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Actions of Semigroups on Borel Spaces
and von Neumann Algebras
of Groupoids of Type 11,

By

Moto O’UCHI*

§ 0. Introduction

The natural action of SL(n, Z) on the n-dimensional torus T" with
the Lebesgue measure is non-amenable (c.f. [13]) and it is important to
study the groupoid T"X SL (7, Z) and its associated von Neumann algebra.
For 2=Z and the unit matrix I of SL(n, Z), kI defines naturally a Borel
map of T" onto itself, which is, in an appropriate sense, compatible with
the action of SL(n,Z). We pick up this property and study its effect on
the groupoid and on the associated von Neumann algebra. In Section 1,
we introduce the notion of an action of a semigroup on a Borel space
by generalizing the above property (Definition 1.3). From an action of
a semigroup B on a Borel space, we construct a von Neumann algebra
End, (H) according to [2] and a homomorphism @ of the semigroup B into
the semigroup of injective endomorphisms of End,(H). Then we study,
in Theorem 1.10, a necessary condition for two algebras @, (End,(H))
and @,,(End,(H)) (b,6,€B) to be inner conjugate in End, (H)
(two subalgebras I, and M, of a von Neumann algebra I are said to
be inner conjugate in I if there exists an inner automorphism a of IMN
such that ¢ (W) =M,). In Section 2, we study a sufficient condition for
0,, (End,(H)) and 0,,(End,(H)) (b, b, B) not to be conjugate by any
automorphism of End,(H) (Corollary 2.9). In Section 3, we apply the
general argument in Sections 2 and 3 to the action of SL(n,Z) on T
Let M, be the factor of type II, obtained from the action of SL (7, Z)
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by the group-measure space construction. Then we construct a family
{N%} ken of subalgebras of MM, such that N} is spatially isomorphic to
M,RCrn, where Cin is the algebra of scalar operators on the A"-dimen-
sional Hilbert space. It is also shown that, for £2>2, N2, Ny is isomor-
phic to A(SL(n,Z))"”, where A is the right regular representation of
SL(n,Z) (Theorem 3.2). If A(SL(n,Z))" is considered as a subalgebra
of M, by the natural embedding, then A(SL (n,Z))"” can be characterized
as a fixed point algebra of a certain endomorphism of IN,.

The author would like to express his hearty thanks to Professor

O. Takenouchi for constant encouragement and helpful suggestions.

§ 1. Action of a Semigroup on a Borel Space

In this section, we introduce the notion of an action of a semigroup
on a Borel space and study the associated groupoid and its von Neumann
algebra. First of all, we establish definitions and notations which will
be used in this paper. As for groupoids, we use definitions and notations
in [2] (see also [10]). For a measurable groupoid G, the left (resp.
right) unit 777" (resp. 77'7) of r€G is denoted by 7(r) (resp. s(7)).
The unit space G of G is the Borel space defined by G =7(G), and
the set of all composable elements is the Borel space G® = {(r, 1.) €G
XG; s(r) =r{2)}. We write G for ' (y) (v&G®). For z,yeG?,
x and y are equivalent with respect to G (or G-equivalent) if and only
if there exists an element 7 G such that s(7) =x and () =y. If =
and y are equivalent, we write x~vy. For a Borel subset E of G?,
the saturation [E] of E with respect to G (or the G-saturation of E) is
the set {yeG™; for some x€ E, y~x}. The reduction of G to E is
the measurable groupoid G|E defined by G|E={yG; r(r) € E and s(7)
€E}. Let £7(G) be the set of proper transverse functions on G [2,
p. 37, Definition 2], and 4 be a transverse measure of module 0 on G
[2, p.41, Definition 1]. For a saturated Borel set E of G®, E is 4-
null if and only if there exists a faithful yv&&*(G) such that 4,(E)
=0 [2, p.48, Proposition 8]. If G is discrete [2, p.40], there exists
ye &+ (G) such that v ({r}) =1 for all y&G¥ and all y&G®. We call

this v the transverse function of counting measures.
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Let A be a group, B be a sub-semigroup of A and C be a count-
able discrete normal subgroup of A which is contained in B. For a
standard Borel space S, B (S) denotes the set of Borel maps of S onto
S which send Borel subsets of S to Borel subsets of S. For ¢, &
B (S), the product ¢o¢ of ¢ and ¢ is defined by o (2) = (P (x)) (x€S).
Then B (S) becomes a semigroup. Let & be a homomorphism of the
semigroup B into the semigroup B (S) such that a(e) is the identity map
on S, where e is the unit of A. We write xb instead of «(d) (x) (x
€S, beB), Then S is a Borel C-space with respect to the restriction
of the above action to C and G=SXC becomes a measurable groupoid,
that is, elements (x,¢;) and (v, c.) of G are composable if and only if
y=xc, and we have (z, ¢;) (xcy, ) = (x, cic;).  Note that G = {(x, e) ;
zx& S} is identified with S. We assume that the action of C on S is
free, that is, for every xS, {cEC; xc=x} = {e}. For xS, the satu-
ration [x] of x with respect to G is the orbit of x under the action of

C, ie. [x]={xc; ceC}.

Lemma 1.1. If b is an element of B, then [xb] = [x]b for every
xS, where [x]b=A{yb; ye[z]}.

