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Pursell-Shanks Type Theorem for
Orbit Spaces of G-Manifolds

By

Kojun ABE*

§ 0. Introduction

Pursell and Shanks [8] proved that a Lie algebra isomorphism be-
tween Lie algebras of all C” vector fields with compact support on para-
compact connected C” manifolds M and N yields a diffeomorphism be-
tween the manifolds M and N. Similar results hold for some other struc-
tures on manifolds. Indeed, Omori [6] proved the corresponding results
in the case of volume structures, symplectic structures, contact structures
and fibering structures with compact fibers. The case of complex struc-
tures was studied by Amemiya [1]. Koriyama [5] proved that in the
case of Lie algebras of vector fields with invariant submanifolds.

Recently, Fukui [4] studies the case of Lie algebras of G-invariant
C” vector fields with compact support on paracompact free smooth G-
manifolds when G is a compact connected semi-simple Lie group. The
corresponding result is no longer true when G is not semisimple or G
does not act freely.

In this paper, we consider Pursell-Shanks type theorem for orbit
spaces of smooth G-manifolds in the case of G a compact Lie group.
For a smooth G-manifold M, the orbit space M/G inherits a smooth
structure by defining a function on M/G to be smooth if it pulls back
to a smooth function on M, and the Zariski tangent space of M/G can
be defined. This smooth structure of the orbit space was studied by
Schwarz [9], [11], Bierstone [2], Poénaru [7] and Davis [3]. Schwarz
[10] defined a Lie algebra X (M/G) of smooth vector fields on the orbit
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space M/G, and proved 7w, (¥;(M)) =X (M/G), where X;()M) is the Lie
algebra of all G-invariant C” vector fields with compact support on M
and w: M—M/G is a natural projection.

The purpose of this paper is to prove the following:

Theorem. Let G and G’ be compact Lie groups. Let M and
N be connected paracompact smooth G-manifold and G’-manifold
without boundary, respectively. There exists a Lie algebra isomor-
phism O0: X (M/G)—%X (N/G’) if and only if there exists a strata pre-
serving diffeomorphism 0: M/G—N/G’ such that ®=0,.

Main part of the proof of our theorem is to find maximal ideals of
X (M/G). By the theorem of Schwarz, maximal ideals of ¥ (M/G) are
induced from those of ¥;(MM). To determine the maximal ideals of
X¥s (M), we use the parallel method to those of Pursell-Shanks [8] and
Koriyama [5].

§ 1. The Tangent Space of an Orbit Space

In this paper, we consider C* smooth category. Let G and G’ be
compact Lie groups. Let M and N be connected paracompact smooth
G-manifold and G’-manifold without boundary, respectively. Put M
=M/G, N=N/G’. The orbit space M has an induced smooth structure
such that a function f: M—R is smooth if the composition M—TE)M-J;R
is smooth, where 7 is the natural projection. Let C*(M) denote the
set of all smooth functions on M. A map h: M—N is smooth if,
FfoheC= (M) for any f&C=(N), and we say that A is diffeomorphic
if A7! is also smooth.

We can define a tangent space of the orbit space as usual. A tan-
gent vector v of M at pis a correspondense assigning to any smooth
functions f, g around p real numbers v(f), v(g) with the following
conditions:

1) v@f+ug) =lo(f) +uv() for 1, uER,

@ v(f=v(Ng® +FP)v ().

Put t (M) = U t,(M).
PER
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Given a€ M, let G, denote the isotropy group at a and V, be a
linear slice at . Then V, is a Gomodule. Put p=n(a) and V,= V,/G,.
Then V, is an open neighborhood of p in M.

Proposition 1.1 (cf. Davis [3], Proposition 2.3).

D) (M) =1,(Vy).

(2) Let gJ_EP denote the germs of smooth functions on V, which
vanish at p. Then t,(V,) =Hom (‘j)_?p/“j)—?pz, R).

Let H be a compact Lie group and let V be an H-module. By a
theorem of Hilbert ([13], p. 275), the algebra of H-invariant polynomials
R[V]" is finitely gencrated.

Theorem 1.2 (Schwarz [9]). Let {0, -, 0s be a set of gen-
erators for R[V1", and let 6= (6,, ---,0,): V—R. Then

1) 0*C™(R) =Cx(V).

(2) The orbit map 0: V/H—R® of 0 is a topological embedding.

