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On Quasi-equivalence of Quasifree States
of the Canonical Commutation Relations

By

Huzihiro ARAKI* and Shigeru YAMAGAMI*

Abstract

A necessary and sufficient condition for two quasifree states of CCR's (the canonical
commutation relations) to yield quasi-equivalent representations is obtained, in the most
general setting where states are non gauge-invariant in general and the symplectic form
defining CCR might be degenerate (either from the start or after completion relative to
the topology induced by states). The criterion consists of the following two conditions:
(1) The induced topologies on the test function space are equivalent (2) operators S
and Sf on the completed test function space (completion relative to the induced topology,
after taking quotient by the kernel of the representation) giving the two point functions
S and S' (relative to any common inner product giving rise to the induced topology)
are such that S1/2 - (£')1/2 is in the Hilbert Schmidt class.

§ I. Main Result

The necessary and sufficient condition for two quasifree states of

CCR's to have quasi-equivalent representations has been obtained by

several authors ([1], [6], [10]). All these results are restricted to

the cases where the symplectic form defining the canonical commutation

relations stays non-degenerate after the completion of the test function

space by the topology induced by quasifree states. The corresponding

problem in commutative case (i.e. the extreme case where the symplectic

form completely degenerates to zero) has been known in the probability

theory as the condition for equivalence of two Gaussian measures. We

shall obtain a general result which contains these results as special cases,

using the result in the measure theoretical case directly and applying

the methods in [1].

To set up the problem, we use the notation for CCR's developed
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by Araki in [3] . Let K be a complex vector space (serving as the

direct sum of test function spaces for creation and annihilation operators)

with an indefinite inner product Y (x, y) (giving rise to CCR's) and a

conjugate linear involution P (serving as the combination of the complex

conjugation and the interchange of the test functions for creation and

annihilation operators), satisfying T(Tx,ry)=-—T(y,x).

The self-dual CCR algebra 21 (K, F, r) over (K, T, r) is the quotient

of the free involutive algebra over K (with the identity element 1 ad-

joined and involution denoted by *) by the two sided ideal generated by

x*y — yx* — Y (x, y) 1 and x* — Px (x,y&.K). A state cp on this involu-

tive algebra is called quasifree if

(1. 1)

where the summation is taken over all permutation 0" satisfyings

<0"(ra) and 6 (j) <<7 (j '+ n) (j=l, ~-,n). Any quasifree state <p is obvi-

ously specified by the two-point function

(1.2) S(x,y}=<p(x*y)

and hence we write (p = (ps- The hermitian form S over K, associated

with quasifree state cp in the above manner, can be completely charac-

terized by the following properties:

S(x9 x)>
(1.3)

The positive (semi-definite) inner product

(1.4) (x,y)s^S(x,

defines an induced topology rs on K. This rs is in general non-Hausdorff.

Therefore the completion K of K by the topology T: = rs is defined to

be the completion of the quotient space K/ker S (ker S={x^K; (x, x) s

= 0}) by the positive definite inner product on K/ker S induced by

(,)5 . The Hilbert space topology f of K obtained in this manner de-

pends only on r and is independent of the choice of S such that r = r5.

Our main result is as follows.
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Theorem. Two quasifree states cps and <py have quasi-equivalent

GNS representations Ks and 7T5/ if and only if the following two

conditions hold:

(1) rs = rs, (=r).

(2) Let K be the completion of K by the topology r -with an

inner product (x, y) inducing the topology r and let

S(x, y) = (x, 3y) , S' (x, y) = (x, 3'y) .

Then $1/2-S'1/2 is in the Hilbert-Schmidt class.

Remark. The condition that S1/z-S'l/z is in the Hilbert-Schmidt

class depends only on the forms S and S' and is independent of the

inner product ( , ) provided that it induces the same topology as S and

5". (See Remark 6.4 (ii) and its proof.)

§ 2. Key Points in the Proof

The proof of the theorem is divided into (I) preliminary reduction,

(II) sufficiency proof, and (III) necessity proof.

(I) Preliminary Reduction.

We use a few immediate consequences of quasi-equivalence of repre-

sentations to reduce the problem to a standard form.

First the topology induced on K by the representations must be the

same, namely

Proposition 2.1. If cps and (ps, have quasi-equivalent GNS rep-

resentations, then two inner products (,)s and ( , ) < ? / on K given

by (1. 2) induce the same topology r on K. (A proof in § 3.)

As a consequence we may extend both <ps and <ps, to quasifree states

of 21 (K, r, F) for the r-completion K (see § 1) of K and the problem

of quasi-equivalence remains the same. (More precisely, (ps and (ps, are

well-defined on the quotient of K by ker *S=ker Sf and have unique

extensions on K by continuity.) Therefore we may denote K by K and
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assume that K is a Hilbert space with an inner product ( , ), equivalent

to (extensions of) both ( , ) s and ( ,)$ ' . (We may take, for example,

(,) = (,),.)
Second, we consider the kernel of 7 in (the complete space) K, i.e.,

kerr={x^K; r(x,y)=Q for all y^K}. If we restrict the states to

the commutative algebra 21 (ker 7), then the necessary and sufficient con-

dition for the quasi-equivalence of restrictions of (ps and cps, to 21 (ker 7)

is known to be described in terms of the restrictions SQ and SQ of

S ( j c , y ) and S'(x,y) to ker 7 by the conditions of our theorem. (See

§3 (9)).

If we take (,) = ( , ) « and consider an ^-orthogonal direct sum de-

composition K=kerY@Kl9 then 21 (K) is the tensor product of 21 (ker7)

and 21 (Ki) as is well-known and (ps — Vs^cps^ where Sl(x,y) denotes

the restriction of S(x, y) to KI.

Thus if <ps and (ps> are quasi-equivalent, then S0 and SQ, the restric-

tions of S and 5" to ker 7, satisfy the conditions of Theorem (due to

Corollary 3. 14 to be proved later) and furthermore (psi>—(Ps'Q®(Ps1 must

be quasi-equivalent to (ps and hence to cps. (The condition on S's in Theo-

rem are obviously transitive and are satisfied by S0@Si and *SJ©5i.)

Therefore we can proceed to the necessity proof for the pair cps, and (pS"

with S' and S" having the same restrictions on ker 7.

Conversely, if S and S' satisfy the conditions of Theorem, then SQ

and SQ also satisfy the conditions of Theorem and hence (ps and <ps. are

quasi-equivalent due to the result on the commutative case. Furthermore

*So©*Si and S satisfy the condition of Theorem and hence the same holds

for SQ@SI and Sf'. Therefore the sufficiency proof can also be reduced

to the pair 5o05i and S' which have the same restrictions on ker 7.

Therefore we may assume that the restrictions S0 and SQ of S and S'

to ker 7 are exactly the same for the purpose of both sufficiency and

necessity proof without loss of generality.

Hence, in the rest of this section, we assume that all these reductions

are already done, namely K is complete, ( , ) s and ( , )$ ' both give the

same (non-degenerate) Hilbert space topology of K, and the restrictions

of ( , ) s and ( , ) S ' to ker 7 coincide.
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(II) Sufficiency Proof.

This consists of 3 steps and one formula, which will be used also

for necessity proof.

In the first step, we use the doubling K of K (KdK) such that

both (ps and cps. are the restrictions of generalized Fock states (p$ and

(p§> of 21 ( K ) , the GNS representation of 21 (K) associated with (p§9 when

restricted to 21 (K) c2l(J£), is quasi-equivalent to the GNS representation

of $l(K) associated with cps, and the same holds for S' and S''. The

main part of this step is the construction of a Bogoliubov transformation

B in K such that the associated Bogoliubov automorphism TB of 21 (K)

satisfies (ps' = (Ps°^s- If we can implement TB by a unitary transformation,

then it immediately follows that GNS representations associated with (ps

and (ps, are quasi-equivalent.

The second step is to show that ?B is unitarily implementable if a

certain condition is satisfied by S and S'. We make an explicit construc-

tion of a unitary operator U implementing B when B — \ is of finite rank

in Section 5. We then use this result to construct U for the general

case as a limit of U for the finite rank case, where we use the formula

for (tig, U@§} (for a finite dimensional K) proven in Appendix A.

The sufficiency proof will be completed in Section 6 by showing the

equivalence of the conditions for S and S' in Theorem with the conditions

for § and §'.

(III) Necessity Proof.

We first reduce the problem to the case where (ps and <ps> are both

faithful for the von Neumann algebra generated by the GNS represen-

tations (called standard polarizations). This reduction can be done for

a general S by finding another Sl such that the conditions of Theorem

is satisfied for S and Sl (and hence the GNS representations 7ts and 7tSi

for (ps and (pSl are quasi-equivalent by sufficiency proof) and (pSi has the

desired property.

The second step is to show that the unitary operator U, constructed

earlier for the finite rank case, brings S§ (the cyclic vector associated

with (p%) to a vector in the natural positive cone for 7t§ (21 (K)) " (with
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the reference vector @§) . It then follows by a general theorem that if

the limit of ($$, UQ§) is zero as the finite rank tends to infinity, then

two representations 7ts and 7TS, are disjoint.

§ 3. Preliminaries

In this section, we collect notations and basic facts of CCR in the

setting given in [3].

(1) Phase space.

We have introduced in Section 1, a complex vector space K, a conjuga-

tion F in K, and a hermitian form ? on K, which satisfy some relations.

In this paper we call such a triplet (K, F, 7*) a phase space because it

can be viewed as the phase space of canonically quantized fields. The

CCR algebra associated with (K, F, r) is a * -algebra 31 (K, F, r) gener-

ated by K and the unit I with the relations:

x*y-yx*=r(x, y}l

x*=Fx for x, y^K.

(All inner products and forms will be conjugate linear in the first vari-

able and linear in the second variable.)

(2) Polarization.

Definition 3. 1. A positive hermitian form S on K such that

(3.2) S(x,y)-S(ry,rx)=r(x,y) for x,y^K

is called a polarization of ?.

Lemma 3. 2. There exists a 1 — 1 correspondence between a

polarization S of J and a positive hermitian form ( , )s on K such that

(3.1)

(3.3)
^)s(y, y)s for x,

given by the mutual relations
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O, y)a = S(

Proof. See Lemma 3. 3 in [3] .

Consider a state (p on 21 (jKT, jT, f) , namely, a positive normalized

linear functional on 21 (K, F, 7) .

Lemma 3. 3. A positive hermit tan form S on K defined by

(3.5) S(x,y)=<p(x*y) for

is a polarization of j.

Proof.

S(x,y)-S(ry,rx) = <p(x*y)-(p(yx

Although this association of polarization with state is not one-to-one

in general, it is so if we restrict ourselves to the class of quasifree

states (see (1. 1) for the definition of quasifree state) . For given polari-

zation S, the unique quasifree state (p satisfying (3. 5) is denoted by (ps

(the existence of (ps for every S is proved in [3]).

(3) Homomorphisms and Bogoliubov transformations.

Let (Ki, FI, fi) and (Kz, F2, Tz) be two phase spaces. A homomor-

phism of (Kl9 F !,?!*) into (Kz,rz,j^) is a linear map f\ K^K?. which

intertwines F's and /'s:

(3.6) for x, y e Kl

A homomorphism f of phase spaces induces a *-homomorphism r/

(or simply /) of CCR algebras, r>: W(Kl9 A, n) ->2l(X2, A, T2). If a

homomorphism y of (^, jT, 7) onto itself is an isomorphism, f is called

a Bogoliubov transformation of (K, F, 7") and the associated automor-

phism Tf is called a Bogoliubov automorphism.
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(4) Representations.

Proposition 3. 4. Let (§s, Ss, 7rs) be the GNS representation for

a quasifree state (ps. Set

and D^(jDn,
n^O

where Slnc2l(X, F, 7) is the space of polynomials 'with at most n-th

order. Then the folio-wing properties hold'.

