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Positive Cones and L,Spaces
for von Neumann Algebras

By

Huzihiro ARAKI* and Tetsuya MASUDA*

Abstract

The L,-space L,(M, %) for a von Neumann algebra M with reference to its cyclic
and separating vector 7 in the standard representation Hilbert space H of M is constructed
either as a subset of H (for 2< p=<Xw0), or as the completion of H (for 1< p<<2) with
an explicitly defined L,-norm. The Banach spaces L,(M, %) for different reference vector
7 (with the same p) are isomorphic.

Any L, element has a polar decomposition where the positive part Lj (M, 3) is
defined to be either the intersection with the positive cone VY ®? (for 2< p<<0) or the
completion of the positive cone Vy/¢? (for 1< p<<2). Any positive element has an
interpretation as the (1/p)** power w'? of an wEM% with its L,-norm given by [l

Product of an L, element and an L, element is explicitly defined as an L, element
with 7*=p~'+¢™! provided that 1<r, and the Hglder inequality is proved.

The Ly-space constructed here is isomorphic to those defined by Haagerup, Hilsum,
and Kosaki.

As a corollary, any normal state of M is shown to have one and only one vector
representative in the positive cone V% for each a<[0, 1/4].

§1. Main Results

The L,space L,(M,t) of a semifinite von Neumann algebra M with
respect to a normal trace v is defined as the linear space of those closed
operators which are affiliated with M and satisfy the condition |x|,
=t (|x|?)"?<co. ([20]. Also see [18].) Extension to non semifinite
cases have been worked out by Haagerup [11], Hilsum [12], and Kosaki
[15], [16]. We shall present another version of such an extension with
emphasis on defining them on the Hilbert space where M is acting rather
than going over to the crossed product of M with the modular action.

We shall construct the L,space L,(M,7) with reference to a cyclic

and separating vector % in the standard representation Hilbert space H of
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a general (0-finite) von Neumann algebra M utilizing the relative modular

operator 4;, of a normal semifinite weight ¢ on M, which is defined

as follows:
(1- 1) Atﬁyv:S;‘.ﬂm’
1.2) Ssxn=§4(x*), xe&N§

where S;, is the closure of Sy,, Ny is the set of x& M satisfying ¢ (z*x)
oo and &4;(x) is the GNS vector representation of x&N, in H,
=N,/ker ¢ based on the weight ¢. If ¢ is a vector state w, with é = H,
then &4(x) =x€ and we denote 4, also as 4, The support of 4, is
the support s(¢) of ¢ and 4;, is defined as the sum of 0 on (1—s(4)) H
and the usual power of positive selfadjoint operator 4,4, on s(¢) H.

For 2<{p<{oo, we define the L,space as follows:

(1.9 Ly (M, 1) ={£ 1) DUEP=2) : ¢ < o0}
@4 €19 = sup 4=

For 1<p<(2, we define the L,space L,(M,%) as the completion of H

with the following L norm:
1.5) I€1Z> = inf {J4EP~42L||: €] =1, s" (§) =s" (O)}

where s” denotes the M-support of a vector (the smallest projection in
M leaving the vector invariant), [48P~“PL| is defined to be + oo if
¢ is not in the domain of 4f/?~“? and we prove in Lemma 7.1 (1)
that any (& H is in D(4{&P~"") if 1<p<2,

For any x&eM and ¢€L,(M,9) NH, 2£€L,(M,%) and |z£|P
<|[z| €. Therefore the multiplication of x& M can be defined for
any {&L,(M,7) by continuous extension.

Theorem 1.

(1) The formulae (1.4) and (1.5) define a norm for each p
(A<Lp<Loo) and L,(M,%) is a Banach M-module.

(2) Assume that p~'+ (p') =1, then the sesquilinear form (G,
¢ for LeL,(M,y) NH, {'eL, (M,) NH can be uniquely extended
to a continuous sesquilinear form on L,(M,7) X L, (M,n) (denoted by
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< Ow)s through which L,(M, %) is the dual of L, (M, ) if 1<p<oo.
(8) The norm satisfies

(1.6) 1615 = sup {i<C, &> 1: & €Ly (M, 1), [C|P=1},

where p7+ (p') '=1 and 1<p<oo.

(4) For 2<p<loo and &, &, L, (M, %), the following Clarkson’s
inequality holds:

1.7 (N6 +&[ )7+ (16— El)”
=277HAUGI) 7+ E:0) 7

The L,spaces for different reference vectors 7 are related as follows.

