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Introduction

Vanishing, finiteness and harmonic representation of cohomology on

complex manifolds are one of the most interesting problems in analytic
geometry (for example, see [2], [5], [9], [13], [19], [20], [38], [45]),

and here we are concerned especially with cohomology on noncompact

complex manifolds. Namely, in this paper, we deal with cohomology

groups with coefficients in a locally free sheaf of rank one on domains

with pseudoconvex boundaries and weakly 1-complete manifolds. We say
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that a complex manifold X is weakly l-complete if there exists a C™-
exhausting plurisubharmonic function on X. S. Nakano pointed out the
importance of the concept in [31] (or [11]) by solving the inverse
problem of monoidal transformations and the main point was some vanish-
ing theorem of cohomology groups for positive line bundles (see [32],
[33]). Then the theorem was generalized in various aspects (see [1],
[12], [37], [40], [41], [42], [43], [44]). Recently, in [34], [35] and
[37] T. Ohsawa showed the finiteness and isomorphic theorems of coho-
mology groups for line bundles on weakly l-complete manifolds which
are positive outside compact subsets. In these articles, the main method
was the 0-operator theory without boundary condition, which was origi-
nated by Andreotti and Vesentini’s works [3], [4] and [56], while in
this paper, we want to make use of the 8-operator theory with boundary
condition, which was studied by Kohn and Hérmander (for example, see
[9], [17], [22], [23], [24], etc.). But of course we have to recreate
from these authors because of weak pseudoconvexity of our domain.
Hence we present, in Chapter I, some calculation i.e. a complex tensor
calculus for Kihler manifolds with boundary. Although it is more or less
a routine calculation, it is worth to do so because, in the opinion of
the author, the complex tensor calculus is one of the important methods
to treat the cohomology groups from differential geometric view point.
The result is a simple generalization of a formula for compact complex
Kihler manifolds due to K. Kodaira [20] and is more or less known.
The main purpose of this paper is to make Ohsawa’s results more
exact in the following sense. When we let X be a weakly 1-complete
manifold with a C”-exhausting plurisubharmonic function @ on X, we
shall show that for a line bundle B on X which is positive outside a
compact subset K of X, the p-th cohomology group H?(X., O (BRKy))
(p==1) is finite dimensional and represented by the space of harmonic
forms which are obtained as the harmonic part of B Ky-valued differ-
ential forms of type (0, p) being smooth up to the boundary 89X, (see
Theorem 3.9). Here we write X.={reX|0(z)<c} and 0X,={reX
|@ (x) =c} for some non-critical value ¢ of @ with ¢>sup®@(x) and Ky
is the canonical line bundle of X. This seems to be t?leeK analogy of the

case of compact or g-convex complex manifolds (see [9], [17], [19]).
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Chapter 1. Differential Analysis

on Complex Manifolds and Functional Analysis

§1.1. A Complex Tensor Calculus for
Kihler Manifolds with Boundary

Let M be an n-dimensional complex manifold and let X be a rela-
tively compact domain on M with smooth boundary 0X. In this paper,
this means that there exist a neighborhood W of 0X and a real valued
function @ of class C” on W such that i) XN W= {xeW|0(x) <0},
ii) the gradient of @ does not vanish on 0X. From now on, we assume
that M is provided with a kidhler metric ds®. Let {U;} be a coordinate

cover of M and let (=i, ---,=}) be local coordinates on U;. We use the

notation (?,,,J,zi and 0,-,5:—0— (We sometimes omit ¢ for simplicity.)
0=% 0%
We set
N n
(1.1 ds'= 2 §iapdzidz} .
a,f=1

The Kihler form is defined by
Q=v=1 3 g,.dzi \NdZ! .
a,f=1

With respect to this metric, we can define a connection {w:}, w;

= (w;,5) for the holomorphic tangent bundle 7'M on M :
(1.2)  oyf= YT dsl where ['f= 21 0580, ar -
T= =

The Riemann curvature tensor is defined by
(1.3) R =05I"55

and also we set

(1.4) R zen= ﬂz_lgi,;u—zRi,Zu .
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As for the conjugates of the above, we define
(1-5) T¢,§f=l¥,‘§r, Ri,guz=Ri,'§n and Ri,aﬁvlzRi,ﬁﬁH-

The Ricci curvature is defined by
(1- 6) Ri,n = ;Rs,gu .

Since ds® is a Kahler metric, in the same manner as in [21], p. 109,

Theorem 5.1 and p. 117, Proposition 6.2, we have

(1' 7) rt,Z;—:ri,?,s
and
(1- 8) Ri,a,sn =Rt,au,s=Rz,mm =Ri,ua,s .

As in [21], p.111-112 and p. 118, Proposition 6.4, it is easily
verified that

1.9 g ri,2a=aa log g,
and
(1.10) R;,;,=0,0, log g; where ¢,=det(g;.z).

Let C=(TM) (resp. C*(TM)) be the sheaf of germs of the C*-
sections of the holomorphic tangent bundle 7'M (resp. conjugate tangent
bundle TM) and let I'(M,C~(TM)) (resp. I'(M,C=(TM))) be the
space of global sections of C*(TM) (resp. C*(TM)).

We define covariant differentiation V., Vz induced by (2) on I ({4,
C*(TM)) and I'(M,C=(TM)) as follows:

Vi i§5=0,6"+ glri.dlﬁsiﬁ L < 0

for £=3180 )ef(M,chM)),
022

a=1
Vi,XEsa =aifia
(1.11)
Vi, 0% =07 . 3
for 7=317" (—) eI (M, C~(TH)).

Vi, 175 =0:7"+ ;‘1 Fi,?ﬁﬂiﬁ 0z

Then we remark that

1.12) Viidieg=0, Vi f*=0.
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For any open subset Y of M, let C”?(Y) be the space of differ-
ential forms of type (p,q) and of class C” on Y and let C¥'?(Y) be the
space of the forms in C??(Y) with compact supports. Let CP%(X) be
the image of the restriction mapping from C*?(M) to CP?(X). We
denote the length of the gradient of @ with respect to (1.1) by |grad @],
then |grad @)= il 9:#%0,0050 and, from the hypothesis, we may assume
that |grad @|>Oa'gr—1 a neighborhood W of 0X. We define a function f
of class C* on W by

f=0/|grad®] on W.
Then we obtain

i) f=0 on 0X,
(1.13) il) df=|grad®|7'dd on 0X,
iii) |grad fl=1 on W.

We separate z¢ into the real and imaginary parts: 2; =22+ v — 122

(@=1,2,-,m) and set Opu= 2, (A=1,2,,20). Let dV be the
X

volume element of M with respect to (1.1). Then we have, by direct

calculations,

(1. 14) AV =N @/n\=2"qd NN - Ndzi" .

Let dS be the volume element of the real differential manifold 90X
of real dimension 2#—1. Since (1.13) implies that grad f is the outward

unit normal on 0X, we have

(1.15) dV=dfN\dS on 0X.
0
0=f
of X. Then ivi,a%“-!-znlvmt[)iﬁ is called the divergence of the vector
field § = g%, ¢} .

n
We consider a vector field X ¢;*
a=1

4 2%5% on a neighborhood
= 0%

Lemma 1.1. We have

6’“ and 6ﬁ=aaa on U; (@=1,2,---, 7).

2; 25

where 0,=
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Proof. From (1.13) and (1.15), Green’s formula may be written

in the following form:

j ai,,,u%;‘dV=~f % (8, + 0, log g,) DAV
xXNU; xNU;

+ j D0, o fdS
8XNU;

for any 2= Cy°(U;), veC*®(X) and k=1, 2,---, 2n.
Since 04,6 =0420-1+ «/——mm and 65,E=05,2a_1—djai,2a, we have

r

D f 04,008dV = — | 4 (04a+ 04 log g vdV
XNU; U;

Jxn

r

+ uT0;,,/dS

JoxNU;

r

v U (ai,ﬁ-{-@i,ﬂ log g,;)'vdV
(AL

r

+ Uuﬁ(?i,gde

Jaxn

for any ueCy°(U;), veC**(X) and a,B8=1,2, -, n.

Let {0:}:1ci<m be a family of C”-functions on M such that supp o;
CU, 0<0:<1 and Y oi=1 on X. We set ¢i*=p04" and ¢i? = 0.°
respectively. Replacing # and v by ¢;® and 1 in (1.17) i), we have

f Ooi™+Oua log gtV = [ 0,1 dsS .
XNU; XNU;
While,

23 O+ 0y log 9i)

=2 0"+ 3 G Tuiee (Use (1.9)

:g‘:l (at,a(b;a +’§1 ri,gr(b:T)
=i Vi,ai®. (Use (1.11).)
a=1

Therefore we have

[ Vo i) dV = j (3 4190, f) dS.
x aXNU; a=1

nNU; a=1
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For ¢:®, we have similarly

[, Oavawinav= [ 0.s0ds .
XNU; B=1 dXNU; B=1

n o n B _ —
Using ¢*=>" 0z OF YV ia=2] 0z V,s and Y p;=1 on X, we have the
=1 024 =192 =
=¥ =)

conclusion.

Remark 1.1. 1If ds* is a hermitian metric on M which is Kahler
on a neighborhood U of 0X and x is a C”-function on MM whose support
is contained in U, then it is clear that the equation (1.16) holds for
1§ = {xg®, x?} e

@16 [ OVl + B V)V

= [, Cwvur+ L a05)as.

Let F be a holomorphic line bundle over M and suppose that F' is
defined by the system of transition functions {fj;} with respect to the
coordinate cover {U;}ic;. A hermitian metric on F with respect to this
covering is given by the system of positive C®-functions {a;}, each de-
fined on U, such that a;-a;'=|fy|> on U;NU;. (In this paper, we use
the notation of a system of metric along the fibres in the sense of

Kodaira [20], p. 1268, (1)). From now on, we fix a hermitian metric
of F

(1.18) {ci}.

With respect to the covering {U;}:c; a hermitian inner product {, >
of F is expressed by the metric {c;} i.e. for C”-sections &= {§;} and
7= {7} of F on M.

&, )= ci'&.7; .

With respect to this metric, we can define a connection {0;} of F

as follows:
(1. 19) 0,=3" —0, log cidzt .
a=1

The curvature tensor of the above connection is defined by
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(1 20) ai,ag = 6’,,,05 log Ci.

The canonical line bundle K of M is defined by the system of transi-

tion functions

1 . n
Ku=1{Kx,} where Km,=g_%&;% on U:.NU,.
U

We see that

|Ku,’=9:97" on U;NU,
Hence
1.21) {g:

determines a metric of Kjy.

Let C**(M, F) (resp. C*%(X, F)) be the space of F-valued differ-
ential forms of type (p,q) and of class C” on M (resp. on X) and let
C?1(X,F) be the image of the restriction map from C*%(M,F) to
CrY(X,F). Let Cy¢(M,F) (resp. Cy%(X, F)) be the space of the forms
in C**(M, F) (resp. C*%(X, F)) with compact supports. It is clear that
CP¢(X, F) is a subspace of C?%(X, F). We express ¢ = {¢;} €C?*(M, F)

as ¢i=—1~ Y X Cranerap b8 dZEN s NdZEP NDEDN - N\ dED

p' q! @y, ey Bl By
For p=C?*(M, F), we set
@SB b by = D95 'giap‘:pgiilﬁl' . 'giaqﬂq¢i,c,, ey Cp gy een, By *
For simplicity, we write
%K"B" =3 gincpgiﬁqaqqoi,Cpﬁq ,

where A,= (a,, -, ), B,= (B, -, By, Cp=(c1, >+, ¢p) and D,= (d,,
ey dy).
We set

o, 0 =ci" 2 Gia,m0it? %
45,8q

where A,= (ay,"**, @) and B;= (#y,-+, 8y) run through the sets of multi-
indices with 1<a, <a,<,:-+, <ap<n and 1<p3,<B,<, -+, <B,<n respec-

tively. Then we have

o A=<, PpdV



REPRESENTATION THEOREM OF COHOMOLOGY 139
where % is the star operator with respect to the metric ds*

For ¢ and ¢C?%(X, F), we define

0.9 = [ <o 0av.