(i) For any feD and any .re Re K= {y^K; Fy = y},

S-7l|ff«(*)"£||<°°.
»^o n\

(More precisely, $t=Dk implies \\ica(x)$ ||^21/2(£ + l)1/2Cr, xYf\\$ I I ) -

The operator ns(x) is essentially self -adjoint on D and a unitary ope-

rator Ws (x) can be defined for £ e= D by

and for a general ?^$Qs by continuity.

(ii) Ws (X) Ws

/or x1;

(iii) (fla, Ws (a;) fis) = exp - -

(iv) Ws(j:) Z5 strongly continuous in .re Re K, 'where the topology

of Re K is the one induced by ( , ) s.

These properties are well-known in Fock representations. The pres-

ent case is obtained by the restriction of a Fock representation of 21 (K,

f , f ) for a larger space K^K to 21 (X, T, r) (for the definition of (£,

T7, f ) , see (10) doubling) . The self-adjointness in (i) is due to Nelson's

theorem. [7]

(5) Quasi- equivalence.
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The quasi-equivalence of two representations nSl and TCSz (denoted

by ns^Tts^) means the quasi-equivalence of the associated representations

of Weyl algebras: Let Rs be the von Neumann algebra generated by

{Ws(x) ; .reRe K}. Then 7tSi^^nSz if there exists an isomorphism 0: RSi

->RSz such that 0(WSl (x)) = WSz(x) for all jcEERe K.

(6) Kernels of representations.

If two representations are quasi-equivalent, their kernels (i.e. those

elements of the algebra which are represented by zero operators) must

coincide.

Lemma 3.5. (x, x)s = Q, if and only if ns(x) = 0. If q denotes

the quotient map from K to Kq^K/ker S (keiS={x^K; (x, x)s

= 0}), then TCS(i(qx)=TCs(x) is equivalent to the GNS representation

associated -with the quasifree state (pSq of 21 (Kq) where Sq (qx, qy)

= S(x,y). The quasi-equivalence of <pSi and (pSz is equivalent to that

of (putt and p(lSlV

The proof is straightforward and is omitted. By this lemma, we

may restrict our attention to the case where kerS=(X

(7) Topology.

Let K be the completion of K with respect to ( , ) s. Since S and T

are rs-continuous by S(x, x) <J (x, x) s and (3.3), /"", T-> and S can be

continuously extended to K. By the continuity of Ws(x~) (Proposition 3. 4

(iv)), the quasi-equivalence problem is not altered by the transition to

the completed phase space. Therefore we may assume the ^-complete-

ness of K without loss of generality in our problem.

Lemma 3.6. If KSl^nS2, the topologies rSl and rSz induced by

( , ) Sl and ( , ) 5z coincide on K.

Proof. Let 0: RSi-*RS2 be an isomorphism giving rise to the quasi-

equivalence of nSi and 7lSz. By Proposition 3.4 (iii), (iv),
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exp -S2(x, x) = (Bs,, W,, (*)&,)

is rSl-continuous in .re Re K and therefore S2 is rSl-continuous. Since

( , ) S l is /"-invariant, ( , ) s 2 is also continuous with respect to ( ,)5 l by

(3.4). By symmetry, ( , ) ^ is also ^-continuous. Thus two topologies

must be the same.

This lemma shows the necessity of the condition riSl =r<S8 for the quasi-

equivalence. In the rest of discussion, we may assume that rSl — T$2>

(8) T&e operators S and Ts-

We define the operators S and Ts in K by

(3.7)
( r(*,:y) = (

for x,y^K. It satisfies

(3.8) s+rsr=i, s-rsr=rs

(9) Commutative case.

If fE^O, our theorem reduces to the following known equivalence

criterion for two Gaussian measures on a Hilbert space :

Proposition 3. 7. Consider a phase space (K, F, ?) with ? = 0.

Let Si and S2 be two polarizations on K. Then nSi^^ns^ if and only if

( i ) ( , ) Si and ( , ) Sz give the same topology on K and

(ii) a positive operator T: K-+K defined by (x9y)s^= (x,Ty)Sl

satisfies condition that T— 1 is in the Hilbert- Schmidt class.

Condition (ii) on ( , ) 5l and ( , ) Sz stated above is equivalent to condi-

tion (ii) in Theorem of Section 1 because of the following observation.

For commutative case where 7" = 0, we have S(x9 y) = (1/2) (x, y)s and

5' (x, y) - (1/2) (x, y)s, by (3. 4) . Therefore, if we take (x, y) - (x, y)s,
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then the operators S and 8' in condition (ii) of Theorem are 1/2 and

T/2 with T defined above and hence condition (ii) of Theorem is that

I — T1/2 is in the Hilbert-Schmidt class. This is obviously equivalent to

condition (ii) of Proposition (for example, by the spectral resolution of

T and the equivalence of S|l-^/T<oo and

This proposition is usually stated as follows:

Proposition 3. 7'. Let H be a real Hilbert space with two inner

products ( , ) ! and ( , ) 2 giving rise to the Hilbert space topology.

Then the following conditions are equivale?it:

(i) There exist two Gaussian random processes fa, 02 over (§?

( , ) i) and (§, ( , ) 2) , both realizable on a Borel space (X, S3) with

mutually absolutely continuous probability measures fa and fa.

(ii) T—I is in the Hilbert-Schmidt class -where T is the posi-

tive operator in H defined by (x9 y)z = (x, Ty)i for x9 y^H.

Proof. See Theorem 3 in [9].

The connection of the above two propositions can be seen as follows:

Let S be a polarization of a phase space (K, F, f=0) and consider a

Gaussian random process (0, X, //) over (Re X, ( , ) 5) . By definition,

(X, jU) is a probability space and 0 is a linear map of Re K into the

space of real-valued measurable functions on X satisfying the following:

(i) </>(x) is a Gaussian random variable for .re Re K,

(ii) f <t>(x)<l>(y}dui = ±-(x,y}s for x, y f=Re K .
Jx 2

By the universal construction of 21 (K) 9 <f> is extended to 21 (K) as a

homomorphism of algebras, which will be also denoted by 0. Then, by

the above two conditions, the map an> \<f>(a)djU, atE:$t(K), satisfies the

condition of quasifree state (ps and (0, L2 (X, ju) , the constant function 1

on X) is unitarily equivalent to the GNS representation (7T5, §5, fis) .

Let (0, X, jU) and (0', A", //) correspond to S and S' as above. First

assume that ju and tf are equivalent measures. Then L°° (X, ju) = L°° (X,



294 HUZIHIRO ARAKI AND SHIGERU YAMAGAMI

ju') and this identification induces the *-isomorphism of TCS (21 (K) ) " and

its, (21 (K) ) " through the unitary equivalence quoted above (and hence

the unitary equivalence of 7rs (21 (K) ) " with the von Neumann algebra

Z/0 (X, ju) generated by exp i(j) (Re K) ) . Conversely assume that 7ts and

7ts> are quasi-equivalent. Then there exists a * -isomorphism between

L°°(X, ju) and L°° (X, y!} preserving eW),/eRe K. Therefore any subset

measurable relative to 0 (whose characteristic function must be preserved

by the above isomorphism) must have a non-zero /^-measure if and only

if it has a non-zero //-measure. Hence jU and jj! are equivalent. This

shows that Propositions 3. 7 and 3. 7' are equivalent.

(10) Doubling.

For later use, we collect here some definitions and properties of

doubling operation on phase spaces. Let (K, F, 7) be a phase space with

a polarization S. First we equip the double-sized space K@K with a

conjugation F@F, a hermitian form T@~T, and a positive inner product

(3. 9)

for X!0x2, yi©^2 e K®K.

Then ( , ) s gives a polarization of (K@K, F@F, 7*0 — T) . The comple-

tion of (K@K,F@F,?@ — r) by ( , ) , § (after taking the quotient by

ker5) is called the doubling of (K,F,r) and denoted by (K,F,r).

Note that the map

is injective if and only if ker r= {x^K; r(x, y) =0 for all yeX} (kerf

will be sometimes denoted below by XQ) is trivial because ker S = {x®

— x\ .re kerf}.

The original pair of K and S can be imbedded into the doubling

in the following manner:

Lemma 3. 8.

(i) The map c from x^K to t(x) = [^00] ^K is a monomor-
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phism of phase spaces. (In particular, cF = Ft, T (x, y) =T (Cx-> ty) -)

(ii) S (x, y) = 8 (cx, ty) for x,y^K.

(iii) ker f = £(ker f).

Lemma 3. 9. The spectrum of the operator ?§ zvith respect to

( , ) « is in {-1,0,1}.

A proof of Lemma 3. 9 is actually in [3] Lemma 5. 8. The new

quasifree state (p$ is a Fock state except for the existence of center.

To introduce some notations, we sketch the proof taken from [3] : Define

linear maps h± of K@K into K by

(3. 10)

Then it is easy to see that Foh+o(F@F) =h^ and

(*,y)*=
(3. 11)

?U y) =

for x?yeX0X". From the first equation, h± maps ker S to {0} and

hence can be considered as maps from K to K. Set

Kt={xeK;rfx,y')=0 for all
(3. 12)

Since KsdKo- (/S-orthogonal complement of K0) and the restriction of

YS to ^o" is one to one, we can define linear maps k± of Ks into K. by

(3. 13)
_ (x) - [ - 2- V2 (1 -

for

Finally we define a linear map k0 of K0 into X by

(3. 14) h (x) = 21/2c (x) for xtE K0.

Then by direct computation, we obtain the relations
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At _]_/£_{_ \_jCgj —— Xgy iL K \

(3.15)

for xs^Ks and

From these relations, we see that the three subspaces k+ (Ks), k- (K$),

and k0 (Ko) of K are orthogonal to each other, relative to ( , ) ,§ as well as

relative to f. Since the sum of these subspaces contains a dense subset

[ (Ks + KQ) 0 (Ks 4- KQ) ] of K, it is clear that the spectral resolution of

fs is given by the orthogonal direct sum

with spectrum 1, —1, 0.

(11) Independence of K and t§ on S for fixed rs.

Lemma 3. 10. Let Si and S2 be two polarizations of a phase

space (K, F', 7) (with zero kernels and complete) and suppose that

rSl=tSz. Then we have rSi = rSz.

Proof. See [3] Lemma 6.1 (6).

(12) Duality theorem.

Finally we quote the duality theorem quoted in [1] in the form

convenient for our application.

Definition 3. 11. A polarization S of a phase space (K, F, r) is

called a generalized Fock polarization if the spectrum of Ts is in

{-1,0,1}.

Theorem 3.12. Suppose that S is a generalized Fock polariza-

tion of a phase space (K, F, f). Consider a F-invariant subspace H

of K which contains kerf. Set HQ={x^K\ f (x, y) — 0 for all y^H}.

If we denote by RS(H) the von Neumami algebra generated by

{W&(x)\ x<=ReH}, then the following properties hold'.



QUASI-EQUIVALENCE OF QUASIFREE STATES 297

( i ) H°° = H (the closure of H in K).

( i i ) RS(H)=R8(H).

(iii) Rs (H°) - Rs (PI) ' (duality).

( iv) ^(HO VRS(H2) = RS(H1\/H2).

( v ) RS(HJ n RS(H2) - R^H, H #2).

(vi) $s is cyclic for RS(H) if and only if PH is dense in PK.

(vii) @s is separating for Rs (H) if and only if PH° is dense

in PK.

Here P is the spectral projection of ?s corresponding to the eigen-

value 1, and @s is the cyclic vector associated with the GNS repre-

sentation of quasifree state cps.

Corollary 3.13. Rs(cK0) is the center of R§(cK) (JK0 = kerr) .

This is immediate from (iii) and (v) above.

(13) A further reduction.

Corollary 3. 14. Let (K, F, 7*) be a phase space and Si} S2 be

two polarizations. The following statements hold:

(i) If nSi and KSz are quasi-equivalent, then ( , )SI\KO and ( , )S,\KO

satisfy conditions (i) and (ii) in Proposition 3. 7.

