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Actions of Semigroups on Borel Spaces
and von Neumann Algebras

of Groupoids of Type Hi

By

Moto O'UCHI*

§ 0. Introduction

The natural action of SL (;z, Z) on the ^-dimensional torus Tn with

the Lebesgue measure is non-amenable (c.f. [13]) and it is important to

study the groupoid TnxSL(?i, Z) and its associated von Neumann algebra.

For £eZ and the unit matrix / of SL (?z, Z), kl defines naturally a Borel

map of Tn onto itself, which is, in an appropriate sense, compatible with

the action of SL(n, Z). We pick up this property and study its effect on

the groupoid and on the associated von Neumann algebra. In Section 1,

we introduce the notion of an action of a semigroup on a Borel space

by generalizing the above property (Definition 1.3). From an action of

a semigroup B on a Borel space, we construct a von Neumann algebra

End,i (H) according to [2] and a homomorphism 0 of the semigroup B into

the semigroup of injective endomorphisms of End/t (H). Then we study,

in Theorem 1.10, a necessary condition for two algebras $&l (End^ (H))

and $&2 (End,! (H)) (b^b^B) to be inner conjugate in End^ (H)

(two subalgebras SD^ and 93i2 of a von Neumann algebra 3JJ are said to

be inner conjugate in 2Jt if there exists an inner automorphism a of 2JJ

such that #(2JJi) =3JJ2). In Section 2, we study a sufficient condition for

0bi (EndA (H) ) and 0&2 (End^ (H) ) (bl9bz^B) not to be conjugate by any

automorphism of End^ (H) (Corollary 2. 9) . In Section 3, we apply the

general argument in Sections 2 and 3 to the action of SL (n, Z) on Tn.

Let 2Jtn be the factor of type IIj obtained from the action of SL (n, Z)
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by the group-measure space construction. Then we construct a family

{5Jtfc}fceN of subalgebras of 2JJn such that !>$£ is spatially isomorphic to

9Kn®Cfcn, where C*« is the algebra of scalar operators on the ^-dimen-

sional Hilbert space. It is also shown that, for fc>2, HJliSW** is isomor-

phic to A (SL (?z, Z)) "', where ^ is the right regular representation of

SL(n,Zi) (Theorem 3.2). If 1 (SL (n, Z) ) " is considered as a subalgebra

of 9)^ by the natural embedding, then I (SL (n, Z) ) " can be characterized

as a fixed point algebra of a certain endomorphism of 90 .̂

The author would like to express his hearty thanks to Professor

O. Takenouchi for constant encouragement and helpful suggestions.

§ 1. Action of a Semigroup on a Borel Space

In this section, we introduce the notion of an action of a semigroup

on a Borel space and study the associated groupoid and its von Neumann

algebra. First of all, we establish definitions and notations which will

be used in this paper. As for groupoids, we use definitions and notations

in [2] (see also [10]). For a measurable groupoid G, the left (resp.

right) unit TT~l (resp. r~Y) of reG is denoted by r(f) (resp. s ( f ) ) .

The unit space G(0) of G is the Borel space defined by G ( 0 )=r(G), and

the set of all composable elements is the Borel space GC2) — {(ft, f2) ^G

XG; 5(n)=r(r,)}. We write Gy for r~l(y) (y<EG (0 )). Forx,y^G(0\

x and y are equivalent with respect to G (or G-equivalent) if and only

if there exists an element feG such that 5(7) =x and r(f) =y. If x

and y are equivalent, we write x^y. For a Borel subset E of G(0),

the saturation \_E~\ of E with respect to G (or the G-saturation of E) is

the set {yeG(0); for some x^E, y^x}. The reduction of G to E is

the measurable groupoid G\E defined by G\E= fr^G; r(f) <=E and 5(7")

&E}. Let G+ (G) be the set of proper transverse functions on G [2,

p. 37, Definition 2], and /i be a transverse measure of module 8 on G

[2, p. 41, Definition 1]. For a saturated Borel set E of G(0), E is A-

null if and only if there exists a faithful ve£+(G) such that AV(E}

= 0 [2, p. 48, Proposition 8]. If G is discrete [2, p. 40], there exists

V€E(? + (G) such that vy({T}) =1 for all reGy and all y^G(0\ We call

this V the transverse function of counting measures.
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Let A be a group, B be a sub-semigroup of A and C be a count-

able discrete normal subgroup of A which is contained in jB. For a

standard Borel space S, 3$ (S) denotes the set of Borel maps of 5 onto

S which send Borel subsets of S to Borel subsets of 5. For 0, 0e

3$ (S) , the product 0o0 of 0 and </; is defined by (j)°(J}(x) = (p((j)(x)) (x^S) .

Then 13 (S) becomes a semigroup. Let a be a homomorphism of the

semigroup B into the semigroup 3$ (S) such that a(e) is the identity map

on S,, where e is the unit of A. We write xb instead of a(b) (x) (x

eS, b^B), Then S is a Borel C-space with respect to the restriction

of the above action to C and G = SxC becomes a measurable groupoid,

that is, elements (x, Ci) and (y, c2) of G are composable if and only if

y = xci and we have (x, Ci) (xcly c2) — (x, CiC2) • Note that G(0) = {(x, e) ;

x^S} is identified with S. We assume that the action of C on S is

free, that is, for every x^S, {ceC; xc — x} — {e} . For x^S, the satu-

ration [x] of x with respect to G is the orbit of x under the action of

C, i.e. \x\ = {xc; c^C}.

