = R, C or H.

Proof. Note that $\mathfrak{gl}(d, H) = \{X \in \mathfrak{gl}(n, H) : \text{Re Tr}(X) = 0\}$ and $\mathfrak{gl}(d, H)$ is a simple Lie algebra. Other cases are similar to this.

Next we consider maximal ideals of $\Gamma_{G_a}(\tau(V_a))$ for $a \in M$ such that $\pi(a) = p \in \overline{M}_1$. First we need the following:

Lemma 3.6. Let H be a compact Lie group and let V be an H-module. For $Y \in \Gamma(\tau(V))$, we define $\widetilde{Y} \in \Gamma_H(\tau(V))$ by $\widetilde{Y}_p = \int_H (h_*Y)_p dh$ for $p \in V$. Then $[X, \widetilde{Y}] = \int_H h_*[X, Y] dh$ for $X \in \Gamma_H(\tau(V))$. Here $(h_*Y)_p = (dh)_{h^{-1}p}Y_{h^{-1}p}$.

Proof. Let $\{x_1, \dots, x_n\}$ be a canonical coordinate of V. For $p \in V$, $f \in C^{\infty}(V)$, we have:

$$\widetilde{Y}_{p}(f) = \left(\int_{H} \left(\sum_{i=1}^{n} (h_{*}Y)_{p}(x_{i}) \left(\frac{\partial}{\partial x_{i}} \right)_{p} \right) dh \right) (f)$$

$$= \sum_{i=1}^{n} \left(\int_{H} (h_{*}Y)_{p}(x_{i}) dh \right) \left(\frac{\partial}{\partial x_{i}} \right)_{p} (f)$$

$$= \int_{H} \left(\sum_{i=1}^{n} (h_{*}Y)_{p}(x_{i}) \left(\frac{\partial f}{\partial x_{i}} \right)_{p} \right) dh$$
$$= \int_{H} (h_{*}Y)_{p}(f) dh.$$

Then
$$[X, \widetilde{Y}]_p(f) = X_p \Big(\int_H (h_*Y) (f) dh \Big) - \int_H (h_*Y)_p (Xf) dh$$

$$= \int_H (X_p(h_*Y) (f) - (h_*Y)_p (Xf)) dh$$

$$= \int_H [X, h_*Y]_p (f) dh$$

$$= \Big(\int_H [X, h_*Y]_p dh \Big) (f).$$

Lemma 3.7. Suppose that \mathfrak{N} is a proper ideal of $\Gamma_{G_a}(\tau(V_a))$ which contains $\Gamma_{G_a}(\tau(V_a))_0^{\infty}$ for $a \in M$ such that $\pi(a) = p \in \overline{M}_1$. Then \mathfrak{N} is contained in $\Gamma_{G_a}(\tau(V_a))_0$.

Proof. Suppose there exists $X \in \mathfrak{N}$ with $X_a \neq 0$. By Koriyama [5] Lemma 2.1, for any $Z \in \Gamma_{G_a}(\tau(V_a))$ there exist a G_a -invariant neighborhood U of a in V_a and $Y \in \Gamma(\tau(V_a))$ such that [X,Y] = Z on U. Put $\widetilde{Y} = \int_{\sigma_a} g_* Y \, dg \in \Gamma_{\sigma_a}(\tau(V_a))$. By Lemma 3.6, we have $[X,\widetilde{Y}] = \int_{\sigma_a} g_* [X,Y] \, dg = \int_{\sigma_a} g_* Z \, dg = Z$ on U. Put $Z_1 = Z - [X,\widetilde{Y}]$. Then $Z_1 \in \Gamma_{\sigma_a}(\tau(V_a))_0^\infty$ which is contained in \mathfrak{N} . Since \mathfrak{N} is an ideal, $Z \in \mathfrak{N}$. Thus $\mathfrak{N} = \Gamma_{\sigma_a}(\tau(V_a))$ which is a contradiction to \mathfrak{N} a proper ideal.

By Lemma 3.7, there exists a unique maximal ideal \mathfrak{N}_a of $\Gamma_{\mathcal{G}_a}(\tau(V_a))$ satisfying $\Gamma_{\mathcal{G}_a}(\tau(V_a))_0^{\infty} \subset \mathfrak{N}_a \subset \Gamma_{\mathcal{G}_a}(\tau(V_a))_0$. Put $\mathfrak{F}_a = \{X \in \mathfrak{X}_{\mathcal{G}}(M) ; r_a(X) \in \mathfrak{N}_a\}$.

Proposition 3.8. \mathfrak{J}_a is a maximal ideal of $\mathfrak{X}_G(M)$.

Proof. Put $V_a(\rho) = \{v \in V_a; \|v\| < \rho\}$ for a positive number ρ . $\mathfrak{N}_a(\rho) = \{Y \in \Gamma_{G_a}(\tau(V_a)); \text{ supp } Y \subset V_a - V_a(\rho)\}$ is an ideal of $\Gamma_{G_a}(\tau(V_a))$ which is contained in $\Gamma_{G_a}(\tau(V_a))_0$. Then $\mathfrak{N}_a(\rho)$ is contained in \mathfrak{N}_a . It is clear that \mathfrak{S}_a is an ideal of $\mathfrak{X}_G(M)$.

Let \mathfrak{M} be a maximal ideal of $\mathfrak{X}_{G}(M)$ which contains \mathfrak{F}_{a} . Suppose that there exists $X \in \mathfrak{M}$ with $r_{a}(X)_{a} \neq 0$. Similarly as in the proof of Lemma 3.7, we can prove $\mathfrak{M} = \mathfrak{X}_{G}(M)$, which is a contradiction. Then $r_{a}(\mathfrak{M})$ is contained in $\Gamma_{G_{a}}(\tau(V_{a}))_{0}$. Combining $\mathfrak{N}_{a}(\rho) \subset \mathfrak{N}_{a}$ and Lemma 3.1, we see $r_{a}(\mathfrak{M}) + \mathfrak{N}_{a}$ is an ideal of $\Gamma_{G_{a}}(\tau(V_{a}))$. Therefore $r_{a}(\mathfrak{M})$ is contained in \mathfrak{N}_{a} , and $\mathfrak{M} = \mathfrak{F}_{a}$. Thus Proposition 3.8 follows.