(ii) Conversely if ( , ) S I \ K O and (y)s2\K0 satisfy conditions (i) and

(ii) in Proposition 3. 7, then there exists a polarization S'2 such that

nSs and 7tS'z are quasi-equivalent, and ( , )SI}KO = ( , )s'2iK0-

Proof, (i) Let 0: RSi(K) -*RS2(K) be an isomorphism giving the

quasi-equivalence of 7TSl and 7ZS2. $ induces the isomorphism RSl (KQ) —>

Rs2 (Ko), because (j) maps the center of RSl (K) onto the center of

RS2(K). (See Corollary 3. 13.) Then 7tSilKo and nSt\K0 are quasi-equivalent

and (i) follows from Proposition 3.7.

(ii) Let KI be the ^-orthogonal complement of K0 in K. Set S'2

== Si\K0@S2\Kl- Then one sees that
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where = means unitary equivalence. Since (J)S^KO and ( , ) s 2 i K 0 satisfy

conditions (i) and (ii) in Proposition 3.7, RS^KO and RSZ\KO are quasi-

equivalent, and therefore 7TSz and 7ts'z are quasi-equivalent. This completes

the proof.

§ 4. Construction of Bogoliubov Transformations

For given polarizations -5 and 5" of a phase space (K, F, T) , we show

in this section the existence of a Bogoliubov transformation in (K, F, 7)

that connects S and S' by applying the methods in [1]. We assume

that rs = r,s' and the restrictions of S and S' to K0 = ke?T coincide.

(1) Crossing part.

Let p (resp. p') be the spectral projection of ?§ (resp. ?§,) corres-

ponding to the eigenvalue 1. By (1. 3) and Lemma 3. 9 we have

(4.1)
=P~P

where p = FpF and pr — TpT. In the following arguments, we shall use

the matrix representations of operators in K relative to the decomposition

K= CL—p — p^K-}- (p-i-p)K. For example, p and pf can be expressed

(4.2) PJ° °), p>J°\o pr \o
where we have used the fact that p' =0 on (1— p — p)K = kQr f = (I

— P'—P')K- Due to p'z=p' and p'p' =0, the operators g and Q satisfy

the following relations:

= ?, <22=Q,
(4. 3)

A Bogoliubov transformation .B in K transforms a positive definite

inner product ( , ) on j^ which gives rise to a polarization of f (see

Lemma 3. 2) to another such inner product by

O, y) a = (fir, fiy) for x, y e K .
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If the polarization ( , ) is a generalized Fock polarization (see Definition

3.11), so is the transform ( , ) .B . In particular, taking ( , ) s as ( , ) ,

we obtain the formulas:

(4.4)

where the suffix B is used to denote operators associated with the polari-

zation ( , ) B.

Lemma 4. 1. Let BI be the operator in K defined by

(4.5)

Then B1 is a Bogoliubov transformation and the transform of p' by

JBi"1 is given by

0
(4.6)

Proof. B1 is a Bogoliubov transformation because [-B^ y ] = 0 and

f(B1x9 B,y) = f (*, y) hold trivially. Then (4.6) follows from (4.3).

This BI transforms away the crossing part that connects the degen-

erate part and the non-degenerate part.

(2) N O7i- degenerate part.

Lemma 4. 2.

(i) P+P = Q+Q.
(ii) Q*= (p-p)Q(p-p) (adjoint is relative to ( , ) s ) .

(iii) (P-QY = PQP+PQP.

(iv) (P—QY is S-negative, namely

6<S> for

Proof, (i) If (Q + Q)y = 0 for y(E(P+P)K, ihen qy =
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= 0by (4. 3),gy = 0 due to the same reason and hence (p' + p'}y = 0. Since

ker(p' + p') =ker (/> + £) ( = ker f ) , this implies y = 0. Therefore, for

y<E (P-i-P)K, (Q + Q)y = 0 if and only if y = Q, namely Q + Q is one to

one on (P+P)K. On the other hand, by (4.3), Q + Q is a projection

with its range contained in (P+P)K. Thus we conclude that Q + Q is

the identity operator on (P+P)K and hence

(ii) by the following computation: For x9

by (4.1)

= ?((P-P-)x,p'y) by (4.2)

= r(P'(P-P)x,y)

= (p'(P-P)x,(P-F)y)a by (4.1)

= ((P-F)p'(P-F)x,y)a

= ((P-F)Q(P-P)x,y)a by (4.2).

(iii) by the following computation:

(P+P-P)Q(P+P-P)

= P(Q+Q-Q)P+PQP by (i)

(iv) First note that if x^PK, then (^r, y) j = f ( :̂, y) for all

Using this, we have

= (Px,(p'-p')QPx)s.

for all x^.K. (Here we have used the relations p'Q = Q andp'Q=p's
see (4. 3) .) By replacing x by Fx, we also have (x, PQPx) ^0 for

all xe-K^. Now (iv) follows from (iii).

By (iv) of this lemma, we can define the unique ^-positive operator
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a in K such that

(4.7) sinh'o'-- (P-Q)2.

Lemma 4. 3.

(i) The operate?' a commutes -with P, Q, and F.

(ii) [ (cosh a sinh a) ''PQP] (P cosh a sinh a)

gives the polar decomposition (relative to ( , ) s ) of POP.

Proof, (i) Lemma 4.2 (iii) implies [a, f]-0 and [a, P]=0.

Since [a, P — Q]=0, we also have [a, Q] =0.

(ii) We compute (PQP) * (PQP) as follows;

(POP) * (PQP) = PQ*PQP

= -PQPQP (by Lemma 4.2 (ii))

=-PQP+PQPQP (by (P+P)Q-Q)

= P[(P-Q)4-(P-Q)2]P (by Lemma 4.2 (iii))

= P (cosh a sinh a)2.

Therefore there exists a partial isometry u satisfying PQP = u cosh a sinh a

with u*u = PP0 where P0 is the iS-orthogonal projection onto (ker Qt)L

(iS-orthogonal complement of ker a). Since a commutes with P, P9

and Q, we may write u= (cosh <2 sinh a) ~1PQP where the inverse is

well-defined on (ker a) x Z) range (PQP) .

We set

(4.8) H=(u+u*)a.

Leinma 4e 4. Adjoint * z's relative to ( , ) s -

(i) u=u*, uz = Q, and (u+u*) cosh a sinh a = [P, Q].

(ii) H* = HandH = H.

(iii) r (-Hr, y) + ? (^, -Hiv) = 0 for x, y e ^.

(iv) H2-a2.

Proof, (i) u=u* follows from Lemma 4.3 (i), Lemma 4.2 (i)
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and (ii) . u2 = 0 follows from PP = 0. The last equality holds from

PQP + PQ*P=PQ(l-P)-(l-P)QP=[P,Q]. (H) follows from (i)

and Lemma 4.3 (i) . (iii) is equivalent to the relation H(P—P)
Jr(P—P)H=Q, which follows from the same equality with H re-

placed by PQP. (iv) Since uu* = PP0 and u*u = PP0 are orthogonal,

u+u* is a hermitian partially isometric operator with (u-\-u*)2 = P0.

Thus we have Hz = (u+u*)zaz = az (note that a commutes with u and

K*).

Corollary 4. 5.

( i ) The operator exp H is a Bogoliubov transformation in K.

( ii ) exp H= cosh a -f H a~l sinh a.

(iii) exp(-JFf) >P-expH=Q.

Proof, (i) follows from H — Hand Lemma 4. 4 (iii). (ii) follows

from Hz = a2. (iii) requires some computations:

e~HPeH= (cosh a-Ha~l sinh a) P (cosh a + HoT1 sinh a)

- P cosh2 a - OT2 sinh2 aHPH+ a'1 sinh a cosh a [P, //] .

From u*u = PP0 and uu* = PP^ it follows that Pu = uP = u, uP = Pu

= 0. From H = (w+/^*) ct, u^ — u and aPo^^, we obtain

e~HPeH = P cosh2 a — P sinh2 # + sinh a cosh a (w — u)

= P- (P-QY(P-P) + (PQP-PQP)

(by (4. 7) and definition of u)

= PQ(P-P)+QP+(PQP + PQP) (by

Let S be a Bogoliubov transformation on X^ defined by

(4.9) B=B2Bl9 B2

(See (4. 5) for the definition of Blm)

Corollary 4. 6.
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(i) p' = BT*pB.

(ii) (Bx,By)a=(x,y)a. for x,y^K.

(iii) S (Ex, By)=S' (x, y) for x, y EE K .

Proof. (i) follows from (4. 6) and Corollary 4. 5 (iii) . (ii) First

note that (I-p-p) B=~L-p' -p' due to (4.9), (1-p-p)H=0, (4.5),

(4. 2) , Lemma 4. 2 (i) and the definition of the matrix notation. For

, (\-p-p) By) &+(Bx, (p+p)By)s

, (p-p)By)

where the last equality is due to <S|ieerf
 =»S''!kerf and (i) . (Note that

[B, f]=0.) Hence

(Bx,By)a=((l-P'-Pf)x, (l-p'-p')y)s-+(-r, (

= (x, y) a- •

(iii) For x,y^K,

§ (Bx, By) = 2-1 { (Bx, By)s + f (Bx, By) }

§ 5e Unitary Implementation of Bogoliubov Transformation

In this section, we construct a unitary transformation (between two

GNS representations 7l§ and 7T,§/) that implement the Bogoliubov trans-

formation B given in Section 4, under the condition that p — p' is in the

Hilbert-Schmidt class. The assumption given at the beginning of Section 4

is also valid in this section. First we treat the case in which p — p' is a

finite-rank operator. The general case then follows from this special case.

(1) Unitary implementation of Blt (The case of finite rank.)

In this paragraph, we assume that Bl — \ is of finite rank. Then in
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the matrix representation of JBl5

(5.D *:

v is a finite rank operator and v — v (v= — (q-\-q) in the notation of

§ 4) . In the following we regard v as an operator on K so that vx

= 0 if x^ (1 — p — p}K. The action of v on a vector x^K can be

expressed as

(5.2) vx=^(bhx-)as

where a^ (\—p — p)K chosen as linearly independent vectors spanning

the (finite-dimensional) range of v, and bj^(pJrp}K are then uniquely

determined. Set

(5.3) <7(f)=IMa,W/X)
3

where ft is the GNS representation associated with (p§. A different choice

of linearly independent vectors spanning (range v) , say a'j, must be

related by a nonsingular matrix L^ by a'i = ̂  LIJ^J and the corresponding

vectors in (p + p)K, say b'j, must then be related to bj by bj = ^2btLtj.

Hence q (v) does not depend on the choice of the basis aj in the range of

v.

Lemma 5. 1.

( i ) [q(v),7t(x)~\=n (vx) for x^K.
( ii ) — q (v) C q (v) * (skew hermitiari) .
(\\\) Every vector in D is analytic for q (v) . (D is defined in

Proposition 3. 4.)

Proof. Let £^Dn. Then, using Proposition 3.4 (i) , we obtain

where C = 2][] \\aj\\ \\bj\\. By the iteration of this estimate, we have

n

and the power series



QUASI-EQUIVALENCE OF QUASIFREE STATES 305

converges if \z\<^(2C)~l, proving (iii) . (i) is obtained by a straight-

forward calculation. (ii) can be seen as follows: First note that vx

Then

J

Corollary 5,2. q(v) is essentially skew self-adjoint and the

unitary operator Q(v) =exp(g(z;)) (the bar denoting the closure)

satisfies

(1) Q (t;) W§ (x) Q (v) * = W§ (e°x) for x^ Re K ;

(ii) Q (t>i) Q (^2) = O (^ + 772) z/* supp 7^1 J_supp t;2.

Proof. Lemma 5.1 (i) implies Q(f)7T(.r) =7T(e1?x) Q(v) by alge-

braic computation if we consider matrix elements between vectors in D

and expand Q (v} in power series, which is possible for small v by Lem-

ma 5. 1 (iii). This equality in turn implies (i) by algebraic computation

if we consider matrix elements between vectors in D and expand W(x)

in power series, which is possible by Proposition 3. 4 (i). (i) for large v

follows from (i) for small v by repetition. Since q(vi) and q(v2) com-

mute on D if supp z^^supp v2, the proof of (ii) is similar.