Lemma 1.1. If b is an element of B, then \xb~\ — \x~\b for every

, where \_x~\ b = {yb ; y e [x~\ } .

Proof. Since C is a normal subgroup of A, for b^B and

there exist cly c2^C such that bc — cj} and cb — bcz. Then we have xbc

= xc1b and xcb — xbc2 for x&S. As c is arbitrary, this implies that

\xb~\ C [>] b and [x] b c [xb] . Q.E.D.

We define an equivalence relation — on S by the following; for x>
b

y&S, x~y if and only if xb^yb, where ^ denotes the equivalence re-
b

lation with respect to G. Put G-b— {(x, y) e5x S; x — y}, Then G-b
b

becomes a measurable groupoid, that is, elements (xly y^ and (xz, y2) of

G-b are composable if and only if yi — xz and we have (xif yj) (yl9 y2)

— (^i, ^2) • Note that G can be considered as a subgroupoid of G-b by

the injection (x, c} i— > (.r, jcc) ( (x, c} e G) . The saturation of E with re-

spect to G-b is denoted by [£]&.

Lemma 1. 2. (i) If E is a saturated set with respect to G,
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then, for every b, Eb and Eb~l are saturated -with respect to G,

where Eb~1 = {x^S; xb^E}.

(ii) For b^B and x(=S, put F-{y^S; yb = xb}. Then [>]& is

a disjoint u?iion of

Proof. (i) By Lemma 1.1, it is clear that \_Eb~] = Eb. For x

GE \_Eb~1'], there exists y^Eb~l such that x^y. As we have xb^yb

and yb^E, xb belongs to E. It follows that [Eb~l]=Eb~\

(ii) It is clear that U yef [y] C [j:]6. For ye [.r]b, there exists

c^C such that xb = ybc. Then, for some ^eC, we have xb = ycib and

yd belongs to F. Thus we have \_x\ 6 C U y^F [y] - Now, suppose that,

for ylf yze.F, yi belongs to [yj. There exist c, cl^C such that yi

— yzc and cb — bc-^. We have

xb=-yib — yzbcl = xbcl .

Since the action of C is free, this implies that c — c^ — e. It follows that

yx = 3/2, and this means that { [y] } y(=F are disjoint. Q.E.D.

Definition 1. 3. Let (A, B, G) be as above and A be a (7-finite

transverse measure on G. A quartet (A, B, G, A) is called an action

of B on iS if it satisfies the following condition; for a G-saturated Borel

set E of -5, if E is ^i-null, then Eb and Eb~l are yi-null for every

From now on we assume that (A, B, G, A) is an action of B on S.

Let v be the transverse function of counting measures and (H, L) = (//,

I/) be the left regular representation of G [2, p. 74], that is, the field

H=(Hy)ys=s of Hilbert spaces is defined by Hy = L2 (Gy , Vy) and, for r

eG, the isometry L(r) of //s(r) onto Hr(r) is defined by

(Z.(r)/)(r')=/(rV) for /e/fs(r) and r'eGrw).

Note that, for every ye 5, //y is isomorphic to /2(C) since Vy is the

counting measure on Gy. By [2, p. 86, Theorem 4], there is the von

Neumann algebra End,! (H ) associated with (H, L) . Elements of End,!

are classes of elements of EndG (H) modulo the equality

everywhere, where EndoC^O 'ls ^ne set °^ intertwining operators of

(H, L) [2, p. 84, Definition 1]. We [sometimes consider elements of
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EndA (H ) as elements of EndG(H"). Let b be an element of B. For

every .rGE-S', define an isometry (f>xi,iX = (t>b
xi,,x °f Hx onto Hxb by

for every f^Hx and (xb, c}

Lemma 1.4. If c is an element of C, then

L(xb, b~lcb) °<j)XCb,xc = <l>xb,x0L(x, c)

for every

Proof. Note that, as C is a normal subgroup of A, bcb~l and b~~lcb

belong to C for every b£EB. Since the action of B is associative, we

have

(xb) (b~lcb) = x(bb~lcb) = xcb.

Thus the right unit of (xb,b~lcb) is xcb. For every f^Hxc and c'

GE C, we have

L(xb, b~lcb) o^cb,rc(/) (xb, cf)

=f(xc, c-lbcfb~l)

Q.E.D.

Proposition 1.5. For an element T=(TX)X^S of End^ (H) , put

<Dt,(T)x = (f>x}iXoTxi>o(f>.lAtX for every x^S,

then <Db(T) - ((P6(T) x)x€=s is an element of EndA(H).

Proof. Define a Borel structure for the field H'=(Hxb)x^s of

Hilbert spaces by the following (c.f. [3, p. 142, Definition 1]) ; if £*

— (fi) (z — 1,2, • • • ) is a fundamental sequence for the Borel structure of

JF/, then (fib)^es (l = 1> 2, • • • ) is a fundamental sequence for Hf. Let f

be a Borel function on G such that I l/i2<i^< + oo for all x^S. The

restriction of / to Gx is denoted by fx. Note that (/J is a Borel

section of // and the Borel structure of H is determined by the set of
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sections of this form. Then (</>Xb,x(fx) )*es is a Borel section of H' .