Proposition 1.3 (cf. Davis [3] Lemma 2.1). Let R[V]{ denote
the algebra of H-invariant polynomials which wvanish at 0. Then

D) Do/Mi=R[VIF/ (RIVID*

@) If {0y, -+, 05} is a minimal set of generators for R[V]E, then
the dimension of ©,(V/H) is s.

§ 2. Smooth Vector Fields on an Orbit Space

Let X: M—t(M) be a section. For any feC*(M), we can
define a function X(f): M—R by X(f) ) =X,(f). If X(f)e
C=(M) for any f&C=(M), then we say X is a smooth vector field on
M. Let D(M) denote the Lie algebra of all smooth vector fields on
M. Let DC”(M) denote the set of all derivations of C*(M). Using
Theorem 1.2 (1) we have:

Proposition 2. 1. D(M) is isomorphic to DC”(M) as a Lie
algebra.
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The orbit space M is stratified by its orbit type.

Definition 2.2 (Schwarz [11]). A smooth vector field X on M
is said to be strata preserving if X,&7,(d,) for any p& M, where 0,
denotes the stratum of M containing p. Let ¥ (M) denote the set of all
strata preserving smooth vector fields with compact support on M.
X(M) is a Lie subalgebra of DC”(M). Let ¥;(M) denote the set of
all G-invariant smooth vector fields with compact support on M. There
is a Lie algebra homomorphism 7,: Xs(M)— DC=(M) defined by 7.(X)(f)
=X (f), where f&Cg (M) and f is the orbit map of f.

Theorem 2.3 (Schwarz [11]). The image of the homomor-
phism 7wy: Xe(M)—-DC>(M) is ¥(M).

§ 3. Maximal Ideals of % (M)

Let ac M and put p=n(a)cM. Let V, be a linear slice at a.
Then N,=G X4, V., is equivalent to a linear tubular neighborhood of the
orbit G(a) of a. Let r(IN,) be the tangent bundle of the G-manifold N,,
and let I'¢(r (NV,)) denote the set of all G-invariant smooth sections of
t(N,). Let t(V,) be the tangent bundle of the G,-manifold V,, and let
I, (t(V,)) denote the set of all G,-invariant smooth sections of v(V,).
Then we have canonical isomorphisms (v (N,)) =16, (t (N,) | V.) and
Cs(N,) =Cgz, (V,). It is easy to see the following:

Lemma 3.1. (1) For any X&ls, (t(V.)), there exists Y&
Xe (M) such that Y=X on a G,-invariant neighborhood U, of a in V,.

(2) For any feCg (V,), there exists FeCg(M) such that
F=f on a G,-invariant neighborhood U, of a in V,.

Put M,={geM; X,=0 for any XX (M)}, and put M,=M — M,

Proposition 3. 2. M, is discrete.

Proof. For any ac M, let {x,, -+, x,} be a canonical coordinate of a
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linear slice V, of a. We can assume G, acts orthogonally on V,. Then

the radial vector field X=317, xig— is a Gy-invariant smooth vector field
X

on V,. Let f: V,—>R be a Gginvariant smooth function defined by
flxy, o, 20) =2+ -+ x,°. By Lemma 3.1, there exist YEX;(M) and
FeCg (M) such that Y=X and F=f on a G,-invariant neighborhood U,
of a in V,, respectively. Put U,=U,/G,, Y =7,(Y) and let F be the
orbit map of F. Then Y (F)=#0 on U,— {p}, and Proposition 3.2

follows.

Note that 7,: N,—G(a) is a G-vector bundle. The tangent bundle
t(N,) of N, is isomorphic to 7, *(t(G(a))@Pé. as a G-vector bundle,
where &, is a bundle along the fibres of N,. Let 7, be the composition

restriction

(M) —— I's(t(No)) =Ie,(t(No) [Va)

projection

> 16, (§a|Va) =16, (t (Vo).

It is easy to see that 7, is a Lie algebra homomorphism. Put g, (z(V3.)),
={Xe&ls (t(V.));Xe=0}. For Xels, (t(Va))o we denote ji(X) the
rjet of X at a (r=1,2,-). Put g, (c(Vo))ei={XET, (Va))o;
Ja(X) =0 for 1<r<k} (1<hk=<oo).

For g M,, choose a point bern(g). Let glg(V,) denote the set
of Gyinvariant endomorphisms of V,. Note that, for X I (t(V})), /3 (X)
defines an element of gl(V,) as usual. It is easy to see that jj(X) &
gle, (Vo), for Xels (c(Vy)).