Put $\overline{\mathfrak{F}}_p = \pi_*(\mathfrak{F}_a)$ and $\mathfrak{X}(\overline{M})_p = \{X \in \mathfrak{X}(\overline{M}); X_p = 0\}$. Then $\overline{\mathfrak{F}}_p$ is contained in $\mathfrak{X}(\overline{M})_p$, and $\overline{\mathfrak{F}}_p$ is a maximal ideal.

Lemma 3.9. (1) $\overline{\mathfrak{F}}_p$ is an infinite codimensional maximal ideal of $\mathfrak{X}(\overline{M})$ for $p \in \overline{M}_1$.

(2) For a maximal ideal $\mathfrak L$ of $J^1(M)$, put $\mathfrak M = (J^1)^{-1}(\mathfrak L)$. Then $\mathfrak M$ is a finite codimensional maximal ideal of $\mathfrak X_{\mathfrak G}(M)$.

Proof. (1) For $a \in \pi^{-1}(p)$, there exists $X \in \Gamma_{G_a}(\tau(V_a))$ with $X_a \neq 0$. Then there exists a G_a -invariant local one parameter group of transformations ϕ ; $(-\varepsilon, \varepsilon) \times U \to V_a$ defined on a G_a -invariant neighborhood U such that $\frac{\partial \phi}{\partial t}(t, u) = X_{\phi(t, u)}$. Let $\theta \colon (-\varepsilon, \varepsilon) \to V_a$ be a map defined by $\theta(t) = \phi(t, a)$. Since $X_a \neq 0$, θ is an embedding for a sufficiently small number ε . Let W be a G_a -invariant normal space of $\theta((-\varepsilon, \varepsilon))$ at a in V_a . Then we may assume that $\phi \colon (-\varepsilon, \varepsilon) \times W \to V_a$ is a G_a -invariant embedding. Let $\{w_1, \dots, w_{n-1}\}$ be a canonical coordinate of W. We have a local coordinate $\{x_1, \dots, x_n\}$ of V_a around a neighborhood $U_1 = \phi((-\varepsilon, \varepsilon) \times W)$ of a given by $x_1(\phi(t, w_1, \dots, w_{n-1})) = t$, $x_i(\phi(t, w_1, \dots, w_{n-1})) = w_{i-1}$ for $i = 2, \dots, n$. Note that $X = \frac{\partial}{\partial x_1}$ on U_1 .

By Lemma 3.1. there are $X_1 \in \mathfrak{X}_{\sigma}(M)$ and $f \in C^{\infty}_{\sigma}(M)$ such that $X_1 = X$ and $f = x_1$ on a neighborhood $U_2 \subset U_1$ of a in V_a , respectively. Let $Y \in \mathfrak{F}_a$ and $r_a(Y) = \sum_{i=1}^n \hat{\xi}_i \frac{\partial}{\partial x_i}$ on U_2 . Then $r_a[X_1, Y] = \left[\frac{\partial}{\partial x_1}, \sum_{i=1}^n \hat{\xi}_1 \frac{\partial}{\partial x_i}\right]$ $= \sum_{i=1}^n \frac{\hat{\xi}_i \partial}{\partial x_i} \frac{\partial}{\partial x_i}$ on U_2 . Since $r_a[X_1, Y] \in \mathfrak{N}_a$, we have $\frac{\partial \hat{\xi}_i}{\partial x_1}(a) = 0$ for $i = 1, \dots, n$. Inductively we have $\frac{\partial^k \hat{\xi}_i}{\partial x_1^k}(a) = 0$ for $i = 1, \dots, n$ and $k = 1, 2, \dots$. Let $\alpha \colon \mathfrak{X}_{\sigma}(M) \to R[[x_1]]$ be an R-module homomorphism defined by $\alpha(Z) = \sum_{k=1}^\infty \frac{\partial^k \hat{\xi}_i}{\partial x_k^k}(a) x_1^k$ if $r_a(Z) = \sum_{i=1}^n \hat{\xi}_i \frac{\partial}{\partial x_i}$ on U. Since $\alpha(\mathfrak{F}_a) = 0$,

the above map α induces an R-module homomorphism $\beta: \mathfrak{X}_{\sigma}(M)/\mathfrak{J}_{a} \to R[[x_{1}]]$. Note that $\alpha(f^{j}X_{1})=j! x_{1}^{j}$ for $j=1,2,\cdots$, and $\dim(\operatorname{Image}\beta)=\infty$. Since $\mathfrak{J}_{a}\supset \operatorname{Ker}\pi_{*}$, we have $\dim\mathfrak{X}(\overline{M})/\overline{\mathfrak{J}}_{p}=\infty$.

(2) There is an index $i \in I$ such that \mathfrak{L} does not contain $J_i^1(M)$. Since \mathfrak{L} is a maximal ideal, $\mathfrak{L}+J_i^1(M)=J^1(M)$. Then $\mathfrak{X}_a(M)/\mathfrak{M}\cong J^1(M)/\mathfrak{L}\cong J_i^1(M)/(\mathfrak{L}\cap J_i^1(M))$. Since $J_i^1(M)$ is finite dimensional, \mathfrak{M} is finite codimensional. This completes the proof of Lemma 3.9.

Proposition 3.10. Let $\overline{\mathbb{M}}$ be a maximal ideal of $\mathfrak{X}(\overline{M})$. Then $\overline{\mathbb{M}} = \overline{\mathfrak{F}}_p$ for $p \in \overline{M}_1$ or $\pi_*^{-1}(\overline{\mathbb{M}}) = (J^1)^{-1}(\mathfrak{L})$ for some maximal ideal \mathfrak{L} of $J^1(M)$.

Proposition 3.10 plays a key role to prove our theorem. We shall prove Proposition 3.10 in Section 6.