Note that e* = \-\-v due to v2 = 0.

(2) Unitary implementation of Bz.

Let H be a finite rank operator in K such that

— Q for x y <^K
(5.4)

[ H = H and (p + p~)H(p + p~) =H .

Expand H as

(5.5) Hx = ^r(bj,x}aj
3

where a^(p-\-p)K and bj^(p + p)K, and set
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This does not depend on the decomposition (5.5) for given H by the

same reason as before.

Lemma 5. 3.

( i ) [<? (Hi) , q (Hz) ] = q ( [l/i, HZ] ) ,

(ii) \_q(H),n(x)-\=n(Hx} for x^K,

(m) — q (H) C q (H) *,

(iv) every vector in D is analytic for q (H).

Proof. (i) follows from (ii) and (ii)-(iv) can be proved by a

method similar to Lemma 5.2, with computation more or less copied

from the proof of Lemma 4.4 in [1].

Corollary 5,4. (i) q(H) is essentially skew self-adjoint and

the unitary operator Q(H) =exp(<7(H)) satisfies

Q (H) W§ (x) Q (H) * = W§ (eHx)

for .reRe K.

(ii) If Hi and H2 are finite rank operators satisfying (5. 4) and

commute, then

Proof. The same as the proof of Lemma 5.1 in [1].

(3) Unitary implementation of Bl and B2. (General case.)

In this paragraph, we suppose that H and v are in the Hilbert-

Schmidt class. His assumed to satisfy (5.4) in addition to H=H*

relative to ( , ) s . (cf. Lemma 4.4.)

Lemma 5. 5.

(i) There exists a F-invariant (i.e., vn = v^) finite rank oper-
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ators {vn}n-^i which converges to v in the H.S. norm and for -which

supp(t^ — Vi) J_supp Vi -whenever j^>i.

(ii) There exists a mutually commuting S-hermitian operators

Hn (n^>l) of finite rank on K which satisfies the property for H

in (5. 4) and co?iverges to the given H in the H.S. norm.

Proof, (i) Let en be the spectral projection of v*v for the interval

{n~l, |M|2] and set vn = ven. By the construction, {^nK^i satisfies the

desired condition.

(ii) Let En be the spectral projection of Hz for the interval [?i~l,

||jF/2||] and set Hn = HEn. By this definition, {Hn}n^i 'ls a sequence of

mutually commuting *S-hermitian operators of finite rank and converges

to H in the H.S. norm. Now we must cheque the equation (5. 4) for

Hn. Since the /"-invariance of Hn follows from the commutativity of H

and /\ we have only to show that

(5.7) f(Hnx,y)+r(x,Hny)=0

for x, y^K. Since H is /S-hermitian and satisfies (5.4), we have

(p — p)H+H(p~p) = 0. It then follows that p— p commutes with H2

and hence with En. This implies (5. 7) because H anticommutes with

p-p=r§.

Proposition 5- 6. There exist unitary operators Q(H) and Q(v)

on J§ such that

( i )

(ii) Q (H) W§ (x) Q (H) * = W§ (e
Hx) ,

for

Proof. (i) Take a sequence of /"-invariant finite rank operators

which converges to v in H.S. norm and for which

(5.8) supp (vj — Vi) J_supp Vi whenever />z .

This is possible by Lemma 5.5 (i) . If we show that {Q(vi)} and

{Q(Vi)*} are Cauchy sequences in the strong operator topology with

limits Q(v) and Q(v)*, then Q(v) is unitary and satisfies (i) due lo
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the same formula for Q(VI) given by Corollary 5.2 (i) . This is further

reduced to the proof that {Q (vi) ft} and {Q (vt) *&§} are Cauchy sequences

because Q (v^ W§ (x) @§ = W§ (evtx) Q (v^ @§ where unitary operator

Ws(e°ix) strongly converges to W§(e°x) and similarly for Q (vt) * W§ ( x) @

= Ws(e~Vix)Q(vi)^^§- By (5.8) and Corollary 5.2 (ii) , we have

(5.9)

= 2 - (ft, Q (vt - vj) ft) - (ft, Q (vj - v,) ft) .

using the formula

(5. 10) (ft, Q (v, - vi) ft) = det l + - ( v« - »,) ( v* - »,
\ 4

(see (A.I)) one sees that (5.9) converges to zero as z, j-^oo because

Vi — Vj converges to zero in the H.S. topology.

(ii) This can be shown by the same method as the existence of

Q(v) . Take a sequence of finite rank operators {Hn}ngL> satisfying the

condition of Lemma 5. 5 (ii) . By the same argument as above for

Q (*>) > we see the strong convergence of Q (Hn) and Q (Hn) * using

Corollary 5.4 (ii) and the formula (ft, Q (.Hi — -H}) ft) = (det cosh \Ht

-H,])-1'4 given by (A.I). The limit Q(H) of Q(Hn) then is unitary

and satisfies (ii) due to Corollary 5. 4 (i) .

Lemma 5.7. The following two conditions are equivalent:

(i) H and v are in the Hilbert- Schmidt class.

(ii) p—pf is in the Hilbert- Schmidt class.

Proof. We rewrite condition (i) . H is in the H.S. class if and only

if a is in the H.S* class (by Lemma 48 4 (iv)) and this is equivalent

to the condition that P—Q is in the H.S. class by (4.7) (if P— Q is in

the H.S. class, so is a) and Corollary 4. 5 (iii) (if H is in the H.S. class,

so is P—Q). On the other hand, v— — (q~\-q) is in the H.S. class if

and only if q is in the H.S. class. (By (4.3), q=— vQ.) Then the

equivalence of (i) and (ii) follows from (4. 2) .

Proposition 5.8. Assume that rs = r(S/ and 5|ker f ^5'jker 7.
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Suppose that p — p' be in the H'ilbert- Schmidt class. Then cps, is given

by the vector state for R§(cK) with a representative vector Q(v)*

Q(jFf)*<Gs, where QS is the cyclic vector in the GNS representation

associated -with <p§ and c is the inclusion map of K into K in Lemma

3.8.

Proof. By Lemma 5. 7, H and v are in the H.S. class and we have

unitary operators Q(H) and Q(v) of Proposition 5.6. For

X, we have the following relations

(5.11)

= exp - — S (Bex, Bex) ] (by Corollary (4. 6 iii) )

= (Q (v) *Q (H) *S§, WS (ex) Q (v) *Q (H) *aa)

(by Proposition 5. 6) .

A
§ 6. Relation between Conditions on S and on S

In this section, we complete the proof of the sufficiency (stated as

Corollary 6. 8) .

Notation 6. 1. Let A and B be two bounded linear operators on
H.S.

a Hilbert space. We write A ~ B if A — B is in the Hilbert-Schmidt

class.

By Proposition 5. 8 and Corollary 3. 14, two quasifree representations
H.S. H.S.

ns and 7ts> are quasi-equivalent if ts = rs,, 5|kerr ~ S'Uern and p — p'. The

sufficiency proof will be achieved if we prove the equivalence of this

condition with the condition for S and S' given in Theorem. This is

formulated as Proposition 6. 6 below.

H.S.
Remark 6. 2. Note that ^ is an equivalence relation and does not

depend on the choice of inner product as long as the inner product
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induces the same Hilbert space topology.

Definition 6. 3. Given two polarizations Sl and S2 of a phase

space (K, F, ?) , we introduce two equivalence relations on the set of
H.S.

polarizations'. The first one is denoted by S^ ~ S2 and it holds if S±

and S2 satisfy the following conditions :

(1) There exist constants MI, M2 such that

O> x) s2^M2 (x, x) Sl and (x, x) s^Ml (x, x) Sz

for all x^K. (The equivalence of rSl and rSz.)

(2) Set N^{x<=K', (x,x)Sl = 0} (this equals to {x^K; (x, x) Sz

= 0} by the above condition) and let q\ K-+K/N be the quotient map.

Take any positive definite inner product ( , ) on K/N which is equiv-

alent to both ( , )Sl and ( , )s2. Then S^ — S^ is in the Hilbert- Schmidt

class, -where Sl and S2 are positive (relative to ( , ) ) operators in

the completion K/N of K/N satisfying

(6. 1) 5, (x, y) = (qx, St qy) (£ = 1, 2)

for
H.S.

The second one is denoted by S^/2 ~ S2
1/2 and it holds if Si and S2

satisfy the following' conditions'.

(1) *Si and S2 induce an equivalent topology (the same as (1)

above) .

(2') (S1)
l/2-(S2)

1/2 is in the Hilbert -Schmidt class where oper-

ators Si and S2 are defined by (6. 1) .

H.S.
Remark 6. 4. (i) The relation Si ~ S2 does not depend on the

choice of the inner product ( , ) in (2) , as is easily seen.
H.S.

(ii) The relation *Si1/2 ~ S2
1/2 also does not depend on the choice

of the inner product, relative to which S^ and S2 are defined. However

this is not at all trivial and will be proved below.

We shall use the following result in [4], which holds for any

bounded linear operators A and B.

(6.2)
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Corollary 6.5* Let A, B, and T be positive operators on a

Hilbert space. Suppose that T has a bounded inverse.
H.S. H.S.

(i) (TAT)1/2~ Al/z if T~l.
H.S. H.S.

(ii) (TAT)1/2~ (TBT)VZ if A1/2~£1/2.

Proof: (i) follows from

(6. 3) |i (TAT) 1/2- A1/2||H.s. = II I A1/2T | - A1/2||H.s.

^21/2||A1/2T-A1/2l|H.s.

Similarly for (ii) .

Proof of Remark 6. 4 (ii) . Let ( , ) ' be another inner product and

T be a positive invertible operator such that (Tx, Ty) ' = (x, y) . If ( , ) '

and ( , ) induce the same topology, then T and T"1 are bounded. Oper-

ators S'i and Sz, which represent Si and S2 relative to ( , ) ' are ex-

pressed as

(6.4) Sl = T*S{ (1 = 1,2).

The positive square root of a ( , ) '-positive operator T2A relative to ( , ) '

(also denoted as (T2A)1/2 below) can be expressed as T(TATY/ZT~1 in

terms of the ( , ) -positive square root (TAT) 1/2 of the ( , ) -positive oper-

ator TAT. Hence

||51
1/2T-52

1/2T||

~ H.S. _ _ H.S. _
Thus S^^Sz1'2 implies (50 1/2 ~ (SO172 and vice versa by the sym-

H.S.
metry. This shows the independence of the relation Si/z ~ S2

1/2 from

the reference inner product.

Proposition 6.6. Let S and S' be t^vo polarizations of a phase

space (K,r,Y) (he?~e zve do not assume -S'lkerr — ̂ 'Uerr) such that they
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satisfy condition (1) of Definition 6. 3. Then the following conditions

are equivalent -where S and S' are defined in Section 3 (10), p and

pf are defined by (4. 1), the bold face S's are operators defined from

the corresponding S's by (3.7) and the equivalence notation is as de-

scribed at the beginning of this section:
H.S. ^ H.S. _

(i) p~p' and S\kerf ~S'|kerf .
^ H.S. ^ ^ H.S. ̂

(ii) S ~ S' and S|kerf ~ 5"lkerf •
H.S.

(iii) S ~ S f .
H.S. H.S.

(iv) S~S' and S1/2~Sn/2.
H.S.

(v) S1/z ~ Sn/2.

H.S.
Corollary 6. 7. If S1/2^Sn/2, then 7ts andns> are quasi-equivalent.

Proof of Proposition 6. 6. (ii) => (i) : The relations in Section 4 (1)

and Lemma 4. 2 hold in the present case as their proofs do not use the co-

incidence of S and S' on ker T (assumed in Section 4 and not assumed

here). Since

S-S'=-^((p-p')-(p-p'» (by (3.8) and (4.1))
£

1 /O q-q
— - - (by (4.2))
2\0 P-P + Q-Q ^ y ^

is in the H.S. class, q= (q — q)Q is in the H.S. class (the equality

due to (4. 3) ) . Therefore, by Lemma 4. 2,

'0 -

is in the H.S. class. Since (p — p') — (P~P'} is in the H.S. class as

above, we see that p — pr is in the H.S. class.