Lemma 3.3. j;: I's,(t(Vy)) —>gls, (V) is an onto Lie algebra

homomorphism.

Progf. Since 7 (b) =g M,, Lo, (c(Vy)) =16,(t(Vy))o. Then I, (¢
(V) /I6,(t(Vy))i=gls,(V,) and Lemma 3.3 follows.

By Proposition 3.2, M, is discrete. Then M, is a countable set
{q;; i€I}. Choose a point b;en™'(g;) for each g;&M, Put Ji(M)
=gle,, (Vs,) and put J' (M) = [TieJi (M) which consists of those elements

having only finite number of non-zero factors. Then we have:
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Corollary 3.4. The composition

4 s
T %) S 11 Te,, (7 (V2)) S T Q)

is an onto Lie algebra homomorphism.

Gy,-module V, is isomorphic to (—Bdi,Wij. Here d;; is a non-negative
integer and W;; runs over the inequii/alent irreducible G,,-modules. Let
K;; be the real numbers R, complex numbers C or quaternionic numbers
H if dimgglg,, (Wi;) =1, 2 or 4, respectively. Then glg, (V3,) ;’(—JEQ[ (dij,
K.

Proposition 3.5. gl[(d, R) =R®@Ps8l(d, R),
gl(d, C)=CPsL(d,C) and
gl(d, H) =R®sl(d, H),
where 3l(d, K) = [gl(d, K), gl(d, K)] for K=R,C or H.

Proof. Note that 8((d, H) ={Xegl(n, H); Re Tr(X) =0} and
8{(d, H) is a simple Lie algebra. Other cases are similar to this.

Next we consider maximal ideals of [, (r(V,)) for ac M such that
m(a) =p=M,. First we need the following:

Lemma 3.6. Let H be a compact Lie group and let V be an
H-module. For YEI' (tv(V)), we define ?E[’H(T(V)) by ?p= j‘ (heY)
H

dh for pV. Then [X,Y]= Lh* [X,Y]dh for XeI'y(c(V)). Here
(h*Y) = (dh) h-1p Yh~!p-

Proof. Let {x, -+, x,} be a canonical coordinate of V. For pcV,
feC=(V), we have:

7,00 = ([, (5 et (L) )ar) o)

=3( [ Gaa@oan) (L) o

i=1 axi
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= [, (33 s (gi_)z,)dh

= [, ), ().
Then [, ¥1,(0=%( [ () (an) - [ (), (X
— [ B () = (1), X)) i
= [, A YL (N d
([, 1% heyLaan) o).

Lemma 3.7. Suppose that N is a proper ideal of ['s,(t(V.))
which contains g, (t (Vo)™ for ac M such that n(a) =pc M,. Then
N is contained in ', (t(Va))o.

Proof. Suppose there exists Xe with X,5<0. By Koriyama [5]
Lemma 2.1, for any Z&/lg, (t(V,)) there exist a G,-invariant neighbor-
hood U of a in V, and Y&l (t(V,)) such that [X,Y]=Z on U. Put

?:j 0.Ydgels (c(V.)). By Lemma 3.6, we have [X,¥]=
Ggq

f 0. [X, Y]dg = f 9.Zdg=7 on U. Put Zy=Z—[X,¥]. Then Z e
Gq Gg

I'g, (t(V.)) o™ which is contained in Jt. Since N is an ideal, Z&N. Thus
N =716, (t(V,)) which is a contradiction to )t a proper ideal.

By Lemma 3.7, there exists a unique maximal ideal N, of I, (z(V,))
satisfying g, (t (V2)) o® CNe C L6, (T (Va))o. Put Fo=A{XcX:(M) ;7. (X)
SHINS

Proposition 3.8. JI. is a maximal ideal of Xs(M).

Proof. Put V,(0) = {ve V,; |v|<p} for a positive number p0. N.(p)
={Y& s, (t (Vo)) ;supp YC Vo—V,(0)} is an ideal of I, (¢ (V,)) which
is contained in I'g, (t(V.))o. Then M, (p) is contained in No. It is clear
that $, is an ideal of Xq(M).
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Let MM be a maximal ideal of X4(M) which contains &,. Suppose
that there exists X&M with 7,(X),=~0. Similarly as in the proof of
Lemma 3.7, we can prove M =2%;(M), which is a contradiction. Then
7. (M) is contained in g, (t(Va))o. Combining Na.(0) CN. and Lemma
3.1, we see 7, (W) +N, is an ideal of I'g, (t(V,)). Therefore 7,(IW)
is contained in N,, and WM =F,. Thus Proposition 3.8 follows.