Since (Txb) x(=s is a Borel field for H'9 for Borel sections (fx) and (gx}

of H of the above form, the function

x^(®» (T) xfx, gxy = <Tx^x,,x(fx) , (?>xb,x (gx) >

is Borel. This implies that 0&(T) is a Borel field of operators for H.

Let r=(x, c0) be an element of G. For (x,c)^G and

we have

= (L(xb,

By Lemma 1. 4, we have

l,,:coL(x, c0)

It follows that dJb(T) is an intertwining operator of (//, Z^) to itself. If

T and T' are intertwining operators of (H, L) which coincide with each

other ^-almost everywhere, then 0b(T) and $b(T') coincide with each

other yi-almost everywhere by the assumption of (A, B, G, A) , Therefore

is well-defined as an element of EndA(H). Q.E.D.

In the above proposition, we have constructed a map 0& of End^

into End,* (H) . The following lemma shows that @b is an injective endo-

morphism of Endyl (//) and that the map b^ffib is a homomorphism of

the semigroup B into the semigroup of endomorphisms of End^ (H) .

Lemma 1. 6. (i) If bl and bz are elements of B, then, for every

TeEnd.CFf),

(ii) If c is an element of C, $c is an inner automorphism of
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(iii) For b^B, the map @b is an isometric * -homomorphism of

EndA(H) into EndA(H).

Proof. (i) It is clear by an easy calculation.

(ii) Define a unitary operator Ux on Hx by

(Utf)(x,c')=f(x,c'c-1) for f<=H, and (x,c')<=G'.

Then U= (Ux} is a unitary element of Endyl (H ) , and we have <t>e
xc,x

= L(x, c)~lUx for every x^S. It follows that <5C(T) - U~1TU for every

(iii) It is clear that @b is a *-homomorphism. Let T be an element

of EndX/f). For aeR+, we set Ea (T) - {.rEES; \\Tx\\>a}, which is

a saturated Borel set. We have Ea(06(T)) =Ea(T)b~l by the equation

||0b(T)JHI^i|. Thus EB(T) is /(-null if and only if Ea(06(T)) is

/t-null. Recall that the norm of T is defined by

is /(-null}

[2, p. 84, Definition 1]. Hence we have ||<56(T) |U = U T I U . Q.E.D.

If (x,y) is an element of G-b, there exists a unique pair (x0, c)

XC such that xQb~yb and ^r = x0c by Lemma 1.2. Define an isometry

L (x, y) = L5 (x, y) of ^ onto Hx by

L(X, y) -L(X0, C) -l°<t>b
XQ»,x-

l°<t>by*,y -

Then we have the following:

Proposition 1. 7. If b is an element of B, then (H, L&) is a

representation of G-b in the sense of [2, p. 68, Definition 1],

Proof. For (x,y}^G>b with x0b = yb and x = ^0^, we write </>(.r,

3') for c. We have, for /e Hy and (x, c) e G,

(L6 (x, y) /) (x, c) =/(y, 0 (x, y) c) .

Note that 0~1({£}) is a Borel subset of G-^ for every c^C. Let/ and

g be Borel functions on G as in the proof of Proposition 1. 5. Then the

function (x, y, c} «->/(y, 0 (x, y) c) g (x, c) is Borel on G-bxC. Since we



248 MOTO O'UCHI

have

<L6 (x, y ) f y , ffx> = /(y, 0 (x, y) c) ff (*, c) ̂  ( x, c) ,

the function (x, y) n-><(Lb (x, y)fy, Qxy is Borel on G-b.

Let (a:, y) and (y, z) be elements of G-b such that a: = -r00 (x, y) ,

) , xQb = yb and y0& — zb. We have

, *) -1* = (J:0*) (*

By putting Xi = x00 (y, 2:) ~\ we have xj) — zb and x<$ (y, z) 0 ( :̂, y) =

It follows that 0 (.r, z) = 0 (y> *) 0 (^ y) • Similarly we have 0 (y, x)

= 0 (^, y) -1. The equation Lb ( (y, x) ~l (y, «) ) = Lb (y, ^) ~1V (y, z) fol-

lows immediately from the above equations. Q.E.D.

The following theorem characterizes the von Neumann algebra

Theorem 1.8. Let b be an element of B. For

T belongs to $b (End^ (H ) ) if and only if there exists a G-b-saturated

A-null set E of S such that, for x, y^S—E, x — y implies that
b

Proof. Let T be an element of <06 (End^ (H) ) with T = 06(T /) (

For (x,y)^G-b with xQb — yb and .r = .ro^ we have

This implies that Lb (x,y)Ty = TxU
) (x,y) for every (^,

Since 5 is a standard space, by [9, Theorem 6.3], there exist a

ylv-null Borel set N of S and a Borel set -So of S such that the restric-

tion bQ of b to $0 is a one-to-one Borel map of S0 onto S~N. If we

put N'= \JZ,o[N~\bn) U (U~=i[AT]£-n), then 2V' is a ^-null saturated

Borel set and bQ is a one-to-one Borel map of SQ — N' onto S—N'. There-
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fore we may assume that bQ is a one-to-one Borel map of S0 onto S. Note

that the inverse map b1 = b0~
1 of b0 is Borel. For xe*S, the image of

x under bl is denoted by xb^ Now, suppose that an element T= (Tx) of

EndA(H) and a yi-null set E of S satisfy the condition of the theorem.