Theorem 2. There exists a family of conjugate linear isomeiry
Jo (e, ) and linear isometry t, (s, 1) Srom L,(M,n) onto L,(M,7,)
satisfying the following relations:

1) For 2<p<oo, and L& L,(M,7,),
(1.8) o (U2, 1) =T 5,y 0, AG2"PE (€L, (M, 72))
1.9 T W2y M) = Jp (02, 1) I (0, 1)

where (1.9) is independent of a cyclic and separating vector 9 and
Jpon, 15 Obtained by the polar decomposition S, ,=J,,44% (see (1.2)).
(2) For p7'+ (p")'=1, L L,(M, ;) and {'E Ly (M, 75),

(1.10) T (2, 1) €, & g =T (11, 1) C, O aar
(1.11) 0o M2y 1) &5 € D0 = <& T (U1, 7D E D
and
(1.12) Tp (s 02) To (W2, 1) =Tp (s, M) -
The cones
(1.13) Ve=the closure of 42M.,y (0<a<1/2)

defined in [2] can be used to define the positive part Ly (M, y) as follows:
(1.14) Li(M,n) =L,(M,7) NVy*” for 2<p<co
(1.15) L} (M, ) = Lyclosure of Vy®? for 1<p<2.
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Then we have the following polar decomposition theorem.

Theorem 3.

Q) AnyZeL,(M,%) has the unique polar decomposition { =u||,,
where u is a partial isometry in M satisfying uu*=s"(&) (equiva-
lently, uw*u=s"(1¢|,)) and
(1.16) Cl=u*Ce Ly (M, 7).

Here, s"(C) is the M-support of &, namely the smallest projection
Pe M such that PC=C.

(2) Under the identification of L,(M,%) and L,(M,7n,) by
Tp (M2, 71) » the above polar decomposition is independent of 7.

@ €I =15
@) If¢eLi(M,7), there exists a unique ¢ <= My such that

.17 C=ddm
if 2<p<oo, and
(1.18) L, E > = (Af/ﬁ] , Ag;/ﬂp)—(llz)C/)

Sfor all &L, (M,n),p '+ (¢p) '=1 if 1<p<2. For such unique ¢,
ICI19=¢ Q). If L&Li(M, ), there exists a unique x&M* such
that £=xy. For such z, |{|?=|x].

We may symbolically write
1.19) E=up®
if |£|, is given either by (1.17) or (1.18).

Special cases p=oco and p=1 reduce to well-known objects.

Theorem 4.

Q) The map x€ M—xypE H is an isometric isomorphism from
M onto L., (M,7).

2) The map from &L, (M,n) to

(1.20) ¢ (x) =<C, *Dw (zeM)

is an isometric isomorphism from L,(M, %) onto M,, where the inner

product in (1.20) is the one given by Theorem 1 (2) for p=1,
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From definition, L,(M, %) is H, independent of 7.

For the definition of the product, we use the following Lemma.

Lemma A. For x,, -, 2,€ M, ¢y, -+, b, M} and complex numbers

z=(2y, +*+, 2,) in the tube domain
a.21) I[P = {z& C": Re 2,0 j=1, -, n, 3} Re ,<1},
=1

the expression
(1.22) F(2)

= (43025432, 0T g+ Zally AT Fr A3y E0)
is well-defined and independent of the division z;=z2;+25 if
1.23) Re 2+ ---+Re 2z;-;+ Re 27<<1/2, Re 270,
(1.24) Re 2,4 -« +Re z;.1+Re 25<<1/2, Re 252>0.

It defines a function of z= (21, -, 2») which is
(i) holomorphic in the interior of I™,
(ii) continuous on I™, and
(iii) bounded on I™ by

@2s)  F@ISI Do, @* (L6,

n
where z,=1— Y Re z;.
=

(iv) Denote

1.26) F(2) =0, (xd§: g1 45 1 0).
If z;=z}x] with x5, 7€M and zozl——:‘_‘_, 21, then
=1

1.27) 0, (Zod 3,01 432 1 T0)
=0, (27 A58, 1% 10 Apzndpad s, g2y 45,0275 -
(Multiple-time KMS condition.)
(v) F(2) is multilinear in x,, -+, xn.

(vi) F(2) is continuous in (xy, *++, Tn, P15 ***, $n, ) rTelative to *-

strong topology of x’s and norm topology of ¢’s and 4, provided that
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x’s are restricted to a bounded set. The continuity is uniform in 2’s

provided that 2’s are restricted to a compact set.