§ 4. Stone Topology of Maximal Ideals of $\mathfrak{X}(\overline{M})$

Let \overline{M}^* be the set of all maximal ideals of $\mathfrak{X}(\overline{M})$. \overline{M}^* is determined by Proposition 3.10.

Definition 4.1 (Stone topology of \overline{M}^* , cf. Pursell-Shanks [8]). The Stone topology on \overline{M}^* is defined by closure operator CL as follows:

- (1) $CL(\phi) = \phi$.
- (2) If $B \neq \phi$ is a subset of \overline{M}^* , then $CL(B) = \{\mathfrak{M} \in \overline{M}^*; \mathfrak{M} \supset \bigcap_{\mathfrak{N} \in B} \mathfrak{N} \}$.

Let $S(\overline{M}_0)$ be the set of all subsets of \overline{M}_0 . Let τ_M (or simply τ) be a map from \overline{M}^* to $\overline{M}_1 \cup S(\overline{M}_0)$ defined as follows:

- (1) $\tau(\overline{\mathfrak{F}}_p) = p \text{ for } p \in \overline{M}_1$.
- (2) If \mathfrak{M} is a maximal ideal of $\mathfrak{X}(\overline{M})$ such that $J^1(\pi_*^{-1}(\mathfrak{M}))$ is a maximal ideal of $J^1(M)$, then $\tau(\mathfrak{M}) = \{q_i \in \overline{M}_0; J^1(\pi_*^{-1}(\mathfrak{M}))\}$ does not contain $J^1_{q_i}(\overline{M})\}$. (Making use of Proposition 3.5, we see that $\tau(\mathfrak{M})$ does not consist of a single point.)

For a subset A of \overline{M} , we denote the closure of A in \overline{M} by $\operatorname{cl}(A)$.

Lemma 4.2. If cl(A) is contained in \overline{M}_1 , then $CL(\tau^{-1}(A))$

 $= \tau^{-1}(\operatorname{cl}(A)).$

Proof. First we shall prove " \subset ". Let $\mathfrak{M} \in CL(\tau^{-1}(A))$. Assume that $\tau(\mathfrak{M})$ is not contained in cl(A).

In the case $\mathfrak{M} = \overline{\mathfrak{F}}_p$ for $p \in \overline{M}_1$: We can find $X \in \mathfrak{X}(\overline{M})$ such that $X_p \neq 0$ and supp $X \cap \operatorname{cl}(A) = \emptyset$. Then $X \in \bigcap_{p' \in A} \overline{\mathfrak{F}}_{p'} \subset \mathfrak{M}$, which is a contradiction to $X_p \neq 0$.

In the case $\pi_*^{-1}(\mathfrak{M}) = (J^1)^{-1}(\mathfrak{L})$ for a maximal ideal \mathfrak{L} of $J^1(M)$: There exists $Y \in \mathfrak{X}_G(M)$ such that $J^1(Y) \notin \mathfrak{L}$. Let $\{i_1, \dots, i_k\}$ be a set $\{i \in I; \ j_{b_i}^1(r_{b_i}(Y)) \neq 0\}$. There exists $\psi \in C_G^\infty(M)$ such that $\psi = 1$ on a neighborhood of b_{i_j} $(j = 1, \dots, k)$ and $\psi = 0$ on π^{-1} (cl(A)). Put $X = \psi Y$. Then $J^1(X) = J^1(Y)$, and $\pi_*(X) \notin \mathfrak{M}$. Moreover $\pi_*(X) \in \bigcap_{p' \in A} \overline{\mathfrak{J}}_{p'} \subset \mathfrak{M}$, which is a contradiction.

Next we shall prove " \supset ". Note that an ideal $\bigcap_{\substack{\tau(\mathfrak{N})\in A\\p'\in A}}\mathfrak{N}=\bigcap_{\substack{p'\in A\\p'\in A}}\mathfrak{N}_p$ is contained in $\mathfrak{X}(\overline{M})_p$ for any $p\in\operatorname{cl}(A)$. Then $\bigcap_{\substack{\tau(\mathfrak{N})\in A\\r(\mathfrak{N})\in A}}\mathfrak{N}$ is contained in a maximal ideal $\overline{\mathfrak{N}}_p$ and $\overline{\mathfrak{N}}_p\in\operatorname{CL}(\tau^{-1}(A))$ for any $p\in\operatorname{cl}(A)$. This completes the proof of Lemma 4.2.

If $\theta: \mathfrak{X}(\overline{M}) \to \mathfrak{X}(\overline{N})$ is a Lie algebra isomorphism, then $\theta^*: \overline{M}^* \to \overline{N}^*$ is homeomorphic. Combining Lemma 3.9 and Proposition 3.10, $\theta^*(\tau_{\scriptscriptstyle M}^{-1}(\overline{M}_{\scriptscriptstyle 1})) = \tau_{\scriptscriptstyle N}^{-1}(\overline{N}_{\scriptscriptstyle 1})$ and $\theta^*(\tau_{\scriptscriptstyle M}^{-1}(\overline{M}_{\scriptscriptstyle 0})) = \tau_{\scriptscriptstyle N}^{-1}(\overline{N}_{\scriptscriptstyle 0})$. By Lemma 4.2, we have

Corollary 4.3. If $\Phi: \mathfrak{X}(\overline{M}) \to \mathfrak{X}(\overline{N})$ is a Lie algebra isomorphism, there exists a homeomorphism $\sigma: \overline{M}_1 \to \overline{N}_1$ defined by $\sigma(p) = \tau_N(\Phi^*(\overline{\mathfrak{F}}_p))$.

We shall extend the homeomorphism $\sigma\colon \overline{M}_1{\to}\overline{N}_1$ to a homeomorphism from \overline{M} to \overline{N} .

Lemma 4.4. Let U be a neighborhood of $q \in \overline{M}_0$ such that $\operatorname{cl}(U) \cap \overline{M}_0 = \{q\}$. Then $\operatorname{CL}(\tau^{-1}(U)) = \tau^{-1}(\operatorname{cl}(U))$.