(i) => (Hi) ; First let T0: k e r f — >kerf be the operator defined by (x, y) §'

= (x, TQy) § for x, ye ker f. Then we have

= (x, (P-P) (P'~

^ H.S. H.S. _ ^ H.S. ^
for x,y^K. Since p' ~p and T0~ (1— p— p) (by -5|kerf ^^-S' lkerf)* we
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have
H.S.

(/>-.?)(/>'-£') + (!-/>'-?') *T0 (!-/>'-£') ~1.
^ H.S. ̂

This shows that S ^ Sf .
xx H.S. ^ _ _

(iii) => (ii) : S ^ S' means that (Tx, Ty)§* — (JT, y) §? fc>r x,y^K, with
^ ^. H.S.
T a positive invertible operator such that Tz ^ I which is equivalent

^ H.S. H.S. _ H.S. ^
to T~l. Then ?§~rs- (because f s- = T2 fs ~ Ts) and hence S-S'

= — ( f s ~ f s f } is in the H.S. class. The second condition of (ii) is a
Zj

restriction of (iii) .

(iv) => (v) : Let T be an S'-positive invertible operator on K defined by
H.S.

(Tx, Ty) s- = O, y) s for x.y^K. Then T is also 5-positive. By 5 — S' ,

Tz — 1 is in the H.S. class in ( , ) # ' , which is equivalent to T — I in

the H.S. class. S and S' are represented by operators T2S and S'

relative to ( , ) # ' . Now we have

(T2S)1/8- ( S / ) 1 /

H.S.

—
H.S.

— (S)1/2-(so1/2

(by Corollary 6. 5 (i) ) . Here the square roots for T2S and S' are rela-

tive to ( , )5' while those for TST and S are relative to ( , )s. Therefore

(v) follows from (iv) .

(v) =^> (iv) : Let St (£ = 1, 2) be an operator representation of Si (i = l, 2)

relative to a fixed reference inner product (see (6.1)). Since 2(S1~S2)

= ( (So "2+ (£) 1/2) ( (So 1/z- (3.) 1/2) + ( (3.) I/2 - (3f)
 1/2) ( (&) 1/2 + (S,) V2) ,

H.S. H.S.
5i1/2 ~ 52

1/2 implies 5i ^^ S2. Now taking ( , ) s, as a reference inner prod-

uct, we have S = T2S and S'=S' as in the proof of (iv) =» (v) . Note
H.S. H.S.

that T-l is in the H. S. class (by 5 — S') , and hence (TST) 1/2 — S1/2

(Corollary 6. 6 (i) ) . Using this, we have

H.S.
Si/2_s/i/2 _

H.S.

= (T2S)1/2-(S7)1/2
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By this relation, one sees that (iv) holds if (v) is satisfied.

We are now left with the equivalence of (iii) and (iv).

(iii) =» (iv) : In terms of the imbedding c given by Lemma 3. 8, ( , )5 and

( , )5> are unitarily equivalent to the restrictions of ( , ) s and ( , ) s to
TT O H S

the subspace cK of K. Therefore S ~ S' trivially implies S~S'. If
H.S.

(x,y)s = (Tx,Ty)s,, then S'= T2S and hence S ~ S' implies that S-S'

is in the H.S. class.
^ H.S. ^ H.S. ^

By earlier proof, S ~ S' implies p ~ p'. Let (,'x— [00x] e JS^ for

x^K. Then (*'.r, ^y),§= (x, y) s and (*';c, c'y)^ = (x, y)s>. Let (*')* be

the adjoint of the isometry c' from (K, ( , ) s ) to (K, ( , ) $ ) and (*')f'

be that of c' from (X, ( , )* , ) to (K, ( , ) ^ ) - K (f, ?)*= (?f, ? V)5-

and (x, y)5= (Tx, Ty)s^, then

(6.5) (O!- = T'(OJT-'.
^ H.S. ^ H.S. _

Since 5 — 5X and S^S7, T2~l and T~2-l are in the H.S. class and

hence
H.S.

(OJ-~ (Of.

From (3.9) and the relation (l-r/)1/2-2S1/2(l-S)1/2, we have

(c') & = 2S1/2 (1-5)1/2, («') |,c = 2 (5r)1/2 (1 - S')1/2.

As an isometry, C is bounded and hence we obtain
H.S.

(6. 6) S1/2 (1 - S)1/2 — (SO1/2 (1 - SO1/2.

Let A-S1/2+(1-S)1/2 and A' = (S01/2+ (I-SO172. By (6.6), we
H-S.

have A2~ (A')2. Let (1- t)l/2 = £ ^n(l^|<l) - Since 1^A2^2,

A = 21/2 (1 - [1 - 2~lA2])1/2 - 21/2 U cn (1 - 2'1 A2)n

is absolutely convergent. Using the same formula for A' (convergent

in S'-topology and hence in equivalent Stopology), we obtain

(6.7) HA-A'llH.s.^'ITU IIT- ' l l ||A2-(A')2«H.s.I>cn!2-'1

where ||5|U^||T|| llfilU.IIT-l^-'liril ||T-l|| for B= (l-2->A'*y.

Hence

A (S1/2 - (SO1/2) = AS1/2 - A' (SO1/2 + (A - A) (SO1/2

- (S-SO + (S1/2(1-S)1/2- (S01/2(1-S01/2) + (A- A) (S01/2
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is in the H.S. class. Since A"1 is bounded, we conclude that S1/2 — (5>')1/2

is in the H.S. class. Namely (iii) implies (iv).

(iv) =^ (iii) : Let k£ (e = ±) be the isometric maps from (Ks, ( , ) s) into

(£ , ( , ) $ ) given by (3.13) (isometry due to (3.11) and (3.15)) and

CQ = 2~l/2k0 be the isometric map from (kerf, ( , ) s ) onto (kerf , ( , ) s )

with kQ given by (3. 14). We have the following 5-orthogonal sum

decomposition.

(6. 8) K = k+Ks®k-Ks@c0 (ker r) -

For e= ± and r]= ±, let A's be defined by

&.— (C0z, k£x)s= (~, A£x)^ ,

g, — (c0z, CQW) § = (z, AQw) s ,

where x,y£EKs and z, zfEikerT'. For an orthonormal basis $j of K,
~ H.S. ̂

XII (f*> ?j)s-— (?i, fy)s!2<C°° is equivalent to /S' ~ /5 and hence we obtain

(iii) if we prove that all Ars are in the H.S. class.

Let (.r, y)5,= (Tx, Ty)s with 5- (and 5'-) positive T. Let A e(e= ±)

be given by (3.10) and /i'£ be the same for S'. By (3.11) and (3.15),

we obtain

) - (A A) * (/!,£,) } ,

A0= (1-P-?) (T2-l) (i-p-p).

Since hffk£ = dff£kfk£ is bounded and T —1 is in the H.S. class by (iv),

it is enough to show that (h^—h^k^ is in the H.S. class in (K, ( , ) s ) .

Since F(h'G — hff)kv F = (h^ff—h-ff)k-V9 it is enough to prove this for ff= +.

By using definitions of 7z/s and &'s, we obtain

'+ -h+)k+=2{((S')1/2-Sl/z)Sl/z- ((I-S')1/2

- (A' - A) A-1 + {(A') -1 (2S7 -1)

- A'1 (2S-
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where we define

A = S1/2 + (1 - S) 1/2, A' = (SO 1/2 + (1 - SO 1/2 ,

and we have used the formulae

S1/2- (1 -S) l/2 = A~l (25-1) ,

2(aa-b$) = (a + b) («-£) + (a-b)

Since TS' = T-2rs, we have 2S'~ 1 - T-2(2S-1) . Furthermore \\A

^1, \\A'~%^\\T\\ IT'1! ||A'-'|U^||71 H T - ' l i , HA||^21/2. Hence

where c = 21/2\\T\\ I T ' 1 ] ] . Since

(iv) implies that (h'+~h+)k+ is in the H. S. class.

Similarly, we have

= -2{ ( (50 1/2- S1/2) (1 -S) 1/2- ( (1 -SO 1/2- (1 -S) 1/2) S1/2}

- (Ar - A) A'1 - { (A7) -1 (2S7 - 1) - A'1 (2S- 1) } (2S- 1) ~1A ,

which is in the H.S. class.

§ 7. Standard Polarization

In this section we assume that K is separable (not necessarily the

same as K of our theorem) . In our application, this condition will be

satisfied.

Definition 7. 1. A polarization S of (K, F, 7) is called standard

if Ts does not have eigenvalue 1 with respect to ( ,) s .

Lemma 7. 2. S is standard if and only if Qs (the cyclic vector

in the GNS representation associated with quasifree state (ps) is cyclic
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and separating for Rs (K) .

Proof. By Theorem 3. 12. Details are the same as in Lemma 2. 3

of [1].

Lemma 7. 3» Let Sl be a polarization of (K, F, 7) . Then there

exists a polarization S2 of (K, F, 7) such that

(i) S2 is standard,
/ • • \
(11)

H,S.
1/2 01/2

Proof. Let e be the eigenprojection of Ts, corresponding to the eigen-

value 1. Take a positive and invertible trace class operator % in eK.

Such an operator always exists because K is assumed to be separable.

Set

Since the inner product ( , ) S g satisfies the condition in Lemma 3.2, it

defines a polarization (note that T2>I and FTF — T). On the other

hand, the matrix representation of Ts2 with respect to the decomposition

K=eK+eK+ (l-e-e)K is given by

d + %)-1

-a+%)-1

From this expression, Tsz does not have eigenvalue 1 and the polarization

S2 is standard. Condition (ii) is satisfied by the construction.

By this lemma, we may assume that both S and S' are standard for

the necessity proof, which we shall do. Let R— {exp ins(x) ; .re Re K}"

be the von Neumann algebra for the GNS representation (§5, 7TS, Qs)

associated with the quasifree state (ps of 21 (K, F, 7*) . Furthermore we

may identify (§5, 7TS, $$) with (JQ§9 7t§\cKy @§) under the identifying map

c from K into K given by tx= [^©0], (see Lemma 3.8 (i) ) . The

main objective of this section is to give an estimation for ||<^s — #s'||- For
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this purpose we need an explicit form of the modular conjugation for R

associated with &§•

Let j: K—>K be the conjugate linear Bogoliubov transformation de-

fined by

(7.1) j (xi@xz) = Fx2@Fx1 for xl9 xz e K .

Since [ j, /*] = 0 and f (jx, jy) — f (x, y) , j induces a conjugate linear auto-

morphism C of Sl(j^). Since § (x, y) = S (jy, jx) , we can define the

unitary conjugation J in $Q§ by the relation

(7. 2) J(TT (a) O§) = TT (C*) ̂  for a <E

Lemma 7. 4. J gives the modular conjugation for Q$.

Proof. In [1], this is effectively proved by Corollary 3.4, (3.2)

and (3. 3) where Tns (a)) is the present J.

Lemma 7. 5. Suppose that dim (K/KQ) is finite. Then we have

( i ) j'lkerf =/*|kerf,

(ii) {v,j]=0, [H,j]=0,

(iii) [Q(v),J]=0, [Q(lf),J]=0.

Proof. (i) follows from the definition and (iii) is a consequence of

(ii) . (ii) : Since f OX J» = f (y, x) , OX ./y) s = (y, ^) s, and OX Jy) s- =

(y,x)s-, we have [S,j]=0 and [S', j] =0. Hence [p,J]=Oand |>',j]

= 0. Then (ii) follows from the definition of H. (4.8) and the fact

that v=(\-p'-p') (P + p).

For a cyclic and separating vector ?^$Q§ for R, we denote the

natural positive cone associated with f by Vf. It is known that xJxJW

cFf and Jr-r for any ^e Vf and x^R. (Theorem 4 of [2].)

