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Introduction

Vanishing, finiteness and harmonic representation of cohomology on

complex manifolds are one of the most interesting problems in analytic

geometry (for example, see [2], [5], [9], [13], [19], [20], [38], [45]),

and here we are concerned especially with cohomology on noncompact

complex manifolds. Namely, in this paper, we deal with cohomology

groups with coefficients in a locally free sheaf of rank one on domains

with pseudoconvex boundaries and weakly 1-complete manifolds. We say

Communicated by S. Nakano, March 18, 1981. Revised July 22, 1981.
* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.



132 KENSHO TAKEGOSHI

that a complex manifold X is weakly 1-complete if there exists a C°°-

exhausting plurisubharmonic function on X. S. Nakano pointed out the

importance of the concept in [31] (or [11]) by solving the inverse

problem of monoidal transformations and the main point was some vanish-

ing theorem of cohomology groups for positive line bundles (see [32],

[33]). Then the theorem was generalized in various aspects (see [l]s

[12], [37], [40], [41], [42], [43], [44]), Recently, in [34], [35] and

[37] T. Ohsawa showed the finiteness and isomorphic theorems of coho-

mology groups for line bundles on weakly 1-complete manifolds which

are positive outside compact subsets. In these articles, the main method

was the ^-operator theory without boundary condition, which was origi-

nated by Andreotti and Vesentini's works [3], [4] and [5], while in

this paper, we want to make use of the ^-operator theory with boundary

condition, which was studied by Kohn and Hormander (for example, see

[9], [17], [22], [23], [24], etc.). But of course we have to recreate

from these authors because of weak pseudoconvexity of our domain.

Hence we present, in Chapter I, some calculation i.e. a complex tensor

calculus for Kahler manifolds with boundary. Although it is more or less

a routine calculation, it is worth to do so because, in the opinion of

the author, the complex tensor calculus is one of the important methods

to treat the cohomology groups from differential geometric view point.

The result is a simple generalization of a formula for compact complex

Kahler manifolds due to K. Kodaira [20] and is more or less known.

The main purpose of this paper is to make Ohsawa's results more

exact in the following sense. When we let X be a weakly 1-complete

manifold with a C°°-exhausting plurisubharmonic function 0 on X, we

shall show that for a line bundle B on X which is positive outside a

compact subset K of X, the p-th cohomology group Hp (Xc, 0 (J3(g)Kz) )

(P^V) is finite dimensional and represented by the space of harmonic

forms which are obtained as the harmonic part of .B^X^-valued differ-

ential forms of type (0, p) being smooth up to the boundary dXc (see

Theorem 3.9). Here we write Xc= {x^X\®(x)<c} and dXc= {x^X

\0(x) =c} for some non-critical value c of 0 with c^>sup0(x) and Kx
x^K

is the canonical line bundle of X. This seems to be the analogy of the

case of compact or <?-convex complex manifolds (see [9], [17], [19]).
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Chapter I. Differential Analysis

on Complex Manifolds and Functional Analysis

§ 1. 1. A Complex Tensor Calculus for

Kahler Manifolds with Boundary

Let M be an n-dimensional complex manifold and let X be a rela-

tively compact domain on M with smooth boundary dX. In this paper,

this means that there exist a neighborhood W of dX and a real valued

function 0 of class C°° on W such that i) Xp W= {x ^W \0 (x) <Q} ,

ii) the gradient of 0 does not vanish on dX. From now on, we assume

that M is provided with a kahler metric ds2. Let {[/<} be a coordinate

cover of M and let (z\9 • • • , z") be local coordinates on Ut. We use the

notation 9* a = - and di a = - . (We sometimes omit i for simplicity.)
dzi ' d^

We set

(1.1) d/= S g
a, 0 = 1

The Kahler form is defined by

With respect to this metric, we can define a connection {a)t} ,

= (<*>i,a) for the holomorphic tangent bundle TM on M:

(1.2) 0^=11 rt.W where 7\, ?„ = r(, aS
r=l er-=l

The Riemann curvature tensor is defined by

(i. 3)
and also we set
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As for the conjugates of the above, we define

(1.5) r>it^f=rii
c0r, Ri,cjvi=Ri,(i3n and Rittt$vi =

The Ricci curvature is defined by

(1.6) Rt,^

Since dsz is a Kahler metric, in the same manner as in [21], p. 109,

Theorem 5. 1 and p. 117, Proposition 6, 2, we have

and

As in [21], p. 111-112 and p. 118, Proposition 6.4, it is easily

verified that

(1.9) g/U = 98 log<7,

and

(1.10) £<, ,,1=9,9,, log g{ where g{ = det(gi,aS').

Let C°°(TM) (resp. C~(TM)) be the sheaf of germs of the C"-

sections of the holomorphic tangent bundle TM (resp. conjugate tangent

bundle TM) and let T(M, C°°(TM)) (resp. F (M, C°° (TM))) be the

space of global sections of C°°(TM) (resp. C°° (TM)) .

We define covariant differentiation Va, Vj induced by (2) on F (M,

C-(T-M)) and r(M,C"(TM)) as follows:

n

(1. 11)

i7ia = 9*?7iB

for tf=y;^
=1

Then we remark that

(1.12)
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For any open subset Y of M9 let Cp'q(Y) be the space of differ-

ential forms of type (p, q) and of class C°° on Y and let C$'q(Y) be the

space of the forms in CP'?(Y) with compact supports. Let Cp'q(X) be

the image of the restriction mapping from Cp'q(M) to Cp'q(X). We

denote the length of the gradient of 0 with respect to (1, 1) by |grad(P|,
n

then |grad(P|2= Y] giada@dQ@ and, from the hypothesis, we may assume
<*, 0=1

that |grad$|>0 on a neighborhood W of dX. We define a function/

of class C°° on W by

Then we obtain

i) /=0 on 0X,

(1.13) ii) 4T=lgrad(5r1^ on 9X,

iii) |grad/|=l on W.

We separate z% into the real and imaginary parts: zi = 3$a~1-\- J — \x\a

(or = l, 2, -.,;z) and set 9 i f c = _^_ (£ = 1, 2, •-, 2;?) . Let dV be the
dx*

volume element of M with respect to (1.1). Then we have, by direct

calculations,

(1. 14) dV= A a/nl =

Let dS be the volume element of the real differential manifold dX

of real dimension 2;z — 1. Since (1.13) implies that grad/is the outward

unit normal on dX, we have

(1.15) dV=df/\dS on dX.
n Q T? _ Q

We consider a vector field Xj0«a- -- ^ Z] 0/ — ̂  on a neighborhood
«=i 9s? *=i 9z?

_ n n

of X, Then J] Viia0ia + Xj V «,£</>/ is called the divergence of the vector

field = {0a, 0^} .

Lemma 1.1. We

(1.16) f (f]Va0« + I]V,0»)dV= f (S0"9a
JjT a = l /9=1 J9JT a=l

where da = - and du= - on Ut (a = l92°
dzf dz"
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Proof. From (1.13) and (1.15), Green's formula may be written

in the following form:

ditkuvdV=- u(diik + ditkJxnut JxnVi

+ f uvditkfdS
J d X f t U i

for any uEECl'°(Ui)9 v^C°'°(X) and k = l, 2,— ,2«.

Since dtia = dii2a-i+ v — 19t,2a: and ditU = 9it2a-i— v — 19*,2a» we have

0 9€>awzJ^F=- «(8*fB + ̂ fn
Jjrn^« J^n^f

-H f uvdilttfdS
Jdxr\Ui

(1. 17)

ii) f 9,,^f^F=- f ^(9f^ + 9i,^
Jxnut JxnUi

+ f
Jd

for any weCS'°(^i)» ^eC0'°(X) and a, 0 = 1, 2, • • • , n.

Let {pi}i^i^OT be a family of C°°-f unctions on M such that supp

£Ui, 0<:p«<;i and Sft=l on Z. We set &* = ptfa* and $* = ptft

respectively. Replacing u and t; by 0ia and 1 in (1.17) i), we have

f (9i,a0*a + 9«,alogSf^a)^F= f Wdt.
Jxnvt Jsxr,ut

While,

S(I]rja)0ia (Use (1.9).)
=l r=l

r=i

= SVifB^«. (Use (1.11).)
(X = l

Therefore we have

f (i]vs-,a^
a)^= f

Jxr\Ui a=i Jd
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For 0J^, we have similarly

f <±v<t^o^= f dbti'
JXnUi 0 = 1 JdXr\Ui 0 = 1

_

Using 0l« = X]-^0/,V,f<c = S^Vyi/, and V>^1 on X, we have the
0=1 dzj 0=1

conclusion.

Remark 1.1. If Js2 is a hermitian metric on M which is Kahler

on a neighborhood U of dX and X is a C°°-function on M whose support

is contained in U, then it is clear that the equation (1. 16) holds for

i.e.

(1. 16)' f
JXnV

f
JQ

Let jP be a holomorphic line bundle over JM and suppose that jP is

defined by the system of transition functions {ftj} with respect to the

coordinate cover {C/j}^/. A hermitian metric on JP with respect to this

covering is given by the system of positive C°°-f unctions {a^9 each de-

fined on Ui, such that a-i'aj1 = {fij\2 on UidUj. (In this paper, we use

the notation of a system of metric along the fibres in the sense of

Kodaira [20], p. 1268, (1)). From now on, we fix a hermitian metric

of F

(1.18) {Ct}.

With respect to the covering {Ui}t& a hermitian inner product <( , )>

of F is expressed by the metric {d} i.e. for C°°-sections $ = {£t} and

T! — {??.} of F on M.

<£ f?> = *r1f«?«.

With respect to this metric, we can define a connection {6i} of F

as follows:

(1.19) 0€ = 3 -9alog
a = l

The curvature tensor of the above connection is defined by
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(1.20) 0i.«j = 9«9f logc,.

The canonical line bundle KM of M is defined by the system of transi-

tion functions

K*={KXl,\ where KXtl = >'''> on

We see that

o n t \ , .

Hence

(l. 21) {gt}

determines a metric of KM.