We set

T'x = 0x>xbloTxbio(t)XiXlJ-
1 for x^S.

As in the proof of Proposition 1.5, one can prove that T'=(T"x)x^s

is a Borel field of operators with respect to H. Moreover if Tl and T2

are intertwining operators of (H, L) which coincide with each other

yi-almost everywhere, then T/ and T2' constructed as above coincide with

each other yl-almost everywhere. Let x be an element of S—Eb and T

= (x, c) be an element of G. If c' is an element of C such that b~lcb

= c\ then we have

xbicb = xb^bc' = xcf ,

and there exists y^SQ such that xb^b — yb i.e. xc'b^ — y. By Lemma 1.4,

we have

L(x, c')o^)xcftXbiC = (l)XtXbioL(xblj c}.

This implies that

l, y).

The equation $XC',xi>lc
0(fiyb,xb1c~lo(f>yb,y = <t>xc',y implies that

L O, c'} o<t>xc>,y = fa.xi.sL* (xbi, y) .

As xZfcEb, we have

L(x,c'}T'xc,

1, y) o^e^y"1

Therefore T' can be considered as an element of End^ (//) as Eb is

yi-null. Note that Lb (x, xbbi) =<t>Xb,x~1°<l>xb,xbbi' Then, for x^E, we have
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Thus T belongs to <06 (End^ (H)). Q.E.D.

For the transverse function v of counting measures on G, we set

m = ^xdAv (x) , v (H) - f @HxdAy (x) and, for TeEnd^(H), v(T)
p©

= I TxdAv(x). Then 2JJ = V(End,! (77)) is a von Neumann algebra on
Js

v(-HT) which is isomorphic to End^ (/J) [2, p. 86, Theorem 4]. For

b&B, put yib = v (06 (End^ (H))). Let Jl be a uniformly separable C*-

subalgebra of ?Jb which is weakly dense in 5Rb. The direct integral de-

composition of the identity representation i of JL is denoted by

f©
z= I xdAv(x) [4, Lemma 8.3.11.

Js

Note that, for y(T)<=cJ, we have £(v(T)) ^T^ for ^,-a.a. a:. As for

the following proposition, compare with [8, 12].

Proposition 1. 9. 7^ £/ie above situation, there exists a A-null

set N of S such that, for x, y^S—N, x and y are unitary equivalent

if and only if x~y.
b

Proof. Let {T*}r=1 be a uniformly dense subset of Jl. By Theorem

1. 8, there exists a /1-null set NI such that, if x, yE^S — Ni and x — y, then
b

Lb(x, y) y (Tt) =x(Ti)L
b(xJ y) for every i. This means that, for x,

— Ni with x — y, x and y are unitary equivalent.
b

Since S is a standard Borel space, we may assume that S has a

compact metric topology which is compatible with the Borel structure

of S. Let C(S) be the C*-algebra of all continuous functions on S. Let

{Qi}T=i be a uniformly dense subset of C(5). For every bounded Borel

function g on S, define an operator gx on Hx by

for /e=J£ and

Then g= (QX)XGS belongs to End^ (H ) and we have 0&(g) = (bg)~, where

bg is a Borel function on 5 defined by (bg) (x) =g(xb) for every
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By [12, Theorem 1. 1], we may suppose that {v ( (bgt)^) }T=i 'ls contained

in <Jl. There exists a ^f-null set N2 such that, for x^S—N2, x ( v ( ( b Q i ) ~ ) )

— (£(?i)ff for every z. Suppose that, for x, y^S—N2, x and y are

unitary equivalent by means of an isometry V of Hx onto Hy. Then

we have, for every i and

1gi(xcb)\f(x,c)\*dv*(x,c)

Since {g*} is uniformly dense in C(5), this implies that, for every Borel

set E of S and

) \ (Vf) (y, c) W(y, c),

where %# is a characteristic function of E. Therefore, for a Borel set

E of /S, Eb~l is s* (j/^-null if and only if it is s* (X) -null, where

5^^) is a measure on S defined by s* (y") (E) -^C^"1 (E) ) . As [>]6

= Mii"1 and ^(v*) ([x]b)>0, we have s* (vy) ([x]b)>0. Since s* (^)

is supported by [y], it follows that [^]&= [y]&. If we put N=Nl(jN2,

then the proposition follows. Q.E.D.

Theorem I. 10. Le£ ^x a?? d bz be elements of B. If there exists

an inner automorphism oc of End^ (H) such that

(End, (H) ) ) = 0», (End, (H) ) ,

Proof, Let U= (Ux) be a unitary element of End^ (//) such that
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a = AdU. Let 5R< = v(06^EncL1CH'))) (i = l,2) and Jl, be a uniformly

separable C*-subalgebra of 9Ji which is weakly dense in %. We set

o#2 = v(t/)cJ!iV(t/) *. For .reS, .r^ denotes the representation of Jd on

Hx defined as above (z = l, 2). The isomorphism of c^ onto tJZ2 associat-

ed with a is also denoted by a. Then we have Uxx-JJx* — x^OC for

yi-a.a. x. It follows that, for A-a.a. x, y, Xi and $1 ar^ unitary equivalent

by means of an isometry V of /j^ onto Hy if and only if (UVVUX*)

(x2°a) (UyVUx*) * = ;y2oa. The last equation means that xz and y2 are

unitary equivalent. Therefore, by Proposition 1.9, there exists a yi-null

set NI such that, for jc, y^S—Nly x — y if and only if x — y. Note that,
bi bz

as we have [JVi]bl = Nibibi'1, l_Nl]bi is yl-null by the condition of Definition

1.3. We set N= [[M]bJ&2, which is a A-null set. For x^S~N, [x]bl

is contained in S—Ni and [or]6s is contained in S—N. From the above

argument, we have [.r]&i = [x]&2. Q.E.D.