Put §,=74(Se) and X(M),={XcX¥(M); X,=0}. Then &, is

contained in ¥ (M),, and :C‘jp is a maximal ideal.

Lemma 3.9. (1) ﬁ_”gp is an infinite codimensional maximal ideal
of ¥(M) for pcM,.
(2) For a maximal ideal & of J' (M), put M=(J)(R). Then

M is a finite codimensional maximal ideal of ¥c(M).

Proof. (1) For acn™'(p), there exists X&', (t(V,)) with X,
=#0. Then there exists a G,-invariant local one parameter group of
transformations ¢; (—¢, &) X U=V, defined on a G,-invariant neighbor-

hood U such that g—f(t, #) = X40,4. Let 0: (—e,e)—V, be a map de-
fined by 0(¢) =¢(¢,a). Since X,7#0, 0 is an embedding for a sufficiently

small number &. Let W be a G,-invariant normal space of 0((—¢,¢))
at @ in V,. Then we may assume that ¢: (—¢,&) X W=V, is a G,-in-
variant embedding. Let {wj, ---, w,_;} be a canonical coordinate of W.
We have a local coordinate {zj, -:-, x,} of V, around a neighborhood
U=¢((—¢ ) X W) of a given by x; (@ (¢, wi, -+, Wa1)) =2, x: (b (2, w,

s, Wyy)) =wi_y for =2, ---, n. Note that X:—-i on U.,.

Iy

By Lemma 3.1. there are X,€%3;(M) and f&Cgz (M) such that
X=X and f=x, on a neighborhood U,C U, of a in V,, respectively. Let

YeS, and 7o (Y) =57, &0 on U, Then r[X, Y] = [i, e sli]
@Ii 0.1'1 01’1;
=37, €0 0 on U, Since 7,[X;,Y]ERN,, we have %(a) =0 for
0x, 0x; 0x

0%t (4 =0 for i=1 k=12
aIk(a)--O or i=1,---,n and k=1, 2,
1

Let a:X¥;(M)—R[[x,]] be an R-module homomorphism defined
k
by @(2) = X5 05 (@) ¥ if ru(2) = b on U. Since ar(3) =0.

1
k
al‘l X

=1, --, n. Inductively we have
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the above map « induces an R-module homomorphism B:%¢(M) /S
R[[x]]. Note that a (X)) =jlx’ for j=1,2,-.-, and dim (Image )
=oco. Since §,DKer Ty, we have dim X (M) /S, = oco.

(2) There is an index i€ such that & does not contain Jj(M).
Since & is a maximal ideal, R-+J}(M)=J'(M). Then Xs(M)/M
=J' (M) /&=Ji(M)/(®NJi(M)). Since Ji(M) is finite dimensional,

M is finite codimensional. This completes the proof of Lemma 3.9.

Proposition 3.10. Let R be a maximal ideal of X (M). Then
M=S, for pe€M, or rz*(M)= (J") *(R) Sfor some maximal ideal &
of J'(M).

Proposition 3.10 plays a key role to prove our theorem. We shall

prove Proposition 3.10 in Section 6.

§ 4. Stone Topology of Maximal Ideals of ¥ (M)

Let M* be the set of all maximal ideals of ¥(M). M* is de-
termined by Proposition 3. 10.

Definition 4.1 (Stone topology of M*, cf. Pursell-Shanks [8]).
The Stone topology on M* is defined by closure operator CL as follows:

(1) CL(¢) =4.

(2) If B#¢ is a subset of M*, then CL(B)= {MecM*; W&Dmﬂ ;Jz}

S

Let S(M,) be the set of all subsets of M, Let ty (or simply r)
be a map from M* to M,US(M,) defined as follows:

1) ©(Q) =p for pe M.,

(2) If M is a maximal ideal of X(M) such that J'(m, *(M))
is a maximal ideal of J'(M), then (M) ={gcM,; J' (T, (M)) does
not contain JL(M)}. (Making use of Proposition 3.5, we see that
7(MM) does not consist of a single point.)

For a subset A of M, we denote the closure of A in M by cl(A).