Proof. Since C is a normal subgroup of A, for 6B and c=C,
there exist ¢;, c,&C such that bc=c,6 and cb=bc,. Then we have xbc
=xzc,b and xcb=xbc, for x&S. As c¢ is arbitrary, this implies that
[xb] C [x]b and [x]bC [x&]. Q.E.D.

We define an equivalence relation 5 on S by the following; for ,
yes, Zy if and only if xb~yb, where ~ denotes the equivalence re-
lation with respect to G. Put G-b={(x,y) €SXS; xfi;y}, Then G-b
becomes a measurable groupoid, that is, elements (x;, y,) and (&, ¥,) of
G-b are composable if and only if y,=x, and we have (a1, ) (31, 2)
= (x1,y.). Note that G can be considered as a subgroupoid of G:& by
the injection (x, ¢)+> (x, z¢) ((x,¢) €G). The saturation of E with re-
spect to G-b is denoted by [E],.

Lemma 1.2. (i) If E is a saturailed set with respect 1o G,
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then, for every b, Eb and Eb™' are saturated with respect to G,
where Eb™'={xe S; xbc E}.

(i) For beB and xS, put F={yeS; yb=xb}. Then [x], is
a disjoint union of {[v]}yer-

Proof. (1) By Lemma 1.1, it is clear that [Eb]=Eb. For x
e [Eb™'], there exists ye Eb™' such that x~y. As we have xb~yb
and yb€ E, xb belongs to E. It follows that [Eb™']=Eb7".

@ii) It is clear that Uger[y]C[x]s. For ye[x]s there exists
ceC such that xb=ybc. Then, for some ¢;&C, we have xb=yc,b and
vc, belongs to F. Thus we have [x],C U ,er[y]. Now, suppose that,
for y,, ».€F, v, belongs to [¥,]. There exist ¢, c;€C such that
=+v,c and cb=bc,. We have

Ib = ylb = 3’2b€1 = .rbcl .

Since the action of C is free, this implies that c=c¢,=e. It follows that

¥, =%, and this means that {[y]},cr are disjoint. Q.E.D.

Definition 1.3. Let (A, B,G) be as above and 4 be a O-finite
transverse measure on G. A quartet (A4, B, G, A) is called an action
of B on S if it satisfies the following condition; for a G-saturated Borel
set E of S, if E is A-null, then Eb and Eb~! are A-null for every b B.

From now on we assume that (A, B, G, 4) is an action of B on S.
Let v be the transverse function of counting measures and (H, L) = (H,
L”) be the left regular representation of G [2, p.74], that is, the field
H= (H,),es of Hilbert spaces is defined by H,=L*(GY v¥) and, for 7
&G, the isometry L(y) of H;, onto H,, is defined by

LN G)=FG"1) for fEHq and 77€G™.

Note that, for every y=.S, H, is isomorphic to *(C) since V¥ is the
counting measure on GY. By [2, p.86, Theorem 4], there is the von
Neumann algebra End, (H) associated with (H, L). Elements of End, (H)
are classes of elements of Endg (/) modulo the equality A-almost
everywhere, where Endg(/{) is the set of intertwining operators of

(H, L) [2, p.84, Definition 1]. We 'sometimes consider elements of
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End, (H) as elements of Ends(f{). Let 4 be an element of B. For
every &S, define an isometry @, ,=¢5, ., of H, onto FI;, by

¢zh,.z’(f) (xb, C) :f<l', be_l)

for every fe H, and (xb,c) €G™.

Lemma 1.4. If ¢ is an element of C, then
L(J,‘b, b_lcb) °¢xcb,xc:¢xb.zoL(x: C)

for every x&S.

Proof. Note that, as C is a normal subgroup of A, bcb™" and b7 'chb
belong to C for every && B. Since the action of B is associative, we

have
(zb) (b7'cb) = 2 (bb7'cb) = xcb.
Thus the right unit of (xb, 57'cb) is zcb. For every feH, and ¢’
eC, we have
L (xb, b7'¢cb) 0Gren, 2 (f) (xb, )
=f(xc, c7'bc’b™Y)

:QSrb,xoL(l‘: C) (f) (1'1), C,) .
Q.E.D.

Proposition 1.5. For an element T = (T,).es of End (H), put
0,(T) =0z 20T 0P, for every xS,

then @, (T) = (0,(T) ) zes is an element of End,(H).

Proof. Define a Borel structure for the field H’'= (Hy).,es of
Hilbert spaces by the following (c.f. [3, p.142, Definition 1]); if &
= (&) (i=1,2, --+) is a fundamental sequence for the Borel structure of

H, then (&%).cs (:=1,2,--+) is a fundamental sequence for H’. Let f
be a Borel function on G such that j‘|f|2du”<+oo for all xeS. The

restriction of f to G* is denoted by f,. Note that (f,) is a Borel
section of H and the Borel structure of H is determined by the set of
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sections of this form. Then (¢ (fz))zes is a Borel section of H’.
Since (77).es is a Borel field for H’, for Borel sections (f,) and (g.)
of H of the above form, the function

x'_)<d)b (T) J:f.r, gz> = <Trb¢rb,x (f.r) ’ ¢xb,a: (g.r) >

is Borel. This implies that @,(7) is a Borel field of operators for H.
Let r=(x, ¢) be an element of G. For (z,¢) €G and f& H,

we have
(L@ O,(T) e f) (7, 0)
= (Teeg®Bropzes (F)) (zed, b7'c;7'cD)
= (L (28, 570b) o T Boeses (F)) (b, b7'cD)
= (Tuwo L (b, b7ob) s ze, (£)) (b, b7'cD).
By Lemma 1.4, we have
(L@ O(T) e (2, )
= Tooao0 L (x, ¢0) () (b, b7'ch)
= @(T) oL (1) f) (2, 0).