Let C*'q(M,F) (resp. Cp'q(X,F)) be the space of F- valued differ-

ential forms of type (p, q) and of class C°° on M (resp. on X) and let

Cp>q(X,F) be the image of the restriction map from Cp>q(M,F) to

Cp'q (X, F) . Let Cf'9 (M, F) (resp. C?'g (X, F) ) be the space of the forms

in Cp'q(M, F) (resp. Cp'q(X, F)) with compact supports. It is clear that

C?'9 (X, F) is a subspace of C^9 (X, F) . We express (p = {^} eC*g (M, F)

as ^- . ^ . . . . . ^ ^ r - ^ . -? ^!«i,-,«j» fft,-,0t

For ^eCp'9(M, F), we set

^"'••"•"'•''•"••'•^

For simplicity, we write

where Ap =(«! ,—, OJ,), Bq= (&, —,0q), Cp= (cl9 —,cp) and Dq= (dl9

-,«*.)•
We set

where ^lp= (ofi,---, ctp) and 5g= (A,"-,^) run through the sets of multi-

indices with l<^i<#2<,-", <<XP^n and l^/6>i</S>
2<? • • - , </^g^« respec-

tively. Then we have
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where * is the star operator with respect to the metric ds2,

For <p and 0eCp'9(Z, F) 9 we define

For any real valued C°°-function W on M, we define

(P,0)r= f <<P,<P>wdV,
Jx

where <<?, 0>r =.<0>, 0><Tr.

We set

Ml2 = (?,?)
(1. 22)

Wl'r =(*»,?) r.

We have the operator 9: Cp>9(-^, F)->C»«+1(.X, F) defined by

= d(f>i. Then formal adjoint operators & and $F are defined by

(1. 23)
(fy»,0)r=(

for any ^eCf-'^F) and </>eC?'"+1(X, F) .

Lemma 1.2. If <p^Cp-q(X,F) and

f (c<exp(5F)a!)-
j8X

/br any r^a/ valued C°°-function ¥ on M.

Remark 1.2, In this lemma, ds2 need not be a Kahler metric.

Proof, Take elements u and ^ of C°'°(X,F), Applying a family

of C°°-functions {pi} on Af which was taken as in the proof of Lemma

1.1, to u and v, we have the following formula similar to (1. 17) :

(1.24) [c-l
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r _ — r _
— I c u (va + da log(c e g)}vdV + \ c uv e dsf dS

JX JdX

for any real valued C°°-function W on M and a —1,2, • • • , ; ? . Here we

omitted / for simplicity and, in this proof, we do so. For an element

cp of Cp>q(X,F), <p and 9<p are represented as

1 vn A

and

where Ap= (^i, • • • , ap) and dzA* =dzai/\--/\dza* and so on.

Since (%)^,,-D,.,^-I] (-l)p+*8A^,^.f..,fof..,?f, we have

f 1 _i

= J^gg^

= ~i

+J.

(by (1.24))

, I] E
l Ap0,Bq

+ f (ce'qir1 n ?*,.,, E p*'
JS^T 4p,Bg ^ C-p.Pg

In the last line, the equality of the first term holds by definitions

Hence we have i) and ii). Q.E.D.

From now on, we consider the following subspace of Cp'q(X,F)a

na o/r\ Z3Pi? ("V T?\ fsne^/^PiqfV Z?\ I V^ ,* ct ft /ft H. Zoj x>^'^ QA, r ) = {^ GC^'^ (A, r ) \ 2j <Pit cpDq.jYtta^ ^

on dX for every multi-index Cp and -Da-i}.

Lemma 1,3. If <p<=Cp>q(X, F) and (fj^B^^^X, F), we have
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, <p)y = (<p, $?p0) y for any real valued C°° -function W on M.

Proof. Since df and d(D are proportional on dX9 our lemma follows

immediately from Lemma 1. 2. Q.E.D,

Let %piq(M,F) (resp. 3"p,g(M)) be the space of F- valued (resp.

scalar) tensor fields of type (p, q) . The connections (1.2) and (1.19)

give rise to covariant differentiations V«, V«c) of type (1, 0) and V# of

type (0,1) in %P,q(M9 F) and 3"P,q(M) as follows:

0 Vi,aff>i,cfl,...,ap,pl,...,$q = dt,tJPilal,...,ap,Bl,...,Pq

(1. 26)

for every

(I. 27)

for every ^e3"Pf,(M, -F).

Then, by using the term of covariant differentiations, we can describe

the operators d, ti as follows (see [21], pe 110, Proposition 5.2 and

p. 122, Proposition 6. 7) :

(1. 28)

Mc,,*,,.,*

for any (p^E[P,q(M9 F).
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Lemma 1.4. For an element (p^{cpt,Dp} (Dp= (d^ • • - , dp))

3"0fP(M, F), we set

09 = 1, 2, • • - , »)

?/ = 2 *rM>€, Vx*'-' (r = i, 2, - - ., »)

$={$f} andy={y^} are vector fields on M.

Proof. We recall the following relations:

(1.29) where Gt= (g^f) and Gj'= (fif/«)

, P. 108).

We prove the case p = 2. The proofs of other cases are similar. We set

°n

Since {^/j} (resp. {^w» is a C°°-section of F®TM®TM* (resp.

, we have

on

<Pi™=fij ^ Zi Zi"ffa

Then, using (1.29), we have
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Hence we have St = ?j on Ut H Uj. Therefore <? = {$ /} is a vector field

on M. We set

on ,.

Then we have fli—^j on L^D^O and so ^={^ f
f} is a vector field

on M. Q.E.D.

Proposition 1. 58 W"e have

(1.30)

= f (c . lgradtf l ) - 1 S 'Ld&Ovt.
^ f̂tQ;;:,d #'r=1

+ l lv^H 2 + (V 2 f; (9i,?--Ri,J j r " - 1

]
/9,r=l

2= f cT1 2
JX !>, = (<*!,•»,

tfl<-<

Proof. For an element (^ of BQ>P(X,F), we set

£* = 0: 0 = 1 2

7 = ̂ =0,^= 2 ^r'v^,/!,,. '̂-: r=i, 2, -.,»}.
^n-i = (di,- ,dp-0

Then, by Lemma 1. 4, f and ^ are vector fields on a neighborhood of

X. We calculate the divergences of $ and ^.

r1 2

-df, log c«)
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•*)

*#).

We calculate the commutator. Since Vf^ = V^ — 9^ log ci9 for every

Dp= (dl9'"9 dp), we have

Using (1.26), we have

and

pt,Dp- 13 il

fi-l r=l

Hence

.....*.....*, • (Use (1. 3).)
/< = 1 r = 1

Therefore we have

[VjP, Vr]^fl, = -
/(=! r=l

for every Dp=(d1,---,dp').

So

**) =cr1 S ^[Vf , VJ?,,,!,,.,̂ 1^ (Use (1. 12).)
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From the Kahler property of ds?\ we have

^,U = #JJ (^e 1.8).

Moreover we remark that (Pi,ad1,,...,?,...,dp_i = — ̂ ,^,,....5. -,*,,-,• Hence the

second term is zero.

So we have

**) = -CT1 S (E
f, e a, p

Tl 2
a,r

On the other hand,

«,/? = ! a,0,A

t*°Ri,taiT (Use (1.5) and (1.8).)

V]ffiH^,N (Use (1.6).)

Hence \ve have

Since %,,5p+1= f]

,,*,.,

= E ff«e-''-ff«M'- • -ff,''*' (E ( - 1

= E ( - 1) rff«Mr V,rflJ«*- -r<ln -' *' . (Use (1. 12) .)

Hence
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(the terms with #~

X Ver^
do''"'d"'"'d/"""'tfa (the terms with

Since // + r+ (/^ + r — 1) =1 mod 29 we have

I]

Add terms with $^DP to the first sum on the right-hand side and add

terms with # = /? to the second sum, then the difference remains unchanged

and we have

I]

We set

Then we have

and so
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Therefore

=cr1 2 v^W.?'1*'" + *) + **)
/?-=!

On the other hand

2 vr7
r=*r l I!(vr-dr

7 = 1

Hence

(See (1.28).)

Therefore, we have

S

We apply (1.16) of Lemma 1.1 to 2 V^~ ] Vff. We have

0

1 p n

=—-— (2f^ f«(*-!}! J«M r=i

and
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From <p^B°'p(X,F), we have

ii) S yifdi,rf= folgradflD-'f; Vf ^^(f]
jj-i

= 0 on 9.X (See (1.25).)

and

£ £/9^/=
0=1 r=i /?=i

While, in a neighborhood of every point of dX, for any multi-index
p-i

= (^i, • • • , r f p _ i ) , there exists a C°°-section </»x> J f_1 of A TM* such that

Since S (pi>*Bp_ldi>$=fiJ 2 ^/D,., 9^lj9^ on [7*0^0^, where W is the
/9 = 1 /3 = 1 n

neighborhood of 0X taken in (1.13), ^5^ = {^-,5^., = U ^/sp-i ^,^}

is an element of 3*o,p-iCW, -F) for any multi-index Z>p_!. Hence we can

operate the co variant differentiation to <p&9_^ Then we have

(3=1

= 0u,.Ar^ + ^Vf0i>|l.1 on W.

We multiply it by <pt
rD*~l and sum up with respect to the index J, Since

(X,F), we obtain

I!
r=i ^=1 /9,r=i

on 9X. And so

iii) S f/9*.a/= -

on

Finally, from i) ii) , and iii) , we obtain

f (
J9^T

+ f c,-1 s i;
JJT up i «,r
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for any <p EE B°' p (X, F) . Q.E.D.

Remark 1. 3 Dr. A, Fujiki has pointed out that the equality of

Proposition 1. 5 had already been obtained by P. Griffiths in [14], p. 429,

Theorem 7. 2 and recently, the author noticed that A. Andreotti and

E. Vesentini also had obtained some inequality for the elements of

Bp>q(X,F) in [6]. In their formulae, the base metric ds2 need not to

be a Kahler metric.

§ 1. 2. Identity of Weak and Strong Extensions of

3-Operalor and Its Formal Adjoint $

Let X. be a relatively compact domain with smooth boundary on a

complex manifold M and let F—*M be a holomorphic line bundle on M.