Lemma 4.2. If cl(A) is contained in M,, then CL(r™'(A))
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=t (cl(4)).

Progf. First we shall prove “cC”. Let MeCL(x'(A)). Assume
that (M) is not contained in cl(A4).

In the case M=S, for pcM,: We can find XX (M) such that
X,#0 and supp XNecl(A) =¢. Then Xep’r;;%,cm, which is a con-
tradiction to X,5~0.

In the case 7w, ' (M) = (JY) "' (8) for a maximal ideal & of J'(M):
There exists YEXe(M) such that J'(Y) &8 Let {7, -+, 7} be a set
{iel; j, (1, (Y))50}. There exists y=Cg (M) such that ¢=1 on a
neighborhood of &;, (=1, -+, k) and ¢=0o0n 77" (cl(A4)). Put X=¢Y.
Then J'(X) =J'(Y), and 7, (X) €. Moreover 7, (X) €N §p,c§)}2,
which is a contradiction. i

Next we shall prove “2”. Note that an ideal N N= N S, is con-

— t(M)e4a p’EA
tained in X (M), for any pecl(A). Then N N is contained in a maxi-
mal ideal ,\asp and \Cf;eCL(z'"‘(A)) for anry(mgbeécl(A). This completes
the proof of Lemma 4. 2.

If @: X(M)—%(N) is a Lie algebra isomorphism, then @*: M*
—N* is homeomorphic. Combining Lemma 3.9 and Proposition 3. 10,
O* (ty (M) =ty *(N)) and 0% (i, (M) =75 *(N,). By Lemma 4.2,

we have

Corollary 4.3. If 0: X(M)—X(N) is a Lie algebra isomor-
phism, there exists a homeomorphism 0: M,—>N, defined by 0(p)

=1y (0*($5)-

We shall extend the homeomorphism ¢: M,—N, to a homeomor-
phism from M to N.

Lemma 4.4. Let U be a neighborhood of q=M, such that
d(U)NM,={g}. Then CLEx(U))=t"(cl(U)).

The proof of Lemma 4.4 is similar to that of Lemma 4. 2.
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Proposition 4.5. The map 0: M,—N, is extended to a homeo-
morphism from M to N.

Proof. For qeM,, let b M such that mw(d) =q. Let V, be a
linear slice at 4. Put U,=V,/Gy,, US=U,— {g}. Since geM,, it is

easy to see that U, is connected. Note that N N= N N. By Lemma
44 r(Wev <(Wev,

CL (ra " (U)) =CL (a7 (Uyp)
=ty (I (Up) =tu (1 (UD)).
Since @*: M*—N* is homeomorphic and since Gory=ryo0*,
CL (v (0 (Uy))) =CL(@* (zx™(U,)))
=0* (CL (cx 7 (U))) =0* (tar ' (1 (UY))).

There exists a maximal ideal MeM* such that ,(IMM) =¢g. Then
tw(CL(y (0 (UN))) NN, contains 7y (@ (M)), and, by Lemma 4.2,
(@ (UY) N NoEd. Since 0(US) is connected, cl(0(US)) N N,={q"}
for some ¢’ N, Let 0(q) =¢’ for g M, Then it is clear that 0:
M—N is homeomorphic.

§ 5. Proof of Theorem

In this section we shall prove our theorem. Let®: ¥ (M)—%(N)
be a Lie algebra isomorphism. By Proposition 4.5, we have a homeo-
morphism ¢: M—N such that 0(p) =ty (@ (:O’yp)) for peM,.

Proposition 5.1. ¢: M,—N, is diffeomorphic.

In order to prove Proposition 5.1, we need the following lemma.

Lemma 5.2. For XeX(M) and pcM,, X,#0 if and only if
[X,EM)]+S,=%(M).