It follows that @,(7") is an intertwining operator of (F, L) to itself. If
T and T’ are intertwining operators of (X, L) which coincide with each
other A-almost everywhere, then @,(7") and @,(7’) coincide with each
other A-almost everywhere by the assumption of (A4, B, G, 4), Therefore
@,(T) is well-defined as an element of End,(H). Q.E.D.

In the above proposition, we have constructed a map @, of End, (H)
into End,(H). The following lemma shows that @, is an injective endo-
morphism of End, () and that the map b—®, is a homomorphism of

the semigroup B into the semigroup of endomorphisms of End,(H).

Lemma 1.6. (i) If b, and b, are elements of B, then, for every
TeEnd,(H),

qu,"@b2 (T) = @b,bz (T) .

(1) If ¢ is an element of C, O, is an inner automorphism of

End, (H).
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(iii) For b& B, the map @, is an isomelric *-homomorphism of
End,(H) into End,(H).

Proof. (i) It is clear by an easy calculation.

(i) Define a unitary operator U, on H, by
(U ) (z,¢") =f(x,c’c™") for f€H, and (x,c’)eG"

Then U= (U,) is a unitary element of End,(F), and we have ¢g,
=L(x,c) 'U, for every x&S. It follows that @,(T) =U'TU for every
TeEnd,(H).

(iii) It is clear that @, is a *-homomorphism. Let 7 be an element
of End,(H). For acR., we set E,(T) ={x<S; |T:|>a}, which is
a saturated Borel set. We have E,(@,(T)) =E,(T)b! by the equation
195 (T) || = | Tosll. Thus E.(T) is A-null if and only if E,(@,(T)) is
Anull. Recall that the norm of 7T is defined by

1T e=inf{axeR.; E.(T) is Anull}
[2, p. 84, Definition 1]. Hence we have |0,(T) |.=|T[l.. Q.E.D.

If (z,y) is an element of G-b, there exists a unique pair (x, ¢) €S
X C such that xb=yb and x=x,c by Lemma 1.2. Define an isometry
L(x,vy) =L"(x,v) of H, onto H, by

L(x, y) = L (xy, ¢) _1°¢z-ob,1-n_1°¢l;b,y .

Then we have the following:

Proposition 1.7. If b is an element of B, then (H,L’) is a
representation of G-b in the sense of [2, p.68, Definition 1].

Proof. For (z,y) €G-b with xb=vb and x=x,c, we write y(x,
y) for ¢. We have, for fe H, and (x,c) €G,
(L (x, 3) f) (x,¢) =f (3, b (x, ¥) €).

Note that ¢7'({c}) is a Borel subset of G-b for every c&C. Letf and
g be Borel functions on G as in the proof of Proposition 1.5. Then the
function (x,y, ¢)—=>f (v, ¢ (x, y)c)g(x, c) is Borel on G-5XC. Since we
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have
L@ 0= [0, 000G 0 (3,0,

the function (z, y)—><{L’(zx, ¥)f,, g=» is Borel on G-b.
Let (x,v) and (v, 2) be elements of G-& such that r=x(x,¥),y
=y (v, 2), b =yb and y,b=2b. We have

Zoh (9, 2) 7o = (xb) (67 (v, 2) 7'8) =y (v, 2) T'b=2b.

By putting x; =z (v, 2) ', we have xb=2b and x(y, 2)P(x,y) =x.
It follows that ¢(x,2) =¢(y, 2)¢(x,y). Similarly we have ¢(y, x)
=¢(x,y)". The equation L'((y,z)7'(y,2))=L"(y, ) 'L’ (y,2) fol-

lows immediately from the above equations. Q.E.D.

The following theorem characterizes the von Neumann algebra

@,, (EndA (H)).

Theorem 1.8. Let b be an element of B. For T End,(H),
T belongs to O0,(End,(H)) if and only if there exists a G-b-saturated
A-null set E of S such that, for x, yeS—E, Ty implies that

L(z,9) T, =T:L"(x,).

Proof. Let T be an element of @,(End,(H)) with T=0,(T"’) (T’
€End,(H)). For (zx,v) =G -b with x,b=vyb and x=x,c, we have
¢znb,xn_l°¢yb,y°Ty
=¢mob,zo_l°¢yb.y°¢yb,y—l°le/b°¢yb.y
= ¢zab, 1-0—10 T ,yb°¢zob, zo °¢1‘ob, r,,_1°¢yb, y
= Tzo°¢:nb,zn_1°¢yb,y .
This implies that L'(x, y) T, =T.L"(x,y) for every (x,y)&G-b.
Since S is a standard space, by [9, Theorem 6.3], there exist a
A,null Borel set N of S and a Borel set S, of S such that the restric-
tion b, of b to S, is a one-to-one Borel map of S, onto S—N. If we

put N'=UzL[N]6" U (U7 [N]6™), then N’ is a A-null saturated
Borel set and &, is a one-to-one Borel map of S,— N’ onto S—N’. There-
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fore we may assume that &, is a one-to-one Borel map of S, onto S. Note
that the inverse map b,=58,"" of b, is Borel. For x&S, the image of
x under b, is denoted by xb,. Now, suppose that an element 7T'= (7,) of
End,(H) and a A-null set E of S satisfy the condition of the theorem.
We set