Lemma 7.6. Suppose that &\m(K/Ko) is finite and let

be a cyclic and separating vector for R. If $^VS is cyclic for R,

then Q(v)*$ is cyclic for R and Q(v)*%s=Vs.
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Proof. Through the map l, we can identify ker 7 with ker 7*. Since

v (ker 7)^0, dim (K/ker 7) <C°°, and 7 is non-degenerate on K/ker 7,

we can expand the restriction of v to K^K as follows;

*(*) = g ?(*!,*)«* f°r *SX

where {^}f=1cker7 and {^}f=1cX0ker 7 (5-orthogonal complement

of ker 7). Furthermore, by v = v, we may assume that

(7.3) P 01 = 04, and rb,= -bt (/ = !, • > • , JV).

Then, using [77,j]=0; we have

v (x4- j^) = z> (^) 4- Jt; (x')

= ̂ f(bitx)at + f

for x,xf^K due to jai = rai = ai,T(bi, x') =f (Jbi,Jx') and the vanishing

of each cross term. This implies

£)a, for

because K-\-jK~K. Using this expansion of v, we have

q (v) = r (v) + */r (v) «/

where r(v) =X3 ̂ (^0^ (**)*• Note that r(v) e7rs(2l (X)) , and r(t;)*
i

D —r(v) by (7. 3). Furthermore the same estimate as the proof of Lemma

5. 1 (iii) shows that D is a dense set of analytic vectors for r(v) and

hence r(v) is essentially skew self-adjoint. Any operator A in R' satis-

fies (AW, B0) = (B*¥, A*®} for ¥,®£ED (Lemma 3.4) and B = ns(x),

K and hence for B = r(t;) e 7^(21 (X)). Since Z) is the core of

r(v), e~r(v} commutes with A^R' and e~~r(v)^R. Thus r(u) and Jr(v)J

are affiliated with .R and jR', respectively, and we have

Hence Q(v) *?e V^ if f e Vfl. The cyclicity of Q(v) *f is immediate from

the cyclicity of £ because e~r(v) is unitary.

Lemma 7e 7, Consider a von Neumann algebra F on a Hilbert
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space $QF and two cyclic and separating vectors ft, ?2^§f for F.

Suppose that f l and ft have a common modular conjugation operator,

i.e., there is an antiunitary involution J in !QF such that

(i) Jft = ft (i = l,2),

(ii) JFJ=F',

(iii) (ft,A7Aft)^0 for all A^F (z = l,2).

Then there is a self -adjoint unitary operator u in the center of F

such that

wf.e V,, .

Proof. It is known that there exists a unitary operator 0(ft, ft)

in F' such that

= 0(f2,?i) .40 (&,

if U' is a unitary operator in F', and ?2€E Vfl if and only if 0(ft, ft)

= 1. (For example, Lemma 2.5. 35~37 in [5].) In the above case,

we have J,2 = J^ = J, and hence ,# (ft, ft) J= 0 (ft, ft) . Thus «=0(ft, ft)

eFfl^"'. By Lemma 3 of [4], for example, &* = «/#«/ and hence u* = u.

Since 0(«ft, ft) = «0(ft, ft) = 1, «?2 is a vector in Vfl.

We note that «= ±1 if F is a factor.

To apply this lemma, let R = A(^)F and fQ§ = iQA®iQF be the tensor

product factorization of (R, §s) corresponding to the iS-orthogonal de-

composition of phase space J£ = ker f© (XQker f) with QS — @A®@FI

where (§ ,̂ TT^, J?^) is obtained by the GNS-construction from the state

^csikerr) of §l(kerr, /"ikerr, O) with A= {exp i^(^) ; xeRe (ker r)} /x

and similarly for §F, J2F and F. Since Q(H} =lL®Q (we denote Q again

by Q(H} below), we apply the above lemma for $ j = QF and $ 2 = Q&F in

Corollary 7. 9 below. Once we have QVapdVap, then (1(X)Q) V^C F^.

The condition of the above Lemma is satisfied for @F and QQF due to

the following:

Lemma 7. 8. If dim (X/ker r) *"s finite, the following assertions
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hold.

(i) QF and Q(H}*QF^$gF are cyclic and separating for F.

(ii) JFJ=F'.

(iii) JQF = fiF, JQ(H)*QP = Q(H)*QP.

(iv) (Qp, AJAJttp) ^0 and (Q (H) *£F, AJAJQ (H) *QF) ^0

for all A^F. Here J is defined in the same -way as (7.2) on SQF.

Proof. Since S and 5' are standard, (i) follows from Lemma 7. 2.

By the same reason as Lemma 7. 4, J is the modular conjugation and

hence (ii) , the first equation of (iii) and the first inequality of (iv) follow.

The second equation of (iii) follows from the first by Lemma 7. 5 (iii) .

If we identify Q(H)*@F with the corresponding vector for S', J defined

for S' coincide with the present J due to the second equation of (iii) .

(Note that C is common.) Therefore the second inequality of (iv) follows.

Corollary 7. 9. Suppose that dim (K/ker J ) is finite. Then we

have

Proof. Applying Lemma 7. 7 to the system (F, §F, Qp, Q(H) *QF) ,

we have

By (A. 1) , (Qa, Q (H) *Qa) = (det cosh H) -1/4>0. If £ e Vs,, then (Qa, £ )
S

:>0. Hence c = I.

Proposition 7- 10. Suppose that dim (K/ker r) is finite and that

r — 'S'lkerr- Regard (ps and <ps> as states of R. Then

Proof. By (5.11), cps and ^5/ are given by vectors $§ and Q(v)*

X Q (H) *£§• By Lemma 7. 6 and Corollary 7. 9, ^ and Q (v) *Q (H) *tt§

are in the same natural positive cone Va~. Now the inequality is thes
von-Neumann algebra version of the Powers-St0rmer inequality. (Theo-
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rem 4 (8) of [2]).

§ 8. Necessity Proof

In this section, we give the proof of necessity. First we consider

the case of standard polarizations. The general case will be reduced to

this special case by the result of Section 7.

Lemma 8. 1. Let R be a W* -algebra and <pl9 cpz be two faithful

normal states of R. Suppose that (pi and <pz are quasi- equivalent.

Then we have

Proof. By the proof of (6.15) in [1].

Lemma 8. 2. Let S and S' be two polarizations such that the

associated inner products ( , ) s and ( , )$ ' induce the same topology,

with respect to which K is separated and complete. Let p, pf and

S, S' be operators on K and K, respectively, defined from S and S'

as in Section 3 (10) and (8) . Let T be defined on K by

for all x,y^K. Then T is a bounded operator -with bounded inverse

and

(8. 2) 4\p-pf || ks. = 11/3 (1 - 09') -'T-1/?) E/3-1 1| ks. + || /3 (£-£') 0-' II ks.

where the Hilbert Schmidt norm is relative to ( , ) § on the left hand

side, relative to ( , ) s on the right hand side, 1. — E and 1 — £' are

orthogonal projections on ker T, orthogonality being with respect to

( , ) s and ( , ) S ' > respectively, and

(8. 3) 0 = S1/2 + (1 - S) 1/2 , ff - (SO 1/2 + (I - SO 1/2 .

Remark 8.3. If kerr-0, (8.2) is the same as (6.9) in [1].
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Proof. The assumption that ( , ) s and ( , ) s, induce the same topol-

ogy on K is equivalent to the conclusion that T is a bounded operator

with bounded inverse.

Denote K with the inner product (x, y) s by Ks, the completion of

JK/ker 7- with the inner product (rs.r, T^y) s = (^, y) I by Xf and <X">S

= KSQ)KJ, with its inner product denoted as <( , )5. Let <2 be the map-

ping from K into (Kys uniquely determined by

(8.4) a(x@y) - (

We note that

(8. 5) 2 (ft, ft) 5 = < o?©
/S1 is a bounded operator with a bounded inverse (1<^3<^21/2) and the

range of a is X©X/ker 7" dense in (Kys. Hence a is a bounded map

onto (Kys with a bounded inverse.

From (3. 13) , we have

(8. 6) ak+ (x) = Ts1 (S1/2 - (1 - S) 1/2)

(8. 7) ak_ (x) = $~lx® ~ frslx

where the equation holds for x^EKn D ( f s l ) and hence by continuity

for x<E.EK for which Tslx^Ks- Furthermore, if x,y<^EK, then

(8. 8) 2 (*©y) - ak+ (ffx+ff-^sy) + ak. (Px-p-^y) .

Hence

(8. 9) 2apoT1 (x®y} = (Ex + i3~2rsy) © (@2Ts1Ex+ Ey) .

The inner product (,)| is f-dual to ( , )5 . (Namely (x, x)jl/2 is the

supremum of \r(x,y)\ for (y, y)^!.) Therefore if ( , ) s and ( ,) s ,

give the same topology on K, then ( , ) f and ( , ) f / give the same topol-

ogy on K/ (ker 7) and hence we have a natural identification of K§

with K$,. Then

(8. 10) 2ap'cT1 (x@y) = (E'x + P'-*rs.y) © (@'2rs>E' x + E'y} .

From

(8. 11) (x, TE'y) s = (x, E'y) a.=r (x, rJE'y) = (x,
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we obtain

(8.12) TE' = rar£E', i.e. rs
lETE' = Er^E

Similarly

(8.13) T-'E^TWs'S, i.e. T^rs = rs-E.

From (8.9), (8.10), (8.12) and (8.13), we obtain

(8. 14) 2 { (/?0r ') a (p-p') a~l (/T'e/?) I Cr0y)

0 {r̂ r ' 0?2 - TE' GS') ') £"* + £'' (£- £') fly}

where we have used z = Ez in Xf.

Since (E-E')z=(l-E')z-(l-E)z^kerr, we have Ts(E-E')z

= 0. Since /? and 7*5 commute as functions of S, the second term /9"1 (E

— E')ffy in the second summand on the right hand side is 0 in Kj. If

3/i is an orthonormal basis in Kj, then Ysy* is an orthonormal basis of

EK. Since 2~l/2 ($®$-1) a is unitary due to (8.5), we have

(8.15)

9-1 1| ks. + II E8-*(&-TE' (iS')2)^1 II ks.

11/808-'- 09') s..

Lemma 8. 4. Assume (x, y) s = (x, y) s- for all x, yekerr and

k~l\\x\\l<\\x\\\.<,k\\x\\l for all x<=K. Then \\p-p'\\^.s<G implies

(8. 16) ||S1/2- (S") 1/2||H.S.^2. 5kG cosh (fer/2) ,

(8.17) ||I

Proof. By (8. 2) , we obtain

(8. 18) ||/3-2(2S-l) - (/J'
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where we have used (2Sf - 1) (1 -E) -0 (due to (l-E)X = ker r) and

(8.13).

Let 6 and 6' be operators with spectrum in the interval [ — 7T/4, 7T/4]

satisfying

(8. 19) S = sin2 (6 + 7T/4) , S' - sin2 (6' + Tr/4) .

Then the left hand side of (8.18) is ||tan 6 -tan 0'||H.s. and

(8. 20) IITan-'A

f
Jo

- (1 + AV) A'} (1 + A7 V) -Vs.

+ (Ax) (A7- A) (A'*)} (1 + A"*2)-1!^.).

The 5-norm of (I + AV)"1 and (I + A^'HAx) are bounded by I

and (1/2). Since

(8.21) ||3|U^||T-1/25T^

the 5-norm of (I + AW)"1 and (1 + A'V) ~l (A' x) are bounded by k

and k/2. Together with (8. 18) and (8. 20) , we have

(8.22) ||0-0lH

Hence by Taylor expansion

^2. 5kG cosh (fer/2) .

where we have used ||0|U^7r/4, \\0f |U |̂|̂  \\s^

Since p2-/?/2||H.s.:-||cos2(9-cos2(9/||H.s.^5^Gsmh(^7r/2)J we obtain

(8. 23) || (1 - T-1) £1 .̂ - P'2/?'1 {/5 (1 - (/?') -2T-^2) E/?-1}^'1

^ (2k) (2G) + 5£G sinh (kit/ 2)

where we have used W'*\\s<Jt\f3'2\\s.<2k. Since (l-£) (I- T'1) (1-E)
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= 0, we have (l-T'1) (1-E) = ((!-£) (l-T^E) * and hence

(8. 24) Hi-Tin.^!! (l-T-^EHH.s.Hh ]| (1-T'1) (I-E) ||H.S.