Remark 1. 11. Suppose that (G, A) is ergodic, that is, (G, A) satis-

fies one of the equivalent conditions of [2, p. 90, Corollary 8], Then,

for every b^B, the relative commutant of $b (End^ (H ) ) in End^ (H )

is the algebra of scalars.

§ 2. Spatially Isomorphism of the Associated

von Neumann Algebras

Let (A, B, G, A) be an action of B on S. Throughout this section,

we assume that A is unimodular and that jU = Av is a probability measure

on S for the transverse function y of counting measures. If this is the

case, End,i (H) is finite. In this section, we show that, if an element b

of B satisfies a certain condition, then V (0& (End^ (//))) is spatially iso-

morphic to v (End^ (H) ) (X)Cfc, where Cfc is the algebra of scalar operators

on the ^-dimensional Hilbert space §fc.

Definition 2. 1. An element b of B is said to be homogeneous of

degree k if it satisfies the following conditions;

(i) there exists a Borel partition {6^}f=1 of S such that, for each z, the

restriction bi of b to Si is a Borel isomorphism of Si onto S,
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(ii) if fa is the restriction of {J. to St and /V (bibf1) is a measure on Sj

defined by fa- (bibf1) (E) = //({.re 5i; xbibj~l^E}} for every Borel set

£ of Sy, then jut- (fabf1) = ft (i,j=l, • • - , £ ) .

Lemma 2. 2. Let b be homogeneous of degree k.

(i) If jU-b is a measure on S defined by ju-b(E) =^n(Eb~l) for

every Borel set E of S, then j u - b is equivalent to pi.

(ii) If jU-bt'1 is a measure on Si defined by fi- bt~
l (E) =ju(Ebt)

for every Borel set E of Si} then jU-bi~l is equivalent to fa (z = l, • • • ,

(iii) The equation ' =k holds (z = l, — ,£) .
dfa

Proof. (i) Note that, as C is a countable discrete group, for a Borel

set E of 5, E is //-null if and only if [£] is yi-null (c.f. [6, p. 294,

Corollary 1]). It follows from the condition of Definition 1.3 that

. Suppose that E is jU-b-null, that is, Eb~l is //-null. Since

is yi-null, [Eb~l]b is also /1-null. Since E is contained in [Eb'^b,

E is a //-null set. Thus we have jU<^jU-b. (Note that this proof does

not use the homogeneity of b) .

(ii) This can be proved by the same method as that of the proof

of (i).

(iii) This follows from straightforward calculation. Q.E.D.

Let e/fc be the set of k points {1, • • • , k} and Jfc be the transitive grou-

poid Jfc X Jfc on Jfc. For the transverse function yfc of counting measures

on Jfc and the counting measure juk on Jfc, let Ak be the unimodular trans-

verse measure on Ik such that (Ak) Vk — jttk. Moreover, for the transverse

function V X V & of counting measures on GX/&, there exists a unique uni-

modular transverse measure AxAk on Gxlk such that (AxAk)y^Vle

= jUXjUk [2, p. 43, Theorem 3].

Proposition 2. 3« Let b be homogeneous of degree k. There

exists a Borel isomorphism h of the groiipoid G X Ik onto the groupoid

G-b such that jU^h* (//X/4) . Moreover, if Ab = h (A X Ak) is a trans-
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verse measure on G-b [2, p. 62], then Al* is equivalent to //, where

!/ is the transverse function of counting measures on G-b.

Proof. We use the notation of Definition 2.1. For (r, (i, j ) )eG

Xlfc, put h(r, i,j) = (r(r)bi~\ ^(r)^'1), where the image of x under bi~l

is denoted by xbi~l. It is clear that h is a Borel isomorphism between

groupoids Gx/fc and G-b. For a Borel set E of S, we have

A* (A x /«») (£) = £?_, A- V (E n 5,) .

It follows from Lemma 2.2 that /i* (//X //fc) is equivalent to //.

We use the notation in [2, p. 62]. For y"(E£+ (G-&) , we have,

by the definition,

Note that, for a Borel set E of Sx Jfc,

4, (£) = f A* (L(**OS)J0 d(yl X yifc) - 0

if and only if

{foOeSxJ*; ((^o^vO^'^O} is ^X^

[2, p. 56, Lemma 5]. On the other hand, we have

Therefore, by the formula jU^h* (jUXjUK) , we know that 4-CE)=0 if

and only if [£]5 is //-null. Since we have [E]b= [Eb]b~\ [E]b is a

//-null set if and only if Eb is a //-null set. We have

ju(Eb)=0 iff

iff

iff / /(£)=0.

It follows that 4-(£) =0 ^ and only if //(£) =0. Q.E.D.