-1
T o =0z220,°T 0,0 Pz, 20, for xS

As in the proof of Proposition 1.5, one can prove that 7' = (T".)zes
is a Borel field of operators with respect to F{. Moreover if 7} and T%
are intertwining operators of (H, L) which coincide with each other
A-almost everywhere, then 73" and T, constructed as above coincide with
each other A-almost everywhere. Let x be an element of S—Eb and 7
= (x,c) be an element of G. If ¢’ is an element of C such that &7'ch

=c¢’, then we have
xbich = xb,bc” = xc’

and there exists y& S, such that xb,cb=vyb i.e. xc’b;=vy. By Lemma 1.4,

we have
L(@, ¢") et avi0 = Ba,an,° L (s, ).
This implies that
L (x, ") oPacr,a0,e°Pup,an,c ©Pun,y
=m0 L’ (201, ¥).
The equation @e,zp,c°Pup,zb,c -©Pup,y = Pzer,y implies that
L(x,¢") oBuer,y=Bzm,0 L’ (b1, v).
As x&£ Eb, we have
Lz, )T e
=@ra0,0 L (b1, ¥) o Ty0Prer,y
=Bz,20,0 T, 0 L’ (b1, ) 0B,y
=T",0L(x,c").

Therefore 7 can be considered as an element of End,(H) as Eb is
Anull. Note that L’(x, xbb;) =@, 'oPup . Then, for x&£ E, we have
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0,(T") =L (x, xbby) T, L’ (x, xbb;) 7
=T,.
Thus T belongs to @,(End,(H)). Q.E.D.

For the transverse function ¥ of counting measures on G, we set

m= j v”dA,(x),v(H):j@deA,(x) and, for TEEnd,(H), v(T)
S

= L@Txd/l,,(x). Then M=y (End,(H)) is a von Neumann algebra on
v(H) which is isomorphic to End,(H) [2, p. 86, Theorem 4]. For
be B, put W%=v(@,(End,(H))). Let A be a uniformly separable C*-
subalgebra of 9, which is weakly dense in M. The direct integral de-

composition of the identity representation z of { is denoted by
®
i= j 2dA,(z)  [4, Lemma 8.3.1].
s

Note that, for v(7T') €A, we have Z2(¥(T)) =T, for A,-a.a. z. As for
the following proposition, compare with [8, 12].

Proposition 1.9. In the above situation, there exists a A-null
set N of S such that, for x,yES—N, Z and ¥ are unitary equivalent

if and only if Z=y.

Proof. Let {T:}¢, be a uniformly dense subset of f. By Theorem
1. 8, there exists a A-null set N, such that, if x, y&S— N, and L) then
L' (x, )y (T3) =2 (T:) L’ (x, y) for every i. This means that, for x, y&S
— N, with xf[;y, Z and § are unitary equivalent.

Since S is a standard Borel space, we may assume that S has a
compact metric topology which is compatible with the Borel structure
of S. Let C(S) be the C*algebra of all continuous functions on S. Let
{9:}, be a uniformly dense subset of C(S). For every bounded Borel

function ¢ on S, define an operator §, on F, by
@) M) =9(M)f() for fEH, and 7EG"

Then §= (§.)zes belongs to End,(H) and we have 0,(§) = (b9)", where
bg is a Borel function on S defined by (b¢g) (x) =g (xb) for every x& S.



ACTIONS OF SEMIGROUPS ON BOREL SPACES 251

By [12, Theorem 1.1], we may suppose that {v((bg:)")}s>; is contained
in . There exists a A-null set N, such that, for x&S—N,, 2 ((69:)7))
= (bg;); for every i. Suppose that, for x, yES—N, Z and § are
unitary equivalent by means of an isometry V of H, onto H,. Then

we have, for every ¢ and fe& H,,
fgi (xcb) | f (z, ) |'dv* (x, ©)

=< (bg)= T, £

=VZW (g™ S, VI
=W (g N VL V>
=< (bg)y VI, V>

- j}n (5eB) | (V.F) (9, ¢) ' (3, ).

Since {g:} is uniformly dense in C(S), this implies that, for every Borel
set £ of S and fe H,,

j ¥z (zch) | f (2, ©) 'dv* (z, ©)

- ij (yeb) | (V.F) (9, &) Py (3, €,

where )z is a characteristic function of E. Therefore, for a Borel set
E of S, Eb7' is s, (")-null if and only if it is s, (v¥)-null, where
s« (V") is a measure on S defined by s, (V°) (E) =v*(s"(E)). As [z]s
= [x]b5b7" and s, (V") ([x]s) >0, we have s, (v*) ([x],) >0. Since s4 (V)
is supported by [v], it follows that [z],=[v],. If we put N=N,UN,,
then the proposition follows. Q.E.D.

Theorem 1.10. Let b, and b, be elements of B. If there exists

an inner automorphism o of End,(H) such that
a (@, (End, (H))) =0y, (End,(H)),

then [x]p,=[x]s, for A-ae. xzES.