Proof. Let ae M such that 7w (a) =p. Assume that X,7=0. There
exists X\EXG(M) such that X,#0. By the similar argument as the
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proof of Lemma 3.7, we can prove that [X, Xe(M)]+Fa=%c (M), and
[X, % (M)] +§p=ﬁ (M). Conversely, suppose that X,=0. Moreover
we shall assume that [X, % (M)]+S,=%(M). There exists X €¥:(M)
such that m, (X)=X. Put X’ =ra(2) €l (t(Vy)). Then [X’,
To, (c (Vo) 14+ Ne=T5,(z(Va)) and X,=0. Let V,(0) and V,(1) be the
trivial and non-trivial direct summand of the G,-module V,, respectively.
Then 74 (X’) can be expressed as APB, where Aegl(V.(0)) and
Begls, (Va(1)). Since [X’, s, (t (Vo)) ] +Ra=1T6, (t(V2)), we can prove
that A is invertible. Then we have [X”, I, @(Va))o] +Ra=16,(c(Va))o,

which implies that a linear mapping
B:8ls, (Vo) /ja (Na) —>ale, (Va) /e (Na) s

defined by B(C+ji (M) =[74(X"),C]+4(Na) for Ce gls, (Va), is iso-
morphic. But this is impossible because 7% (X’) €L (M,). This completes
the proof of Lemma 5. 2.

Proof of Proposition 5.1. Let f be any smooth function on N.
Put g=fo0. We have fY—f(0())YEX(N)yp for any YcX(N),
peM, and hence, using Lemma 5.2, 07'(fY) —g(@®) 0 (Y)eX (M),
for any peM,. Thus we have 07'(fY) =g0@~(Y) for any YeX(N).
For any peM,, there exist YEX(N) and AcC~(M) such that @7}
(Y) ()0 on a neighborhood U of p in M. Then g=07"'(fY) (h)
(@ *(Y) (h)) ™ on U, and g is smooth on U. Thus fo0 is smooth on M,
for any f€C=(N), and 0 is smooth on M, Similarly ¢! is smooth

on N,, and Proposition 5.1 follows.

Now we shall prove that ¢: M— N is diffeomorphic. By Proposition
5.1, it is sufficient that ¢ is smooth at g M, Let f be any smooth
function on N, and put g=fo0. As in the proof of Proposition 5.1,
g0~ (Y) =07'(fY) for any YcX(N). Since @ is a Lie algebra iso-
morphism, gX(h) €C~(M) for any XX (M), heC=(M). Let b be
a point of M such that w(6) =¢q, and let V be a linear slice at 4. Let
H be the isotropy subgroup at &, and put V = V/H. It suffices to prove
the following:

Proposition 5.3. Let g be a continuous function on V such that



PURSELL-SHANKS TYPE THEOREM 277

gX(h) eC>(V) for any XeI' (t(V)), heC=(V). Then g is a smooth

Sfunction.

Let {0,, ---, 6,} be a minimal set of homogeneous generators of R[V]&
(see Davis [3], Lemma 4.6). Let {x,---, z.} be a canonical coordinate
of V such that H acts orthogonally on this coordinate. Since qgeM,,
I'c(V))=I'@(V)), Itis easy to see that deg0;>1 for i=1, -, s.
Then we can assume 6, =x*+ -+ x,°. Let X be a radial vector field

Z,Lm; Then X(6:) = (deg 0:)6; for i=1, ---, 5, and Proposition 5. 3

follows from the following:

i

Proposition 5.4. Let g be an H-invariant continuous function
on V such that 0,9€Cg (V) for i=1, .-, s. Then ¢ is an H-invariant

smooth function.

Proof. Since 0,g=Cg;(V), it is sufficient to prove that g is smooth
at 0. Put ¢,=0,0=Cg (V). First we consider the case s=1. In this
case V is a half line R,, it follows from Theorem 1.2 that g1=x7 is
a smooth function on R,, where g, and § are functions on R, such that
01=g:°0, and g=ge0,, respectively. By Koriyama [5] Lemma 6.2, g
C”(R.), and hence g Cgz (V).

Now we consider the case s=>2. Put R[V]Z¥={hcR[V]¥; degh
=i}. From Taylor’s formula, for an integer m=>2, there exist P, (x)
€D i< R[V]¥ and R, (x) € 1jemuC” (V) such that ¢,(x) = P, (z)
+ R, (x), where x'=x"--x,* and |I|=4+++4, Put ¢,=0,-9,, k=
deg 0,4+ m. Then 0,P,E€ Y heice R[V]F and 6,R, () € Xiniis1 'C= (V).

12
Let 4=, aaz be the Laplacian, and put H*(V) = {f€R[V]s; 4f
Z;

=0}. Here we need the following result:

Theorem 5.5 (cf. [13] § 14).
R[V]i=0,R[V]i-.(DH*(V) for an integer i=>2.

From Theorem 5.5, there exist QnEXick-s R[V]: and T,E
2 H (V) such that 6,P,=6,0,+ T,.
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Proposition 5.6. T,=0 (m=2,3, ).