The proof of Lemma 4.4 is similar to that of Lemma 4.2.

Proposition 4.5. The map $\sigma: \overline{M}_1 \to \overline{N}_1$ is extended to a homeomorphism from \overline{M} to \overline{N} .

Proof. For $q \in \overline{M}_0$, let $b \in M$ such that $\pi(b) = q$. Let V_b be a linear slice at b. Put $U_q = V_b/G_b$, $U_q^0 = U_q - \{q\}$. Since $q \in \overline{M}_0$, it is easy to see that U_q^0 is connected. Note that $\bigcap_{\mathfrak{r}(\mathfrak{N}) \in \mathcal{V}_q^0} \mathfrak{N} = \bigcap_{\mathfrak{r}(\mathfrak{N}) \in \mathcal{V}_q} \mathfrak{N}$. By Lemma 4.4,

$$\operatorname{CL}(\tau_{M}^{-1}(U_{q}^{0})) = \operatorname{CL}(\tau_{M}^{-1}(U_{q}))$$

= $\tau_{M}^{-1}(\operatorname{cl}(U_{q})) = \tau_{M}^{-1}(\operatorname{cl}(U_{q}^{0})).$

Since $\Phi^*: \overline{M}^* \to \overline{N}^*$ is homeomorphic and since $\sigma \circ \tau_M = \tau_N \circ \Phi^*$,

$$\begin{split} \operatorname{CL}\left(\tau_{\scriptscriptstyle N}^{-1}(\sigma(U_{\scriptscriptstyle q}^{\scriptscriptstyle 0}))\right) &= \operatorname{CL}\left(\boldsymbol{\varPhi}^*\left(\tau_{\scriptscriptstyle M}^{\scriptscriptstyle -1}(U_{\scriptscriptstyle q}^{\scriptscriptstyle 0})\right)\right) \\ &= \boldsymbol{\varPhi}^*\left(\operatorname{CL}\left(\tau_{\scriptscriptstyle M}^{\scriptscriptstyle -1}(U_{\scriptscriptstyle q}^{\scriptscriptstyle 0})\right)\right) &= \boldsymbol{\varPhi}^*\left(\tau_{\scriptscriptstyle M}^{\scriptscriptstyle -1}(\operatorname{cl}\left(U_{\scriptscriptstyle q}\right)\right)\right). \end{split}$$

There exists a maximal ideal $\mathfrak{M} \in \overline{M}^*$ such that $\tau_{M}(\mathfrak{M}) = q$. Then $\tau_{N}(\operatorname{CL}(\tau_{N}^{-1}(\sigma(U_{q}^{0})))) \cap \overline{N}_{0}$ contains $\tau_{N}(\mathfrak{O}(\mathfrak{M}))$, and, by Lemma 4.2, $\operatorname{cl}(\sigma(U_{q}^{0})) \cap \overline{N}_{0} \neq \phi$. Since $\sigma(U_{q}^{0})$ is connected, $\operatorname{cl}(\sigma(U_{q}^{0})) \cap \overline{N}_{0} = \{q'\}$ for some $q' \in \overline{N}_{0}$. Let $\sigma(q) = q'$ for $q \in \overline{M}_{0}$. Then it is clear that $\sigma: \overline{M} \to \overline{N}$ is homeomorphic.

§ 5. Proof of Theorem

In this section we shall prove our theorem. Let $\emptyset \colon \mathfrak{X}(\overline{M}) \to \mathfrak{X}(\overline{N})$ be a Lie algebra isomorphism. By Proposition 4.5, we have a homeomorphism $\sigma \colon \overline{M} \to \overline{N}$ such that $\sigma(p) = \tau_N(\emptyset(\overline{\mathfrak{F}}_p))$ for $p \in \overline{M}_1$.

Proposition 5.1. $\sigma: \overline{M}_1 \rightarrow \overline{N}_1$ is diffeomorphic.

In order to prove Proposition 5.1, we need the following lemma.

Lemma 5.2. For $X \in \mathfrak{X}(\overline{M})$ and $p \in \overline{M}_1$, $X_p \neq 0$ if and only if $[X, \mathfrak{X}(\overline{M})] + \overline{\mathfrak{Y}}_p = \mathfrak{X}(\overline{M})$.

Proof. Let $a \in M$ such that $\pi(a) = p$. Assume that $X_p \neq 0$. There exists $\widehat{X} \in \mathfrak{X}_{\mathcal{G}}(M)$ such that $\widehat{X}_a \neq 0$. By the similar argument as the

proof of Lemma 3.7, we can prove that $[\widehat{X}, \mathfrak{X}_{G}(M)] + \mathfrak{F}_{a} = \mathfrak{X}_{G}(M)$, and $[X, \mathfrak{X}(\overline{M})] + \overline{\mathfrak{F}}_{p} = \mathfrak{X}(\overline{M})$. Conversely, suppose that $X_{p} = 0$. Moreover we shall assume that $[X, \mathfrak{X}(\overline{M})] + \overline{\mathfrak{F}}_{p} = \mathfrak{X}(\overline{M})$. There exists $\widehat{X} \in \mathfrak{X}_{G}(M)$ such that $\pi_{*}(\widehat{X}) = X$. Put $\widehat{X}' = r_{a}(\widehat{X}) \in \Gamma_{G_{a}}(\tau(V_{a}))$. Then $[\widehat{X}', \Gamma_{G_{a}}(\tau(V_{a}))] + \mathfrak{N}_{a} = \Gamma_{G_{a}}(\tau(V_{a}))$ and $\widehat{X}'_{a} = 0$. Let $V_{a}(0)$ and $V_{a}(1)$ be the trivial and non-trivial direct summand of the G_{a} -module V_{a} , respectively. Then $j_{a}^{1}(\widehat{X}')$ can be expressed as $A \oplus B$, where $A \in \mathfrak{gl}(V_{a}(0))$ and $B \in \mathfrak{gl}_{G_{a}}(V_{a}(1))$. Since $[\widehat{X}', \Gamma_{G_{a}}(\tau(V_{a}))] + \mathfrak{N}_{a} = \Gamma_{G_{a}}(\tau(V_{a}))$, we can prove that A is invertible. Then we have $[\widehat{X}', \Gamma_{G_{a}}(\tau(V_{a}))_{0}] + \mathfrak{N}_{a} = \Gamma_{G_{a}}(\tau(V_{a}))_{0}$, which implies that a linear mapping