(vii) If jélz,-:l, then F(2) is independent of 7.

If r'= 12_1 (PJ) _1’ 7'_1+ (7"’) —1:1’ CJ'ELPJ(M 77) ’ IJ'EM (j:O: "ty
n), and C;=wupy* (j=1,---,n) is the polar decomposition, then the

product

(1.28) C=xlit:lo - CnxnE L, (M, 1) (=L, (M, 7)*)
is defined by

(1.29) &, & wm=0, (4 u *xou 4z wn d2520)

where {’eL..(M,7%) and £’ =u«'¢’V" is its polar decomposition.

Theorem 5. The product (1.28) is multilinear and satisfies

(1. 30) 1< CIT 12D TT1C18-

A polar decomposition different from Theorem 3 is given by the

following.

Theorem 6. Any {cL,(M,%) has the unique polar decomposi-

tion
(1.31) C=C1—C2+i(C3—C4)

where {;€ Ly (M, ), s"(&) Ls"(&) and s" (&) Ls"(C). Here s™()
is the M-support of L, i.e. the smallest projection P& M such that
PZ=¢.

The polar decompositions have versions appropriate for the positive

cone V7 itself.

Theorem 7.

Q) Any & in the domain of A¥P7* (0<a<l1/2) has the polar
decomposition &=u|l|, where u is a partial isometry in M satisfying
wuu* =5"(§) (or equivalently w*u=s"(|C|2)), |C1.E VY and |{|o= 457 for
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some &= M, if 0<a<1/2 and |{|,=T7% for a positive selfadjoint ope-
rator T affiliated with M. Such { can be written also as L=u'|E|’ .
where v is a partial isometry in M’, w'u'*=5"(C) (or equivalently
w*u' =s"(IC"a)) and [{|'.€V7.

(2) For 1/4<a<1/2, any { in H has the unique polar decom-
position £=ull|, where u is a partial isomeiry in M satisfying wuu*
=s"() (or equivalently w*u=s"(||.)) and |C|.€V% For 1/4=a’
>0, any £ in H has the unique decomposition =u'|l|',. where u’
is a partial isometry in M’ satisfying w'u'*=s"" (&) (or equivalently
Wi =57 (1€)0)) and [C|'wEVE.

(3) Any £&Ve for 1/4<a<1/2 has the form C=4Y, where
deMy, n€D(45), and ¢ is uniquely determined by C.

(4) Any & in the domain of 48?7 (0<a<<1/2) has the unique

decomposition,

1.32) £=C—C+i(G—C)

with &, -, &€V and

(1.33a)  s"(C) Ls"(&), s"(C) Ls" (L) Sfor 1/4=a<1/2,
(1. 33b) s"(C) Ls™ (&), (&) LM () Sfor 0<Za<1/4.

If a=1/4, the two decompositions coincide.

Corollary. Any ¢=Mf has a unique vector representative £y (9)
eVy for each ax<=[0,1/4], i.e.

(1.34) (x£7(9),67(9)) = (x) (zeM).

Our strategy for proof of the above main results is first to show
that L,(M, ), 2<p< oo, which is a subset of H in our approach, is a
uniformly convex (hence reflexive) M-module and {&L,(M,7) has a
unique polar decomposition {=u|{|P with [{|P =4V, =M}
and [P =¢@1)"?. Then L,(M,7) for 2=>p>1 can easily be identified
with the dual L, (M, %)* where (p') '+p'=1, L} (M, %) being exactly
the polar of L} (M,7) and the polar decomposition &=u|{| of e
L,(M, %) being derived from that of {’& L, (M, ) achieving “maximum”

inner product with &.
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Our main tool is the relative modular operator (defined by (1.1)
and (1.2)) which has been used previously in [6], [7]. (Also see [5],
[10].) In Appendix C, we collect its properties relevant to our ap-
plication and provide a brief outline of their proof.

Main lemma providing a control over the unbounded relative modular
operator is its domain properties and Hélder type inequality given by
Lemma A (stated in Section 1 and proved in Appendix A). This lemma
originates in the multiple time KMS condition first found in [1], where
it is formulated in terms of boundary values of time correlation functions
(rather than modular operators). The present form is a straightforward
generalization of Theorem 3.1 and Theorem 3.2 in [3]. (Also see [13].)