For any real valued C*-function ¥ on M, we define

((ﬂ, gb) = j;’<¢’ ¢>!’dV b

where (@, ¢or=<@, Ppe".
We set

lel?= (o, 9)
(1. 22)
lelly= (o, ®)r.

We have the operator 9: C*%(X, F) »C?*" (X, F) defined by (0¢);
=0¢;. Then formal adjoint operators © and ¥y are defined by

0p, 9) = (o, 99)

(5¢, D e= (¢, V)~
for any ¢ CP%(X, F) and ¢=Cpr' (X, F).

(1.23)

Lemma 1.2. If p=C?** (X, F) and ¢=CP"* (X, F), we have
1) (50’ ¢)V:(¢’ 0?‘0)!’

+ I (ciexp (g2 ¢i,c,ﬁ,gi6’E”gir"D‘(Z ¢i,dEquQi> as,
ax a=1 0=z7
i) (Pe)a,5,= — HZ} (0p+05log(ci'e™9:)) ¢1,%4,,5,

=1

for any real valued C”-function ¥ on M.

Remark 1.2. In this lemma, ds® need not be a Kihler metric.

Proof. Take elements z and v of C*°(X, F). Applying a family
of C”-functions {0;} on M which was taken as in the proof of Lemma

1.1, to # and v, we have the following formula similar to (1.17):

(1. 24) j c0,u7 e ¥ dV =
X



140 KENSHO TAKEGOSHI

- Lc—lu (o7 0. Tog (66 g))v dV + .[ _cuD o0, f dS
@

for any real valued C”-function ¥ on M and a=1,2, ---,n. Here we
omitted ¢ for simplicity and, in this proof, we do so. For an element

@ of C**(X,F), ¢ and 8¢ are represented as
=L S g adEt NS - NdE
qgle e TR
and

0=

(¢ +1)’8 Z ( (0)‘41)'30 dzAP/\dfsu/\"‘/\dfﬁ“

where A4,=(ay, -+, ®,) and dz'?=dz* /- Adz®" and so on.
— q
Since (09) 4,, 5,7, =,‘Z=‘{) (=1)***05,04,, 50, 51, 5 We have

-1 Z Z (5(0)Apygwqu‘"”“"e"TZ"gd.r‘/\---/\dxz"

(O(ﬂ, ¢) 7= ( + 1)' A, Beo

= | D D 00, p (e T A\ N
(by (1.24))

= qu Z Z ¢Apaqaﬂ(¢'“"3"0~l e ' dx' N\ Ndx™

+ [ Cee"ah) = X gu, 5, (0 07250, F) dS
ox 45,8, =1

J

= (g, %) v

r

+ | (ce®aD ™ 3 a5, 35 900207 P (3 ¢P0,0,050)dS.
ax 45,8, [ a=1

J

In the last line, the equality of the first term holds by definition.
Hence we have i) and ii). Q.E.D.

From now on, we consider the following subspace of C*?(X, F).
(1. 25) B*(X,F) ={peC? (X, F)| X ¢4,5,.,04,.0 =0
a=1

on 0X for every multi-index C, and D,,}.

Lemma 1.3. If ¢9=C?*(X,F) and ¢cB**'(X,F), we have
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@, P) v = (@, Ovd) ¢ for any real valued C”-function ¥ on M.

Proof. Since df and dO are proportional on 0X, our lemma follows

immediately from Lemma 1. 2. Q.E.D.

Let ,,(M, F) (resp. Ip(M)) be the space of F-valued (resp.
scalar) tensor fields of type (p,q). The connections (1.2) and (1.19)
give rise to covariant differentiations V., VY of type (1,0) and Vj of
type (0,1) in 9, (M, F) and I, (M) as follows:

1) V':x a(pi, Ay, &g, Bryery Eq = af: “¢i: &y, &p,y B,y Bq

o~

DM

20 i X iy, g, B B

t=1rt=1
(1. 26)
11) Vi, ﬁqoi,ah...,ap, Bu B = 0,, E¢iy“1. e, @y Brees, By
q n . i
- tgl r;i Iy ga % Piyy, e gy Bryoony Ty oy By
for every oI, (M).
i) Vi(,czz(ﬂi,al, v, @py B, By = Vi, a¢i,ah v, @py By, Bg
— ai,a log ¢; % Pt,a, -, epy Bry s By
1.27)
11) Vi, BPi,ay, e p, Bry By — 01, 7P a1, @01 B1, o Bg
q n : ¢
- 4
;g r;} I'i88 X Qiyay, o, By, b By

for every ¢ &9, (M, F).

Then, by using the term of covariant differentiations, we can describe
the operators 0, ¥ as follows (see [21], p.110, Proposition 5.2 and
p. 122, Proposition 6.7):

— q
a(ﬂi,cp,ia,...,iq :,a2=0 ( - 1) "+"V,-,a;¢¢,gp,im...,im -,y
(1. 28)

n
= Bagy (©) -
ﬁ(ﬂt.b‘p.dh---,dq-: - « ﬂ=1gi Vi,aqat, Eyc'p:dx,"‘,dq—x

for any 9T, (M, F).
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Lemma 1.4. For an element ¢={p;p,} (D= (dy, -, dp)) E
Top(M, F), we set

= 21 cflvinf¢i,ﬁbp_,¢irprl (8:.1’ 2 . 1)
T=

= 3};‘1 Cz_lVi(,c)ﬁ%,ﬁﬁ,,.,%TD"‘ (r=1,2, -, %)

then §=1{&°} and 7= {9} are vector fields on M.
Proof. We recall the following relations:

y G='(Gh)oi(55). ov=(F)e ()

(1.29) where G;=(9;,.5) and Gj'= (¢;°%)

n

i) Vt,ﬁ-Z(Si")Vj,z, v, Z:<azf>v<°> (see [21], p.108).

We prove the case p=2. The proofs of other cases are similar. We set

=16 (2] B G ereui (2) o v

h=1 k=1 az,
Since {@:, "} (resp. {@:*}) is a C™-section of FQTMRTM* (resp. F
QRTMRTM), we have
h
qpi' ~ fij Z az; az_,

=, 9z, 02! PWiZ

on UiﬂUj.

k2 azi 02,
Jus ;1 0z5 0=5

Then, using (1.29), we have

—i( 0
§i= g Vi,ﬁ(oi,ni(oi“ <5é§>

=it fult 5 (3 2509,0( 222 00, )

j
=1 02F @e 025 0287

(55 057 (2 0 o)

=< B (35 S ) (G oa s ) (B o )
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—— 0
= \% ra oL = 5 o
;ﬂ 7893, a¥; 97, i

Hence we have §;=§; on U;(\ U, Therefore &= {&f} is a vector field
on M. We set

£t -3 (Bersrana) (2

> on U,.

Then we have 7:=%; on U;N U, and so 7= {7} is a vector field
on M, Q.E.D.

Proposition 1.5. We have

(1.30)  [dp]*+ [ 9¢l*

— Lx((:i[grad op-t 3 > 0,0,00,%5, @77dS

Dy.y=(dy,,8p-1) B,7=1
4,<d< <dp -1

NP0l [ ot 33 05— RiDPuas, b7V

Dp-y=(8y,~,dp-1) @,7=1
a,<8,<0- <dp -1

for pe B**(X, F) (p=1), where 6i,?=/§ 9:°60,, 5;, RE= Z 9 *R; ;5 and

n

“V(P“Z j i Z Z gigrvﬁ(oi,ﬁpvf%p’dV.
x D,,=(<d.,.,.- dp) B7=1

Proof. For an element ¢ of B*?(X, F), we set

E={§= 2 Ci—lvi,f%,ﬁﬁ,,.,%rb” §F=0:8=1,2,---,n}

T
Dy-y=(dy,~,8p-y)

T={r=0,7"= X Vi o, 0/ 7=1,2,, m}.
Dp-1=(dh"‘>dp~x)
Then, by Lemma 1. 4, € and 7 are vector fields on a neighborhood of
X. We calculate the divergences of € and 7.

SV =3 V(e 3 Vi0fs, 007)
g=1 B=1 7, Dp-y

;‘ (Vg—0glog ¢)V;01,%5,. i P
Dop-

P-1

Il

+eit 32 V0,5,V api 02
T

Dp-,y
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=ci’ ; ViVP0.,%5, 0777 (Use VP =V,—0,logc..)

Dpey
+ ci_l ; quoiyﬁﬁrlvﬁqpirpp—l ......... *>
Dpy
+ 0;1 ;T [Vg:)y Vf]qoi;ﬁﬁp-x¢i.rnp‘l """""" **) *
Dy

We calculate the commutator. Since V> =V;—0;logc;, for every
D,= (d,,-+, d;), we have

V&, V:10i5,= Ve, Vi 1010, + 006015, .
Using (1.26), we have

y:d n ¥
ViV, =araﬁ¢’i,b, - ﬂ:l ‘; Fi,;z,,a;sfﬂt.i..---,%,- 4
and
Y4 n . u
VsV:0i,5,=040:0:,5,— E f; 06l 72,043, 4,1,
» = . /i
- ;1 Eri,ﬁ"@ﬁ%,a, f,edp
Hence
p n _ ”
[Ve Vileys,=— ,,Z=1 ; R.5,6:00,3,, k- (Use (1.3).)
Therefore we have
© p n . “
[Vﬂ ’ Vf]%.ﬁ, =—21 2] Rt,a,‘;sﬁﬂt,i,,---,#,...,E,+ oi,pfqﬂt,b,

=1 r=1

for every D,=(d,, -, d).

b

So

w) =cit 33 0[P, Vilowa, 00" (Use (1.12))
a,B,T

e

p—-1 =n [
. -1 @ £ _ D,
=—ci' 21210502 2 R0, oy )PP
B, 1,a u=1 r=1
—1 & D,
+c; Xﬁ" giaﬁei,ﬂfqoiyﬁﬁp.l¢ir L
a, 8,7

Y a8 t D,
=—cit 3] giaﬁRiyﬂﬁ7"¢i,?Dp-x¢ir 2

a,8,1,t
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-1 a T _ | - D,
e aez;r 0 O PP I S
it S0, %00 np @i PP
i 4,tPi,ab, ., Pi
a, 7
o e Kiahler property of ds°, we have
From the K
T a___\1 apg T — @& T
Ri3,7 —-Lﬁ.\ 9 R a,m =R,z (see 1.8).
n {
Moreover we remark that ¢iaa,,,..}..3,,= — @iz, ..5..2,, Ience

second term is zero.

So we have

*4) = —cp’ Z (E 9 Ry %er) P25, 1(91

cit 2 0:',?(01,&17,.,%71)" !
a,T
On the other hand,

21997 R

a,B,4

i, Aa8T

Il

(23
= Z git Ri,gzr
a,l

XV ER
= %_; 0. Ry, 1

Hence we have

k) = (p— 1)'c 2

w<dp

PG

~

,d g

Since aqoi Dy = 2 (—D*Vzea,,.

;1 gi”Zﬂ giEaRi, Faly

(Use (1.5) and (1.8).)