$$\beta: \mathfrak{gl}_{G_a}(V_a)/j_a^1(\mathfrak{N}_a) \rightarrow \mathfrak{gl}_{G_a}(V_a)/j_a^1(\mathfrak{N}_a),$$

defined by $\beta(C+j_a^1(\mathfrak{N}_a))=[j_a^1(\widehat{X}'),C]+j_a^1(\mathfrak{N}_a)$ for $C\in\mathfrak{gl}_{\mathcal{G}_a}(V_a)$, is isomorphic. But this is impossible because $j_a^1(\widehat{X}')\in j_a^1(\mathfrak{N}_a)$. This completes the proof of Lemma 5.2.

Proof of Proposition 5.1. Let f be any smooth function on \overline{N} . Put $g=f\circ\sigma$. We have $fY-f(\sigma(p))\,Y\in\mathfrak{X}\,(\overline{N})_{\sigma(p)}$ for any $Y\in\mathfrak{X}\,(\overline{N})$, $p\in\overline{M}_1$ and hence, using Lemma 5.2, $\emptyset^{-1}(fY)-g(p)\,\emptyset^{-1}(Y)\in\mathfrak{X}\,(\overline{M})_p$ for any $p\in\overline{M}_1$. Thus we have $\emptyset^{-1}(fY)=g\emptyset^{-1}(Y)$ for any $Y\in\mathfrak{X}\,(\overline{N})$. For any $p\in\overline{M}_1$, there exist $Y\in\mathfrak{X}\,(\overline{N})$ and $h\in C^\infty(\overline{M})$ such that $\emptyset^{-1}(Y)(h)\neq 0$ on a neighborhood U of p in \overline{M} . Then $g=\emptyset^{-1}(fY)(h)$ $(\emptyset^{-1}(Y)(h))^{-1}$ on U, and g is smooth on U. Thus $f\circ\sigma$ is smooth on \overline{M}_1 for any $f\in C^\infty(\overline{N})$, and σ is smooth on \overline{M}_1 . Similarly σ^{-1} is smooth on \overline{N}_1 , and Proposition 5.1 follows.

Now we shall prove that $\sigma\colon \overline{M}\to \overline{N}$ is diffeomorphic. By Proposition 5.1, it is sufficient that σ is smooth at $q\in \overline{M}_0$. Let f be any smooth function on \overline{N} , and put $g=f\circ\sigma$. As in the proof of Proposition 5.1, $g\varPhi^{-1}(Y)=\varPhi^{-1}(fY)$ for any $Y\in \mathfrak{X}(\overline{N})$. Since \varPhi is a Lie algebra isomorphism, $gX(h)\in C^\infty(\overline{M})$ for any $X\in \mathfrak{X}(\overline{M})$, $h\in C^\infty(\overline{M})$. Let f be a point of f such that f be a linear slice at f. Let f be the isotropy subgroup at f and put f be a linear slice to prove the following:

Proposition 5.3. Let g be a continuous function on \overline{V} such that

 $gX(h) \in C^{\infty}(\overline{V})$ for any $X \in \Gamma(\tau(\overline{V}))$, $h \in C^{\infty}(\overline{V})$. Then g is a smooth function.

Let $\{\theta_1, \dots, \theta_s\}$ be a minimal set of homogeneous generators of $R[V]_0^H$ (see Davis [3], Lemma 4.6). Let $\{x_1, \dots, x_n\}$ be a canonical coordinate of V such that H acts orthogonally on this coordinate. Since $q \in \overline{M}_0$, $\Gamma(\tau(\overline{V})) = \Gamma(\tau(\overline{V}))_0$. It is easy to see that $\deg \theta_i > 1$ for $i = 1, \dots, s$. Then we can assume $\theta_1 = x_1^2 + \dots + x_n^2$. Let X be a radial vector field $\sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$. Then $X(\theta_i) = (\deg \theta_i) \theta_i$ for $i = 1, \dots, s$, and Proposition 5.3 follows from the following:

Proposition 5.4. Let g be an H-invariant continuous function on V such that $\theta_i g \in C^{\infty}_H(V)$ for $i=1, \dots, s$. Then g is an H-invariant smooth function.

Proof. Since $\theta_1 g \in C^\infty_H(V)$, it is sufficient to prove that g is smooth at 0. Put $g_1 = \theta_1 g \in C^\infty_H(V)$. First we consider the case s = 1. In this case \overline{V} is a half line R_+ , it follows from Theorem 1.2 that $\overline{g}_1 = x\overline{g}$ is a smooth function on R_+ , where \overline{g}_1 and \overline{g} are functions on R_+ such that $g_1 = \overline{g}_1 \circ \theta_1$ and $g = \overline{g} \circ \theta_1$, respectively. By Koriyama [5] Lemma 6.2, $\overline{g} \in C^\infty(R_+)$, and hence $g \in C^\infty_H(V)$.

Now we consider the case $s \ge 2$. Put $R[V]_i^H = \{h \in R[V]^H ; \deg h = i\}$. From Taylor's formula, for an integer $m \ge 2$, there exist $P_m(x) \in \sum_{1 \le i \le m} R[V]_i^H$ and $R_m(x) \in \sum_{|I|=m+1} x^I C^{\infty}(V)$ such that $g_1(x) = P_m(x) + R_m(x)$, where $x^I = x_1^{i_1} \cdots x_n^{i_n}$ and $|I| = i_1 + \cdots + i_n$. Put $g_2 = \theta_2 \cdot g_1$, $k = \deg \theta_2 + m$. Then $\theta_2 P_m \in \sum_{2 \le i \le k} R[V]_i^H$ and $\theta_2 R_m(x) \in \sum_{|I|=k+1} x^I C^{\infty}(V)$. Let $A = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ be the Laplacian, and put $H^k(V) = \{f \in R[V]_k; Af = 0\}$. Here we need the following result:

Theorem 5.5 (cf. [13] § 14).

$$R[V]_i = \theta_1 R[V]_{i-2} \oplus H^i(V)$$
 for an integer $i \ge 2$.