Remark 2. 4. The representation (H, Lb) of G-b defined in Section 1

is a square integrable representation [2, p. 80, Definition]. If b is homo-

geneous, then i/ (End^& (// ) ) and v ((Z>6 (End^ (/f ) ) ) are spatially isomor-
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phic, where EndAb(H) is the von Neumann algebra associated with

(H,D).

The measure \VX dfJi(x) on G is denoted by m. We set 3JJ =

V (End^ (H) ) , 5R6 = v (<06 (EndA (H) ) ) and § - V (H ) . The Hilbert space §

can be identified with L2(G, m) . Define a partial isometry £7= £/& on § by

for /<E § and ( x, c) e G.

Lemma 2. 5« L^^ 6 &e homogeneous of degree k and e be the

final projection of Ub.

(i) The space e$Q consists of all elements f= (fx) of § 'which

satisfy the following', there exists a saturated null set N=Nf of S

such that fx = Lb (x, y)fy if xb = yb and x, y e S— N.

(ii) The projection e belongs to 3^.

Proof. (i) Let §0 be the space consisting of all elements which

satisfy the condition of (i) . We write U for Ub. If xb = yb, then we

have, for /"EE§,

(L" (x, y) (Uf) ,) (x, c) = (Uf)v (y, c)

= (Uf)x(x,c).

Hence e$g is contained in §0. Conversely, let f be an element in §0.

For x, y^.S—Nf with xb — yb, we have f(x,c) —f(y,c) for all

Fix an integer i with l<[z"<& and define an element g of § by

( (x, c) e G) . Then we have, for (x, c) e G.

On the other hand, we have, for jU-a.a.
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dfl

It follows that U(g) (x, c) =f(xbbi~\ c) for ju-a.a. x<=S and all

Since we have f(xbbt~l, c) =f(x, c) for x^Nf[j Nfbib~\ we have U(g)

—f. Hence §0 is contained in eJQ.

(ii) Let T be an element of %lb and f be an element of e$Q. For

x^y^S—Nf with xb = yb. we have

L» (x, y) TJ, = T.L" ( x, y)f, =

Therefore Tf belongs to e$Q and e is an element of SJJ£. Q.E.D.

Lemma 2. 6. Let e be as in Lemma 2. 5 and §fe be a k-dimen-

sional Hilbert space -whose complete orthonormal system is {5<}*=i-

For f®8i^efQ®SQk, define an element </> (/(>£)<?*) of § &;y the follow-

ing; <I>(f&)8i)x is kl/zfx if x^St and is 0 if x^Si. Then 0 can be

extended to an i some try of efQ^Qk onto §, -which is denoted again

by 0. Moreover the von Neumann algebras ($ft&) e®Ck and 5Rb are

spatially isomorphic by means of 0, where Ck is the algebra of scalar

operators on §fc.

Proof. For f^_ e$Q, we have

= f
JSi

= k f \f,\ldtlt(x)
JSi

-i: f iiz,'(^*rl,^)/.»yAiW
i~l JSi

= 1] f U/,.,.r.||yAiW (Lemma 2.5.)
y=i J«(

=1: f ii/.iiycai-cw1))^)y=i Js,-
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It follows that 0 can be extended to an isometry of £§^X)§A; into §.

Let /0 be an element of § such that </„,/> = 0 for all /e0(e§g)Ct).

For /e§, define an element f* of ^§ by fl(x, c) =f(xbjbi~l, c) for

j and ceC 0*=1, • • - , £ ) . Then we have

f </ox,/,
JSi

= 0.

Since y and z are arbitrary, we have f0 = 0. Hence </> is onto.

Let T be an element of (sjfb)e. There exists an element T' of sJib

such that T'e = T. For /®fffe^§g)§4, we have 0((T®J) (/(X)^)),

- (T'([>(f®dt))x for a.a. .reS. It follows that 0(T®7) =T70. If Tx

and T" are elements of 5R5 such that T'e = T"e = T9 then we have T'

= 0(T(X)/)0~1 = T/x. This means that the map T'H-»T'e is an isomor-

phism of % onto ($«6)e. Therefore the map T^I^CT®/)^1 is an

isomorphism of (%)e(X)Cfc onto 5R6. Q.E.D.

From the above proof, it is also shown that the central support of

e is /.

Lemma 2. 7. Let U and e be as in Lemma 2. 5. The von

Neumann algebras (5JZb) e and 3JJ are spatially isomorphic by means of U.

Proof. For Te (sJtb)e, there exists a unique element T' of 9JJ such

that 06(T')e = T. As we have, for/€E§,

{ d([JL>b}\l/2

= — — ̂ -

we have

I d(n-V)= — v — ̂ _

It follows that T' = U*TU. Q.E.D.
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From the above lemmas, we get the following theorem.

Theorem 2. 8. If b is homogeneous of degree k, then

and yib are spatially isomorphic.

Corollary 2* 9. Suppose that (G, A) is ergodic. Let bi be homo-

geneous of degree ki (z = l, 2). If ki=fckz, then there are no automor-

phisms of End,* (H) which send ®bl (End^ (H) ) onto $bz (End^ (H) ) .

Proof. By the ergodicity of (G, A) , SJi and 5Rb. (z = l, 2) are factors.