(Use (1.6).)

_ & 7Dy,
Ri,f)(”t,ab,,.l% LaLIN

(5@) Don= EZ g‘.fpmnpn (5¢) LE,.
P

= Z giéﬂdﬂ‘ . .giérdr.

e

It

(__.

“
I
o

Hence

t‘pdﬂ (Y‘ ( 1) VG!¢L'%

1) rgiéfdrvi,qoidm

~

€1y

)

[ 23N dy

(Use (1.12).)
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B¢, 0p>=ci* Y (09)s5,.0p)

pe1=(Bg, dp
o<y

D
=¢itY] (ﬂz_“:o (=D*Vaoia,...55 - @)

X (3 (—1) g4Vttt
=0

— A1 g D
=c; 20 9:""V 30i,5,V:0:°7
P
BEDp=(dy,, dp)
4, <<dp

(the terms with g#=rt)

—-1 + d o~ I
6 S (D I Pty o
ntz

><Ve,(of“""’d:""d”""’dﬂ (the terms with u=-7).
Since #+7t+ (#+7v—1)=1 mod 2, we have
B¢, 00> =ci* X 9V30,5,V:0°7
ﬁ%Dp
;<< dy

~1 g D,
— 3 ;9 giﬁrva(oi,ﬁﬁ,., Vf¢iu -1
a
@, BED 51 =(dy,,dp-1)
4, <-<dp-y

Add terms with =D, to the first sum on the right-hand side and add
terms with o =4 to the second sum, then the difference remains unchanged

and we have

{0p, 0p) =ci* Y 07 Vi0u5 A
— c’z—l Z Vz', E¢i,rﬁp.,vi,f¢iﬁprl .

We set
Vo, Vo) =ci* 957V 30,5,V 1057 .
4, <K,

Then we have

09, 09> =<V, Vo) — X Ve, Voo,
dl<"‘p<-:ip—1

and so

¥) = (p— D {Vo, Vo> —0p, 00} .
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Therefore
§1Vﬁ€ﬂ= i ViV, s, PIPP LK) k)

~1 1Dy,
=cit Y V,—-Véc)%,ﬁﬁp.,(ﬂ/ L

+ (-1 Hei? 1;2 22 (00— RiD) @ian, 00 0
-1 a,r
a4y py

+<{Vo, Vo) —<0¢, 0¢)} .
On the other hand

SV =t YV, —0, log ¢) Vs, 077
1=1
et Y] Vg)ﬂﬁi,'gﬁp.lvr%m:
=ci' 2V, VP05, 070
et Vf?c)qoi,ﬁb,,_,vasc)(ﬁw‘” .
Hence
2V =l V0 s, 07
=
+ (=D P, d¢p) . (See (1.28).)
Therefore, we have

SIVA NV = (DU 2 3 0uf R fuan, 47

1< <d]l 1
+<{Vo, Vo) — 09, 0p) — (S, Do)}
We apply (1.16) of Lemma 1.1 to Zn] V&8 — Zn V:7'. We have
A=1 7=1

i) L{C‘fl Z Z (01:.7 Rf,?)(/’i,aﬁp.lfpiw""dv

1< <dp -1
+1Vol*—10¢]* — [ 9¢]?

1

= oD S B0~ W0, )aS

and

1¥ol= [ <Fo, Topav.
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From ge B*?(X, F), we have
ii) ﬂZlﬂfai,ff= (c:lgrad @) "EZX VP 5, (X ¢/ P20,,0)
p = 7=
Dy
=0 on 0X (See (1.25).)

and
;él §°05,0/ = (cilgrad0}) -1; (52—1 Vf%,ﬂﬁ,,-,ai,ﬂ@) (ﬂ?i""—‘.

While, in a neighborhood of every point of 0X, for any multi-index D,_,
-1 _____
= (d,, -+, dp-1), there exists a C”-section ¢, , of 4 TM* such that

i qai,ﬁﬁp_,@i, ﬁ@ = @([Jﬁp_, .

Since 2 ©4,%5,.,05,60 =f3 2 03,%5,. 0760 on U;NU;NW, where W is the
nelghborhood of 0X taken in (1.13), ¢5,,=1{¢15,,= Z% 5 ,-i 04,60}
is an element of 9,1 (W, F) for any multi-index D, Hence we can
operate the covariant differentiation to ¢5,,. Then we have

2 V;*(Oi,ﬂb,,_,ai,,sm + 20 %,ﬁﬁ,.,ai,ﬁai,f@
B=1 A=1

=‘/)131,.,01:,f@ + 0V7¢ﬁp_l on W.

We multiply it by ¢;/??* and sum up with respect to the index 7. Since
peB*?(X, F), we obtain

Z 7_' i, Dy 1aﬂm)¢irnp by 2 0,30 w(o’lr ﬁpt er +=0

7=1

on 0X. And so

nM=

i) 33640, of = — (cilgrad0]) ™ 33 00,00,, 0777
= =

Doy
on 0X.

Finally, from i) ii), and iii), we obtain

100+ | 98] = f (c;lgrad @])* Z Zaﬂa@ 005, . CoiPidS
4,5k,

w1960+ (o B B OF R ues,. 0777V

2 a7

1
2, <-+<dp-y
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for any p=B*?(X, F). Q.E.D.

Remark 1.3 Dr. A. Fujiki has pointed out that the equality of
Proposition 1.5 had already been obtained by P. Griffiths in [14], p. 429,
Theorem 7.2 and recently, the author noticed that A. Andreotti and
E. Vesentini also had obtained some inequality for the elements of
B**(X,F) in [6]. In their formulae, the base metric ds® need not to

be a Kihler metric.

§1.2. Identity of Weak and Strong Exiensions of
0-Operator and Its Formal Adjoint &

Let X be a relatively compact domain with smooth boundary on a
complex manifold A and let F5M be a holomorphic line bundle on M.
We fix a hermitian metric d6® on M and a hermitian metric {a;} along
the fibres of I. We usc notations |, ||, ], U and ¥ and so oun as
in Section 1.1 with respect to d6? {a;} and ZeC*(X).

Let LP1(X, F) (resp. L"*(X, F, %)) be the completion of C?'*(X, F)
with respect to the norm ||, | (resp.|, |#). Then, since |, | and |, ||
are equivalent on X, L»%X, F, ¥) coincides as a topological vector space
with L»?(X, F). In other words, L??(X, F,¥) is the Hilbert space
with LP?(X, F) as the underlying space and (,)y as the inner product.
Thus L?9(X, F,¥) is understood as the pair {L*?(X, F), (,)s}.

Let 0: LP9(X, F,¥)—L"*" (X, F,¥) be the maximal closed exten-
sion of the original 0 and let O¥y: LP (X, F,¥)—-LP"(X, F,¥) be the
maximal closed extension of the original ¥ i.e. when we represent the
domain of @ (resp. $%) by DI'? (resp. D31),

1.31) i) eeD2CL»"(X, F,¥) o and only if there exists an cle-
ment ue LPTN(X, F,¥) such that (9w, @) v = (Y, w) v for every p=CP*!
(X, F),

i) eeD!CL*Y (X, F,¥) if and only if there exists an element
ve LPTN(X, F,¥) such that (0, 9)y = (, v) v for every y=Cpi (X, F).

Let LP9(M,F) (resp. L™?(M,F,¥)) be the completion of
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CP*(M, F) with respect to the norm |, || (resp. |, [¢). Then diffrential
operators 0 and ¥ in L* (M, F,¥) are defined similarly.

From (1.23), we have CP'%(X, F) CD?*(\ D22 Hence 8 and ¥y de-
fined as above are, in the weak sense, closed densely defined operators.
Next we consider the closure of the graph of 0: C*9(X, F) —»CP*!
(X,F) in LPUX,F,¥)xL**" (X, F,¥). Then, from the general
theory of linear operators in Hilbert spaces (cf. [46], p.70, Theorem
4.15), there exists a unique linear operator T: L*»%(X, F,¥)—L"?"!
(X, F,¥) such that i) the graph G(7") of T is equal to the closure of
the graph of 0|cz,a%,m, ii) the domain DE? of T in L?9(X, F,¥) is the
image of G(T') by the projection to the first factor.

Remark 1.4. Since L”*(X, F,¥) coincides with L?%(X, F) as a
topological vector space) for any ¥eC*°(X), T is determined independ-
ently of . T is called the closure of 0|cr,ax,r.

Since C§'4(X, F) is contained in Dy, 7 is a closed densely defined

operator and from ii) it is clear that

(1.32) 9D if and only if there exists a sequence {P.} of cri(X,
F) such that |¢,—¢ly and |To,—To|% tend to sero as n— + oco.

Since DE?is dense in L?4(X, F, ¥), if for a given g L* (X, F, ¥),
there exists an element g*< L?%(X, F,¥) such that (79, 9)sr= (¢, 9%)w
for any ¢ D§? g* is uniquely determined by ¢. Hence the adjoint
operator T§: L»""'(X, F,¥)—»L*»"(X, F,¥) is determined by T3g=g%.
Then from (1.32), we have

(1.33) g is contained in the domain D’T’%"“ of T% if and only if there
exists a positive constant C such that | (09, 9)¢|<C|@|y for any ¢
cr (X, F).

Since CP'?*'(X, F) is contained in D‘T’{#"“, T% is a closed densely
defined operator. Hence it holds that T'§* =T (see [46], p. 90, Theorem

5.3) and moreover, from Lemma 1.3 and (1.32), we have
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(1. 34) cr (X, F) ﬂD;’.%qu"'q()—{, F) and
T =% on B*"*(X,F).

Similarly, we can consider the adjoint operator 0% of the maximal

closed extension 0, then we have

(1.35) h is contained in the domain Dg;i?ﬂ of 0% if and only if there
exisis a positive constant C such that | (@@, h)e|<C|¢l|y for any
pe D2,

Hence 0% is a closed densely defined operator and so 0%*=09. T
and 0% are called the minimal (or strong) extensions of the original @
and its formal adjoint ¥». From (1.31), (1.32), (1.33) and (1.35),

we have

(1.36) DR'CD3* and DiCD}C D2t in LP(X,F,¥) for any
reC™(X).

Remark 1.5. If T is the closure of 5]0{;.«@,,’), it holds that T% =0

and 0% is the closure of Jy|cpa+icx, .

The following Proposition is due to Hérmander [17] Propositions
1.2,3 and 1.2.4 which summarize results of [10], [16] and [30].

Proposition 1.6. i) If veDc L™ (X, F,¥) and supp v, supp
YevC X, then vix€ D C LP(X, F,¥) ie. (9yv) lx=0%(vix) in LPe
X, 7).
iiy C*(X,F) is dense in DY with respect to the graph norm (|, |%
+ 0, &)
ity B*Y(X,F) is dense in D;;; (resp. Dg'qﬂDz’l’é‘) with respect Lo the
gragh norm (||, e+ |9, [9)"* (rest. (|, [+ 10, |2+ [90, [2)")-

As a consequence of Proposition 1.6, we have the following.

Proposition 1.7. i) Dp'=D2? in LP*(X,F,¥) ie T=0
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ii) D =Dil in L**(X,F\¥) ie T§=0%

iv) Dsa":Dg%q in L»Y(X, F) for any ¥eC"(X).

Progf. i), ii) and iii) follow from (1.32), (1.33), (1.35), (1.36)
and Proposition 1.6 ii), iii) immediately. From (1.34), it holds that
cr (X, F) ﬂD%":C”’q(X—, F)nD%! for any <C*°(X). Hence, by
Proposition 1,6 iii), we obtain iv). Q.E.D.