We fix a hermitian metric d(*z on M and a hermitian metric {at} along

the fibres of F. We use notations |l , || , || , ||j-, $ and &y and so on as

in Section 1.1 with respect to dff\ {at} and ¥^C°'°(X).

Let Lp'q (X, F) (resp. Lp>q (X, F, ¥) ) be the completion of Cf'9 (X, F)

with respect to the norm || , || (resp. || , ||r). Then, since |j , || and || , \\r

are equivalent on X, Lp'q(X,F,*F} coincides as a topological vector space

with L*-q(X,F). In other words, Lp'q(X.F,V) is the Hilbert space

with Lp>q(X,F) as the underlying space and ( , ) ? / • as the inner product.

Thus Lp'q(X,F,¥) is understood as the pair {Lp'q(X,F)> ( , ) r > .

Let 9: Lp'q(X, F, W) ->Lp'q ' l(X, F, ¥} be the maximal closed exten-

sion of the original d and let #r: Lp'q+1 (X, F, W) ->Lp'q(X, F, W) be the

maximal closed extension of the original $?/ i.e. when we represent the

domain of d (resp, #r) by Dfq (resp, D^) ,

(1.31) i) ^eDf f f fcLp f g(X, F, 5P") z/ a/u/ 077/3; z/

ment 7«=Lp'q+1(X, F, ¥) such that (#r</>, ^) r= (0, u)wfor every

ii) (p^D$'qdLp'q(X, F, W) if and only if there exists an element

v^L**-\X, F, W} such that (0</>, <p)r= (0, v)rfor every <l>t=Cf'*-l(X, F).

Let Lp'q(M9F) (resp. Lp'q (M, F, ¥)) be the completion of
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C$'q(M,F) with respect to the norm || , [[ (resp. || , ||r). Then diffrential

operators d and $¥ in L' ' ' (M, F, ¥} are defined similarly.

From (1. 23) , we have Cf q (X, F) CZD?'9 fl -DJi?- Hence d and #r de-

fined as above are, in the weak sense, closed densely defined operators.

Next we consider the closure of the graph of 9: Cp'q(X, F) ->CP'9+1

(X,F) in Lp'q(X,F,¥)xLp'q+1(X,F,¥}. Then, from the general

theory of linear operators in Hilbert spaces (cf. [46], p. 70, Theorem

4.15), there exists a unique linear operator T: Lp'q(X, F, W) -*Lp'q+1

(X,F9¥) such that i) the graph G(T) of T is equal to the closure of

the graph of 9|cpf«(i», ii) the domain D$'q of T in Lp'q(X,F,¥) is the

image of G(T) by the projection to the first factor.

Remark 1. 4. Since Lp' q (X, F, W) coincides with Lp'q(X,F) as a

topological vector space) for any 5TeC°'°(X), T is determined independ-

ently of W. T is called the closure of

Since Cp'q(X,F) is contained in DT, T is a closed densely defined

operator and from ii) it is clear that

(1.32) (p^D$q if and only if there exists a sequence {(pn} of Cp>q(X,

F) such that \<p-n — <p\2v and \T(pn — T(pf¥ tend to zero as ;z-» + oo.

Since D$'q is dense in Lp'q (X, F, V) , if for a given ge Lp'q+1(X, F, W},

there exists an element g*<=Z/'9(X, F, W) such that (T(p, g) w = (9, £7*) r

for any (p^D$'qyg* is uniquely determined by g. Hence the adjoint

operator T$: Lp'q+1(X, F, V) -*Lp'q(X, F, ¥) is determined by T|g-g*0

Then from (1.32), we have

(1.33) g is contained in the domain D^+l of Tf if and only if there

exists a positive constant C such that \ (d<p, Q)r\<>C\\<p\\yr for any (p^

Cp'q(X,F).

Since Cfq+l(X,F) is contained in D*T>£+\ T| is a closed densely

defined operator. Hence it holds that T|* = T (see [46], p. 90, Theorem

5.3) and moreover, from Lemma 1.3 and (1,32), we have
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(1 „ 34) Cp' q (X, F) fl £>?** = Bp' q (X, F) and

TJ = #r on Bp'q(X,F).

Similarly, we can consider the adjoint operator 9| of the maximal

closed extension d, then we have

(I. 35) h is contained in the domain D*'^1 of 9J if and only if there

exists a positive constant C such that (d<p, h)r\^C\\(jp\\y for any

Hence dy- is a closed densely defined operator and so dy-*—d. T

and 9| are called the minimal (or strong) extensions of the original 9

and its formal adjoint tfr. From (1.31), (1.32), (1.33) and (1.35),

we have

(1.36) D^dDfq and D*$c:D*$c:D™ in LP>*(X9F,¥) for any

Remark 1.5. If T is the closure of d\cpQ^(XjF), it holds that T*=$r

and dp is the closure of 0-v\cP,^i(X>F}f

The following Proposition is due to Hormander [17] Propositions

1,2.3 and 1.2.4 which summarize results of [10], [16] and [30].

Proposition 1.6. i) If v e D$? C Lp' q (X, F, ¥) and supp v, supp

vv<^X, then v\xtEDpgc:Lp'q(X9F9¥) i.e. ($¥v) |T = 9J (v\z) in

ii) Cp'q(X, F) is dense in Dfq with respect to the graph norm (\\ ,

iii) Bp'q(X,F) is dense in Dpg (resp. Df* n D$g ) with respect to the

gragh norm (\\ , fr+ ||«r, fr)
1/2 '(r^A (II , II r+ ||5, ||2F+ ||*r, fr)

1/a).

As a consequence of Proposition 1. 6, we have the following.

Proposition 1.7. i) D$.'9 = Dfq in LP'*(X,F,¥) i.e. T = d
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ii) Dl>£ = D*$ in Lp' « (X, F, W) i.e. Tf = 9|

iii) dp ( = T|) is the restriction of the maximal closed extension

#r to D*$.

iv) Df^ = Dl'j in L»*(X,F) for any F<EC°'°(X).

Proof, i), ii) and iii) follow from (1.32), (1.33), (1.35), (1.36)

and Proposition 1.6 ii) , iii) immediately. From (1.34), it holds that

Cp' * (X, F) fl DI $ = Cp' q (X, F) n Dpg for any V GE C°' ° (X) . Hence, by

Proposition 1.6 iii), we obtain iv) . Q.E.D.

We denote the range and nullity of d in Lp'q(X,FJW) by Rfq and

Nfq respectively. Rfg and N*g are defined similarly. We set

jVf>5 = Nl «5 n NI $ in Lp> 9 (X, F9 V) .

§ 1. 3, Basic Fact from Functional Analysis and Application

Let (Hi9 || , ||i) (z = l, 2, 3) be Hilbert spaces and let H^H^H* be

closed densely defined operators satisfying S°T=0, We denote the ad-

joint operator of T (resp. S) by T* (resp. 5*). Then, as mentioned

in Section 1. 2, T* and 5* are also closed densely defined operators and

satisfy T=T** and S=S**. We use notations DTl RT and NT etc. as

defined in Section 1. 2.

Proposition 1. 8 (cf. [17], Theorems 1. 1. 1 and 1. 1. 2 and [25],

£. 210-£. 216) . A necessary and sufficient condition for RT and Rs*

both to be closed is that there exists a positive constant C such that

(1.37) ||/B!^C{||S/||i+||T*/||S for any f^Ds^\DT,

and that f is orthogonal to the space N—NsnNT*, When this is the

case, we have the strong orthogonal decomposition of H2

(1.38) H2^

Furthermore, the operator L = TT* + S*S whose domain is DL

= {/~<E Ds n DT* : Sf<= Ds* and T*f<=DT}, is self -adjoint and has a

closed range in H2. And (1. 38) can be written more explicitly.
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(1.39) H2^RTT*®N®RS<S where RT^RTT, and RS> = RS.S.

Remark L. 6, From the definition of DL, the nullity of the operator

L is equal to N-=NsnNT*.

Proposition 1.9 (cf. [17], Theorem 3.1.3). Assume that from

every sequence fk^Dsr\DT*. with \\fk\\z bounded and ||T*/fc||?->0 in

Wi* ll^Vfrl l .?— ̂ 0 /;/ Hs as h— >-fco. one can select a strongly convergent

subsequence. Then (1. 37) holds and N is finite dimensional.

Proposition 1.10 (cf. [17], Theorem 1.1.4). Let P be a clos-

ed linear sub space of H2 containing' Rr. Assume that /here exists

a positive constant C such that

(1.40) |/||^C{||S/||I+||T*/lia for any

Then i) for every g^P satisfying Sg = Q, there exists

such that Th = g,

ii) RT« is closed in Jfj and for every g^RT* there exists

such that T*h = g and ||/i

Let M, X and F be as in Section 1.2.

Proposition 1. 11.

I) If there exist in the degree (p, q)

1) a hermitian metric dsz on M and a hermitian metric

along the fibres of F,

2) a positive constant Ci,

and

3) a proper compact subset K of X such that

(1. 41)

for any (p e Dp
s • " n D? '*" c Lp' « (X, F) , then

ii) L* ' (A', F) ~
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II) If there exist in the degree (p, q)

1) a hermitian metric ds2 on M and a hermitian "metric {ct}

along the fibres of F.

2) a positive constant Ci,

3) a proper compact subset K of X, -which does not contain any

connected component of X, such that

d.42) blli

for any ^eZ)f'9 f| Df*qdLp>q(X, F), then there exists a positive constant

Cz such that

(1.43) II^

for any (p GE D\ ' q fl £>f \ q c Z/' q (X, F) .