Proof. Let U= (U,) be a unitary element of End, () such that
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a=AdU. Let Ni=v (@, (Endy(H))) (¢=1,2) and A, be a uniformly
separable C*-subalgebra of 9, which is weakly dense in ;. We set
A=y (U)Aw(U)*. For xS, #; denotes the representation of A; on
H, defined as above ({=1,2). The isomorphism of 4, onto i, associat-
ed with « is also denoted by «@. Then we have U,%,U,*=Z,oa for
A-a.a. x. It follows that, for A-a.a. x, vy, Z, and ¥, are unitary equivalent
by means of an isometry V of H, onto H, if and only if (U,VU,*)
(Zpo) (U, VU, *)*=9,0x. The last equation means that Z, and ¥, are
unitary equivalent. Therefore, by Proposition 1.9, there exists a A-null
set N, such that, for x, y& S—N,, x}:y if and only if r?):y. Note that,
as we have [N,],, = N.bb ™%, [Ni]y, is 4-null by the condition of Definition
1.3. We set N=[[N]y]s,, which is a 4-null set. For x&S—N, [x],,
is contained in S—N, and [x];, is contained in S—N. From the above

argument, we have [x],, = [x]s, Q.E.D.

Remark 1.11. Suppose that (G, A) is ergodic, that is, (G, 4) satis-
fies one of the equivalent conditions of [2, p. 90, Corollary 8]. Then,
for every b& B, the relative commutant of @,(End, (X)) in End,(H)

is the algebra of scalars.

§ 2. Spatially Isomorphism of the Associated

von Neumann Algebras

Let (A4, B,G, A) be an action of B on S. Throughout this section,
we assume that A is unimodular and that g=4, is a probability measure
on S for the transverse function v of counting measures. If this is the
case, End,(H) is finite. In this section, we show that, if an element &
of B satisfies a certain condition, then v (@, (End,(H))) is spatially iso-
morphic to v (End,(H)) ®Cs, where C; is the algebra of scalar operators

on the k-dimensional Hilbert space ;.

Definition 2.1. An element b of B is said to be homogeneous of
degree k% if it satisfies the following conditions;
(i) there exists a Borel partition {S;}f_; of S such that, for each 7, the

restriction &; of b to S; is a Borel isomorphism of S; onto .S,
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(i1) if g4 is the restriction of # to S; and ;- (6:5;,7") is a measure on S
defined by ;- (0:0;7) (E) =u({x€ S;; xbib;, '€ E}) for every Borel set
E of Sj, then Ui (bibj_l) = U (i,jz 1, seny /C).

Lemma 2.2. Let b be homogeneous of degree k.

(@) If u-bis a measure on S defined by p-b(E)=u(Eb™") for
every Borel set E of S, then u-b is equivalent to p.

@11y If p-b;7' is a measure on S; defined by p-b;"'(E) =u(Eb;)
Sfor every Borel set E of S;, then y-b;”' is equivalent to y; (i=1, -+,
k).

-1
(i) The equation i((i‘dMi_)zk holds (i=1, -, k).
Ui

Progf. (i) Note that, as Cis a countable discrete group, for a Borel
set £ of S, E is gnull if and only if [E] is 4d-mull (c.f. [6, p. 294,
Corollary 1]). It follows from the condition of Definition 1.3 that
p-b<y. Suppose that E is g-bnull, that is, Eb™' is unull. Since
[Eb™'] is Amull, [Eb7']b is also Anull. Since E is contained in [E67']5,
E is a gnull set. Thus we have u<{u-b. (Note that this proof does
not use the homogeneity of ).

(ii) This can be proved by the same method as that of the proof
of (i).

(iii) This follows from straightforward calculation. Q.E.D.

Let J, be the set of £ points {1, --+, 2} and I, be the transitive grou-
poid JyX Ji on J. For the transverse function v, of counting measures
on I, and the counting measure #; on J;, let 4, be the unimodular trans-
verse measure on I, such that (4;), =i Moreover, {or the transverse
function ¥ XV, of counting measures on G X I, there exists a unique uni-
modular transverse measure AX A, on GXI; such that (AXA4y),xs,
=uXt [2, p. 43, Theorem 3].

Proposition 2.3. Let b be homogeneous of degree k. There
exists a Borel isomorphism h of the groupoid GX I, onto the groupoid

G-b such that pu~h,(uxu). Moreover, if A=h(AX4,) is a trans-
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verse measure on G-b [2, p. 62], then A is equivalent to Y, where

’

v’ is the transverse function of counting measures on G-b.

Proof. We use the notation of Definition 2.1. For (7, (,7)) G
X I, put h(r,4,7) = (r(1) b6:7, s(1) b;,7"), where the image of x under &;™*
is denoted by xb;”'. It is clear that A is a Borel isomorphism between

groupoids GX I, and G-b. For a Borel set E of S, we have
ha(uX pe) (E) =225, 05,7 (ENSy).

It follows from Lemma 2.2 that h, (#X ) is equivalent to u.
We use the notation in [2, p.62]. For v'&€&*(G-b), we have,
by the definition,

A7) = j R (L) d(AX Ay).
Note that, for a Borel set E of SXJ,
(B = (e (Lo d(Ax 4) =0

if and only if

{(z,9) €SXJe; ((os)y) "™ P=£0} is AX Aenull
[2, p. 56, Lemma 5]. On the other hand, we have

{(x, ) €SX Ji; ((Aeos) v )" P50} =h ™ ([E]).