We denote the range and nullity of 8 in L*»¢(X, F,¥) by R2?and

NZ%? respectively. R;_’;,; and Ng%" are defined similarly. We set

N§'=N3*N\NZ in L™ (X,F,¥).

§ 1.3. Basic Fact from Functional Analysis and Application

Let (H,, ||, ) (£=1, 2, 3) be Hilbert spaces and let Hll;l—lziH,, be
closed densely defined operators satisfying So7'=0, We denote the ad-
joint operator of T (resp. S) by T'* (resp. S*). Then, as mentioned
in Section 1.2, T* and S* are also closed densely defined operators and
satisfy T=T** and S=S**, We use notations Dy, Ry and N etc. as
defined in Section 1.2.

Proposition 1.8 (¢f. [17], Theorems 1.1.1 and 1.1.2 and [25],
p.210-p. 216). A necessary and sufficient condition for Ry and Rg

both to be closed is that there exists a positive constant C such that
(1.37) IFR=C{ISSAIs+IT*fIF  for any feDsN Dy

and that f is orthogonal to the space N=NgN\ Np. When this is the
case, we have the strong orthogonal decomposition of H,
(1.38) H,=R{ANDRs: .

Furthermore, the operator L=TT*+S*S whose domain is Dy

={feDsN Dr.: Sf€Dg and T*f€ Dy}, is self-adjoint and has «a
closed range in H,, And (1.38) can be written more explicitly.
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(1. 39) Hg; ]{TT‘@N@RS"S u'h@r(’ RT = RTT* and RS* = R.S’S .

Remark 1.G6. From the definition of D,. the nullity of the operator
L. is cqual to N=NgN Np.

Proposition 1.9 (¢f. [17], Theorem 1.1.3). Assume that from
cvery sequence f € DsN D with || fil. bounded and |T*fi]i—0 in
H,, |Sf|i—0 in Hy as k—+oco. one can select a strongly convergent

subsequence. Then (1.37) holds and N is finite dimensional.

Proposition 1.10 (¢, [17], Theorem 1.1.4). Let P be a clos-
ed lincar subspace of H, containing Rp. Assume that (here cxists

a positive constant C such that
(1. 40) IFE=CLUSAls+HIT* £y for any feDsNT N P.

Then i) jfor every g€ P satisfying S¢=0, therc exists he Dpc H,
such that Th=y,

il) Ry« is closed in H; and for every g & Ry« there exists h& Dy C H,
such that T*h=g and |h|:<C|gl}.

Let M, X and F be as in Section 1. 2.

Proposition 1. 11.
1) If there exist in the degree (p,q)

1) a hermitian metric ds* on M and a hermitian metric {c;}
along the fibres of I,

2) a positive constani C,
and

3) a proper compact subset K qf X such that

(1.41) lelx<Cidlop ]+ 10*0[*+ ¢ lx}
Sfor any o DPNDRIC LP(X, F), then
i) dimeN??7< 400
i) LPU(X, F) = READN>@REL.
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II) If there exist in the degree (p,q)

1) a hermitian metric ds® on M and a hermitian metric {c:}
along the fibres of F.

2) a positive constant C,

3) a proper compact subset K of X, which does not contain any

connected component of X, such that
(1. 42) lo e <Ci{|0¢]*+ |0*¢|*}

Jor any 9 D2*N DBIC L*YX, F), then there exists a positive constant
C, such that

(1.43) lel*<Co{l0g]®+ 00|

Sfor any e D¥TNDEIC L™ (X, F).

Progf. Take any sequence {@n}ms: such that ¢, D2?N D&Y, |@,|°
<1 and [|0¢n|? |0*@n|*—0 as m— +oco. Then we assert that there ex-
ists a subsequence {@n} of {@,} which converges strongly on X. From
Proposition 1.6 iii), we may assume ¢,&B"*?(X,F). Let % be a C™-
function on M with compact support in X and x=1 on K. Since

X €CP (X, F), we have that

@ (X0n) , 0 (X@n)) + (O XPn) s O @) + APy XPrm)
= (O @n) » XPm) + AP, XPm)

is bounded by the assumption. From coerciveness of elliptic differential
operator []=09+90 on CP¢(X,F) (see for example [9], (2.2.1)
Theorem) and Rellich’s lemma (see for cxample [9], Appendix (A.1.6)
Proposition and p. 122, 2 Sobolev norms on manifolds), it follows that
{¢n} has a sequence {¢,,} which is strongly convergent on the compact
subset K of X. By (1.41), we conclude that {¢,} converges strongly
on X. Therefore we can apply Propositions 1.8 and 1.9 for H;=L?¢"2
(X, F) (i=1,2,3), S=0 and T*=0*. Hence we obtain i) and ii) of
D).

In the case of II), the same assertion of I) holds. In particular,

from Propositions 1.8 and 1.9, we have that there exists a constant
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C,=0 such that
(1. 44) lel’<Ce{l0p]*+ [0*0|%}

for any ¢ DN D&Y with ¢ | N*?, while, each element ¢ in N?? is a
solution of the Laplace-Beltrami operator []=00-+00. Namely ¢ is a
harmonic form with valued in F. In general, when [ is a hermitian
vector bundle over a connected complex hermitian manifold MM, a
harmonic form g J*?(E) vanishes identically on A7 if it vanishes on
a non-empty open subset of A (cf. [7], [38]). Now, {rom (1.42), ¢
vaunishes identically on X\ K. Since any connected component of .\ is
not contained in K, by the above unique continuation property, ¢ vanishes
on each connected componcnt and so ¢ vanishes identically on X. Hence
N?% is the null space. Combining this with (1.44), the proof is com-
pleted.

Remark 1.7. Since, {rom Proposition 1.7, L=00*+0*0 is the re-
striction of the Laplace-Beltrami operator []=09-+90 to the domain of

L, N?”% may not coincide with the space of all harmonic forms in

L"(X, F).

Chapter 1I. Cohomology Groups on Domains with

Pseudoconvex Boundaries

§ 2. 1. Definitions

Let X be a relatively compact domain with boundary 0.X on a complex

manifold A of complex dimension 7.

Definition 2.1. X is said to be a domain with pseudoconve.r
boundary 0X if for any point p of 0X, there exist a neighborhood U of p
and a real valued C”-function A2 on U such thati) UnNX={zxeU]
A(x) <0}, ii) the gradient of 1 nowhere vanishes on 0XNU, iii) the
complex Hessian of 4 is positive semi-definite when restricted to the com-

plex tangent space of 0X N U.
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Remak 2.1. The relation between the above definition and other

ones js the following.

The next three conditions are equivalent Lo one another:
) X is a domain with pseudoconvex boundary 0X.
II) There exist a neighborhood W of 0X and a real valued C”-function
O on W such that i) XN W= {xe W|0(x) <0}, ii) the gradient of @
nowhere wvanishes on VW, iii) the complex Hessian of @ is positive
semi-definite when restricted to the complex tangent space of 0X.
III) X s a locally Stein domain with smooth boundary 0X. Here
we say X is locally Stein if for any point p of 0X, therc exists a
neighborhood U of p such that UNX is Stein.

Outline of the proof. We can show I) =II) easily (see [15], the
proofl of p.263, 4. Proposition). For II)=III), since III) is a local
property, we may assume that W=U is an open ball centered at the
origin of C" and the boundary B= {x& U@ (x) =0} contains the origin
and satisfies the property of II). Then the Euclidean metric function
d(x) from x& {0<<0} to B is C* near the boundary B by the implicit
function theorem and moreover, from [18], Theorems 2.6.7 and 2.6.12,
—log d is C”-plurisubharmonic on V¢N {#<C0}, where V.= {|z|’<e} is
an open ball contained in U. Then we may assume that —log d=0.
Hence 1/(e—|z|®) —logd is a C™-strictly plurisubharmonic exhaustion
function on VN {#<C0} and so V. N {@<C0} is Stein. If X is locally Stein,
III) =I) is due to E. E. Levi (see [15], p. 264, 1. Proposition).

Let ds*= L 0i,e7d2zidZf be a hermitian metric on M and let @
Z 0;, apd,.,/\dzf be a C”-(1,1) form on M whose matrix of coeffi-

Clelltb 0,,,,,9 is a hermitian matrix. We set

(2. 1) G,;= (gi,aﬁ) and @1; = (ai,aﬁ) .

If Ji; are the transition functions < g 7 > of the tangent bundle 7'M,

then on U;NU;, G;='J;GJ 5 and 0,= Jﬂ@ #J i so that the coefficients of
the characteristic polynomial det(G;'®;—AE) are C”-functions on M. The

eigenvalues of G['0; at each point x are real, let them be
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2.2) & (x) 2& () == (),

so that each &, is a real valued continuous function on M.

Definition 2.2. A holomorphic line bundle F5SM is said to be
q-positive (resp. g-semi-posilive) with respect to a given hermitian metric
ds* on a subset Y of M if there exist a coordinate cover {U;};e; such
that 77'(U%;) are trivial and a hermitian metric {a;} along the fibres of

\

2
F such that for G;= (g1.05) and 0,= @ai‘j%), e ger (2) +7i0f (0, & ()

is positive (resp. non-negative) on Y.
Here &, (r) should be understood as in (2.2).

Remark 2.2. If F is g-positive (resp. g-semi-positive) with respect
to ds* on Y, G;'@; has at least n—q-+1 positive (resp. non-negative)
eigenvalues on Y. In particular, if F' is 1-positive (resp. l-semi-positive)
with respect to ds* on Y, the hermitian matrix @; is positive-definite
(resp. positive semi-definite) on Y. Since the inverse is true for any
hermitian metric ds’, we say simply that F is positive (resp. semi-

positive) on Y instead that F is 1l-positive (resp. l-semi-positive).

§ 2. 2. Basic Estimates

Let X Dbe a (connected) relatively compact domain with smooth
boundary 0X and let F5M be a holomorphic line bundle on M. Let
K, be the canonical line bundle on A7, We set a Kdhler metric ds® on
M

(2.3) ds'= 3 9 .5dzid7?
1

@B =
and a hermitian metric of F and its curvature tensor

{a:}

2.4)
Oi,m? = ﬁaaﬁ log a; ,
Then, from (1.21),

(2. 5) {ci=af-gi} where gizder (gi,aﬁ>
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is a hermitian metric of FRK,. With respect to (2.3) and (2.4), an
inner product (,) and a norm |, || are defined as in Section 1, 1. Since the
curvature tensor of {c;} is the sum of 0;= (0;.5) and the Ricci curvature

with respect to (2.3), we have from Proposition 1.5

2.6)  |og]*+ |90l

n

= { Gelemdan= Sy 00,00, 0% dS
ax Dp3=(¢1,"-.dp—z) B, =1
1<<dp-y

n
012 -1 & Dy,
FIT0+ (o) S 3 0uleuas, 0V
X Dyp-1=(dy, =, dp-1) @,7=1
4, <<dp-y

for any pe B*? (X, FRKy).

Proposition 2.1. Let X be a (connected) relatively compact do-
main with the pseudoconvex boundary 0X on a complex manifold M
and let FLM be a holomorphic line bundle on M.

1) If there exists a Kdhler metric do® on a neighborhood W of 08X
and F5M is q-positive with respect to do* on W, then there exist

a proper compact subset K, of X and a positive constant C, such that

2.7 lo g, =Ci{[00]* + 10*0* + llo %}
for any ¢eD}?*NDYCL"(X,FQKy) and p=q.