From Theorem 5.5, there exist $Q_m \in \sum_{i \le k-2} R[V]_i$ and $T_m \in \sum_{i \le k} H^i(V)$ such that $\theta_2 P_m = \theta_1 Q_m + T_m$.

Proposition 5.6. $T_m = 0 \ (m = 2, 3, \cdots)$.

Proof. It is easy to see the following:

- (1) For $f \in H^1(V)$, $\Delta^p(f/\theta_1) = N(p, l) f/\theta_1^{p+1}$, where $N(p, l) = -[4pl + 2pn 4(4(p-1)^2 + 12(p-1) + 8)]$.
- (2) For $F_I \in C^{\infty}(V)$ with |I| = k+1, put $F(x) = \sum_{|I| = k+1} F_I(x) x^I$. Then we have $\Delta^p(F/\theta_1) = \sum_{q=1}^{p+1} F^{p,q}/\theta_1^q$ for some $F^{p,q}(x) \in \sum_{|I| = k+2q-2p-1} x^I C^{\infty}(V)$.

Now we assume that $T_m = \sum_{i=d}^k T_m^i$ such that $T_m^i \in H^i(V)$ and $T_m^d \neq 0$. Let d_1 be an integer such that $d = 2d_1 + 1$ or $2d_1 + 2$. To see Proposition 5.5, we can assume that k is an even integer, and hence $k \geq 2d_1 + 2$. By the definitions of g_1 and g_2 , $\theta_2 g = g_2/\theta_1 = Q_m + T_m/\theta_1 + \theta_2 R_m/\theta_1$. Since $\theta_2 g$ is a smooth map, $T_m/\theta_1 + \theta_2 R_m/\theta_1$ is also a smooth map.

Put $F = \theta_2 R_m$. Applying (2), we have $\mathcal{A}^{d_1}(F/\theta_1) = \sum_{q=1}^{d_1+1} F^{d_1,q}/\theta_1^q$ for some $F^{d_1,q}(x) \in \sum_{|I|=k+2q-2d_1-1} \in x^I C^{\infty}(V)$. Let $a = (a_1, \dots, a_n) \in V$ with $a \neq 0$ and ξ be a positive real number. Since $k-2d_1-1>0$, it is easy to see that

(3)
$$\lim_{\varepsilon \to 0} \Delta^{d_1} \left(F/\theta_1 \right) \big|_{x=\varepsilon a} = 0.$$

It follows from (1) that

(4)
$$\lim_{\epsilon \to 0} \Delta^{d_1}(T_m^i/\theta_1)|_{x=\epsilon_0} = 0 \text{ for } i \ge 2d_1 + 2.$$

We can write

$$T_m^{2d_1+1}(x) = \sum_{|I|=2d_1+1} \lambda_I x^I$$
 for $\lambda_I \in R$,
 $T_m^{2d_1+2}(x) = \sum_{|J|=2d_1+2} \mu_J x^J$ for $\mu_J \in R$,

Then $\mathcal{J}^{d_1}(T_m^{2d_1+1}(x)/\theta_1+T_m^{2d_1+2}(x)/\theta_1)|_{x=\xi a}=(N(d_1,2d_1+1)\sum \lambda_I a_I)/(\xi \|a\|^{2d_1+2})+(N(d_1,2d_1+2)\sum \mu_J a_J)/\|a\|^{2d_1+2}$. Note that $N(d_1,2d_1+1)\neq 0$, $N(d_1,2d_1+2)\neq 0$. Since $T_m/\theta_1+F/\theta_1$ is smooth, it follows from (3) that the limit $\lim_{\xi\to 0}\mathcal{J}^{d_1}(T_m/\theta_1)|_{x=\xi a}$ exists. From (4) we have $\lambda_I=\mu_J=0$ for any I,J. Then $T_m^{-d}=0$, which is a contradiction. Therefore $T_m=0$.

Proof of Proposition 5.4 continued. From Proposition 5.6, we have $\theta_2 P_m = \theta_1 Q_m$. Since $\{\theta_1, \dots, \theta_s\}$ is a minimal set of generators, there exists an H-invariant polynomial P_m such that $P_m = \theta_1 P_m$. Then $g = g_1/\theta_1 = P_m' + R_m/\theta_1$ for $R_m(x) \sum_{|I|=m+1} x^I C^\infty(V)$ $(m=2, 3, \dots)$, and g is a smooth

map. This completes the proof of Proposition 5.4.

To complete the proof of our theorem, we shall prove that $\emptyset = \sigma_*$. Similar way as in the proof of Proposition 5.1, for any $f \in C^{\infty}(M)$, $X \in \mathfrak{X}(\overline{M})$, we have $\emptyset(fX) = (f \circ \sigma^{-1}) \emptyset(X)$. Then $\emptyset(X) (f \circ \sigma^{-1}) \emptyset(X) = \emptyset(X(f)X) = \emptyset([X, fX]) = [\emptyset(X), \emptyset(fX)] = [\emptyset(X), (f \circ \sigma^{-1}) \emptyset(X)] = \emptyset(X) (f \circ \sigma^{-1}) \emptyset(X)$. Hence $\emptyset(X) (f \circ \sigma^{-1}) \emptyset(X) = \emptyset(X) (f \circ \sigma^{-1}) \emptyset(X)$, and we see $\emptyset(X) (f \circ \sigma^{-1}) = X(f) \circ \sigma^{-1}$. Then, for any $g \in C^{\infty}(\overline{N})$, $X \in \mathfrak{X}(\overline{M})$, $\emptyset(X) (g) = X(g \circ \sigma) \circ \sigma^{-1} = \sigma_*(X) (g)$, and hence $\emptyset = \sigma_*$. This completes the proof of our theorem.