Therefore, by the formula g~h,(uX ), we know that A (E) =0 if
and only if [E], is #null. Since we have [E],=[Eb]b7", [E], is a
pnull set if and only if Eb is a gnull set. We have

p(ED) =0 iff pb (ENS) =0 (i=1,, k)
iff u(ENS) =0 (i=1, ., k)
iff  u(E) =0.
It follows that A% (E) =0 if and only if #(E) =0. Q.E.D.

Remark 2.4. The representation (H, L") of G-b defined in Section 1
is a square integrable representation [2, p. 80, Definition]. If 4 is homo-
geneous, then v’ (Ends (H)) and v (@, (End,(F))) are spatially isomor-
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phic, where End,(FH) is the von Neumann algebra associated with
(H, LY.

The measure jv’ dp(x) on G is denoted by m. We set M=
y(End, (H)), W=y (@, (End,(H))) and §=v(H). The Hilbert space §
can be identified with L*(G, m). Define a partial isometry U=U, on § by

U(f) (z, ¢) = (ﬂ;‘?@)/ (2b) f (b, b-cb)
for f€$ and (x,¢) €G.

Lemma 2.5. Let b be homogeneous of degree k and e be the
final projection of U.

(i) The space e consists of all elements f= (f) of O which
satisfy the following; there exists a saturated null set N=N, of S
such that fo=L"(x,y)f, if xb=yb and x, y& S—N.

(ii) The projection e belongs to N;.

Proof. (i) Let §, be the space consisting of all elements which
satisfy the condition of (i). We write U for U,. If xb=yb, then we
have, for f€9,

(L (x,9) (UF)y) (2, 0) = (US) (v, ©)
=(Uf):(z,0).

Hence €9 is contained in £, Conversely, let f be an element in §,.
For z, yeS— N; with xb=yb, we have f(x,c) =f(y,c) for all ceC.
Fix an integer 7 with 1<{¢<(k and define an element g of § by

g(z, c) =k (%F) " (bt f (b, ok

T

((z,c) €G). Then we have, for (z,¢) eG.
U@ (z,¢)

o <_d%> ) (%) (b6 £ (2bbi €.

On the other hand, we have, for ga.a. xS,
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d(u-b) d(u-b") 1
i (xb) i (xbb;™)

=ﬂ%<xbbi-l) —k.
It follows that U(g) (x, ¢) =f(xbb;™", ¢) for p-a.a. xS and all ceC.
Since we have f(xbb;™", ¢) =f(x,c) for x&&N,U N;b;b7', we have U(g)
=f. Hence £, is contained in e$.

(ii) Let T be an element of N, and f be an element of e$. For
z,yeS— N, with xb=yb. we have

L (z, ¥) Ty y=T.rLb (=, y)fsz.z;fz .

Therefore Tf belongs to e and e is an element of . Q.E.D.

Lemma 2.6. Let e be as in Lemma 2.5 and i be a k-dimen-
sional Hilbert space whose complete orthonormal system is {0},
For fQ0:€eDRD:, define an element (FR0:) of O by the follow-
ing; (R0 is B, if x€S; and is 0 if x&£S;. Then ¢ can be
extended to an isometry of eDRD. onto 9, which is denoted again
by ¢. Moreover the wvon Neumann algebras (W) RC. and N, are
spatially isomorphic by means of |, where C, is the algebra of scalar

operators on 9.

Proof. For feeP, we have
I (f&0:) |I*

= [, sy .rdn@

[ 150 dna)

=3 [ 122G, 2 £l
=jé u;i [ Fabell’d s () (Lemma 2.5.)
=23 [ 1722 e 887 (@)
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=[£1*.

It follows that ¢ can be extended to an isometry of eHR$. into .
Let f; be an element of § such that {fy, /D=0 for all fe¢(eHRCy).
For f€®, define an element f* of e by f*(x,¢)=f(xbb;’,c) for
zx€S; and c€C (j=1, ---, k). Then we have

B [ Gon Foddi () = o 0(FR0D)
=0.
Since f and 7 are arbitrary, we have f;=0. Hence ¢ is onto.

Let T be an element of (J;).. There exists an element 77 of MW,
such that T7,=T. For fR0:;€eDRD:, we have ¢ ((TRI) (fR0:)).
=(T'$(f&0:)), for a.a. z€S. It follows that (TR =T"y. If T’
and T" are elements of N, such that T/,=T",=T, then we have T’
=p(TRI)Yp*=T". This means that the map T’'—T’, is an isomor-
phism of M, onto (M).. Therefore the map TRI—>Y(TRI)Y™' is an
isomorphism of (). XC, onto N,. Q.E.D.

From the above proof, it is also shown that the central support of

eis I

Lemma 2.7. Let U and e be as in Lemma 2.5. The wvon
Neumann algebras (W) . and M are spatially isomorphic by means of U.

Proof. For Te (M), there exists a unique element 7"/ of I such
that @,(T"),=T. As we have, for f€9,

U (f) ®= <%/,;b)_> ” (J,‘b) ¢zb,z_1 (f.rb) ’

we have

(TUf)J: =0, (T,)ZU(f)z

= <£%7@A> " (x8) bt 5 (T2 fzv)

=U(T"f)x.
It follows that T/ =U*TU. Q.E.D.
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From the above lemmas, we get the following theorem.