1) If M is provided with a Kihler metric ds* and F5 M is q-semi-
positive with respect to ds® on a neighborhood V of X=XU0X and
q-positive with respect to ds® on V\K, where K is a proper cmpact
subset of X, then there exist a proper compact subset K, of X with
KclInt K, and a positive constant C, such that

(2.8) lolsrx, <C:{l|0¢]* + [0*¢| %
for any ¢eD}*NDY¥CL"? (X, FQKy) and p=q.

Proof. We prove II) first. Let {a;} be the hermitian metric of
I’ with respect to the covering {U.};c; of M corresponding to the assump-
tion. To obtain the required estimate, by Proposition 1,6 iii), it suffices
to show that the estimate holds for any element of B"?(X, FRQKy).
From Remark 2.1 II), there exists a defining C™-function @ for 0X
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such that the complex Hessian of @ is positive semi-definite when re-
stricted to the complex tangent space of 0X. Hence, by using notations
(2.3), (2.4) and (2.5), it follows that the first term of the right-hand

side of (2.6) is non-negative. Hence we have

2.9 j‘ cit > > @f,?(ﬂi,aﬁ,,.,(”iw“"‘dv
kS Dr;f/\@_xg;;ﬁ-;) a,7=1
=|0¢|*+ |0*¢|*  for any ¢eB**(X, FQKu).

Let {€}i<a<n be the eigenvalues of Gi'0; where G;= (¢:a3), and

choose a system of local coordinates (zi, -+, =7) around x, X as follows:
(2.10) Gi(x)) = (0as) and  0;(x,) = (62 (o) 0ap) .

By the assumption, for a suitable proper compact subset K, of X
satisfying KCInt K, there exists a positive constant £, independent of

the choice of xy&X\K,, satisfying
2.11) En-q+1 (o) +71inf (0, &, () ) =£>0.

We apply (2.10) and (2.11) to (2.9), then at r,= X\K,

n [
o D,
(2.12) 2 2 0450125, 077
Dp-1=(ay,,dp-y) a,7=1
(ol

n

= Z 18“(330) I(ai,ﬁf),-,lz

4, <-<dpy a=

ECHIC OIS

| 2
qui,aﬁp.ll
4, < Ty, &

n—ql
=1

+inf (0, &, (x0)) }; 2 |enas,.,0".

4 <<dp-y @=n-g+2

If p=q, then p+n—q+1=n+1, thus any block D, of p-indices
taken from {1, 2, :--, n} must contain one of the indices {1, 2, ---, n—q+1}
i.e., one of the indices corresponding to the positive eigenvalues & (1), ---

5

En-g-1(). Then we have

-g+1
2 2 l%,aﬂp.l{ZZ 2 [%,DPIL
a4, <<dp

pas)
G <<dp-; a=1

(2.13) and

n
D A= s DD s PR
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Hence, from (2.11), (2.12) and (2.13), we have

(2.14) > X 05065, 07 P
< <Ldp-y @, 1=1
=k lono,I°  at xe X\K,.
a,<<Ldyp

Since &,-4.:+71inf(0, &,) =0 on K,, from (2.9) and (2.14), if we
take C,=1/k, we obtain

10 e, SCe {10+ 10*0 ||}

for any pe B"?(X, FQK,y) with p=>g. This completes the proof of II).

Next we prove I). From the assumption and Remark 2.1 II), we
may assume that there exists a neighborhood W of 08X such thati) the
gradient of the defining function @ nowhere vanishes on W, ii) there exists
a Kiahler metric do® on W, iii) there exist a coordinate cover {U}:c;
of M, for which n7'(U;) are trivial and U;SW if U;N0X5£D, and a
hermitian metric {a;} of F satisfying the g-positivity with respect to do®
on W. Hence by the same reason as in the proof of II), we have only
to show the required estimate for elements of B*?(X, FQKy). Take
neighborhoods W; (=1,2,3) of 0X with 0Xc W,ECW,EW,EW. We

may assume that M= W,UN. Then we take a hermitian metric ds°
(2.15) ds’= 3 §i.pd2idzf
a,f=1

on M. such that ds*=do® on Wi..

We take a C”-real valued function ¥ on M such that i) x=1 on
(M\X) UW,, ii) suppxC W, Then, for any ¢ B9 (X, FQKx), x¢
is again contained in B”*(X, FQKy) and supp )¢ is contained in W,
We set

K=X\(XNnW;).

Since the metric ds® is Kihler on W, from (1.16)’ of Remark 1.1,
the equation (2.6) holds for elements X, where g B*?(X, FQKy).
Hence by using notations in (2.4), (2.5) and (2.15), we obtain the

following inequality in the same way as in the proof of II),
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(2.16) f e 2] 2 04f (49) a0, (1) #P7dV
xnw, Dp-1=(dy,,dp-1) @,7=1
@, <<y

<10 (x@) I’ + 10* (29 |

for any ¢eB"?(X,FRKy).
We estimate the both sides of this inequality.

By the assumption,
we apply (2.11), (2.12), (2.13) and (2.14) in the proof of I) to x¢
and K].

Then the left-hand side may be estimated in the following way.
If p=>q, then

(2.17) lelix, = 2@l xow,
<1 ¢! >
£ Jxnw,

0. (20) 1,25, (19) 72> dV
a4, <dp-, a,7=1

for some positive constant £ as which is taken in (2.11).
As for the right-hand side,

18 (xe) 1°+ 10 (xe) |?
=[0x \N@+x0¢|*+ | —xedxer (xo) |?
= [0x \@+xX0|*+ | x0*¢—* Ox \+¢) |
= [0xA\@|*+2Re @x N\, x09) + | x0¢|

+ [12@*¢|*+ 2Re (x0*@, —* Ox\*¢)) + |* @xA\*@) |*
L2{|0xN\@|”+ 1X00)*+ [0x A\ *@|* + | x0*¢|*}

<2{il+ 1501+ 20 [ lerad o, 0av)}.

Here we used [45], p.18, Lemma A and the fact that the star
operator * is isometric with respect to the pointwise inner product <, >

and ¢, is a positive constant depending only the dimension of M and

tgrad x;* is the length of grad ¥ with respect to ds’.
Therefore, if

(2.18) C,=-=max{l, ¢, sup|grad x|*(z)},
I reM

we have, from (2.16), (2.17) and (2.18),

lolix, =Ci{ll00]*+ [0*0|* + llolk.}
for any pe B**(X, FQK,) with p=>qg. This completes the proof of I).
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Let X be a relatively compact domain with smooth boundary 8X and
let & be a defining function for X on a neighborhood V of 8X. Then

we may assume that the gradient of @ nowhere vanishes on V. We set
(2.19) Xi={zxe V|0 ()<t} UX, 0X,={xeV|0(x)=1}

for any ¢ with 0<{z<sup @ (x), and in particular
zeV

X=X,, 0X=0X,.

Let F-5M be a holomorphic line bundle on M. Then, if we fix
a hermitian metric on M and a hermitian metric of F, for each =0, we
can consider Hilbert spaces L*’*(X;, FQKy), which are the completions of
Cy’"(X,, FQKy) with respect to the norm |, ||} = L"< , >dV, and operators
9,,0F and ¥, in L’ (X, FQKy).

Proposition 2.2. Let {Xi};» and F be as above. If there exist
i) a positive constant O such that for any ¢t (0<t<0) X, is a domain
with pseudoconvex boundary 0X,, and ii) a Kdhler metric do® on a
neighborhood V of 0X such that FOM s g-positive with respect to
do® on V, then there exist a positive constant C, independent of t

and a proper compact subset K, such that for each ¢ (0<t<0)
(2.20) loll% zam, SCa {1001t + [10F 02+ o}

for any g€ D3P N DyEC L**(X;, FQKy) with p=gq.

The proof is similar to that of Proposition 2,1 I). In fact, C, in
that proposition depends only on the length of the gradient of C-
function on M and the lower bound of &,_4.,+71inf(0,¢,) with respect

to G;'®; (see (2.11) and (2.18)).

§ 2.3. Weak Finiteness and Vanishing Theorems

Theorem 2.3. Let X be a (connected) domain with pseudocon-
vex boundary 0X on a complex manifold M and let FL5 M be a holo-

morphic line bundle on M.
) If there exists a Kdhler metric do® on a neighborhood of 0X and
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A . . .
F—M is q-positive wilh respect lo d0® on its neighborhood, then il
holds that if p=gq,

) L%(X, FRKy) = RIZON*OR)3,
i)  dimeN*?<+ oo
and so

W) the image of the restriction homomorphism

ri H?(M, O(FQKy)) —H" (X, O (FQRKy))
has finite dimension.
II) If M is provided with a Kéihler metric ds* and FO M is qg-semi-
positive with respect to ds® on a neighborhood V of X and q-semi-
positive with respect to ds* on V\K, where K is a proper compact
subset of X, then if p=>q, for any [ L*? (X, FQKy) with 0f=0, there
exists g L"?" (X, FQKy) satisfying [=0g and so lhe natural homo-
morphism

m: HP(M, O (FQRQKy)) >H? (X, O (FQRKy))

7 HE(X, O (FQRKy)) —H" (X, O (FRKy))
are zero maps for p=q, where H? (N, O(FQRQKy)) denotes the p-ih

cohomology group with compact supports.
In particular, we obtain

Covollary 2.4. Let X, M and I" be as above.
I Ir F5M is positive on a neighborhood of 0X, it holds that if p==1,
) LM7(X, F®Ky) = RIPON DR,
i)  dimgN*?<4 o0
and so
i) the image of the restriction homomorphism

re H? (M, O (IF'®K)) »H" (X, O (FRKx))

has finite dimension.

II) If M is provided with a Kéihler metric ds® and F5M is semi-
positive on a neighborhood V of X and positive on V\K, where K
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is a proper compact subset of X, then if p=1, for any f&L"?(X, F
QKy) with 0f=0, there exists g L**" (X, FQKy) satisfying f=0g
and the natural homomorphisms

ri: H? (M, O (FQKx)) —>H" (X, O (FQKx))

r: HE (X, 0 (FQKy)) »H* (X, O (FQKu))

are zero maps for p=1.

Proof of Theorem 2.3. I). i) and ii) of I) follow from Proposi-
tion 1.11 I) and Proposition 2.1 I). While, if we let L}2(Y, FRKy)
denote the set of the locally square integrable (0, p) forms on Y with
values in FQKj; for any open subset Y of M, then there is a natural

isomorphism
(2.21) H*(Y,0(FQ®Kx))

~ {feL}2 (Y, FRQKy): 0f=0}
T {feLi2(Y,FQKy): f=09 for some ge Ly (Y, FQKy)} )

Here we consider the operator & in the sense of distribution. Hence,

there is the following factorization of the homomorphism 7

H?*(M, 0 (FQKx))

LG

N /Ru > H?(X,0(FQKuy)

From ii) of I) and N%?/R¥?=N"? Imr is finite dimensional.

II). The former assertion follows from Propositions 1.10 i), 1,11
II) and 2.1 II). Combining this with (2.21), the latter one follows
immediately. Q.E.D.

Remark 2.3. Such finiteness theorems of weak type as Theorem
2.3, I) and Corollary 2.4, I) were treated in [9], [22], [23], [24] and
[28] etc., from the viewpoint of boundary regularity of the d-operator.
The basic estimates used in these papers are more precise than ours in

the following sense.

Let X be a relatively compact domain with smooth boundary 0X on
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a complex manifold M and let the defining function @ of X be strongly g
pseudoconvex on a neighborhood V of 0X. For any holomorphic line
bundle F on M and a fixed hermitian metric {a;} of F, we consider
{a;=d} exp(@)} as a new hermitian metric of F, where @ is a C™-
function on M and coincides with the original @ on a neighborhood of
0X. Then, there exist a hermitian metric ds®> on M and a positive
constant Cy such that

i) for {a;}, F is g-positive with respect to ds® on a neighborhood

of 0X.