Remark. We can prove that σ is strata preserving.

§ 6. Proof of Proposition 3.10

In this section we shall prove Proposition 3.10. The proof is parallel to those of Pursell-Shanks [8] and Koriyama [5]. We start with some lemmas.

Lemma 6.1 (Sternberg [12]). Let X be a radial vector field on R^n defined by $X = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$. Let Y be a smooth vector field on R^n such that $j_0^1(X) = j_0^1(Y)$. Then there exists a local coordinate system (y_1, \dots, y_n) defined on a neighborhood U of 0 such that $Y = \sum_{i=1}^n y_i \frac{\partial}{\partial y_i}$ on U.

Lemma 6.2. Let $\overline{\mathbb{M}}$ be an ideal of $\mathfrak{X}(\overline{M})$ such that for any $p \in \overline{M}_1$ there exists $\overline{Y} \in \overline{\mathbb{M}}$ such that $\overline{Y}_p \neq 0$. Then $\overline{\mathbb{M}}$ contains an ideal $\overline{\mathfrak{F}}_1 = {\overline{X} \in \mathfrak{X}(\overline{M})}$; supp $\overline{X} \subset \overline{M}_1$.

Proof. Put $\mathfrak{M} = \pi_*^{-1}(\overline{\mathfrak{M}})$, $\mathfrak{F}_1 = \pi_*^{-1}(\overline{\mathfrak{F}}_1)$. We shall prove that \mathfrak{M} contains \mathfrak{F}_1 . Similarly as in the proof of Lemma 3.9, for any point $a \in \pi^{-1}(\overline{M}_1)$ there exist a local coordinate system (x_1, \dots, x_n) around a G_a -invariant neighborhood U_a of a in V_a and $Y \in \mathfrak{M}$ such that $r_a(Y) = \frac{\partial}{\partial x_1}$ on U_a . x_1 is extended to a G-invariant smooth function f on M.

Put $Y_1 = Y - r_a(Y)$ on V_a . Then $\pi_*(Y_1) = 0$ on \overline{V}_a . Using a partition of unity, we can find $Y_2 \in \operatorname{Ker} \pi_* \subset \mathfrak{M}$ such that $Y_2 = Y_1$ on U_a . Put $Y_3 = Y - Y_2$. Then $Y_3 = r_a(Y) = \frac{\partial}{\partial x_1}$ on U_a and $Y_3 \in \mathfrak{M}$.

Let $X \in \mathfrak{F}_1$. To prove $X \in \mathfrak{M}$ we can assume that supp X is contained in $G \times_{\sigma_a} V_a$ by using arguments of invariant partition of unity. Moreover, we can assume that $r_a(X) = X$ on U_a since $\operatorname{Ker} \pi_*$ is contained in \mathfrak{M} . Put $X = \sum_{i=1}^n \xi_i \frac{\partial}{\partial x_i}$ on U_a . Since x_1 is a G_a -invariant function, we see that ξ_1 is a G_a -invariant function. Similarly as in the proof of Koriyama [5] Lemma 2.13, we can prove that X is an element of \mathfrak{M} . This completes the proof of Lemma 6.2.

Put
$$\mathfrak{X}_{G}(M)_{0}^{\infty} = \bigcap_{i \in I} r_{b_{i}}^{-1} (\Gamma_{G_{b_{i}}}(\tau(V_{b_{i}}))_{0}^{\infty}).$$

Lemma 6.3. Let $\overline{\mathbb{M}}$ be an ideal of $\mathfrak{X}(\overline{M})$ such that $J^1(\pi_*^{-1}(\overline{\mathbb{M}}))$ = $J^1(M)$ and for any $p \in \overline{M}_1$ there exists an element $\overline{Y} \in \overline{\mathbb{M}}$ such that $\overline{Y}_p \neq 0$. Then an ideal $\mathfrak{M} = \pi_*^{-1}(\overline{\mathbb{M}})$ of $\mathfrak{X}_G(M)$ contains an ideal $\mathfrak{X}_G(M)_0^{\infty}$.

Proof. Since $J^1(\mathfrak{M})=J^1(M)$, there exists an element $X\in\mathfrak{M}$ such that $j^1_{b_t}(r_{b_t}(X))=j^1_{b_t}(\mathfrak{R}_t)$. Here \mathfrak{R}_t is a radial vector field on V_{b_t} defined by $\mathfrak{R}_t=\sum_{j=1}^n y_j \frac{\partial}{\partial y_j}$ on V_{b_t} , where $\{y_1,\,\cdots,\,y_n\}$ is a canonical coordinate of V_{b_t} . Since \mathfrak{M} contains $\operatorname{Ker} \pi_*$, we can assume that $X=\sum_{j=1}^n y_j \frac{\partial}{\partial y_j}$ on U_t .

As in the proof of Koriyama [5] Lemma 2.13, for any element $Z \in \mathfrak{X}_{G}(M)_{0}^{\infty}$, there exist vector fields Y_{i} , $i \in I$, such that $[X, Y_{i}] = r_{b_{i}}(Z)$ on a $G_{b_{i}}$ -invariant neighborhood $W_{i} \subset U_{i}$ of b_{i} and supp $Y_{i} \subset U_{i}$. Put $\widetilde{Y}_{i} = \int_{G_{b_{i}}} g_{*}Y_{i}dg \in \Gamma_{G_{b_{i}}}(\tau(V_{b_{i}}))$. By Lemma 3.6, we have $[X, \widetilde{Y}_{i}] = r_{b_{i}}(Z)$ on W_{i} . By Lemma 3.1 (1), we can assume $\widetilde{Y}_{i} \in \mathfrak{X}_{G}(M)$ and supp \widetilde{Y}_{i} is contained in $G \times_{G_{b_{i}}} U_{i}$. Since supp Z is compact, there is a finite index set $\{i_{1}, \dots, i_{k}\} \subset I$ such that supp $Z \cap G \times_{G_{b_{i_{j}}}} V_{b_{i_{j}}} \neq \emptyset$. Put $\widetilde{Y} = \widetilde{Y}_{i_{1}} + \dots + \widetilde{Y}_{i_{k}}$. Since Ker π_{*} is contained in \mathfrak{M} , there exists an element $Z_{0} \in \mathfrak{M}$ such that $Z_{0} = Z - r_{b_{i_{j}}}(Z)$ on $W_{i_{j}}$ for $j = 1, \dots, k$. Then $Z_{1} = Z - Z_{0} - [X, \widetilde{Y}]$ is an element of \mathfrak{F}_{1} in Lemma 6.2, and $Z_{1} \in \mathfrak{M}$. Thus we have $Z \in \mathfrak{M}$,