Since 2Ji is standard, the coupling constant of %. is kt (z" = l, 2) [11,

Corollary 7.22]. It follows that $R&1 and %,z cannot be spatially isomor-

phic if ki^kz [11, Theorem 8. 3]. On the other hand, any automorphism

of 9JJ is spatial [3, p. 268, Corollary] . Therefore there are no auto-

morphisms of 9JI which send %,: onto %>z. Q.E.D.

§ 3. An Example

In this section, we apply the results of the previous sections to the

action of the special linear group SL (n, Z) of degree n on the ^-dimen-

sional torus T™ (n>2) . Let A be the normalizer of SL(n,Zt) in the

general linear group GL(n, Q) , and B be the semigroup consisting of

all elements of A. whose coefficients are integers. Note that B contains

the elements of the form ki (&eZ— {0}), where I is the unit matrix.

We set C=SL(n,Z) and S=Tn. The action of b=(b^^B on x =

(xi9 • • • , xn) ^S is defined by

xb = (I^=1 bflx,, • • • , 25-i ***/) (mod Z71) .

Let Gn be the groupoid SxC associated with the above action and A

be the transverse measure on Gn such that Av is the Lebesgue measure

jU on S for the transverse function V of counting measures. Note that

A is unimodular and ergodic. Since the action of C on S is essentially

free (c.f. [13, Proof of Corollary 4.6.]), (A, B, G, A) can be considered

as an action of B on S (Definition 1.3). Let 9Jfn be the von Neumann

algebra v (End^ (H) ) associated with the left regular representation
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(H, Lv) of Gn. Then Wln is a factor of type Hi, which coincides with the

factor obtained by the group-measure space construction. For &eZ — {0},

the element kl of B is homogeneous of degree \k\n. We set yil = v(®ki

(End^ (H) ) ) . The following theorem summarizes properties of 5WJ which

are obtained from the results of the previous sections.

Theorem 3. 1. (i) The subf actor 5RJ of Wln is spatially iso-

morphic to 9Jin(g)C|fc|» (&eZ-{0}).

(ii) Elements of the family {5Rfc}fceN are not conjugate -with each

other by any automorphism of 9J£ft.

(iii) For k, /eN, k is a divisor of I if and only if 9^13 9^-

(iv) For p, # e N — {!}, p and q are relatively prime if and only

Proof. The statements of (i) and (ii) are clear by Theorem 2. 8

and Corollary 2. 9. We will show the statements of (iii) and (iv) .

For &eN, we write k instead of kl.

(iii) By Theorem 1. 8, if k is a divisor of Z, then SRjDSR*. Con-

versely, suppose that 9^ ID 9^- Let Jl be a uniformly separable C*-sub-

algebra of 9% such that Jl is weakly dense in 9c£ and such that Jli =

cJJnSyj? is weakly dense in 9^?. For jc^S, let x (resp. x^) be the repre-

sentation of <JL (resp. <JHi) on Hx defined as in Section 1. Note that,

for //-a. a. x, xl is the restriction of x to Jllf By Proposition 1.9, for

jU-a.a. x, y, if x~ y, then x± and yi are unitary equivalent and so we have

x— y. It follows that [x]fec[x]z for ju-a.a. x. For such an x, define

an element y of S by

y = *+(l/*,-,l/A) (rnodZ*).

Since y belongs to [.r]z, we have xl — ylc (mod Zn) for some c^C.

We may suppose that the stability subgroup of x in C is trivial. Then c

is a unit element and we have xl = yl (mod Zn) . Thus we have l/k

-1 (modZ).

(iv) As we have 0pG0q — 0pq (Lemma 1.6, (i)), 3lpq is contained in

9^09^. Suppose that p and q are relatively prime. Then there exist

integers t and u such that pt-\-qu = \. For x, y^S with x — y, there
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exists y0^S such that xpq = y0pq and y0~y. For some ra^eZ (z = l,

n) , we have

y0 = x + (mi/pq, "-, mn/pq) (mod Zn)

= x+ (m\u/p, • • - , mnu/p) + (m^/q, • • • , mnt/q) (mod Z71) .

If we set z = .r-f (m^u/p, • • - , mnu/p) (mod Zn) , then we have .r — 2:, 2: — v0
/» ? "

and 2 — y. By calculation, we have Lpq (x, y) = Lp ( x, z) Lq (z, y) . For
q

and ju-a.a. x, y^S with x~y, we have
pq

L" (x, y} Ty = 17 (x, z) U (z, y) Ty

It follows from Theorem 1. 8 that T is an element of sJcpQ. Suppose now

that p and q are not relatively prime. Let k be the least common multi-

ple of p and q. It follows from (iii) that SWSc5R;n5WJ and 3^gc9^. As

^11 does not coincide with 9?£g. Hence we have 9^ H sJJg
n =^=5R;g.

Q.E.D.

For £€EN, we set 5W;.0= n K,iSWJ* and Gn- (*°°) = Ui°LiG»- (*') - Jt is

clear that $Jc£oo is a finite von Neumann algebra and that Gn- (k°°) is a

measurable groupoid whose Borel structure is standard. For (x, y) ^Gn

• (k°°) 9 (x, y) belongs to Gn- (k1*) for some i. Define an isometry Lk°° (x,

y) of Hy onto /£ by Lk°° (x, y) = Lki (x, y) . If (*, y) €E Gn • (#) , then

Lki (x, y) = Lki (x, y) . Therefore L^00 is well-defined. By Proposition

1.7, (H,Lk°°) is a representation of GB •(£"). For Te9Jfn, T is in SHI*,

if and only if there exists a ^-conull set E of S— (Gn- (^°°))(0) such that

Lkoo(x,y)Ty = TxL
k°°(x,y) for (j:, y) e GB - (*°°) | JB (c.f. Theorem 1.8).