Proof. Take any sequence {(pm}m^i such that (pm^Dfq D £>f*9, \\(pm\\2

<;i and [|^m||2, ||d*^m||2->0 as m->-\-oo. Then we assert that there ex-

ists a subsequence {<pmk} of {(pm} which converges strongly on X. From

Proposition 1.6 iii) , we may assume (pm e Bp> q (X, F) . Let % be a C°°-

f unction on M with compact support in X and X=l on K. Since

X(pm^Cfq(X,F), we have that

(9 (x<pm) , d (wn) ) + (# (x«?») , i? (w«) ) + (x^, ww)

= (D (X^m) , X^m) + (X^m, X^OT)

is bounded by the assumption. From coerciveness of elliptic differential

operator D=9# + #9 on C?'?(X,F) (see for example [9], (2.2.1)

Theorem) and Rellich's lemma (see for example [9], Appendix (A. 1. 6)

Proposition and p. 122, 2 Sobolev norms on manifolds) , it follows that

{cpm} has a sequence {(pmk} which is strongly convergent on the compact

subset K of X. By (1.41), we conclude that {(pmi^ converges strongly

on X. Therefore we can apply Propositions 1. 8 and 1. 9 for Ht = Lp'q+l~2

(X,F) (z = l, 2, 3), S=d and T*=9*. Hence we obtain i) and ii) of

I).

In the case of II) , the same assertion of I) holds. In particular,

from Propositions 1. 8 and 1. 9, we have that there exists a constant



REPRESENTATION THEOREM OF COHOMOLOGY J55

C2;>0 such that

(1.44) bll2^C2{|]^||2+P>||2}

for any (p e Df ' q n £>f *? with <pl_N*'q, while, each element p in JVP'9 is a

solution of the Laplace-Beltrami operator Q=9$-i-#0. Namely ^ is a

harmonic form with valued in F. In general, when E is a hermitian

vector bundle over a connected complex hermitian manifold M, a

harmonic form (p^Mp'q(E) vanishes identically on M if it vanishes on

a non-empty open subset of M (cf. [7], [38]). Now, from (1.42), <p

vanishes identically on X\K. Since any connected component of AT is

not contained in K, by the above unique continuation property, <p vanishes

on each connected component and so <p vanishes identically on X. Hence

Np>q is the null space. Combining this with (1,44), the proof is com-

pleted.

Remark 1.7. Since, from Proposition 1.7, L = dd* + d*d is the re-

striction of the Laplace-Beltrami operator n=9$ + $9 to the domain of

Z/, Np>q may not coincide with the space of all harmonic forms in

Chapter II. Cohomology Groups ©n Domains with

Pseudocoiivex Boundaries

§ 2, 1. Definitions

Let X be a relatively compact domain with boundary dX on a complex

manifold M of complex dimension //,

Definition 2. 1. X is said to be a domain -with pseudoconvex

boundary dX if for any point p of dX, there exist a neighborhood U of p

and a real valued CDD-function A on U such that i) Ur\X={x^U\

^(.r)<0}, ii) the gradient of /i nowhere vanishes on dXftU, iii) the

complex Hessian of 7, is positive semi-definite when restricted to the com-

plex tangent space of 9Xfl U.
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Remak 2. 1. The relation between the above definition and other

ones is the following.

The next three conditions are equivalent to one another:

I) X is a domain -with pseicdoconvex boundary dX.

II) There exist a neighborhood W of dX and a real valued C™-function

0 on W such that i) Xf) W= {x<E W|<0(.r)<OK ") the gradient of 0

novuhere vanishes on W, Hi) the complex Hessian of 0 is positive

semi-definite -when restricted to the complex tangent space of dX.

III) X is a locally Stein domain -with smooth boundary dX. Here

we say X is locally Stein if for any point p of dX, there exists a

neighborhood U of p such that UftX is Stein.

Outline of the proof. We can show I) =>II) easily (see [15], the

proof of p. 263, 4. Proposition). For II) =»III), since III) is a local

property, we may assume that W= U is an open ball centered at the

origin of Cn and the boundary B= {xe U\d)(x) = 0} contains the origin

and satisfies the property of II). Then the Euclidean metric function

d(x) from x^ {0<0} to B is C" near the boundary B by the implicit

function theorem and moreover, from [18], Theorems 2. 6. 7 and 2.6.12,

— log d is C°°-plurisubharmonic on Ven{0<0}, where Ve={|£|2<£} is

an open ball contained in U. Then we may assume that —log d>0.

Hence !/(£— \z\2)—log d is a C^-strictly plurisubharmonic exhaustion

function on V£ fl {0<0} and so V£ fl {0<0} is Stein. If X is locally Stein,

III)=>I) is due to E. E. Levi (see [15], p. 264, 1. Proposition).

n
Let els2 — Zj Qi,apdz"dZi be a hermitian metric on M and let ff

n a, 0=1

— 2 Oi,apdzi/\dz? be a C°°-(l, 1) form on M whose matrix of coeffi-
a, ̂ —1

cients 6iiCX0 is a hermitian matrix. We set

(2. 1) Gt = (g,ia,) and 8t = (OtlttS) .

If Jij are the transition functions f *^ \ of the tangent bundle TM9

then on Ui fl Uj, Gt = tJjiGjJii and @t — 'Jjt&jJjt so that the coefficients of

the characteristic polynomial de t (G^ l 0i~-XE) are C"-functions on M. The

eigenvalues of Gf1^ at each point x are real, let them be
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(2. 2) 6l (x) ^e2(x) ^ • • • ̂ en(x) ,

so that each sa is a real valued continuous function on M.

Definition 2. 2, A holomorphic line bundle F-*M is said to be

q-positive (rcsp. q-sewi-positive) with respect lo a given hermitian metric

ffs2 on a subset Y of JW if there exist a coordinate cover {Ut} i& such

that n~l(Ut) are trivial and a hermitian metric {at} along the fibres of

F such that for Gt = (gr,,aj) and 6, = (~^°|ff ), e,,-^ (x) + n inf (0, e, (x))

is positive (resp. non-negative) on Y.

Here £Q (.r) should be understood as in (2. 2).

Remark 2. 2. If .F is g-positive (resp. ^-semi-positive) with respect

to dsz on Y, GTI@I has at least n — q-rl positive (resp. non-negative)

eigenvalues on Y. In particular, if F is 1-positive (resp. 1-semi-positive)

with respect to ds* on Y, the hermitian matrix ®{ is positive-definite

(resp. positive semi-definite) on Y. Since the inverse is true for any

hermitian metric dsz, we say simply that F is positive (resp. semi-

positive) on Y instead that F is 1-positive (resp. 1-semi-positive).

$ 24 2* Basic Estimates

Let X be a (connected) relatively compact domain with smooth

boundary dX and let F—^M be a holomorphic line bundle on M. Let

KM be the canonical line bundle on M. We set a Kahler metric ds~ on

M

(2. 3) rf^= f; gttapd*fdzf
«./? --i

and a hermitian metric of F and its curvature tensor

{«i}
(2.4)

Oi,a-3^dad% log at,

Then, from (1.21),

(2.5) ict = a i - g t } where g* =
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is a hermitian metric of F(x)KM. With respect to (2.3) and (2.4), an

inner product ( , ) and a norm || , || are defined as in Section 1.1. Since the

curvature tensor of {ci} is the sum of 6t= (Qi,a$) and the Ricci curvature

with respect to (2.3), we have from Proposition 1.5

(2.6)

= f
JQ

f
JX

2

for any cp^B*'p (X,

Proposition 2. 1. Le£ X be a (connected) relatively compact do-

main -with the pseudoconvex boundary dX on a complex manifold M

and let F—>M be a holomorphic line bundle on M.

I) If there exists a Kahler metric do"2 on a neighborhood W of dX

and F-^M is q- positive zvith respect to dff2 on W, then there exist

a proper compact subset KI of X and a positive constant Q such that

(2. 7} \\cp\\ ̂ 1^C1{||%||2+ ||9*pir+ IkllU

for any (p^D^ r\D^dL^ (X,F®KM} and p>q.

II) If M is provided with a Kahler metric ds2 and F-^>M is q-semi~

positive -with respect to dsz on a neighborhood V of X = X(JdX and

q-positive -with respect to ds2 o?i V\K, -where K is a proper cmpact

subset of X, then there exist a proper compact subset K2 of X -with

KdIntK2 and a positive consta?it Cz such that

(2.8) lkll

for any 0>e=Z>J p n D^pc:L0>p(X9 F^K^) and

Proof. We prove II) first. Let {at} be the hermitian metric of

F with respect to the covering {Ui}i&1 of M corresponding to the assump-

tion. To obtain the required estimate, by Proposition 1 .6 i i i ) , i t suffices

to show that the estimate holds for any element of BQ>P(X, F(^)KM) .

From Remark 2.1 II), there exists a defining C°°-function 0 for dX
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such that the complex Hessian of 0 is positive semi-definite when re-

stricted to the complex tangent space of dX. Hence, by using notations

(2. 3) , (2. 4) and (2. 5) , it follows that the first term of the right-hand

side of (2. 6) is non-negative. Hence we have

(2. 9) f cT1 £ £ ®{,f<pf,-uDp.^^dV
JX Dp-i = (dlf...,dp-J ",T=l

rfi<-<«,-i

<*\\Q<p\\*+\\d*vf for any <p €= B«>* (X, F&KJ .

Let {sa}i^a^n he the eigenvalues of G^"1®/, where Gt=(giia$), and

choose a system of local coordinates (z}9 • •• ,£?) around xQ£^X as follows:

(2. 10) G, Cr0) - (<U) and », (.r0) - (fi«

By the assumption, for a suitable proper compact subset K2 of X

satisfying J^dnt.K2, there exists a positive constant £, independent of

the choice of xQ^X\K2, satisfying

(2. 11) fin-,+iCzb) +^? inf (0, e»(.Tb))

We apply (2.10) and (2.11) to (2.9), then at .

(2. 12) I] H
i>p-i = (di,-,rfp-i) «,r=i

finf(0,e i l(j:.))

If P^q, then p-\-?i — q-\- 1 ;̂/ + 1, thus any block Dp of

taken from {1, 2, • • - , n} must contain one of the indices {1, 2, • • • , ;?

i.e., one of the indices corresponding to the positive eigenvalues £i

Then we have

E il^fl,..!1^ E
«i<-<dp-i « = 1 di<-<

(2. 13) and
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Hence, from (2.11), (2.12) and (2.13), we have

- 14)
~<dp-i ct,r=l

at

Since fin-.^i-fwinf (0, £„) ;>0 on JC,, from (2.9) and (2.14), if we

take C2 = l/£, we obtain

for any p^B°'p(X, F0KM) with ^Sjg. This completes the proof of II).