Theorem 2.8. If b is homogeneous of degree k, then IMRC,

and N, are spatially isomorphic.

Corollary 2.9. Suppose that (G, A) is ergodic. Let b; be homo-
geneous of degree k; (i=1,2). If k5=k, then Lhere are no automor-
phisms of End,(H) which send @, (End,(H)) onto 0,,(End,(H)).

Proof. By the ergodicity of (G, 4), M and W5, (=1, 2) are factors.
Since I is standard, the coupling constant of R, is & (1=1,2) [11,
Corollary 7.22]. It follows that M, and N,, cannot be spatially isomor-
phic if &=~k, [11, Theorem 8.3]. On the other hand, any automorphism
of M is spatial [3, p.268, Corollary]. Therefore there are no auto-
morphisms of I which send MW;, onto Ny,. Q.E.D.

§ 3. An Example

In this section, we apply the results of the previous sections to the
action of the special linear group SL (n,Z) of degree n on the n-dimen-
sional torus T" (n>>2). Let A be the normalizer of SL(n,Z) in the
general linear group GL (n,Q), and B be the semigroup consisting of
all elements of A whose coefficients are integers. Note that B contains
the elements of the form 21 (k€Z— {0}), where I is the unit matrix.
We set C=SL(n,Z) and S=T". The action of b= (by) €EB on x=
(x4, *++, ) €S is defined by

xb= (D=1 bpxj -+, D %=1 bjnx;) (mod Z7).

Let G, be the groupoid SX C associated with the above action and A
be the transverse measure on G, such that 4, is the Lebesgue measure
4 on S for the transverse function ¥ of counting measures. Note that
A is unimodular and ergodic. Since the action of C on S is essentially
free (c.f. [18, Proof of Corollary 4.6.]), (A, B, G, A) can be considered
as an action of B on S (Definition 1,3). Let I, be the von Neumann

algebra v (End,(H)) associated with the left regular representation
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(H, L") of G,. Then M, is a factor of type 1I;, which coincides with the
factor obtained by the group-measure space construction. For 2=Z— {0},
the element kI of B is homogeneous of degree [2]*. We set Ni=v (D
(End,(H))). The following theorem summarizes properties of 9} which

are obtained from the results of the previous sections.

Theorem 3.1. (i) The subfactor Wi of WM, is spatially iso-
morphic to M,QC\xn (keZ—{0}).

(i) Elements of the family {N;}ieN are not conjugate with each
other by any automorphism of WM,.

(iii) For k, [N, %k is a divisor of [ if and only if NiDONI.

(iv) For p, qeN— {1}, p and q are relatively prime if and only
7 G NN =N5,.

Proof. The statements of (i) and (ii) are clear by Theorem 2.8
and Corollary 2.9. We will show the statements of (iii)) and (iv).
For 2N, we write % instead of kI

(iii) By Theorem 1.8, if & is a divisor of [, then NEDON}. Con-
versely, suppose that NMEDN}. Let A be a uniformly separable C*-sub-
algebra of Ni such that ] is weakly dense in i and such that ;=
ANN} is weakly dense in N}. For xS, let £ (resp. Z,) be the repre-
sentation of A (resp. A;) on H, defined as in Section 1. Note that,
for pa.a. x, Z; is the restriction of £ to A;. By Proposition 1.9, for
H-a.a. x, vy, if .rfgy, then Z; and #, are unitary equivalent and so we have
LY. It follows that [z],C[x]: for g-a.a. x. For such an =z, define

an element y of S by
y=x+ 1/k, ---,1/k) (mod Z").

Since vy belongs to [z];, we have zl=ylc (mod Z*) for some c=C.
We may suppose that the stability subgroup of x in Cis trivial. Then ¢
is a unit element and we have x/=yl (modZ"). Thus we have [/k
=1 (mod Z).

(iv) As we have 0,00,=0,, (Lemma 1.6, (i)), N;, is contained in
Nz NN;. Suppose that p and g are relatively prime. Then there exist
integers ¢ and # such that pt+qu=1. For x, y&S with x;}y, there
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exists y,& S such that xpg=ypq and y,~3y. For some n;,cZ (=1, ---,

n), we have
Yo=x+ ("m/pg, -+, m,/pq) (mod Z")
=x+ (mu/p, -+, mau/p) + (mit/q, -+, myt/q) (mod Z").

If we set z=x+ (mu/p, -+, muu/p) (mod Z™), then we have x;z, 2~
q
and z~y. By calculation, we have L*(x,y) =L*(x, 2)L%z,y). For
q

TN NN, and paa. x, yeS with :c:;;}y, we have
LP(x, ) Ty=L(x,2) L (2, v) T}
=L?(z,2) T,L (=, y)
=T,L"(x,y).

It follows from Theorem 1.8 that 7 is an element of M;,. Suppose now
that p and g are not relatively prime. Let £ be the least common multi-
ple of p and q. It follows from (iii) that JGCN; N NG and N, CNE.  As
k=£pq, Ny does not coincide with N;,. Hence we have Ny NN;£IG,.
Q.E.D.