(%)

ii) if s==1 and =g,

@it 31 33 00300, %5, 00

45,By-y @, 8=1

=Cgeai' 3, goi,,,‘gtgo,-m on 0X for every peB"* (X, F).
45,B¢

(See [5], §5.16, Lemmas 18, 19 and 20 and § 5.17, Lemma 21.)
In general, the metric ds* is not Kéhler near the boundary 0X,
nevertheless, we can prove that there exist a positive constant C,, and

a compact subset K of X such that, if g B**(X, F) and s=>1, t>>q,

D elina=Cux{100]°+ [0%¢]*+ 0[5}
(%)

i) [Vel*+lel*+ LX@, odS=C.s {100]°+ 10%¢]" + l0]I%

where the integral |V¢|? is defined as same as in Proposition 1.5 with
respect to the covariant differentiation V of type (0, 1) associated to the

connection of ds.

The above inequalities are not new and, essentially, due to Hor-
mander [17], Theorem 3.2.5 and Proposition 3.4.4, Kohn and Rossi
[29], 3.12 Proposition and 5.8 Theorem, and Andreotti and Vesentini
[6]. In particular, the estimate (%) (ii) is a crucial one. In fact, the
estimate (%) (ii) implies that the graph norm Q (g, ¢) = (8¢, 0¢) + (0*¢,
0*¢) + (¢, ) is completely continuous on the space B**(X, F) (see [22],
6.2 Theorem and 6.16 Proposition). In this connection, the graph norm
Q(,) is always completely continuous on the space Cy*(X, F) by the
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ellipticity of the operator []=00-+00. By using this property of the
graph norm Q(, ), Kohn and Nirenberg proved boundary regularity of
the operator [] =09+ 00, which is, in their sense, strongly elliptic oper-
ator of second order, i.e. in the situation as above, if s=1 and t=q,
i) any element ¢ in N**=N}'NNycL (X, F), which is the com-
pletion of Cy (X, F) by the norm associated with the above {a:}
and ds’, can be taken as an element of C**(X,F)

ii) any element peC** (X, F) with 0¢=0 and ¢l N*', there exists
an element p=C> (X, F) with 0y =g.

(For detailed descriptions. see [22] and [9] 3.1.11 Proposition and
3.1.15 Proposition.)

But in our situation, the quadratic form il 050,005, , P
is at most non-negative on every point of OXD?zog;are with (%) (ii)).
This obstruction can not be covered by only the curvature conditon of
bundles and actually, if in Proposition 2. 1 the boundary 0X = {xeW|0(x)
=0} is Levi-flat, local boundary regularity breaks down (see [27], § 9,

Propagation of singularities for 0).

While, vanishing theorems of weak type as Theorem 2.3, II) and
Corollary 2.4, II) were treated in [3], [4], [5] and [36] ete. In these
works, the completeness with respect to Kdhler metrics was an important
ground for the proof. In the situation of Theorem 2.3, II), the actual
situation is that a complete Kihler metric do® exists on X. d0” is con-
structed as follows. Let d(x) be the distance from x€X to 0X with
respect to the given Kihler metric ds* on M and d is a C”-function

2 —
near 8X. Then inf > 2.(=1084); 7 i bounded from below with

=1 &, f=1  02*0%’
some constant, which may not be non-negative generally, near 0X uni-

formly (see [8], Principal lemma). We extend d to a C™-function d on

X without changing the original near 0X in a suitable manner. If we

n 2/ 7
take a positive constant £ large enough, do®= Y Q(a—lg%éildz“dfﬁ—i—lcdsz
@ f=1 2*0%

is, again, a Kihler metric on X and since —logci is an exhaustion func-
tion on X and the gradient of d nowhere vanishes near 0X, do® is a

complete Kidhler metric on X (see [31], Proposition 1).
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Therefore, if 0X is pseudoconvex and there exists a Kahler metric
on a neighborhood of 0X, then there exists a complete hermitian metric
on X which is Kahler near 0X. But, in our situation, the existence of
these complete metrics does not seem to be so useful. DBecause, the
boundedness from below of the eigenvalues of the curvature of I with
respect to these complete metrics can not be easily verified. But pseudo-
convexity and the existence of complete Kihler metrics have a deep re-
lation. (See [36], [47], [49].)

In these points, our estimates in Section 2.2 by using the formula

(1.30) seem to be most appropriate.

§ 2.4. A Stability Theorem for Spaces of Harmonic Forms

Through this section, we use notations in (2.19) and Proposition

2.2, and set ourselves in the following situation:

i) There exists a positive constant 0 such that for any ¢ (0<<t<0)
X, is a domain with pseudoconvex boundary 0X,.

ii) There exist a Kédhler meiric do® on a neighborhood V of 0X and
a holomorphic line bundle FO5M such that F is q-positive wilh re-

spect to do* on V.

Then, since we may assume that 8X; & V, from Proposition 2. 2, weak
finite theorem holds for each ¢z (0<¢<10), i.e., if ¢ (0<:<0) and p=gq,
then

D L(X, FRKy) =RiZ@ONY@RY, where NV? =N\ N,
i)  dimg N§2<+ oo.

In this way, we obtain a family {IN7?},<i<s of spaces of harmonic
forms parametrized by the defining function @. By composing the follow-

ing natural holomorphisms,
restriction map 7fi: L*?(X,, FQKy) —>L"?(X,,, FQKx)
(0=2,<t,<0)

orthogonal projection H,: L*?(X,, FRQKy) —Ny?
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(0=<t=0),
we obtain a homomorphism
o NP> NP (0=24,<t,<0).
We denote other two orthogonal projections by
R,: L"" (X, FQKux) > Ry5%
R¥: L"* (X, FQKy) —>Rg’;£’5 (p=q and 0=<¢50).

The main result of this section is the following stability theorem.

Theorem 2.5. In the above situation, there exists a postive con-
stant 0y (0,=<0) such that for any t (0<t<0,) and p=gq, the homo-

morphism 05: Ny?—Ny? is an isomorphism.

Remark 2. 4. If @ is plurisubharmonic, a stronger result hold (see
Chapter III, Theorem 3.5). Our method, which will be used to prove
Theorem 2.5, seems to be an interesting one in the theory of §-operator

with boundary condition.

The remainder of this section is devoted to the proof of Theorem

2.5. In the first place, we prove the following.

Propositien 2.6. Under the circumstance mentioned at the be-
ginning of this section, there exist positive constants 0, (0,<0) and
C, such that, for any t (0<t<0,),

(2.22) leli<Clowli+ 0¥l

if peDy?nDc Lyt (X, FQKy) and (ri(¢),h)o=0 for all heN,’
C L (X, FRKay) .

Proof. Assume that the assertion is false. For any C, we can find
arbitrarily small ¢ for which (2.20) does not hold. If necessary, take
a subsequence and we may assume that there exist sequences {Z,},> and

{@2} n=1 such that

i) t,>0, t,>t,,; and ¢,—-0 as n— + oo,
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i) ¢.eDy2N D‘;g; cL"*(X,,, FQKx)
(2.23) l¢ali,=1 and |[0.¢.|; 10% ¢ali,—0 as n— + o0,

tny

i) (¢n, B)o=0 for all hAeNY*CL"* (X, FQKuy).

From (2.23) ii), we may assume that {g,} is weakly convergent
to some ¢ in L*?(X, FQKy). On the other hand, if ycC** (X, F
X Ky), we have

| (5‘/’, ?)ol zﬂl_i)illl (5¢’, @n)o! =n1_i}31w] (5tn¢, @n) tn (5tn¢, Pu) xe\x]

< lim | (¢, 0F @n) ., |+ lim | (@ng[:, ©On) x10% |
1 n>+too

= lifil 1ll., 19% @ull., + lil;ﬂ 12,9 xenx =0

and

tn

lim [|0g, 3= lim [0.,¢a[, =0
n->+o0 n—>+ o0

Hence, by Proposition 1. 6 ii), we have that g€ D3? C L*? (X, FQKy)
and 0*¢=0 in L*?"(X, FQKy) and 0¢=0 in L**"*(X, FQKy). So ¢
is contained in Npy?. But each ¢, is orthogonal to Ny?. Therefore we
obtain ¢ =0. While, by the same argument in the proof of Proposition

1.11 I), we may assume that {@,},> is strongly convergent to zero on

K;. From (2.20) and (2.23) ii), we have

1=al5,=Cs{ll0.,0

Lp—=

bt 108,0nl2} + (Cs+1) [@a] x,—0

as 71—+ oo. This is a contradiction. Q.E.D.

Proof of Theorem 2.5. Step I. If p=q and 0<i1<0d,, pi: Np?
— NP is injective. If ¢ Ny? and 04 (¢) =0, then 7{(p) € R}2. Hence
ri(¢) is orthogonal to Ny?. Therefore, [rom Proposition 2.6 (2.22),
we have |g|i<Ci{0.¢||i+ [0¥¢|i} =0. Hence ¢=0.

Step Il. There exists a positive constant 0, (04=0,) such that
if p=q and 0<t<0,, 05: NY?—Ny? is surjective.

We remark that the following diagram is commutative: if £,>7,>0,
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by
e B N

02;\

To see this, it suffices to show that Horf{*= Hyor{to H,, ie. 0f
=0poH,, on N32. Take ¢e&N32, then 7 (@) =Reori (@) + Hyors (¢)

= Roori (¢) + Hy(rio Ry, (¢) + rito H,, (¢)) = Roor (@) + Hyorito H,, (¢).
Hence pf=pitoH,, on N}2.

ota"

ie. Qi =pkop.

We come back to the beginning. Assume
that the assertion is false. From the injectivity of pf and the above
remark, it holds that

1) if t<<¢, 05(IN}?) is contained in pf (N3:?) as a closed subspace,

ii) dimg 0§ (N??) <dimg N§? for 0<t=<0,.

These imply that there exists a positive constant §; such that if 0<{¢<04,
O5(N??) =it (N3?) and dimg 00 (N3?) <dimg Ng?. Hence there exists
an element #5=0 of N{? such that if 0<¢<0,,

(2.24) (u, h)o=0 for all he& N}~
We shall show that
(#,9)o=0 for all ge&N}?®

in this situation. This means #=0 and we arrive at a contradiction.
Take a sequence {#,},> such that £,<0, £,>¢,.; and £,—0 as n—+ oo
and extend the definition of u# by setting =0 on M\X. We denote it
by #«’. Then, from (2.24), we have for any element ¢ of N%’f;

@', 9) e, = (u, 70" (9))o= (2, Roori* (¢) + Hoor" (¢) )0
= (%, Roor" (9) o+ (#, Hoor* (¢) )0

= (u, 00" (9))0=0.

Hence #’ is orthogonal to N3? (n=1) and so u’ER‘;'i; (n=1). From
Proposition 1.10 ii) and Proposition 2. 6, there exists an element v,& L*?*!
(Xi,, FQKy) such that 0% v, =" and |v,|,, <C¥?|«|, for any n=>1. Hence
we may asume that {v,}.> is weakly convergent to some wve& L™?*!