Proof. It is easy to see the following:

(1) For fFfeH' V), £2(f/6,) =N(p, ) £/6,**", where N(p, ) =
—[pl+2pn—4(4(p—1)*+12(p—1) +8)].

(2) For F,eC”(V) with |I|=k+1, put F(x) =3 - Fr(x) 2"
Then we have 4°(F/6,) => F# F*7/6,7 for some FP(x) €D 1=k +2g-20-1
2C= (V).

Now we assume that 7T, =% ,T,° such that T, H*(V) and T,°
0. Let d;, be an integer such that d=2d,+1 or 24;,+2. To see Prop-
osition 5.5, we can assume that £ is an even integer, and hence 2=>2d,
+2. By the definitions of ¢, and ¢, 0,0 =¢:/0,=0n+Trn/0,+0.R,/0..
Since 0,¢ is a smooth map, 71,,/6,+0.R,/0, is also a smooth map.

Put F=6,R,. Applying (2), we have 4% (F/6,) =Y 1{' F*1/6,% for
some F%(x) €Y\ 1cprzg-2a,-1€EXC* (V). Let a= (a, -+, a,) €V with a
#0 and & be a positive real number. Since 2—2d;—1>>0, it is easy to
see that

3) limg 0™ (F/01) | 3-¢a=0.
It follows from (1) that
4) lime_ 04" (T'/0,) |5-¢a=0 for i=>2d,+2.
We can write
TN (x) =2 ip=2a,+1 Aex’  for L ER,
T, (2) = Yygroa oo o’ for mER,

Then 4% (T,**'(x) /6, + T2 (x) /0)) |pmta = (N (dy, 2d,+1) D] Aar) / (6
a4 + (N (d, 24 +2) Star) /a7, Note that N (di, 2ds+1) 0,
N(d, 2d,+2)==0. Since T,/0,+ F/6, is smooth, it follows from (3) that
the limit limg,0d* (T/0:) |z=¢a exists. From (4) we have A;=#4,=0 for
any I, J. Then T,%=0, which is a contradiction. Therefore 77, =0.

Proof of Proposition 5.4 continued. From Proposition 5.6, we
have 6,P,=60,Q,. Since {0,, ---,0;} is a minimal set of generators, there
exists an H-invariant polynomial P,’ such that P,=6,P,’. Then ¢=¢./6,
=P,"+ R,/0, for Ry, (x) X i11-m+1 'C* (V) (m=2,3,-:+), and ¢ is a smooth
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map. This completes the proof of Proposition 5. 4.

To complete the proof of our theorem, we shall prove that @=0,.
Similar way as in the proof of Proposition 5.1, for any feC~(M),
XeXx (M), we have O(fX) = (fooe ™) (X). Then O(X) (for )0 (X)
=0(X(NX) =0([X, FX]) =[0(X),0(fX)]=[0(X), (fee HO(X)]
=0(X) (foc™0(X). Hence 0(X)(foo™HO(X)=0(X) (for™HO(X),
and we see O(X) (fo0 ™) =X(f)oo'. Then, for any geC~(N),
XeXx (M), 0(X) (g) =X(go0) o0 '=0,(X) (9), and hence O=0,. This

completes the proof of our theorem.

Remark. We can prove that 0 is strata preserving.

§ 6. Proof of Proposition 3.10

In this section we shall prove Proposition 3.10. The proof is paral-
lel to those of Pursell-Shanks [8] and Koriyama [5]. We start with

some lemmas.

Lemma 6.1 (Sternberg [12]). Let X be a radial vector field
on R" defined by X=Y71.,x; 0

I
R" such that j3i(X)=7js(Y). Then there exists a local coordinate

system (yi, *+-, Yn) defined on a neighborhood U of 0 such that Y=
on U.

Let Y be a smooth vector field on

n
i=1Yi

Vi

Lemma 6.2. Let M be an ideal of X(M) such that for any
peM, there exists YEIM such that Y, #0. Then M contains an
ideal §,=4{X X (M) ;supp XCM,}.