Hence

With these lemmas as a preparation, we proceed to the main asser-

tion of this section.

Lemma 8. 5. Let S and S' be two standard polarizations of a

separable phase space (K, F, 7") such that they coincide on the kernel

of 7". Suppose that 7ts and Tls> are quasi- equivalent. Then conditions

of Proposition 6. 6 hold.

Proof. Since Tr^^Tr^/, we can regard (ps and <ps> as states on a von

Neumann algebra R associated with the representation 7CS (R =

Since S and S' are standard,

(8.25) ||̂ -

by Lemma 8. 1.

Take an increasing sequence {^} 0̂ of /'-invariant subspaces of K

such that

( i ) K0 is the kernel of 7.

(ii) dim(jK^/Xo) is finite for all i.

(iii) U KI is dense in K.
i

Let fi9 Si9 S/ be the restrictions of 7", S, S' to Ki. Then we obtain a

family of phase spaces (Kt, Ti) with polarizations St and S't .

By construction, Si and Si are standard because S and S' are standard

and the GNS representation of <ps. can be identified with (7ts\^i(Ki) , i25).

Furthermore, using the identification 7TS, (SI (K) ) " - ns (SI (K) ) " ( = JR),

we may set jRt=7r5'i(2l(iri))// = 7rs;(2l(JCi)) / /C-R and consider $95i and ^

as states of .R^. Then (pSi and 0kj are restrictions of (ps and p5/ to Rt.

Therefore
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(8.26) II^-^II^II^-^'H .

Applying Proposition 7.10 and inequality (A. 3) to the pair (Si, S't) .

we have

(8.27) ||̂ - ;̂||

:>2 - 2det (cosh H^ ~1/4det (1 + 2~lvt (1 - tanh Hi) vf) ~1/4

where Pt, P'i9 viy Hi are operators associated with (Si, Si) by the con-

struction of Section 4. (Note that they do not coincide with the restric-

tions of P, P', v, H to Ki in general.)

By (8.25), (8.26) and (8.27), it is enough to derive

(8. 28) Tim~ det (cosh Hi) det (1 + 2~lvt (1 - tanh Ht) vf) = + °o
i-»oo

from the negation of conditions in Proposition 6. 6.

We first note that

(8. 29) cosh

(8.30) ^(

These imply that both determinants in (8. 28) is bounded below by !„

It is therefore sufficient to prove the following alternatives:

(I) lim tr sinh2Hi = oo, or

(II) lim tr s'mhzHi = M< oo and

lim tr vtv* = oo .

(Note that \\Hi\\ is bounded uniformly by sinh'1 (M1/2) if the first con-

dition of (II) is satisfied and hence 1 — tanh || Hi \\ is bounded below by

1-(1 + M)-1/2M1/2>0.)

We now bound \\pt-pt ||H.S.= lk*||iLs.+ 11^* —Qillks. by quantities ap-

pearing in (I) and (II). We have ||^||H.s.= biQi||H.s.^||^i||H.s.||Qi|| and

\\Qi\\<\\P'i\\<k\\P'i\\s- = k. Proof of Lemma 4.2 (iii) shows JPi(l-Qi)P«

= PiQiPi and hence ||P,(1-Q,) P,||ks.+ \\PtQf i\\ivs.= \\ (P*-Q*)*||H.s.

= trsinh4//i. Further PiQiPi = ut sinh at cosh 0.1 by Lemma 4. 3 (ii) and

PiQtPi=-(PiQtPi}*=-uf cosh a{ sinh at by Lemma 4.2 (ii). There-

fore ||P{QtPt||ks. + ||PiQiPi||ks. = tr sinh2Ht cosh2H,. Finally ||sinh Hi||

^ II-P-QII ̂ 11 ̂ 11+ 11 £211^1 + *. Therefore

(8. 31) \\Pt-pi||H.S<^2tr w4vf + tr sinh2/^(1 + 2sinh2
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^k* tr vtvf + (1 + 2 (1 + K)2) tr sinh2 Ht.

Hence (8.28) follows from

(8.32) lim || A -tf Iks. = °o.

Let -Ei be the orthogonal projection on Kiy orthogonality being relative

to ( , ) s. Since Si and Si are restrictions of S and /S' to Xj, the inner

products ( , ) S i and ( , ) s j are restrictions of ( , ) 5 and ( ,)$ ' . In par-

ticular

(8.33)

Therefore

(8.34)

We also have S« = EiSEi and hence

(8. 35) lim SJ" = (lim S,) 1/2 - S1/2.

Similarly T& = E<TS' Et, S' = lim T^T^ =limSj and

(8.36) lim(Sj)1/2=(S')1/2.

Therefore

(8. 37) ||S1/2- (SO^IIiLs^limllSr- (^)1/2||H.s. •

If condition (iv) of Proposition 6.6 is violated, then either (a) ||1

-T\\u.s. = oo or (b) ||S1/2-(S/)V2||H.s. = °<5. In the case (a), (8.34) and

(8.17) imply sup\\pt-pt ||H.s. = ~. In the case (b) , (8.37) and (8.16)

imply the same. Therefore if conditions of Proposition 6. 6 are violated,

then (8. 32) holds and 7ts and 7ZS' can not be quasi-equivalent.

Necessity Proof of Theorem. (See § 1 for the statement.) We

assume that the reduction of the problem described in Section 2 and Section

3 has been made, namely ( , ) s and ( , ) < ? ' induce the same Hilbert space

topology on K and the restrictions of S and S' to the kernel of f coincide.

A slight modification of the proof of Lemma 6. 9 in [1] shows that there

exists a direct sum decomposition of the phase space, K = Kl@KZ9 such

that

(i) KI is separable,

(ii) both S and S' split,
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(iii) S\K, = S'\St.

Thus the problem is furthermore reduced to the case in which K is

separable. In that case, by Lemma 7. 3, we can replace S and 5" by

standard polarizations. Now the necessity of conditions in Theorem is

a direct consequence of Lemma 8. 5 and Proposition 6. 6. This completes

the proof of Theorem.

Corollary 8. 6. Let (K, F, 7*) be a phase space, B a Bogoliubov

transformation in K, and S a polarization of T- Then the Bogoliubov

automorphism TB of SI (K) induces the automorphism of Rs (K) if and

only if

( i) B and B'1 are continuous with respect to the inner product

( , )*
(ii) B*B— I is in the H.S. class (* and the H.S. class refer to

( , ) * ) >

(iii) BSl/2B~l-Sl/2 is in the H.S. class.

Proof. Set (x, y) S' = (B~lx, B~ly) s. Then Sf is a polarization of

T and then B induces the automorphism of Rs (K) if and only if 7CS and

7ts> are quasi-equivalent. Now condition (i) of this Corollary is equivalent

to condition (1) of Theorem. Conditions (ii) and (iii) of this Corollary

are equivalent to condition (iv) in Proposition 6. 6 and hence condition

(2) of Theorem (under the condition (i)) .

§ 9. Alternative Conditions

On the subspace ker 7, S = S' = l/2 and hence we can not expect to

find a condition on S and S' alone equivalent to conditions of Proposition

6. 6. However, under the side condition that the restrictions of S and
H.S.

S' to ker f satisfy the condition for ~ , we can find a condition on S

and S' equivalent to conditions of Proposition 6. 6. This will be achieved

in Corollary 9.2 below and clarify the relation of our Theorem and

results obtained in [1].

As a preparation we derive a condition expressed in terms of the
H.S.

relation ~ between forms. In Proposition 6. 6, this is done in the doubled
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space K (condition (iii)) but not in the original space. For this purpose,

we recall a definition of the geometric mean discussed in [8]. The geo-

metric mean of two positive hermitian forms S(x,y) and S (x, y) =S(Fy,

Fx) is denoted by (SS)1/2 and is given by

(9.1) (S3)"2 (x, y) = (x, S1/2 (1 - S) I/2y) s .

A similar relation holds for S'.

Let r be a Hilbert space topology on K. For two bounded positive

hermitian forms *Si and S2, we denote

rH.S.

Si ~ Sz

if Si(x, y) = (x, Siy) (z = l, 2) for an inner product ( , ) giving rise to the

topology r and Si — Sz is in the Hilbert-Schmidt class (relative to ( , ) ) .

Proposition 9.1. Assume that ( , ) s and ( , )$ ' induce the same

topology r, are non-degenerate and complete on K. Each of the follow-

ing conditions is equivalent to conditions in Proposition 6. 6.
H.S. _ H.S. _

(i) S ~ S' and (SS)1/2 — (S'S")1/2.

(ii) For any fixed numbers X, //>0,
_ _ rH.S. _ _

H (S+ S)+ju (55)1/2 - A (5' + SO + fi (S'S')l/z.

Proof. If S^-GS')172 is in the Hilbert-Schmidt class, then

(1 - S)1/2 - (1 - S7)1/a = /" (S1/2 ~ (S')1/2) F

is in the Hilbert-Schmidt class. Hence condition (iv) of Proposition 6. 6

implies condition (i) above. Obviously (ii) follows from (i).

Let us assume (ii). Let

(9.2) (

Then (ii) is the same as

(9.3) ; + /*S1/2(l

Since T(2S'-1) =2S-1, we obtain
H.S.

(9.4)



QUASI-EQUIVALENCE OF QUASIFREE STATES 331

where the function f is defined for 0<^<I1 by

O.5) f(t) = tf+^a-oTW-i):
This function is monotone increasing and its inverse function f~l is given

for -r^j^r1 by

(9. 6) 21'2/-1 (x) = (1 + (4 + ffj?) ~lx {4^ + jug (x) 1/2} ) 1/2 ,

(9.7) g(x)=4+(v2-4^x2.

Since g (x) is sandwiched by 4 and #2/A2, we have a convergent

expansion

(9. 8) g (x) "2 = £"2S Cn { (g (x) /*)-!}»

for £>max(4, A2/^2) where (1 + a) 1/2 = I] ĉ a:11 for |a|<l and hence

(9.9) ||g(A)1'2-g(A')1/2||H.s<||5'(A) -g(A') |!H.S.̂
1/2

where /=! — k~l min(4, jU2/^2) «1) and the sum converges. (The square

root is relative to ( , ) s for 0(A) and relative to ( , ) S ' for

From (9. 6) , we obtain

(9. 10) 2172/'1 (*) - (1 + ̂ ) F(x) V2G(x} ~vz ,

(9.11) F(x)=4i(l-lx)+ju (g (x) 1/2 + fix) ,

(9. 12) G (x) = ̂  V + ig (x) +ju(l + I2x2) g (x) l/z .

Since g (x) 1/z + jUx^O for x\<Lh~l, F(x)^a for some a>0. We also have

G(j;)^g(j:)^min(4,rV). If || A- A'Un.sXoo, then F(A) -F(A')

and G(A)— G(A') are in the Hilbert-Schmidt class by (9.9) and hence

F(AY/2-F(A'Y/z and G(A)1/2-G(Ax)1/2 are in the Hilbert-Schmidt class

due to the same reason as (9.9). Therefore f'1 (A) — f~l (A') is in the

Hilbert-Schmidt class for A = f (Sl/2) and A' = f((S')1/2) due to (9.4).

Namely we have

(9.13) S1/2~(S7)1/2.

Using this in (9. 3) , we obtain
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Since (; + //OS')1/a(l-'S')1'2)~1 is bounded (relative to ( , ) 5 , by T1 and

hence relative to ( , ) s ) , we obtain

H.S.
(9.14) 1~T.