X, FRKy). If c/)EC"”’(}_(, FQKy), we have
| @9, v) = lim | 04, va)ol
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= lim | (0:,9, va) ¢, — (0c,%, Vn) xenix]

n->+o00
< lim | (¢, 05 00) ¢, | + lim | (90,9, V) xepxl
n—>+co n—-too

=llolollz]o+Ci?|

u“o(nlil;n ||5tn¢nxt,.\x>

=[¢lofz]o.
Hence ve D}?*'c L**"' (X, FQKy). While, for any g€ C,"*(X,, FQKnx),

we have
(@, w)o=lim (¢, u),, = lim (¢, 0 v.).,
n—leo o boo
= lim (0,,0, v.)., = (09, v)s.
N>+ 0w

Hence d#v=u«. Since ve Dy**', we have 0*v=u (see Proposition 1.7
iii)). Therefore, if g=N¥?, we have (z,¢)o= (0*v,g)o= (v,09),=0.

This completes the proof of Theorem 2. 5.

Remarfk 2.5. The author does not know whether we can derive
the finite dimensionality of H?(X,, O (FQRKy)) for p=¢g and some >0
in the situation of this section. To see this, at least, we need some
approximation theorem of the Runge type (for example, see Proposition
3.3 and the proof of Theorem 3.6 in Chapter III). But, at present, the

author can only prove the following approximation theorem of weak type.

Under the situation of this section, if p=q—1, the closure of
the space ) Ua 7o (N3P in L** (X, FQKy) coincides with the closed sub-
space N%”<§"L°”’(X, FQKy), where 0, is the positive constant taken
in Propositition 2.6, i.c., for any >0 and 9 N¥?C L"? (X, FRQKy),
there exist a positive constant 0 (0<0,) depending on ¢ and &, and

FeN?C L*?(X;, FQKy) satisfying ||Plx—o|*<e.

Proof. If there exists a non-zero element € Ny?C L*? (X, FQKy)
such that, for every ¢ (0<{z<0,),

Gty /)o=0 for any [fENYFcCL*?(X, FRQKy),

then we shall show that
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(#,9)o=0  for any geN?cCL**(X, FQKy).

This leads us to a contradiction. We set ' =« on X and 0 on M\X.
Then #’ is contained in L*?(X,, FQKy) and orthogonal to N%? for every

0<t<0,. Hence «'€Ryf, =Ry (in particular, when p=g—1, this
equality is secured by the closedness of the range R;’:’ﬁ). Take a sequence
{t.} such that £,<0, (n=1), £,>t,, and £,—0 as n—+oo. Then, by
the same reason in Step II of the proof of Theorem 2.5, there exists a
sequence {¥n}ns1 such that v, L*?*(X,,, FRKy), 0fv,=u' and |vals,
<C,?|u|, for every n==1. Hence, by the similar manner in Step II of
the proof of Theorem 2.5, there exists an element ve L' (X, FQKy)
satisfying 0*v=u in L*?(X, FQKy). Therefore, if geNL?cL"?(X,

FQKy), we have (u, g),=0. Q.E.D.

Chapter III. Cohomology Groups on Weakly
1-Complete Manifolds

§ 3. 1. Definitions and the Basic Estimate

Let X be a connected complex manifold of dimension 7.

Definition 3.1. A complex manifold X is said to be weakly 1-
complete if there exists a C”-exhausting plurisubharmonic function @ on X.

@ is called an exhaustion function on X.

Remark 3.1. If c is a non-critical value of @, plurisubharmonicity
of @ implies that X,= {xe€X|0 (x) <c} is a domain with pseudoconvex
boundary 0X,= {xe X|0(x) =c}.

In Sections 3.1 and 3.2, we set the following situation.

B.1) i) X is a weakly 1-complete manifold with respect to 0.
ii) There exists a Kdhler metric do® on X\K,.

iii) F5X is a holomorphic line bundle on X which is q-positive

with respect to do® on X\K,, where K, is a proper compact subset
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of X.

We choose compact subsets K”, K’ and K of X such that K,
cInt K”, K”cInt K’ and K’cInt K. We set

3.2) ta:}

the hermitian metric of F with respect to the coordinate cover {U};=;
corresponding to the assumption. Let Ky be the canonical line bundle of
X. Then we define a hermitian metric ds* on X and a hermitian metric

of FQKy as follows:

(3.3) 1) de= 3 gi.deidzt
,8=

a1
i) ds*=de* on X\K’,
i) e¢;=a:9; where ¢;=det(g;.z).
We set
1) 0;=(0:,0z) where 0;q5=0,05!loga;,
i)  Gi= (guq3)-

For any open subset Y of X, let L*?(Y, FQKy) be the completion of
Cy*(Y, FQKx) by the norm |, ||y defined by (3.3). We sometimes
omit the symbol Y if it is clear. Linear operators 0,0* (resp. d§) and
¥ (resp. ¥) are defined in the same way as in Chapter I, Section 1. 2.

We fix non-critical values ¢, and ¢, of @ such that ¢,>>¢, and ¢,>sup @ (x).
zcK
We set

X;={xeX|0(x) <ci} and 0X;={xeX|0(x) =c;} {or i=0,1.

We take a C™-increasing convex function 4 on (— oo, 0o) such that
:0 if téct]
3.4 A(2)
>0 if t>Cn .
We define hermitian metrics of F' and F'R) Ky respectively as follows:
(3.9 i)  ami=a;exp(mi(D))
i)  Cmi=am0s

for every non-negative integer 7.
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We set
Oni= Omie5) where 0, :.5= 0.0 log am: (m=>1).

With respect to (3.3) i) and (3.5), we set

@, 0= [, <0, 0>ndV

HGOH%L = ((01 (P) m for any mzo

where <@, {pn=<p, ppe ™.
For any s, the completion of C,>?(X,, FQKy) by the norm |, ||»

coincides with L"?(X,, FQKy). We denote the adjoint operator of the
maximal closed extension 0 in L' (X;, FQKy) with respect to the inner
product (,), by 0%. Then from Proposition 1.7 iv), we have D%f:D;;,{
in L*?(X,, FQKy) for any m=1 and p=>1.

Proposition 3.1. There is a positive constant C, such that
(3.6) Il xax=Ci{[l00| 7+ |0kl %+ lo]%x}

if m=0, o€ DY N DY and p=gq.

Proof. From (1.34) and Proposition 1.6 iii), it sufficies to show
that the estimate holds for any element of B*?(X,, FQKy). Let x be
a C”-function on X such that x=1 on X\K and supp x&= X\K’. From
Remark 3.1, we obtain the following inequality in the same way as in
the proof of Proposition 2.1 I).

ORI W=D S S W% CON N DT 1

dp-1) @, 7=1
1< <l p-y

<10 (o) |12+ 15% (xe) | %

for g B"*(X,, FRKx).

In the first place, we estimate the left hand side. Let {&n o}ige<n
(resp. {€.}i<e<n) be the eigenvalues of the matrix G;'@, ; (resp. Gi'@;).
Since G7'0;<G'70, ;, by the minimum-maximum principle for the eigen-
values, we have €,,n-gs122€n—gq+1 and &,,=28, on X\K”. Hence at any

point xr,&€ X\K’, we have the following similarly to the proof of Prop-
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osition 2.1 II): If p=>q, then

202 10m,i? (xe) 1,0D 5y () 2%

Dyp-y a,7=

Z (Emyn—qs1(x0) + 72 inf (0, € 2 (20))) ; | (x9) 4,5,
= (&n_gs1(x0) + 2 inf (0, €, (o)) ; [ (@) s,5,1°
263 (sl

where £= _inf  (g-¢-1(x) +7inf(0, &, (x))) >0.

zeX \Int K”
Hence we have

(3.8 lelnxx=lxlnxx

él//zj emi 2 3 OniF (00 san,., () 7P7dV

X, \K Dp-y d,1=1

Next, repeating the discussion of (2.17) in the proof of Proposition
2.1 I), we can estimate the right hand side of (3.7) in the following

way :
(3.9)  1/k{]0(20) [ n+ 0% () |m} ZCu{l00 |7 + 050 + llelx}

where C, is a positive constant and independent of m (see (2.18)).

Still, in (3.9), we used |, [mx=1, lx for any m=1 (see (3.4)).
From (3.7) (3.8) and (3.9), we obtain the required estimate (3. 6)
for elements of B*?(X,, FRQKy). Q.E.D.

§ 3.2. Finiteness, Isomorphic and Representation Theorems

Let our situation be the same as in Section 3.1. From (3.1) and

Remark 3.1, for any non-critical value ¢ of @, X, = {xr= X|0 (x) <c} and

F5Xx satisfy the conditions of Theorem 2,3 I) and so we have

(3.10) L (X., FQK x) =R;3EDNI*ORGA
and

dimg NpP<+4 o0, for p=>gq.

Proposition 3.2. There exist a positive constant C; and an
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integer m, such that for any mZ=m, and p=>q
(3.11) loln=Cs{l0pl7+ |0%0]m}
for o DN DYPC L**(X,, FRKy), and
(@, ) x,=0 for all heN’C L"?(X,, FQKx).

Proof. Assume that the assertion were false. There would be a

sequence {@,} such that
(3.12) i) ¢neD?N\D%?,
D) oalt=1 and [3pal?, [52ala>0 as —>-+oo
and
iti)  (¢m, 2)x,=0 for all he N}PCL"?(X, FQK).
Let g,=e ™ @y, then we have
(3.13) 1) Vgn=e ™D5%gp,
i) [99nl-n=10%¢nln
By (3.12), we have
9=l =lgnll-n=lgnln=1.

Therefore, choosing a subsequence if necessary, we may assume that
{9} has a weak limit ¢ in L*?(X,, FQKy). From (3.12) ii) and
(3.13) ii), we have

(3.14) lim |39, < lim [9gn] = lim [0%¢n|n=0.
Mm—>+ 0o M~ + 00 M—>+ 00
On the other hand, for every ¢>0,

j €™ PG, JupdV=1,
{zEX |0(2)>co+ ¢}

and so we have

eml(cﬁ—&) j <gm, gm>dvg1 .
{zEX |0 (x) 2o+ ¢}

It follows that {Gm, dnydV tends to zero and hence

J{rexm(r)gcwe}
0n—0 almost everywhere in {zx& X|0(x) =c,+¢}. Hence g=0 on {x

eX|0 (x) =c,+¢} for every e>0. Combining this with (3.14), we have
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(3.15) 99g=0 and suppgCX,.

By Proposition 1.6 i), we have
(3.16) 9*(glx,) =0

By (38.12) ii), we have
(3.17) 0(gle,) =0.

From (3.12) iii), (8.16) and (3.17), we have
(3.18) g=0.

Since 0*=0% on X, for every m, by the same argument as in the
prool of Proposition 1,11 I), we may assume that {g,,} converges strongly

on K. Since ¢gp,=¢, on K, from (3.6), (3.12) ii) and (3.18), we have
1=onln=Ci{l0¢n |0+ |0kgnln} + (Ci+1) [@nlz—0
as m—>-+oo., This is a contradiction. Q.E.D.
Proposition 3.3. If ¢ L*?((X,, FQKy) with 0¢=0 and p=
q—1, then for any €>0, there exists an element </7 of L*?(X;, FQKy)
such that |§iy,—dl|%.<e and 8§ =0.

Proof. 1t suffices to show that if ue L*?(X,, FQKy) and

(3.19) f, Wx,=0
for any feL*?(X,, FQKy) with 0 =0, then we have
(3.20) (g, )5, =0

for ge L*?(X,, FQKy) with dg=0.

We extend « by setting #=0 on X\X;. We denote it by #’. Then,
from (3.19), #’ is orthogonal to Ny?C L*?(X,, FQKy). Hence we have
u'Eﬁgfor any m>0. While Proposition 3.1 implies that R%’;gé is closed
for every p—=g—1 and m=0. Hence from Proposition 1. 10 ii) and Prop-

osition 3.2, for any m_>m,, there exists an element v, & D2?*! such that
) y = @

(3.21) u’ =0%v, and |v.|aZCs|u|k,.
We set

w,=e "%y, for m—=my .
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Then we have
(3.22) 1) |wa ||2§C5||u||§’0 , i) dwp=u".