Proof. Put M=7r,"' (M), $=7.""(F). We shall prove that M
contains . Similarly as in the proof of Lemma 3.9, for any point a
en ' (M,) there exist a local coordinate system (zy, -, z,) around a
G.-invariant neighborhood U, of @ in V, and Y& such that 7, (Y)

0 . . . .
=—a— on U, x is extended to a G-invariant smooth function f on M.
Xy
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Put V1=Y—7,(Y) on V,. Then 7,(Y)) =0 on V, Using a partition
of unity, we can find Y,eKer 7 ,CIR such that Y,=Y, on U, Put
Y,=Y—Y, Then Y,=r.(Y) =5@ on U, and Y,eI.

I
Let Xe$. To prove X&IM we can assume that supp X is contained

in GXg,V, by using arguments of invariant partition of unity. Moreover,
we can assume that 7,(X) =X on U, since Kerm, is contained in IN.

0 . . . . .
Put X=317, Si-a—-— on U,. Since x, is a G,-invariant function, we see
I

that &, is a G,-invariant function. Similarly as in the proof of Koriyama
[6] Lemma 2.13, we can prove that X is an element of Y. This com-
pletes the proof of Lemma 6. 2.

Put X.(M),~ = iQI 7o, (L, (0 (V) )o™)-

Lemma 6.3. Let M be an ideal of % (M) such that J* (7))
=JY (M) and for any pE M, there exists an element Y €M such that
Y,=0. Then an ideal M=n,"'(M) of X:(M) contains an ideal
Xa (M) .

Proof. Since J'(M) =J' (M), there exists an element X&I such
that j;, (75, (X)) =7,(R:). Here R; is a radial vector field on V;, defined

by 9%1=Z’}=1y,-a—a— on Vi, where {y, *-, ¥} is a canonical coordinate of
87

. . 0
Vi- Since I contains Ker 7,, we can assume that X=>5_;y,— on

0y;
U,.

As in the proof of Koriyama [5] Lemma 2.13, for any element
ZeXe(M),>, there exist vector fields Y;, 21, such that [X, Y;] =7, (Z)
on a Gy -invariant neighborhood W;CU; of &; and supp Y;CU;. Put
¥i= j 04 Y, dge e, ((Vs)). By Lemma 3.6, we have [X, ¥i] =7, (2)
on W:bi By Lemma 3.1 (1), we can assume Y.=%:;(M) and supp Y. is
contained in GXg, Ui. Since supp Z is compact, there is a finite index
set {iy,--+, 4z} I such that supp ZﬂGngiijiﬁEQ. Put Y=Y, +-
+Y,. Since Ker 7, is contained in I, there exists an element Z, &
such that Zy=Z—ry, (Z) on Wi, for j=1, -, k. Then Z,=Z—Z~[X, Y]
is an element of & in Lemma 6.2, and Z,€M. Thus we have Ze&Ik,
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and this completes the proof of Lemma 6. 3.

Lemma 6.4. Let M be a mazximal ideal of X (M) such that for
any pEM, there exists an element YeM such that Y,=0. Then
J') is a maximal ideal of J'(M), where M=nz1(M).

Proof. Suppose J'(IN) =J'(M). We shall prove that Ker J' is
contained in Y. By Lemma 6.2, it is enough to prove that an element
ZeKer J' satisfying supp ZCGXg,, Vs, is an element of IN. Since Ker
Ty is contained in I, we can assume Z=7,(Z) on V.. As in the proof
of Lemma 6. 3, there exist X9t and a local coordinate system (x, -, Zn)

defined on a G, -invariant neighborhood U; of &; in V,, such that
X=>". .rra—a— on U,

o
From the proof of Koriyama [5] Lemma 2. 10, there exists a smooth

vector field Y on V,, such that Z,=Z—[X, Y]l (c(V,)),~. Put
Y= Gb_g*Yczg. Then Z—[X, ¥]= G“g*ZldgeFG,,i(r(V,,i))o"". By Lemma
3.1 (1), we can assume Y €X;(M), and Z—[X, Y] €%:(M),". Then it
follows from Lemma 6.3 that Z&IR. Thus Ker J* is contained in IN.
Since J'(IN) =J' (M), M=%;(M). This is a contradiction, and this

completes the proof of Lemma 6. 4.

Proof of Proposition 3.10. Let M be a maximal ideal of X (M).
If there exists a point peM, such that I is contained in ¥ (M) ,, then
gj}=§,,. Suppose for any point p& M, there exists an element Xem
such that X,#0. By Lemma 6. 4, Jl(n';l(iﬁé)) is a maximal ideal of
J'(M). This completes the proof of Proposition 3. 10.
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