Next we prove I) . From the assumption and Remark 2. 1 II) , we

may assume that there exists a neighborhood W of dX such that i) the

gradient of the defining function (!) nowhere vanishes on W, ii) there exists

a Kahler metric dffz on TV, iii) there exist a coordinate cover {Ut}iGI

of M, for which n'l(Ut) are trivial and £/,-£ TV if UiHdX=^0) and a

hermitian metric {at} of jP satisfying the g-positiviiy with respect to d(Tz

on TV. Hence by the same reason as in the proof of II), we have only

to show the required estimate for elements of B°'P(X, F(^)KM) . Take

neighborhoods W, (z-1,2,3) of dX with 9Xc TV3C TV2C WiC TV We

may assume that M= W1 U X. Then we take a hermitian metric ds~

(2.15) ds2^

on M such that ds2 = dffz on TVi.

We take a C°°-real valued function % on M such that i) %=1 on

(M\X)UTV3, ii) suPPxcTV2. Then, for any (p^&'^X, F®KM), w

is again contained in Bp'q (X, F®KM) and supp X<^ is contained in Wi.

We set

Since the metric ds" is Kahler on Wi, from (1.16)' of Remark 1.1,

the equation (2.6) holds for elements %<£?, where (f>^B°'p(X, F(^)KM) .

Hence by using notations in (2. 4) , (2. 5) and (2. 15) , we obtain the

following inequality in the same way as in the proof of II) ,
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(2.16) f cfl £ S 0«,?
JZfWi JVi = (di , - ,dp- i ) or,r=l

We estimate the both sides of this inequality. By the assumption,

we apply (2.11), (2.12), (2.13) and (2.14) in the proof of I) to %<?

and K^ Then the left-hand side may be estimated in the following way.

If P2>q, then

(2.17) W

^- f cT1
K Jxr\Wl dK-

for some positive constant /c as which is taken in (2. 11) .

As for the right-hand side,

<2 ( f
\ J*i

Here we used [45], p. 18, Lemma A and the fact that the star

operator * is isometric with respect to the pointwise inner product <^ , )>

and r0 is a positive constant depending only the dimension of M and

igradx j 2 is the length of grad X with respect to ds*.

Therefore, if

(2. 18) C,>-imax{l, ct sup|grad z|2(x)},
K TEH

we have, from (2.16), (2.17) and (2.18),

ll«'lliv.l^C1{||^||'+110*^11'+ll^Ui,}

for any (p<=BQ'p(X, F^Kjy) with p^q. This completes the proof of I).
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Let X be a relatively compact domain with smooth boundary dX and

let 0 be a defining function for X on a neighborhood V of 9X. Then

we may assume that the gradient of 0 nowhere vanishes on V. We set

(2. 19) Xt= {x^ V\0(x) <t} U X, dXt={x^ V\0(x) = t}

for any t with 0<*£<sup (5 (.r) , and in particular
*eF

x=x», dx=dxQ.

Let F—>M be a holomorphic line bundle on M. Then, if we fix

a hermitian metric on Af and a hermitian metric of F9 for each ^SjrO, we

can consider Hilbert spaces L'J'(Xt, F®Kx)9 which are the completions of

C0'"(Xt, F(X)^/) with respect to the norm || , ||?= 1 <, ^dV, and operators

9,, 9? and #t in L' ' ' (Xt,

Proposition 2. 2* Let {Xt} t^0 and F be as above. If there exist

i) a positive constant d such that for any t (0<^<J(J) Xt is a domain

-with pseudoconvex boundary dXt9 and ii) a Kdhler metric do~2 on a

neighborhood V of dX such that F—>M is q-positive 'with respect to

do~2 on V, then there exist a positive constant C3 independent of t

and a proper compact subset Kz such that for each t (OS^2S$)

(2. 20) lkllU

for any (p^D^ fl DQJ$C.L0'*(Xt, F®KM) with p^q,

The proof is similar to that of Proposition 2.1 I) . In fact, C3 in

that proposition depends only on the length of the gradient of C°°-

f unction on M and the lower bound of en_g+1-f;z inf (0, en) with respect

to Gr1®* (see (2.11) and (2.18)).

§ 2o 3« Weak Finiteness and Vanishing Theorems

Theorem 2. 30 Let X be a (connected) domain -with pseudocon-

vex boundary dX on a complex manifold M and let F—>M be a holo-

morphic line bundle on M.

I) If there exists a Kdhler metric do~2 on a neighborhood of dX and
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F-+M is q-positive with respect to d(Jz on its neighborhood, then it

holds that if p>q,

ii)

and so

iii) tJic image of the restriction homomorphism

r: H* (M, 0 (F®Kx) ) ->PP (X, 0

lias finite dimension.

II) If M is provided with a Kdhler metric dsz and F— >M is q-semi-

positive uuith respect to dsz on a neighborhood V of X and q-semi-

positive uuith respect to dsz on V\K, 'where K is a proper compact

subset of X, then if Pl>q,for any f^L°'p (X, F®KM) with df=0, there

exists g<=L°'p~l(X, F0KM) satisfying f= d g and so the natural homo-

morphism

n : H> (M, 0 (F(x)/Cv) ) ̂ H> (X, 0 (F®Kir) )

r, : H* (X, 0 (F®KX) ) -+H'(X, 0 (F®KX) )

are zero maps for p^q, where H ? (X, 0 (F® KM} ) denotes the p-th

cohomology group with compact supports.

In particular, we obtain

Corollary 28 4. Let X, M and F be as above.

I) If F-^M is positive on a neighborhood of dX, it holds that if p^>!9

ii)

and so

iii) the Image of the restriction homomorpliism

r: H* (M, 0 (F®K^ ) ->H* (X, 0

has finite dimension.

II) If M is provided -with a Kdhler metric dsz and F-*M is semi-

positive oji a neighborhood V of X and positive on V\K, where K
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is a proper compact subset of X, then if ^>J>1, for any f^L°'p(X, F

<g)£jr) with 0/=0, there exists g<=L°'p-l(X, F®KM) satisfying f^dg

and the natural homomorphisms

n : H* (M, 0 (F®KM) ) ->H* (X, 0

r2 : HI (X, 0 (F®KX) ) -*HP (X, 0 (F®KM) )

are zero maps for

Proof of Theorem 2. 3. I) . i) and ii) of I) follow from Proposi-

tion 1.11 I) and Proposition 2.1 I). While, if we let L"f£ ( Y, F®KM)

denote the set of the locally square integrable (0, p) forms on Y with

values in F§§KM for any open subset Y of M, then there is a natural

isomorphism

(2.21) H'<

) : f=dg for some

Here we consider the operator d in the sense of distribution. Hence,

there is the following factorization of the homomorphism r

H*(X90(F®KM)}

From ii) of I) and N*j*/B$*^N*'p, Imr is finite dimensional.

II). The former assertion follows from Propositions 1.10 i), 1.11

II) and 2. 1 II). Combining this with (2.21), the latter one follows

immediately. Q.E.D.

Remark 2. 3. Such finiteness theorems of weak type as Theorem

2.3, I) and Corollary 2.4, I) were treated in [9], [22], [23], [24] and

[28] etc., from the viewpoint of boundary regularity of the 9-operator.

The basic estimates used in these papers are more precise than ours in

the following sense.

Let X be a relatively compact domain with smooth boundary dX on
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a complex manifold M and let the defining function 0 of X be strongly q

pseudoconvex on a neighborhood V of dX. For any holomorphic line

bundle F on M and a fixed hermitian metric {a'i} of 1% we consider

{ai = #£ exp($)} as a new hermitian metric of jF, where 0 is a C°°-

function on M and coincides with the original $ on a neighborhood of

dX. Then, there exist a hermitian metric ds2 on M and a positive

constant C* such that

i) for {<?*}, jP is ^-positive with respect to ds2 on a neighborhood

of dX.

(*)
ii) if s2>l and ^Sjg,

r1 S I]
Ag^t-i a, 0 = 1

f <^XS^
JdX

7"1 I] <Pt,A.3t<PtA'Bt on 9X for every
AS,Bt

(See [5], §5.16, Lemmas 18, 19 and 20 and §5.17, Lemma 21.)

In general, the metric ds2 is not Kahler near the boundary dX,

nevertheless, we can prove that there exist a positive constant C*^ and

a compact subset K of X such that, if (p^BStt(X,F) and s2>l, ^^^5

(**)

where the integral || V$?||2 is defined as same as in Proposition 1. 5 with

respect to the covariant differentiation V of type (0, 1) associated to the

connection of ds2.

The above inequalities are not new and, essentially, due Lo Hor-

mander [17], Theorem 3.2.5 and Proposition 3.4.4, Kohn and Rossi

[29], 3.12 Proposition and 5.8 Theorem, and Andreotti and Vesentini

[6]. In particular, the estimate (*#) (ii) is a crucial one. In fact, the

estimate (**) (ii) implies that the graph norm Q(<p,(p) = (d(p,d(p) + (d*(p,

d*<p) + (<p, <p) is completely continuous on the space Bs>t(X, F) (see [22],

6. 2 Theorem and 6. 16 Proposition). In this connection, the graph norm

Q( , ) is always completely continuous on the space CJ>J(X,-F) by the



166 KENSHO TAKEGOSHI

ellipticity of the operator G ^d^ + ̂ d. By using this property of the

graph norm Q ( , ) , Kohn and Nirenberg proved boundary regularity of

the operator Q = 9$ + $9, which is, in their sense, strongly elliptic oper-

ator of second order, i.e. in the situation as above, if s^>l and t^q,

i) any element cp in Ns' l = NS
B' t f| N8

§'t C Ls> l ( X, F) , which is the com-

pletion of CQ'^X.F) by the norm associated -with the above {at}

and ds2, can be taken as an element of Cs>t(X,F)

ii) any element (p<^Cs>t(X,F) with 9^ = 0 and (p_LNs>t, there exists

an element c/xEC5'*"1 (X, F) with 90 = <^.

(For detailed descriptions, see [22] and [9] 3. 1. 11 Proposition and

3. 1. 15 Proposition.}

But in our situation, the quadratic form Y] Xj ^^r^9ifo _.'V>irDp~1

jj a y_1 '

is at most non-negative on every point of dX (compare with (*) (ii)) .