Hence {w,} has a subsequence which is weakly convergent to some
w in L"?*1(X,, FQKy). From (3.22), we have

(3.23) Sw=2% and supp wCX,.
By Proposition 1.6 i), we have
(3.24) 0* (wly,) =

Therefore, if g€L*?(X,, FQKy) with 8g=0, then (%, 9)x,=
@* (wlx)» O x,= (wlx, 09) x,=0. Q.E.D.

For any real number ¢ with c>§161£@(x), we set
H**(X.,FQKx) =Ny*/Ryk
where X,= {z€X|0(x) <c} and L*?(X,, FQKy) =RIEPN*DRIZ.
If ¢ is a non-critical value of @, from (3.10), we have
(3.25) H%?(X,, FQK) =NY?/RSp=N%?
and

dim H*?(X,, FQKy) <-+oo for p=q.

Proposition 3.4. The restriction homomorphism
r: H*? (X, FQKy) —»H"" (X, FQKx)

is an isomorphism for p=q.

Proof. Step 1. The homomorphism r: H*?(X,, FQKy) —H"?
(X, FRQKy) is injective.

Take an element f in L*?(X;, FQKy) such that 8 f=0 and f=08¢g
in L*? (X, FQRQKy) for some g L"?71(X,, FQKy). Then f satisfies the
relation (f,h)x,=0 for all h&Ng?. Hence, from Proposition 1.10 i)
and Proposition 3.2, there exists an element § in L**7'(X;, FQKy) such
that 0§ = f in L°?(X,, FQKy).
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Step II. The homomorphism r: H*?(X,, FQKy) > H"? (X,, FQKy)

is surjective.

From Proposition 3.3, Im 7 is dense in H®?(X,, FQKy). Since r
is injective and H"?(X,, FQKx) is a finite dimensional vector space in

view of (3.25), r is surjective. Q.E.D.

In particular, we obtain the following thecrem from (3.25) and

Proposition 3. 4.

Theorem 3.5. (Compare with Theorem 2.5.) The homomor-

phism
] 0
pﬁ; : Nc',p i Nc:vp

is an isomorphism (p=q).

Theorem 3.6 (Finiteness Theorem). The restriction homomor-
phism

r: H*(X, O (FRKy)) —=H"?(X,, FQKy)
is an isomorphism and so

dimg H? (X, O (FRQKx)) < +o0 (p==q).

Proof. By Sard’s theorem, we can choose a sequence {c,},s, of real

numbers such that

3.26) 1) c>a,
ii) Cyr1>Cy and c,—>+ 00 as y— + oo,

iii) The boundary 80X, of {reX|0(z)=<c,} is smooth for any
y=2.

We set
N, ={xeX|0 (x) <e,} for v=2.
For any pair (¢,+y,¢,) (V=1), we can apply Proposition 3.2 and

so Proposition 3.3 holds, i.e., if V>0 and p=qg—1, the restriction homo-

morphism
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(38.27) rgm: N32 —N3? has a dense image with respect to the norm
I, |z, where N3PCL*?(X,, FQKx).

Moreover, from Proposition 3.4, we have the following: if v=0
and p=q, the restriction homomorphism

(3. 28) e HY?(X,,,, FRQK ) —»H"*(X,, FQK)

is an isomorphism.

Let L}2(X, FQKy) be the set of the locally square integrable (0, p)
forms on X with values in FQKy. Then, there is a natural isomor-
phism such that for any p—>1 and open subset Y of X,

(3.29) H*(Y,0(FQKy))

~ {feL2(Y,FRK)|0f=0}
o {feLi? Y, F®Kx) If=5g for some ge Ly2! (Y, FRKx)} :

After these preparations, we come back to the proof of Theorem 3. 6.

Step 1. The homomorphism r: H (X, O(FRQKy)—H"(X,, FRQKy)
is injective (p=q).

In view of (3.29), it suffices to show that if we take an element
feli? (X, FQKy) with 0f=0 and f=0¢9, for some g, L** (X,
FRKy), there exists an element g& L)2™' (X, FQKy) such that dg= f.
We set

fo=flx, for every v=0.

Then from (3.28), there exists g, € L*?7'(X,, FQKy) such that
09, = f, for every v>1,
Let us show that we can choose, by induction, a sequence {g.}.=

so that

(3.30) D g.eL* (X, FQK),
i)y 9g,=f,,

1

2v+! °

i) 0]z, =0l <
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We set
=9 -
Suppose @, ***, gs—1 are chosen. Then g, lx, ,—¢,-n€Dy? ' L*?™!
(X,_1, FQKy) and 0(g,ly, ,—¢s-1) =0. Therefore, by (3.27) there ex-
ists ¢”€ L*?(X,, FQKy) such that |g;|x,,—G1—0"Ix,,]%,..<

Ty and
09”=0. We set g,=g, —g”. Then it is clear that g, has the required
properties (3.30). Hence we have obtained the sequence {g,},=. From
(3.30), for any v, {g.},> converges with respect to the norm |, |,

and clearly the limit is the same as the restriction of limg, for any

az7
7=>v+1. Thus we can define an element g of L}27'(X, FQKy) by
g= limg, For every v=>1,

PR

limg,=¢ in L"?"7'(X,, FRQKx)
>

lim 5gl‘|Xp=fu in LO,p(X” F®KX)'
n=v

Since @ is a closed operator in L*?7'(X,, FQKjy) for every v=>1, we
have for any v=>0
d9=f, in L**(X,, FRQKy).
Hence we have f=0g in L32(X, FRKy).

Step II. The homomorphism r: H?(X,O(FRKy))—->H"?(X,
FQRKy) is surjective.

In the first place. we prove the following.

(3.31) The restriction map r: {f € L2 (X, FQKy) |0f =0} —>N3%? has
a dense image (p=q—1).

Take an element y&N32. From (3.27), we can choose a sequence

{¢,} =0 such that for any &>0,

3.32) 1) @m=9¢,
i) ¢,eN?

oy >

i) ol el <5 OZD.
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By (3.32) iii), for any v, {¢},> converges with respect to the
norm |, ||lx,. Hence, by the same argument as in Step I, we can define
an element ¢ of L}2(X, FRQKy) with 5(0:0. Then it is clear that
lolx,—¢|%,<<e. This completes the proof of (3.31). Next, by (3.29)
and (3.31), we see that the image of » is dense in H"?(X,, FQRKy).
Since 7 is injective and H"? (X,, FQKy) is finite dimensional vector space,

7 is surjective. Q.E.D.

Theorem 3.7 (Isomorphic Theorem). The restriction homo-

morphism
r: H?(X, O (FQRKy)) —>H?(X., O (FRKy))

is an isomorphism for p=q, where c>sup O (x).
rEK,

Progf. We may assume ¢>c,. Then we have the following fac-

torization:

H*(X,0(FQKx) H" (X, FQXx)

N O A

H?(Xe, 0(FQKx))
Since, by Theorem 3.6, the homomorphism 7y is an isomorphism, 7,
is injective. Similarly since the homomorphism 7; is an isomorphism, 7,

is surjective. Q.E.D.

Theorem 3.8 (Representation Theorem). There is a natural

isomorphism
0 H? (X, O (FQKx) >N for p=q

where ¢ is a non-critical value of O with c¢> sup®(x).
reK,

Progof. For any ¢’ with ¢’>c¢, from Theorems 3.6 and 3.7, we

obtain isomorphisms 7; and 7,

H?(Xe, O(FQKx))

/ \
v o N
H?(X., 0 (FQKy))-->H"* (X, FQKx).

r 72
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We define a morphism o) : H? (X,, O (FRKy)) -H"?(X,, FQKx) by
0s =roryt. It is clear that o, is well defined and does not depend on
the choice of ¢’. p, is an isomorphism from H?”(X,, O (FQKx)) to
H*?(X,, FQKy). The composition of ¢; and an isomorphism H"?(X,,
FRKy) =N2? gives an isomorphism o.: H?(X,, O (FQKy)) —N¢?.

Q.E.D.

In particular for ¢g=1, we obtain the following.

Theorem 3.9. Let X be a weakly 1-complete manifold with
reaspect to an exhaustion function O and let F5X be a holomorphic
line bundle which is positive on X\K. Then with respect to Lhe
hermitian metric {a;} of F corresponding to the assumption and the
hermitian metric ds* on X induced bv the curvature of {a:}, it holds
that, for any two non-critical value ¢ and ¢ with ¢’ >c> sup @ (x)
and p=>1, e
1) L**(X., FQKyx) = RIADNyPDRYS and dimg Ng?< + oo,

2) the homomorphism 0 : NeP—->NXY? is isomorphic,
3) dime H?(X, O (FQKx)) <+ oo,

4)  the restriction homomorphism
r: H(X, O (FQKy)) —>H" (X, C (F®Ky))

is isomorphic,

5) there is an isomorphism

0 H? (X, O (FRKy)) —>Np?.

Remark 3.2. In Theorem 3.9, 3) and 4) were proved by T. Ohsawa
in [34]. He reduced these problems to the 0-operator theory without

boundary conditions.

§ 3. 3. Vanishing Theorems

Theorem 3.10. Let X be a connected weakly 1-complete Kéihler
manifold and let jgiS’e be a holomorphic line bundle on X which is

g-semi-posilive on X and g-positive on X\K with respect Lo the given
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Kéhler metric, where K is aproper compact subset. Then

H*(X,0(FQKy)) =0 for p=q.

Proof. For a suitable non-critical value ¢ of the exhaustion func-
tion @ on X, we obtain, from Theorems 3.7 and 3.8, the isomorphism
H?(X, 0 (FQRKy)) =N2? for p=>q. But, {rom the assumption, N¢? is
the null space (see the proof of Proposition 1.11 II)). This completes
the proof.

Remark 3.3. Any connected compact complex manifold is weakly
1-complete, any real constant function being an exhaustion function.

Therefore we obtain the following.

Let X be a connected compact complex Kéhler manifold and let
7: - . . . . . -
F—>X be q-semi-positive on X and q-positive at leasi one point of X

with respect to the given Kdihler metric. Then

H?(X,0(FQKyx)) =0 for p=q.

Remark 3.4. With respect to the difference between weakly 1-
completeness and pseudoconvexity, Diedrich and Fornaess showed that
there are domains with pseudoconvex boundaries 2 on C" such that 2
does not have a Stein neighborhood basis (see [48]). In this situation,
if the defining function @ of £ is plurisubharmonic on a neighborhood
W of 082, domains {&,=2U {xeW|0(x) <r}}rs (0L={xcsW|0(x)
=0}) consist of a Stein basis of £ since any domain with pseudoconvex

boundary on C" is Stein.

Note added. As mentioned in Remark 2.3, in the situation of Chapters II and
III, the local boundary regularity does not always hold. But recently the author has
shown that the global boundary regularity holds in the following sense if according to
the degree of the required boundary regularity, we take the tensor product of the line
bundle F, which is positive on a neighborhood of 80X, sufficiently many times, we can
solve the L:—8-Neumann problem satisfying the required boundary regularity. As a
consequence of this regularization theorem, H?(X,, O(F®"®Ky)) can be represented by
the space of harmonic forms being C¥-class (0=k<c0) up to 80X, if m is large enough.
See a forthcoming paper “Global regularity and spectra of Laplace-Beltrami operators
on pseudoconvex domains”.
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