The set L} (M,n) of certain formal monomials of elements of M
and complex powers (with positive real parts) of relative modular oper-
ators (p specifying the sum of real parts of powers not to exceed 1—p™*
= (p’)™") and its subset _[,. (M, ) are introduced in Section 2. In fact
the set L,(M,7) consists of A=udy? ¢=M}, which will be identified
with Aye L, (M, ) for 2<p< oo and with an element of L,(M, ) with
L, norm ¢(1)"? and having the “maximal inner product” with z4y§%7% in
L, (M,7n) for 2=p>1. _L¥(M,7) is introduced here for the purpose of
defining products of elements of L,(M,%) and L,(M, %), which is tech-
nically used in the proof of uniform strong differentiability in Section 9
and is fully treated in Section 12. Lemma A enables us to define an
“inner product” <A, B),, between Ae _L,(M,y) and Be L} (M,7),
which coincides with (A7, By) in H whenever % is in domains of A and
B. This leads to an identification of L} (M, %) (modulo an equivalence)
with L,(M,9)* (after L,(M, %) =L,(M,7) is shown by polar decom-
position) (in Section 7) and also to the Hélder inequality for the above
mentioned product (in Section 12).

In Section 3, the polar decomposition of a vector & in the domain of
48P7% in the form =u|¢|P, |£|P =442y with a partial isometry  in
M and a normal semifinite weight ¢ on M, is derived by an application
of Carlson’s theorem, a technique used in [4]. Here the Connes charac-
terization of unitary Randon-Nikodym cocycle is used in the form dis-
cussed in Appendix B, where we allow non-faithful normal semifinite

weights.
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As an immediate application of results in Section 3, we obtain ex-
istence and uniqueness of polar decomposition of {& L, (M, 7) (2<p<oo)
as above with g€ My and the formula [C|P=¢(1)"? in Section 4. At
the same time, the set of 4yZy with =My is identified with L} (M, )
defined by (1.14).

In Section 5, we show that L,(M, %) for p=1 and oo are canonically
identified with M, and M.

In Section 6, we prove the completeness of L,(M,7) for 2<p<loo
by using an easily provable inequality between [|£[{? and the norm [{]
in H.

In Section 7, we derive a few technical lemmas related to L, (M, 7)
and L¥(M,7) introduced in Section 2. They provide useful tools in
subsequent two sections, where Clarkson’s inequality (and hence the
uniform convexity) and uniform strong differentiability of the norm (and
hence the uniform convexity of the dual space) are proved for L,(M,7),
2<p<oo.

Once the properties of L,(M, ), 2<<p< o are established, properties
of L,(M,7) for 1<p<<2 are easily derived in Section 10.

The isomorphism of L,(M,7) for different reference vectors 7 are
established in Section 11. As mentioned earlier, product is treated in
Section 12. Linear polar decomposition theorems for L,spaces as well
as for D(45) (Ja|<1/2) are then proved in Section 13.

Section 14 provides a summary of proof of Theorems of Section 1
in terms of Lemmas proved in preceding sections.

A brief discussion of the connection with other works is in Section 15.

In Appendix D, operator monotone function is shown to be applicable
also for semibounded operators (or positive forms). This result (in a
special case of the function x’, 0<<y<{1) is used in Appendix C to derive

an inequality for powers of relative modular operators.

§ 2. Immediate Consequences of the Multiple-Time
KMS Condition

The multiple-time KMS condition has been found to hold for any

KMS state in [1], where it is formulated in terms of boundary values
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(hence in terms of time translation automorphisms) rather than the

modular operators: If all ¢; coincide with ®,, then for real z= (¢, -,

t),
(2.1) F(it) = w,(x,07, (x1) -+-07, (xa) )
2.2) F(ity, », ity ity 4+ 1, ity +1, oor, ita+1)
=, (07, (x5) -0, (xa) 2:03, (21) ++05,, (Z5-1) ) »

where s;=4#¢+---+#. The proof of Lemma A which is an adaptation
of the proof in [8] will be presented in Appendix A for the sake of
completeness. In this section, we discuss immediate consequences of
Lemma A, which will be used in subsequent proofs of main results.

We use the notation of Lemma A.

Corollary 2.1. If 7 is in the domains of the two operators.

7
(2.3) A=Agf,vxi";ﬁ:mxﬂl'"A;Z,ﬂxﬂ
AT ok AEs B ok
2.9 B=A43 x5 1450 2 45, 78

where z€ " with z;=27+27 ((1.23) and (1.24) of Lemma A are

not assumed), then

2.5) (A7, BY) = 0, (2odg},n %1+ 437, 1%0).