This obstruction can not be covered by only the curvature conditon of

bundles and actually, if in Proposition 2. 1 the boundary dX— {x^W\0(x)

— 0} is Levi-flat, local boundary regularity breaks down (see [27], §9,

Propagation of singularities for 9).

While, vanishing theorems of weak type as Theorem 2. 3, II) and

Corollary 2.4, II) were treated in [3], [4], [5] and [36] etc. In these

works, the completeness with respect to Kahler metrics was an important

ground for the proof. In the situation of Theorem 2. 3, II), the actual

situation is that a complete Kahler metric dff2 exists on X. do~2 is con-

structed as follows. Let d(x) be the distance from x^X to dX with

respect to the given Kahler metric ds2 on M and d is a C°°-function

near dX. Then inf ]T] — ~——>W/3 is bounded from below with

some constant, which may not be non-negative generally, near dX uni-

formly (see [8], Principal lemma). We extend d to a C°°-fimction d on

X without changing the original near dX in a suitable manner. If we

take a positive constant 1C large enough, d&2= ]Tj —-— _ d z t t d z & + fcdsz

is, again, a Kahler metric on X and since —logd is an exhaustion func-

tion on X and the gradient of d nowhere vanishes near dX, du~2 is a

complete Kahler metric on X (see [31], Proposition 1).
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Therefore, if dX is pseudoconvex and there exists a Kahler metric

on a neighborhood of dX, then there exists a complete hermitian metric

on X which is Kahler near dX. But, in our situation, the existence of

these complete metrics does not seem to be so useful. Because, the

boundedness from below of the eigenvalues of the curvature of jP with

respect to these complete metrics can not be easily verified. But pseudo-

convexity and the existence of complete Kahler metrics have a deep re-

lation. (See [36], [47], [49].)

In these points, our estimates in Section 2. 2 by using the formula

(1. 30) seem to be most appropriate.

§ 2a 40 A Stability Theorem for Spaces of Harmonic Forms

Through this section, we use notations in (2. 19) and Proposition

2.2, and set ourselves in the following situation:

i) There exists a positive constant d such that for any t (0<^<^(J)

Xt is a domain with pseudoconvex boundary dXt.

ii) There exist a Kahler metric do"2 on a neighborhood V of dX and

a holomorphic line bundle F—>M such that F is q- positive -wiih re-

spect to do~z on V.

Then, since we may assume that dXs^=. V, from Proposition 2. 2, weak

finite theorem holds for each t (0<^t<,d) , i.e., if t (0<^<^<J) and p~^>q,

then

i) L^ (Xt9 F&KJ ^R^f@N°t'
p®R^-t where N°t>

p = N*jf fl N ' j f ,

ii) dimc #;•*< + oo.

In this way, we obtain a family {A^?'p}0^t<5 of spaces of harmonic

forms parametrized by the defining function 0. By composing the follow-

ing natural holomorphisms,

restriction map r{j: L**(Xtl, F®Kit)-»U-f(Xt,, F®KX)

orthogonal projection Ht: L°-p(Xt,
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we obtain a homomorphism

We denote other two orthogonal projections by

Rt: L^(Xt,F®KM-)^R^

S? : L""(X,, F&KJ -»!?% (£><? and O^^tf) .

The main result of this section is the following stability theorem.

Theorem 2. 5. In the above situation, there exists a postive con-

stant (?* (S*<^d) such that for any t (0<C £<!<?#) and p^q, the homo-

morphism pi: Nl'p-*No'p is an isomorphism.

Remark 2. 4. If 0 is plurisubharmonic, a stronger result hold (see

Chapter III, Theorem 3. 5) . Our method, which will be used to prove

Theorem 2. 5, seems to be an interesting one in the theory of 0-operator

with boundary condition.

The remainder of this section is devoted to the proof of Theorem

2. 5. In the first place, we prove the following.

Proposition 2. 6. Under the circumstance mentioned at the be-

ginning of this section, there exist positive constants S0 ($Q<^8) and

C4 such that, for any t (0<^50),

(2.22) ll^

if pe£)J*n£>cLJ ' (X t > F®KM) and ( rS(^) ,A) 0 = 0 for all

Proof. Assume that the assertion is false. For any C, we can find

arbitrarily small t for which (2. 20) does not hold. If necessary, take

a subsequence and we may assume that there exist sequences {tn}n^i

i<Pn}-n^>i such that

tn>tn+l and tn-^Q as »-> + oo,
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ii) 9n e DJfn H D}^ CL°" (XlB, F®**)

(2.23) i|^i|?7^l and \\dtfff.\\*n, \\d?n<pn\\l^0 as »-> + oo ,

iii) (?>,A)o = 0 for all h e

From (2. 23) ii) , we may assume that {tpn} is weakly convergent

to some (p in L°'P(X, F(g)X,v) . On the other hand, if (l>s=C°'p-l(X, F

tf), we have

| (90, 0>)o| = lim ! (00, ^n)o! = lim | (9(n0, <?«)*n
T?-*+OO n-^-+oo

^ lim | (0, 9t*^n) tj + lim | (9tB0, (Pnj

^ lim ||0||(J9';>,,|k+ lim
77-»-f oo U-+ f oo

and

Hence, by Proposition 1. 6 ii) , we have that (p^Ify* cL°'? (X,

and 9<V = 0 in U'p~l (X, F®KM) and 9^ = 0 in L°'p+l (X, F®Kv) . So ^

is contained in jV§'p. But each ^n is orthogonal to Nl'p. Therefore we

obtain <p = Q. While, by the same argument in the proof of Proposition

1.11 I), we may assume that {(pn}n^i is strongly convergent to zero on

Kz. From (2.20) and (2.23) ii) , we have

l = \\<Pn\\l<Cz{\\dtl^

as ?i—. >-\-oo. This is a contradiction. Q.E.D.

Proof of Theorem 2.5. Step I. If p^g and 0<t<,d0, pi: N°t'
p

-*Nl'p is injective. If (p^N\'p and pl((p) -0, then rl(cp) ^R^. Hence

rl((p) is orthogonal to Nl'p. Therefore, from Proposition 2, 6 (2.22),

we have W|^C4{||9tf>||!+ ||9f ^||?> -0. Hence p = 0.

Step IT. There exists a positive constant d* ($*<^5o) such that

if P^Q and 0<t^8*, pi: NQ
t'

p-*Nl'p is surjective.

We remark that the following diagram is commutative: if ti^
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-

°Pll Pi'
N»>* i.e. p p - o p ; .

To see this, it suffices to show that HQ°rlz = H^j^z^Htz i.e. pj2

= ti*oHt2 on JVjft. Take peEJVjf*, then r$2 (<?) = £0or$2(<?) + H0or5- (?)

= RQorl>((p) -i-HQ(r^oRt2((p) + rS»oH t f(00) =^R0or^((p) + HQ 0^*0 H^(<p).

Hence pi* = plz°Htz on A/%. We come back to the beginning. Assume

that the assertion is false. From the injectivity of pi and the above

remark, it holds that

i) if £<£', po(Nl'p) is contained in pjj' (JVJ'/P) as a closed subspace,

ii) dimc pS (7V?'P) <dimc NS'P for 0<^ff0.

These imply that there exists a positive constant di such that if (X^t^S^

pt(N°t'
p) =pli(Nl>l

p) and dime pi1 (A^;p)<dimc JVS'P. Hence there exists

an element u^Q of N?'p such that if

(2. 24) (u, A) o = 0 for all

We shall show that

(«, 0)o = 0 for all

in this situation. This means tt = 0 and we arrive at a contradiction.

Take a sequence {tn}n^ such that ln<^8i, tn^>tn^l and ^n— >0 as n— > + oo

and extend the definition of u by setting u = 0 on M\X. We denote it

by «'. Then, from (2.24), we have for any element <p of NQg'Pn

Hence w' is orthogonal to Nj£ (w^l) and so u'^R°jl9 (n2>l) . From

Proposition 1. 10 ii) and Proposition 2. 6, there exists an element vn^L°'p+1

(Xtn, Ft&Kx) such that dfnvn = uf and |bn|k^Cl/2||^||o for any n^l. Hence

we may asume that {vn}n-^i is weakly convergent to some

(X,F®KX). If (l>€=C°'*(X,F®Kx), we have
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= lim | (dtn(f), V v ) t n ~ (9«B0, *OjriB
ft->+00

<; lim [ (0 9* t;7J) + lim | (9,0,

Hence v e. D°^ " ' C L°- " ' ( X, F^K^ . While, for any peC0°'?(X0, F<S>KM\

we have

(p, w)o = lim (p, w ) t n = lim (^, 9*^,,)^
71- » J- no 7' -» f 00

- lim (9tB^, vn) tn = (d(p, v)0 .
n-^ + o,

Hence $v = u. Since z;eD^p + 1, we have d*v = u (see Proposition 1.7

i i i ) ) . Therefore, if geA^S'p, we have (z^, g) 0= (9*^, g) 0 = (^, 9g)0 = 0.

This completes the proof of Theorem 2. 5.

Remark 2. 5. The author does not know whether we can derive

the finite dimensionality of Hp (Xt, 0 (F®Kx) ) for p^>q and some C>0

in the situation of this section. To see this, at least, we need some

approximation theorem of the Runge type (for example, see Proposition

3. 3 and the proof of Theorem 3. 6 in Chapter III) . But, at present, the

author can only prove the following approximation theorem of weak type.

Under the situation of this section, if p^q — 1, the closure of

the space U rt(N°fp) in L°'P(X, F(g)KM) coincides with the closed sub-
0<t<S0

 l

space N°gp in L°'P(X, F0K3f) , where 80 Is the positive constant taken

hi Proposition 2.6, i.e., for any £>0 and <p^N°jpciL?'p(X, F®KX) ,

there exist a positive constant S (8<^do) depending on (p and £, and

satisfying \\(p\x-(pf<e.

Proof. If there exists a non-zero element ti^N^paU'p (X, F(g)KM)

such that, for every t

(// , /)0 = 0 for any

then we shall show that
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(«, fir) o = 0 for any g e N% ' C If- ' (X,

This leads us to a contradiction. We set ur = u on X and 0 on M\X.