and this completes the proof of Lemma 6.3.

Lemma 6.4. Let $\overline{\mathbb{M}}$ be a maximal ideal of $\mathfrak{X}(\overline{M})$ such that for any $p \in \overline{M}_1$ there exists an element $\overline{Y} \in \overline{\mathbb{M}}$ such that $\overline{Y}_p \neq 0$. Then $J^1(\mathfrak{M})$ is a maximal ideal of $J^1(M)$, where $\mathfrak{M} = \pi_*^{-1}(\overline{\mathbb{M}})$.

Proof. Suppose $J^1(\mathfrak{M}) = J^1(M)$. We shall prove that Ker J^1 is contained in \mathfrak{M} . By Lemma 6.2, it is enough to prove that an element $Z \in \operatorname{Ker} J^1$ satisfying supp $Z \subset G \times_{G_{b_i}} V_{b_i}$ is an element of \mathfrak{M} . Since Ker π_* is contained in \mathfrak{M} , we can assume $Z = r_{b_i}(Z)$ on V_{b_i} . As in the proof of Lemma 6.3, there exist $X \in \mathfrak{M}$ and a local coordinate system (x_1, \dots, x_n) defined on a G_{b_i} -invariant neighborhood U_i of b_i in V_{b_i} such that $X = \sum_{j=1}^n x_i \frac{\partial}{\partial x_i}$ on U_i .

From the proof of Koriyama [5] Lemma 2.10, there exists a smooth vector field Y on V_{b_i} such that $Z_1 = Z - [X, Y] \in \Gamma(\tau(V_{b_i}))_0^{\infty}$. Put $\widetilde{Y} = \int_{\sigma_{b_i}} g_* Y dg$. Then $Z - [X, \widetilde{Y}] = \int_{\sigma_{b_i}} g_* Z_1 dg \in \Gamma_{\sigma_{b_i}}(\tau(V_{b_i}))_0^{\infty}$. By Lemma 3.1 (1), we can assume $\widetilde{Y} \in \mathfrak{X}_{\sigma}(M)$, and $Z - [X, \widetilde{Y}] \in \mathfrak{X}_{\sigma}(M)_0^{\infty}$. Then it follows from Lemma 6.3 that $Z \in \mathfrak{M}$. Thus $\operatorname{Ker} J^1$ is contained in \mathfrak{M} . Since $J^1(\mathfrak{M}) = J^1(M)$, $\mathfrak{M} = \mathfrak{X}_{\sigma}(M)$. This is a contradiction, and this completes the proof of Lemma 6.4.

Proof of Proposition 3.10. Let $\overline{\mathbb{M}}$ be a maximal ideal of $\mathfrak{X}(\overline{M})$. If there exists a point $p \in \overline{M}_1$ such that $\overline{\mathbb{M}}$ is contained in $\mathfrak{X}(\overline{M})_p$, then $\overline{\mathbb{M}} = \overline{\mathfrak{F}}_p$. Suppose for any point $p \in \overline{M}_1$ there exists an element $\overline{X} \in \overline{\mathbb{M}}$ such that $\overline{X}_p \neq 0$. By Lemma 6.4, $J^1(\pi_*^{-1}(\overline{\mathbb{M}}))$ is a maximal ideal of $J^1(M)$. This completes the proof of Proposition 3.10.

References

- [1] Amemiya, I., Lie algebra of vector fields and complex structure., J. Math. Soc. Japan, 27 (1975), 545-549.
- [2] Bierstone, E., Lifting isotopies from orbit spaces, Topology, 14 (1975), 245-252.
- [3] Davis, M., Smooth G-manifolds as collections of fibre bundles, Pacific J. Math., 77 (1978), 315-363.
- [4] Fukui, K., Pursell-Shanks type theorem for free G-manifolds, Publ. Res. Inst. Math. Sci., 17 (1981), 249-265.
- [5] Koriyama, A., On Lie algebras of vector fields with invariant submanifolds, Nagoya J. Math., 55 (1974), 91-110.

- [6] Omori, H., Infinite dimensional Lie transformation groups, Lecture Notes in Math., 427 Springer-Verlag, 1976.
- [7] Poénaru, V., Singularité C[∞] en présence de symétrie, Lecture Notes in Math., 510 Springer-Verlag, 1976.
- [8] Pursell, L. E. and Shanks, M. E., The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc., 5 (1954), 468-472.
- [9] Schwarz, G. W., Smooth invariant functions under the action of a compact Lie group, *Topology*, **14** (1975), 63-68.
- [10] ——, Covering smooth homotopies of orbit spaces, Bull. Amer. Math. Soc., 83 (1977), 1028-1030.
- [11] ——, Lifting smooth homotopies of orbit spaces, Inst. Hautes Etudes Sci. Publ. Math., 51 (1980), 37-135.
- [12] Sternberg, S., Local contractions and a theorem of Poincaré, Amer. J. Math., 79 (1957), 809-824.
- [13] Takeuchi, M., Modern Spherical functions, Iwanami-Shoten, 1975. (in Japanese)
- [14] Weyl, H., The Classical Groups, 2nd edition, Princeton, Univ. Press, Princeton, New Jersey, 1973.