Let Rk be an equivalence relation on S defined by the following; (x, y)

^Rk if and only if there exist z'eN and ra/eZ (j=l, m",n) such that

- y = x+ (m./k1, -., mn/A*) (mod Z71) .

For £>;2, ^?fc is hyperfinite (c.f. [6, Proposition 4. 1]) and is an ergodic

groupoid of type IIj with respect to the measure ju. For every (x, y)

n' (k°°) , there exists z^S such that (x,z)^Rk and (z, y)
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Theorem 3.2. If k is a natural number -with fc>2, then ?i£oo and

(§§CS are spatially isomorphic, where 2. is the right regular re-

presentation of C and C5 is the algebra of scalar operators on L2(S, jU) .

Proof. We set § = y(//) and §0 = L2(5, ju) . For ceC, define a

unitary operator Uc<=33ln by (Ucf) (x, c') =f(x, c' c) for /e§ and (x, c')

Let L°°(5) be the set of all bounded Borel functions on 5. For

°(S), define a^Tln by (af) (x, c) = a (xc) f (xy c) for /e§ and

(x, c) ^.Gn. For b^B, b-a denotes an element of L°° (-5) defined by

(b-a)(x)=a(xb) (x^S}. Then we have UcaUc* = (c-a)~ for c^C

and aeL°°(5). If we set 91= {a; a e L°° (S) } , then 9Kn is generated

by 21 and {£/c; ceC}. Since k — kl commutes with every element of C,

it follows from straightforward calculation that @k (a) = (k - a) ~ and

^k(Uc) =UC for every aeSl and ceC.

As § is isomorphic to §0(X)Z2(C), we may represent elements of 3Jln

by matrices. For ceC, let 8C be an element of /2(C) defined by 5c(c) =1

and dc(c') =0 if c'=£c, and §c be the one-dimensional subspace of /2(C)

generated by dc. We define an isometry vc of §0 onto §o(8)§c by vc(jT)

=f®5c for /e§0- For Te2JJn, we set Tt>u^vt~
lTvu (t,uE^C) and

identify T with the matrix (TtiU)ttU^c- Then Uc (c^C) is represented

by the following; (U^iiU = I if t~lu — c and (J7 c) t f U = 0 if t~lu=f=c, where

/is the identity operator on §0, and a (aeL°°(5)) is represented by

the following; (&)t,u = t-a if t — u and (S) t iU = 0 if ^T^W, where t-a

is considered as a multiplication operator on §0. Therefore 0k(aUc)

is represented by the following; 0k(aUc) t,u — t- (k-a) if t~lu = c and

0k(aU0)t,u = 0 if t~lu^c. Let 2JJ0 be a *-subalgebra of 2JJ,, consisting of

all elements of the form aiUCl-\ ----- \-&mUCm for ai^Lco(S) and r^eC (i

= 1, • • - , m\ m = I,2, • • • ) . As 5DZ0 is weakly dense in 2JJn, <0fc(3K0) is weakly

dense in 5Jtfc. By the same reasoning as in [3, p. 131], for every T

= (Tt,u) e9il, there exists aceL°°(5) (ceC) such that Tt,u = t- (k-a^u)

for every t, u<=C. Note that, for x, y^S, if y = x + (m^ k, • ~ , mn/ k)

(mod Z71) for some ra^eZ (z = l, • • • , ;z) , then we have k- a(x) =k-a(y)

for aeL°°(S). Let T=(Tt,u) be an element of 3^ such that Tt,u = t

•at-iu for t, u^C (aceL°°(5), £<EC). It follows from the above argu-

ment that there exists a ^-conull set S0 of 5 such that ac(x) =ac(y)
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for every (x, y) GE Rk \ S0 and cGEC. Since Rk is ergodic with respect to

the measure ju, ac is constant jU-a.e. for all c^C. Therefore there exists

a von Neumann algebra % on I2 (C) such that ^oo = Cs(g)3lQ. Let T° be

an element of %10. We shall represent T° by a matrix with respect to

the base {dc}c(=c of I2 (C) . There exists wceC fceC) such that T°t>u

= wt-iu for t, u^C. Let p be the left regular representation of C, which

is represented by the following; p(c) t ,u = l if tu~1 = c and p(c) t f t t = 0 if

tu~l-=f=c. Then we have

= (T°p (* ) )< , - •

Hence T° belongs to p(C)'. As we have p (C) ' = ̂ (C) " [4, 13.10],

5Ro is contained in ^(C)". On the other hand, as we have t/cG:5WJoo and

Uc = Xg)l(c)9 J(C)" is contained in SR0. Thus we have 9^ - C5(X)^ (C) x/.

Q.E.D.

The following corollary is an immediate consequence of the above

proof.

Corollary 3. 3. (i) The fixed point algebra of ®k is SWJoo, that is,

(ii) If k and I are natural numbers zvith k, £>2, then 9^^

coincides -with 5R^.
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