Therefore (ii) implies (9. 13) and (9. 14) , which are condition (iv)

of Proposition 6. 6.

Corollary 9. 2* Under the same assumption as Proposition 9. 1,

the following two conditions together are equivalent to conditions of

Proposition 6. 6.
H.S.

(a) ( , ) s |kerr~ (,) s , |kerr.
H.S.

(b)

where ~L—E' is S' -orthogonal projection on ker 7% $(x) =xl/*+ (1 — .r)1/2

and ( ) ~ denotes the closure of an operator.

Proof. Setting /! = ! and # = 2 in the condition (ii) of Proposition

9.1 and writing it in terms of operators relative to ( , ) s , we obtain

H.S.
(9.15) 1 + 2S1/2(I-S)1/2^T(I + 2(S/)1/2(1~S/)1/2)

where (x, y) s- = (x, Ty} s.

Then (9. 15) is equivalent to two relations obtained by multiplying

(9.15) by 1-E' and E' from the right. Since the range of \-E' is

kerr, on which S = S' = l/2, the multiplication by 1 — £' yields the con-

dition (a). Since 1—E' is the eigenprojection of S' for the eigenvalue 1/2,

it commutes with S'. Since

(x,TE'y)s= (x,E'y}s,

we have TE' = ((2S-1) (2SX-1) ~1E') ~ where (2S' -\)~1E' is well-

defined (in terms of spectral decomposition of S' relative to ( ,)5 ' ) and y

is in its domain. Since # (.r) 2 = 1 + 2xl/z (1 — x) 1/2 is bounded with a bound-

ed inverse for 0<J.r^l, the multiplication of (9. 15) by Ef yields an

equation equivalent to (b) .
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Remark 9. 3. We have

- (sign (2*-!)) {/?(x)2(.r1/2- (1 - x) 1/2) -} ~1/2

= (sign (2x- 1) ) exp (-Tanh-1{2x1/2(l -x) 1/2}) .

If we set £' = 1 (the assumption of non-degenerate f ) and substitute

the above relation in (b) , then we obtain the criterion (2) in Lemma 6. 5

of [1]. (Condition (3) in Theorem of [1] should be written in the

same way as condition (2) in Lemma 6.5 there, namely (7(5) and (7(5')

are missing by misprint.) By inverting the role of S and 5', (b) can

be replaced by the following condition which corresponds to (3) in

Lemma 6. 5 of [1].
H.S.

(b) ' /9 (S') "2 ( (2S' - 1) (2S- I) ~1E) -/? (S) 2 — E .
H.S. H.S.

As already stated, S1/z ~ S/1/2 does not imply 5—5". The following
H.S. H.S.

example of 5 and S' shows that 5 — 5' does not imply $1/2 — S/1/2.

Example 9. 4. Let (X, /\ r) be a phase space such that there

exists a Fock polarization 5 (Spec 5= {0, 1}) . Let e be the eigenpro-

jection of S corresponding to the eigenvalue 1. Take a positive H.S.

class operator % in eK which is not in the trace class. Set T=l+% + %

and (x, y) s> — (x, Ty) s. Then it can be easily checked that 5' is a
H.S.

polarization and that 5—5'. According to the decomposition K—eK

@eK, S and S' have the following matrix representations;

]Ls=
' 0

From this, we see that

H.s.p 0
S/t-S / 2 ~ ^ Q 2_1/2_1/2

is not in the H.S. class.

Appendix. A Formula for (0& Q (Jff) Q (r) flg)

In this section we prove the following formula for finite rank oper-
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ators H and v on K where the notation is as in Section 5. (The formula

can be shown to hold for H and v in the Hilbert-Schmidt class as a

straightforward extension by continuity from the present case.)

(A. 1) (QS, Q (H) Q (v) QB) = (det cosh H) ~1/4 (det (! + <:)) ~l/z ,

(A. 2) c = 4~lv (I - 2 (tanh H) S) v* .

Here the first determinant is obviously positive. The second determinant

has to be positive due to Lemma 7. 6, Corollary 7. 9 and (<? , if) ^>0 for

all ?,7?€EV^ (Theorem 4 (1) of [2]). Hence (A.I) implies

(A. 3) (Qs, Q (H) Q (v) Qs) = (det cosh H) ~1/4 (det (I + c) (1 + c*) ) ~1/4

<: (det cosh H) ~1/4 (det (1 + 2~^ (1 - tanh H) v*) ~1/4

where we have used the inequality

det (1 + c + c* + cc*) = exp tr log (1 + c + c* + cc*)

;>exp tr log (1 + c + c*) - det (1 + c + c*)

(because log x is operator monotone) and the anticommutativity of H

and fs = 2S — 1 (Lemma 4.4 (iii)) in the following form:

(A. 4) (tanh H}S + S (tanh H) = tanh Jf .

The idea of proof is to decompose the phase space EK into a direct

sum of 2-dimensional phase spaces. Then the expectation ($, Q(H}Q(v)ST)

turns out to be the product of the expectation of 2-dimensional com-

ponents. In this calculation, we use the central decomposition and first

make computation with abelian part replaced by a number. We then

calculate the expectation of the abelian part by Gaussian integral.

Let A = i(p — p} ( = iY§) be a partially isometric operator with

range EK where E — p-\-p as in the main text. (Isometry relative to

(,),§.) It commutes with /*, satisfies f (x, y) — —i (x, Ay) § and anticom-

mutes with H (Lemma 4. 4 (iii) ) .

By assumption, H and v are of finite rank, both H = H* and v*v

(* referring to ( , ) s) annihilate ker f , which is invariant under A and

jT, Az= — I on (kerf)1, f commutes with all others and jT2 = l. Hence

there exists a finite dimensional subspace L of K, invariant under
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H, v*v, A and F, containing ranges of H and v*v, and ^-orthogonal to

kerf . Let K = L@L0 be an /S-orthogonal decomposition. It then fol-

lows that there exists a subspace L+ of L with the following properties:

(i) L = L+@AL+ (5-orthogonal sum),

(ii) L+ is F-invariant,

(iii) H is reduced by the decomposition (i),

(iv) the restriction of H to L+ is positive.

(L-r is taken to be the spectral subspace of H\L for positive eigenvalues

plus a half of zero eigenspace which is mapped to the other half by A.

Such a decomposition of zero eigenspace of H exists because it is F- and

A-invariant, [T7, A]=0 and hence A defines a complex structure on its

F-real part due to A2=—H on (kerf)-1-.)

Take a /^-invariant spectral basis {bj}^ of H+ (the restriction of

H to L+):

(A.5) H+bj = ̂ tt A^O, fbi = bit \\bj\\s = l

(,7 = 1, 2, 3, • • • ) • Let Lj be the subspace spanned by {bj, Abj}. Then we
©

have a finite direct sum decomposition of the phase space, K = X] A/-
.7^0

Using this basis, we expand H. and v. Then Q(H) and Q(v) can

be written as

(A. 6) Q(H) Q(v)=

where

(A. 7) g (Hi) = Iz7
Z

(A. 8) g (vy) = i (

Let i? = J?o(g) ( (g) J?y) and Q$ = i800 ( (X) fiy) be the factorization of
j^i ^ j^i

the von Neumann algebra R = R§ (K) and the cyclic vector G§ with

respect to the decomposition K = L00 ^ Lj.
y>i

In (A. 6)-(A. 8), operators connected with L0 are n§(vbj) and

7t§(vAbj) which are self-adjoint (due to Tvb3 — vTb3 = vb^ FvAb^vAFbj

= vAb3) and affiliated with the commutative von Neumann subalgebra

RS(kerf) of ^0 because range z;ckerfcL0. By joint spectral de-

composition, we have
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(A. 9) (ft, Q(H)Q(v)a$ = \dui(z) ft (ft,
J j&

where

(A. 10) qj = i (ZJI

and dfJi is a Gaussian measure (in general, allowing 5-functions which

specify linear relations among components of z) with mean 0 and co-

variance given by

(A. 11)

Here d (a) =a — ~L9 for a = l, 2 and the same for 8(b).

Let a = n§(Abj), @ = 7i:§(bj) and

(A. 12) /(A) - (ft,

for a fixed j. Then

(A. 13) / ( V2) - (ft,

if Za = Zjtt (^ = 1, 2).

The operators (^ and /9 are self-adjoint for which Q§ gives the quasi-

free state with

(A. 14) [a, /3] = rs (Abh bj) = - i

(A. 15a) (Qt, afQt) =2~l{ (fAbh Ab,) 8 + f (FAb,, Ab,) } = 1/2,

(A. 15b) (3a, /?fia) = 2"1 { (Pb,, b,)a + ? (fbh b,) } = 1/2 ,

(A. 15c) (Sa, apSs) = 2'1 { (f Ablt b,)a + ? (fAb}, bi)} = - i/2 ,

where we have used Fbj = bj9 TAb3~Ab^ f(x9y) =—i(jc,Ay)§9 (bj, Abj} §

= 0, 11^115=11^115 = 1 and A*=-l. From (A. 15), we obtain

(A. 16) (a-z/9)ft = 0

by computing its norm. On the other hand, by (A. 14) , we obtain

(A. 17a) ae«'i«-**» = g*c,ia-^) (a_Z2)

(A - 17b) ^««I«-M) = «,«*«-„*> (^ _ Zi)

(A. 18a)

(A. 18b)
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where (A. 17) and (A. 18) for small 2 can be obtained through an

algebraic computation by series expansion of matrix elements between

(analytic) vectors in D (Proposition 3. 4) and by closure, and (A. 18)

for large 2 by repeated use of the same formula for small L

We now derive an equation for f. First we have

(A. 19) /'(2) =i(Qs, e^+WteP + PcQe'^—vaji).

We then write

(A. 20) a& + pa= (ez*a + *V2A/3) A + B(a-i0 + zz- izj + C

where we may take

(A. 21) A=-i(cosh2$-l{a+ (e'4i + iyl(z2-iz1")}9

(A. 22) B = i (cosh 22) ~l {e*a - e~" (e'a + 1) -1 (zz - izj } ,

(A. 23) C = i tanh 22 + i2~l (cosh 22) ~2 (z2-izj 2 .

Due to (A. 16) -(A. 18),

(A. 24) (a-tf + Zt-tzJe'^-^a^O,

(A. 25) (eua + zVT2i/9) *e-™
a*+fia>Qa - 0 .

Therefore

(A. 26) f (/I) - - {tanh 2/1 + 2~l (cosh 22) ~2 (%2 - izj 2} / (2) .

Therefore

(A. 27) / (X) = (cosh 2^) -1/2 exp { - 4"1 (tanh 2/1) (Zl - w,) 2} / (0) .

By a similar (and simpler) calculation, we obtain

(A. 28) /(O) = (Qa, e^'-^Qt) =exp-4-1(«J+s3).

Therefore

(A. 29) f(X) = (cosh 22) -1/2 exp-4-1{2:2
l + ^>2+ fe-^i)2 tanh 22} .

Substituting (A. 13) and (A. 29) in (A. 9), we obtain

(A. 30) (fl

= (II cosh 2,) -1/2 f ̂  (Z) exp - 4-1 2 {z« t + 2%
j J j
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= (det cosh J/)-1/4 f^OOexp-^-'C*, (1-tanhJT

where z = XI %jibj + 2 zjzAbj GE L. (Note that eigenvalues of H are ±Aj,

which accounts for the power —1/4 instead of — 1/2.)

On the other hand, the covariance of the Gaussian measure jU is

given by (A. 11), namely

(A. 31)

= 2~1(vAS(a)bh vA^bkys (range t/Cker f)

Therefore, by a formula of (finite dimensional) Gaussian integral, (A. 30)

becomes

(A. 32) (Qs, Q (H) Q (v) Qs) = (det cosh H) ~1/4 det (I + Cl) ~
1/2 ,

(A. 33) d = 4^v (1 - tanh H (1 - iA) ) v*

(Due to HA=—AH, we may also write (I— S) tanh if instead of

(tanh)S.)
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