Then u' is contained in LQ>p(Xt, F®KN) and orthogonal to N°s'f for every

Hence u'^R0$9t = R°j*9t (in particular, when p = q — l, this

equality is secured by the closedness of the range R0£*-#) . Take a sequence

{tn} such that tn<^80 C^S^l) , 4>4-i and £n-»0 as 7z-H> + oo. Then, by

the same reason in Step II of the proof of Theorem 2. 5, there exists a

sequence {vj^i such that vn£EL°'p+1 (Xtn, F®KX), d?nvn = u' and \\vn\\tn

^C4
1/2\\u\\0 for every n^>l. Hence, by the similar manner in Step II of

the proof of Theorem 2.5, there exists an element v^L°'p+1 (X, F®KX)

satisfying d*v = u in L°'P(X, F®KX) . Therefore, if geN|'pcL°'?(X,

X), we have ( « , f f ) 0 = 0. Q.E.D.

Chapter III. Cohoinology Groups on Weakly

1-CompIete Manifolds

§ 3. I. Definitions and the Basic Estimate

Let X be a connected complex manifold of dimension n.

Definition 3. 1. A complex manifold X is said to be •weakly 1-

complele if there exists a C°°-exhausting plurisubharmonic function 0 on X.

0 is called an exhaustion function on X.

Remark 3. 1. If c is a non-critical value of 0, plurisubharmonicity

of 0 implies that Xc— {x^X\®(x) <^c} is a domain -with pseudoconvex

boundary dXc = {x <E X\ 0 (x) = c}.

In Sections 3. 1 and 3. 2, we set the following situation.

(3. 1) i) X is a weakly \-complete manifold -with respect to 0.

ii) There exists a Kdhler metric do~2 on X\K4.

iii) F—*X is a holomorphic line bundle on X which is q-positive

with respect to dffz on X\Kiy where K4 is a proper compact subset



REPRESENTATION THEOREM OF COHOMOLOGY 173

of X.

We choose compact subsets K" , K' and K of X such that K4

", K"dIntK' and K' dint K. We set

(3. 2) {a,}

the hermitian metric of F with respect to the coordinate cover {Ut}t<=.T

corresponding to the assumption. Let Kx be the canonical line bundle of

X. Then we define a hermitian metric ds2 on X and a hermitian metric

of FQKx as follows:

(3.3) i) ds2= ] g^dx
a,p = l

ii) ds* = dffs on

iii) £, = a«0« where

We set

i) 0f = (0f,a0) where 0 f ( t t£ = dttd$ log af ,

ii) Gt=(gita^.

For any open subset Y of X, let L0>P(Y, F(g)K_x) be the completion of

CS'P(V, F®KX) by the norm [| , ||F defined by (3.3). We sometimes

omit the symbol Y if it is clear. Linear operators 9, 9* (resp. dip) and

$ (resp. #p) are defined in the same way as in Chapter I, Section 1.2.

We fix non-critical values c0 and Ci of 0 such that Ci>£0 and cQ^>sup 0 (x) .
XSEK

We set

<ci} and dXf = {.re X|<5 (*)=<:,} for z = 0,l.

(3.4)

We take a C°°-increasing convex function X on ( — oo, oo) such that

-0 if t<^cQ

>0 if £>r0 .

We define hermitian metrics of F and F(x)Kx respectively as follows:

(3.5) i) am,, = aiexp (

ii) cm,t = amtigt

for every non-negative integer m.
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We set

®n..i= (0m,<.«0) where 6m,{,a^ = dad0log amii (m^>l) .

With respect to (3.3) i) and (3.5), we set

(?,<&)»= f <<P,<l>>~dV*j x i

\\<P\m=(<P,<P)m for any m^>0

where <^, 0>m - <p, 0>*-»«*>.

For any ?;z, the completion of CQ°'P (Xl9 F®KX") by the norm || ,

coincides with L°'p(Xly F(^KX) . We denote the adjoint operator of the

maximal closed extension d in L''' (Xly F^)KX) with respect to the inner

product ( , )TO by d*. Then from Proposition 1. 7 iv) , we have Dj-f = Dj'f

in L°'p(Xl9F(S)K^ for any ™:>1 and />^1.

Proposition 3. 1. There is a positive constant C4 such that

(3. 6) \\<P\\ll,x1\K<Ci{\\d<p\\l+ &]|2m-f l^lli}

if m^O, <p<=D1i*riDl'f and p^q.

Proof. From (1.34) and Proposition 1.6 iii) , it sufficies to show

that the estimate holds for any element of B°'p(Xlf F0KX) . Let % be

a C°°-function on X such that % = 1 on X\K and suppX^XXX". From

Remark 3. 1, we obtain the following inequality in the same way as in

the proof of Proposition 2. 1 I) .

(3.7) f <4 s £ om,t,f
JX\K' l>P-i = (di,-,dp-i) a,r=i

for

In the first place, we estimate the left hand side. Let {£m,a}i<a^n

(resp. {sa}i^a^n) be the eigenvalues of the matrix Gil&mii (resp. G^l®i}.

Since Gil®i<^Gli@miij by the minimum-maximum principle for the eigen-

values, we have Sm,n- g+i^£n-5^i and Sm>n^>en on X\K". Hence at any

point xQ^X\K\ we have the following similarly to the proof of Prop-
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osition 2. 1 II) : If p^q, then

-Dp

>(e»_,+J(j;,)+»inf(0,e.(j:,)) S I («»)«,J>,

where £ = _inf (en-9-i W +« inf (0, en (.r) ) ) >0.
^G^TI \imx"

Hence we have

(3.8)

^iA f <iE II o».i,*
JXA-K' J5p-: o:,r=l

Next, repeating the discussion of (2. 17) in the proof of Proposition

2. 1 I) , we can estimate the right hand side of (3. 7) in the following

way:

(3. 9)

where Cj is a positive constant and independent of m (see (2. 18) ) .

Still, in (3.9), we used || , \\m,K=\\ , |U for any m^l (see (3.4)).

From (3. 7) (3. 8) and (3. 9) , we obtain the required estimate (3. 6)

for elements of ff'p(Xl9 F®Kx) . Q.E.D.

§ 3e 2» Finitenens, Isomorphic and Representation Theorems

Let our situation be the same as in Section 3. 1. From (3. 1) and

Remark 3.1, for any non-critical value c of 0, Xc= {x<^X\®(x) <^c} and

satisfy the conditions of Theorem 2. 3 I) and so we have

(3. 10) L°'* (Xe>

and

dime N°c'
 p< -f oo , for

Proposition 3. 28 There exist a positive constant C5 and an
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integer mQ such that for any m^m^ and p^q

(3.11) IMIL^C3{||« + \\Qlv\\l}

for <p^D>^^ff^ClL^(Xl,F®Kx), and

(V, h) Xa = 0 for all h e N^'d If- ' (X0,

Proof. Assume that the assertion were false. There would be a

sequence {<pm} such that

(3.12) i) p.eDjTW,

ii) ||pX = l and ||8 |̂|J., ||8*^1||,-»0 as -> + oo

and

iii) (P»,AU=0 for all h^NQ
e

Let Qm = e~ml^(pm, then we have

(3.13) i) $gm = e-m^d*<pm,

ii) ||*(7«||-»=||»S^IU.

By (3. 12), we have

Therefore, choosing a subsequence if necessary, we may assume that

{gm} has a weak limit g in L°'p (X^ F®KX) . From (3.12) ii) and

(3. 13) ii) , we have

(3. 14) lim ||#gw||^ lim ||#gm||_m= lim ||9J
m-» + oo m-> + oo m-» + oo

On the other hand, for every £>0,

f
J{x

and so we have

It follows that I <^TO, Qm^dV tends to zero and hence
J{*eJr|0(:p)^e0 + 8}

gm->0 almost everywhere in {x^ X\@ (x) ^c0 + s} • Hence g = 0 on {x

for every £>0. Combining this with (3.14), we have
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(3. 15) $0 = 0 and supp g£X0 .

By Proposition 1.6 i) , we have

(3.16) 9*(0k)=0 .

By (3.12) ii), we have

(3.17) 5 (gU. )=0 .

From (3.12) Hi) , (3.16) and (3.17), we have

(3.18) g-0 .

Since 9*=9jj[ on XQ for every m, by the same argument as in the

proof of Proposition 1. 11 I), we may assume that {gm} converges strongly

on K. Since gm = (pm on K, from (3.6), (3.12) ii) and (3.18), we have

as m— »-foo. This is a contradiction. Q.E.D.

Proposition 3.3, If 0eL°'p((A;, F(g)Xx)

g — 1, £/z£?z /or any £>0, there exists an element (/j of LQ'p(Xly

such that ||$MA-O — 0||*0<

. It suffices to show that if u^L^ (X,, F®KX} and

(3.19) t/»*. = 0

for any f^L°'p(Xl9F^Kx) with 9/ = 0, then we have

(3.20) (0,«)T. = 0

for g^L°'p(XQ,F®Kx) with 9g = 0.

We extend « by setting ?/ = 0 on X\X0. We denote it by «7. Thens

from (3. 19), u' is orthogonal to Nl'pcL°'p(Xl9 F®KX) . Hence we have

I- for any 7?z2>0. While Proposition 3. 1 implies that R°~^ is closed

for every p^q — 'L and 7/7 ̂ >0. Hence from Proposition 1. 10 ii) and Prop-

osition 3.2, for any ;;z^>w0, there exists an element vm^.D^f+l such that

(3.21) u'=d*vm and ||^|2m^C5|H|^ .

We set

wm ~ e~mK{^vm for m>mQ .
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Then we have

(3.22) i) ||«Uf^CiHli., ii)

Hence {wm} has a subsequence which is weakly convergent to some

w in L°'P+1(X19 F®Kx). From (3.22), we have

(3.23) $-w = u' and supp tv^XQ.

By Proposition 1.6 i), we have

(3.24) 9"*(w|x.)=«.

Therefore, if g^U'p(Xls,F^,Kx) with dg = 0, then (u,g)x,=

(0* (w|x.), ff)x. = (w|x., 0g)x. = 0. Q.E.D.