For k=N, we set Nio= N NE and G- () = UL, G,- (B). It is
clear that N is a finite von Neumann algebra and that G,- () is a
measurable groupoid whose Borel structure is standard. For (x,y) €G,
- (), (z,y) belongs to G,- (&) for some i. Define an isometry L*(xz,
v) of H, onto H, by L*(x,y) =L"(z,¥). If (x,v) €G,- (), then
L¥(x,y) =L*(x,y). Therefore L** is well-defined. By Proposition
1.7, (H, L*) is a representation of G,- (£°). For T€M,, Tis in N}
if and only if there exists a g-conull set E of S= (G, (£#7))® such that
L*(z,y) Ty=TL* (x,y) for (x,v) €G,- (£°)|E (c.f. Theorem 1.8).
Let R, be an equivalence relation on S defined by the following; (z, y)
€ R, if and only if there exist &N and m;eZ (=1, -+, n) such that

y=x+ (my/k, -, m,/k) (mod Z%).

For #>2, R, is hyperfinite (c.f. [6, Proposition 4.1]) and is an ergodic
groupoid of type II, with respect to the measure g For every (=z,7y)
G, (k~), there exists 2& S such that (x,2) €R, and (g,y) €G,.
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Theorem 3.2. If % is a natural number with k>2, then Ni.. and
A(C)"RCs are spatially isomorphic, where A is the right regular re-
presentation of C and Cg is the algebra of scalar operators on L*(S, u).

Proof. We set H=v(H) and H,=L*(S, #). For c=C, define a
unitary operator U.€I, by (U.f) (x, ¢’) =f(x, ¢’c) for f€H and (z, ¢’)
€G,. Let L”(S) be the set of all bounded Borel functions on S. For
ae L=(S), define &M, by (@f) (x,¢c) =a(xc) f(x,c) for fEH and
(x,c) €G,. For b= B, b-a denotes an element of L”(S) defined by
(b-a) (x) =a(xb) (x€S). Then we have U, QU.*= (c-a)” for ceC
and € L™(S). If we set A={@; o L”(S)}, then M, is generated
by A and {U,; c€C}. Since k=kI commutes with every element of C,
it follows from straightforward calculation that @,(&) = (k-a)” and
0. (U,) =U, for every &€ and ceC.

As 9 is isomorphic to §,®2Z(C), we may represent elements of M,
by matrices. For c¢&C, let 0. be an element of /*(C) defined by J.(c) =1
and 0.(c’) =0 if ¢’s=c, and $. be the one-dimensional subspace of 2(C)
generated by 0.. We define an isometry v. of §, onto H,QP. by wv.(f)
=fRQ0. for f€H.. For TeM, we set T, =v, 'Tv, (¢, ucC) and
identify 7 with the matrix (7 4)ucc. Then U. (c€C) is represented
by the following; (Uy),.=1I if t'u=c and (U.,).,.=0 if ¢ 'u~c, where
I is the identity operator on ,, and & (@€ L”(S)) is represented by
the following; (@).,.=t-a if t=u and (&),.=0 if t*u, where ¢ -«
is considered as a multiplication operator on §,. Therefore @,(@U,)
is represented by the following; @,(&U,)..=¢ (k-a) if t'u=c and
0,(@U,) ,u=0 if t7'uztc. Let M, be a *-subalgebra of M, consisting of
all elements of the form @, U, +---+&,U,, for ;€ L”(S) and c;€C (i
=1, ., m;m=1,2,---). As I, is weakly dense in W, @, (W) is weakly
dense in Ni. By the same reasoning as in [3, p. 131], for every T
= (T, ) €5, there exists . L™ (S) (c€C) such that T, ,=¢- (k- ®-1a)
for every ¢, u=C. Note that, for x, yES, if y=x+ (m/k, -+, m,/k)
(mod Z") for some m;cZ (i=1, ---,n), then we have k-a(x) =k -a(y)
for e L”(S). Let T=(T,.) be an element of N}.. such that T,,=¢
Q1 for ¢, ueC (. L*(S), ceC). It follows from the above argu-
ment that there exists a gconull set S, of S such that a.(x) =a.(y)
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for every (x,vy) € Ri|S, and cC. Since R, is ergodic with respect to
the measure 4, . is constant g-a.e. for all ceC. Therefore there exists
a von Neumann algebra 9, on Z*(C) such that W.=Cs@N,. Let T° be
an element of MN,. We shall represent 7° by a matrix with respect to
the base {0c}ccc of #(C). There exists w,&C (c&C) such that T°,
= w1, for £, uC. Let p be the left regular representation of C, which
is represented by the following; 0(c);.=1 if tu”'=c and 0(c),.=0 if
tu"'s~c. Then we have

(p (C) TO) tu — Wi-1cu
=(T()) tu-

Hence T belongs to o(C)’. As we have p(C)’=A(C)” [4, 13.10],

N, is contained in A(C)”. On the other hand, as we have U.€Nj. and

U.=1IR2(c), A(C)” is contained in N,. Thus we have Nt..=CsXA(C)",
Q.E.D.

The following corollary is an immediate consequence of the above

proof,

Corollary 3.3. (i) The fixed point algebra of @, is Niw, that is,
Niw={TEM,; 0. (T)=T}.

() If k and | are natural numbers with k, [>>2, then Ni.

coincides with Y.
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