For any real number c with c>sup(5(x), we set

where Xc= ^eX|<»(a:)<4 and U-'(X., F®KX) ^R^,

If c is a non-critical value of 0, from (3. 10) , we have

(3. 25) H°<» (Xe, F<8)Kj = N^/R«&

and

dim H°* p (Xc, F®KX) < + oo for

Proposition 3. 4. T/z^ restriction homomorphism

r: H*'(

z*5 aw isomorphism for p^>q.

Proof. Step L The homomorphism r: H°'p(Xly F&K*)

(X0s F®Kx) is injective.

Take an element / in L°'p(Xlt F®Kx) such that 8/ = 0 and f = dg

in L°'P(X0, F®Kx) for some geL0-31"1^, F®KX) . Then / satisfies the

relation (/, h)Xa = 0 for all h(=NQ
c'0

p. Hence, from Proposition 1.10 i)

and Proposition 3.2, there exists an element g in L0'*'1^^ F®KX) such

that dg = f in L°>p(Xl9
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Step IL The homomorphism r: H°'p(Xl9

is surjective.

From Proposition 3.3, Im r is dense in H°'P(XQ, F®KX) . Since r

is injective and H°'P(XQ, F®Kx) is a finite dimensional vector space in

view of (3.25), r is surjective. Q.E.D.

In particular, we obtain the following theorem from (3. 25) and

Proposition 3. 4.

Theorem 3, 59 (Compare zvith Theorem 2. 5.) The homomor-

phism

(f<\: M\'^>Nl>,'

is an isomorphism

Theorem 3.6 (Finiteness Theorem). The restriction homomor-

phism

r: H' (X, 0 (F®KX) ) -»//"• ' (X0, F®KX)

is an isomorphism and so

Proof. By Sard's theorem, we can choose a sequence {cv}^z of real

numbers such that

(3. 26) i) ct>ci ,

ii) cv+i^>Cy and cy— > + °° as y— * i- oo>

iii) The boundary dXc^ of {x^X\® (x) <Lcv} is smooth for any

We set

<^} for y^2.

For any pair (^,,4.!, cv) (v^l), we can apply Proposition 3.2 and

so Proposition 3. 3 holds, i.e., if v^ft and pl>q — l9 the restriction homo-

morphism
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(3.27) re?1: N^^-^Nl'? has a dense image with respect to the norm

|| where JV

Moreover, from Proposition 3.4, we have the following: if

and P^q, the restriction homomorphism

(3. 28) rj;« : H*»(X,+1, F®Kj -».?**•* (X,, F&KJ

is an isomorphism.

Let Li£(X, Ft&Kx) be the set of the locally square integrable (0, £)

forms on X with values in F(3)KX. Then, there is a natural isomor-

phism such that for any p^>l and open subset Y of X,

(3.29) Jf'(

(8)^)i/=dg for some g e L?^1 (3T, F®KZ) } '

After these preparations, we come back to the proof of Theorem 3. 6.

Step L The homomorphism r: HP(X,

is injective (p^>q).

In view of (3.29), it suffices to show that if we take an element

c(X9F^)Kx) with 9/ = 0 and f = dg0' for some g^L^~l(X^

9 there exists an element g G Lig'1 (X, F®K*) such that dg = f.

We set

» = x , o r every v .

Then from (3.28), there exists g'v ^LQ'p~l(Xv, F®KX} such that

Qq'v = /» for every

Let us show that we can choose, by induction, a sequence

so that

(3.30) i) g.eLt"-1(X,,F<^Kz')t

ii) 9g,=f.,

iii)
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We set

Suppose g0, —,g»-i are chosen. Then gf
y |^_1-g,_1

(X9-l9 F®Kx) and 9(0,!^., — g»-i) =0. Therefore, by (3.27) there ex-

ists g"^L°'p(Xv,F®Kx) such that ||gi b^-^-i-^Jk^^ and

^

6>g":=0. We set gv = g'v—g". Then It is clear that gy has the required

properties (3.30). Hence we have obtained the sequence {gv}^o- From

(3.30), for any v, {Qp}p& converges with respect to the norm || , ||̂ ,

and clearly the limit is the same as the restriction of lim gfl for any
fei

^^V + l. Thus we can define an element g of Lj^'1 (X, F&)Kx) by

g= lim gy. For every v2>l,

, = g n

= p n

Since $ is a closed operator in L°'P~1(XVJ .F(X)XY) for every v^>l, we

have for any y^O

Hence we have / = 9g in 1%£(X,

Step II. The homomorphism r : Hp (X, 0 (F^K*) ) ->H°' p (XGy

is surjective.

In the first place, we prove the following.

(3. 31) The restriction map r: {/

a dense image (p^>q — l).

Take an element 0GEA7§>
0

P. From (3.27), we can choose a sequence

v^o such that for any

(3.32) i)

ii)

iii)
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By (3.32) iii) , for any v, {(pv}v^i converges with respect to the

norm || , H^. Hence, by the same argument as in Step I, we can define

an element <p of Lj£ (X, F®KZ) with dcp = 0. Then it is clear that

Il0>k-0ll*.<e- This completes the proof of (3.31). Next, by (3.29)

and (3.31), we see that the image of r is dense in H°'P(X0, F®KX) .

Since r is injective and H°'P(XQ, F§§Kx) is finite dimensional vector space,

r is surjective. Q.E.D.

Theorem 3,7 (Isomorphic Theorem). The restriction homo-

morphism

r: H> (X, 0 (F®KX) ) -»/P (Xc, 0

is an isomorphism for p^q, where c>sup$(.r).

Proof, We may assume c^>c0. Then we have the following fac-

torization :

Since, by Theorem 3. 6, the homomorphism r± is an isomorphism, rz

is injective. Similarly since the homomorphism rs is an isomorphism, r2

is surjective. Q.E.D.

Theorem 3. 8 (Representation Theorem) . There is a natural

isomorphism

~*NQ
c'

p for

where c is a non-critical value of 0 with c^> sup 0 (x) .

Proof. For any cf with c'>c, from Theorems 3. 6 and 3. 7, we

obtain isomorphisms r± and rz

i , 2
/ P« \

H> (Xc, 0 (F®Kj ) ...... »H** (Xe,
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We define a morphism p'e : H
P(XC, 0 (F&KJ) ->JJ°'P(XC, F®KZ) by

Pc=^20^"f1- It is clear that p'c is well defined and does not depend on

the choice of cf . p'c is an isomorphism from H p (Xc, 0 ( F® K%) ) to

H°'P(XC, F(£)Kx). The composition of p£ and an isomorphism H°'p(XCi

F®Kx) ^N°c'
p gives an isomorphism pc: H

p (Xc, 0 (F®KX)) -*N°e'
p.

Q.E.D.

In particular for <7 = 1, we obtain the following,

Theorem 3« 9. Let X be a weakly I -complete manifold with

reaspect to an exhaustion function 0 and let F—*X be a holomorphic

line bundle -which is positive on X\K. Then with respect to the

hermitian metric {at} of F corresponding to the assumption and the

hermitian metric dsz on X induced by the curvature of {ai} , it holds

that, for any two non-critical value c and cf -with c'^>c^> sup $(x)
x<EK

and /?;>!,

1) L°'P(XC, F®KZ) =RH*®N»'P®R^ and dim^ N°c'*< + oo?

2) the homo morphism pi': Nl'^~>Nl'p is isomorphic,

3) dimc H* (X, 0 (F®KZ) )< + oo ,

4) the restriction homomorphism

r: H> (X, 0 (F®KX) ) -»H' (A"e, C

is isomorphic,

5) there is an isomorphism

pc : Hp (Xc, 0

Remark 3. 2. In Theorem 3. 9, 3) and 4) were proved by T. Ohsawa

in [34]. He reduced these problems to the ^-operator theory without

boundary conditions.

§ 3* 3. Vanishing Theorems

Theorem 3. 10. Let X be a connected -weakly \-complete Kdhler

manifold and let F->X be a holomorphic line bundle on X which is

q-semi-positive on X and q-posilive on X\K with respect to the given
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Kdhler metric, -where K is aproper compact subset. Then

H'(X,0(F®Kx-))=0 for p^q.

Proof. For a suitable non-critical value c of the exhaustion func-

tion 0 on X, we obtain, from Theorems 3. 7 and 3. 8, the isomorphism

Hp(XyO(F®Kx)}^Nl'p for £>g. But, from the assumption, N°c'
p is

the null space (see the proof of Proposition 1.11 II)). This completes

the proof.

Remark 3. 3. Any connected compact complex manifold is weakly

1-complete, any real constant function being an exhaustion function,

Therefore we obtain the following.

Let X be a connected compact complex Kdhler manifold and let

F-*X be q- semi-positive on X and q-positive at least one point of X

with respect to the given Kdhler metric. Then

H>(X,0(F®KJ)=0 for p^q.

Remark 3. 4. With respect to the difference between weakly 1-

completeness and pseudoconvexity, Diedrich and Fornaess showed that

there are domains with pseudoconvex boundaries $ on C71 such that J2

does not have a Stein neighborhood basis (see [48]). In this situation,

if the defining function 0 of @ is plurisubharmonic on a neighborhood

W of da, domains {fir = fi U {x<EE W\(D (x)<r}}r>0 (9fl= {xe W\® (x)

= 0}) consist of a Stein basis of Q since any domain with pseudoconvex

boundary on C1" is Stein.

Note added. As mentioned in Remark 2.3, in the situation of Chapters II and
III, the local boundary regularity does not always hold. But recently the author has
shown that the global boundary regularity holds in the following sense if according to
the degree of the required boundary regularity, we take the tensor product of the line
bundle F, which is positive on a neighborhood of dX, sufficiently many times, we can
solve the Lz — 9-Neumann problem satisfying the required boundary regularity. As a
consequence of this regularization theorem, HP (XC) 0 (F®m®Kx)) can be represented by
the space of harmonic forms being Cfc-class (05^&<°o) up to dXc if m is large enough.
See a forthcoming paper "Global regularity and spectra of Laplace-Beltrami operators
on pseudoconvex domains".
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