Proof. Due to z&I™, either (1.23) or (1.24) holds. Suppose
(1.23) holds. (The case (1.24) is similar.) Then there exists £2>j,
Re 2,20, Re 2y =0, 2;+2% =2, (or Re wj=0, Re wj=>0, wj+ wj =z2))
such that both (1.23) and (1.24) hold if j is replaced by & (or if 2j
and 2 are replaced by wj and wj) and hence F(z) is given by the
inner product (1.22) where the same replacement is to be made. The
equation (2.5) is then obtained by transposing x; (j<</<(k) and appro-
priate powers of 4y, (7</<k) from one member of the inner product

to another.

Lemma 2.2. If v is in the domains of the operators,

2’ +
(2' 6) A]'=A¢5117x143;+;l’1x1+1".Angq‘r"
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(2- 7) Az=Azf,uyﬂ’"ﬂii,nyﬂr"A’ﬁﬁ,uym
with Re 2,20, Re w,=>0 ([=j+1), Re 27=0, Re wj =0, and ¢, M3,
oM, peMi, veM ((=)), and if A=Ay, then
(2.8) 0, (Zod gL, v 21 A, 1 )
=a)ﬂ(‘rﬂA;i,ﬂxl"'x.i—lA’:Ii;,flyj"'Aﬁzyﬂym>
for all xy, -, x;EM, z;=27+27, wy=z27+w], ML, Rez=>0

(I=1, ---, ), Re w;==0 and

n j-1 m
>TRez<1, Y Rez,+ > Re w,<1.
i-1 =1 =7

Proof. If Re 23>0 and ZJ Re £,<<1/2, then 7 is also in the domain

=1
of B given by (2.4) due to Lemma A. Hence (2.5) and the assumption
A=Ay imply (2.8). General case follows from this case by analytic

continuation.

Notation 2. 3.

(1) The set of all formal expressions A=wudy? with ¢ M7 and a
partial isometry u satisfying «*ux=s(¢) (the support projection of ¢) will
be denoted by _L,(M, 7).

(2) The set of all formal expressions,
(2.9) B=xd3, s 437, 120

3

with ijM (j=0, "',71), ¢JEM:< (j:l, ) 7’[), 2= (zl; ""zn) EEIlfi)(l/m
will be denoted by L3 (M,7) where

(2.10) IP={eeC":Rez,>0 (j=1,- 7n), > Rez,<a}.

(3) For A L,(M,n) and Be L} (M, 1),
(2.11a) (B, Adwy=0,A4Y5(u*x0) 43, 121+ 453, 1200),
(2.11b) <A, Byoy=0,(xidin, -2 dgL,, (xu) 475 .

Since L, (M,7) with (p') '=1—p""' is a subset of LF (M, 7), this defi-
nition applies also for B [, (M, 7).
(4) For 1=<p=2, A and Bin L}¥(M,7) are said to be eqivalent
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if Ay=By. (By Lemma A, % is in the domain of A and B.) For
2<p<oco, A and Bin L§(M,74) are said to be equivalent if {C, A,
={C, By for all C in L,(M,7).

Lemma 2.4. If 2<p<oo, then L,(M,n) CL,(M, %) in the sense
that ud{?n< L,(M,n) with

(2.12) Judifznl9 =4 W)

Progf. The bound for |4§P~“Pxdy{Zy|* given by Lemma A (iii)
implies
(2.13) leeddZn || P <o (1) "7,

in view of the definition (1.4). Let & be the vector representative of ¢
and §=uf,. Then the relations (Theorem C.1 (54))

(2.149) di ,=udy u*,

(2.15) u*uA;,,,=A;,,,,

imply

(2.16) 1482~ P u 5| = | 4050 =6 (1) .

(See (1.1) and (1.2) for the last equality.) Since 4£,=¢(1)°4.,, for
& =£/161 (I€1P=4()), we have

(2.17) e 35N =1 482~ P u 5] = (1) .
Combining (2.17) with (2.13), we obtain (2.12).

Lemma 2.5. If 2<p<oo, A= L,(M,n) and Be L¥(M,y) as
in Notation 2.3 then,

2.18) KB, <4719 (1T Il CIT 4D 0, () n=0rm

n
where zo=1— ) 2.
=1

Proof. Immediate from Lemma A (iii).

Lemma 2.6. If Be L} (M,7), Aie L,(M,n), neD(A;) (=1,
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n
«on), and Y Am=0, then
i=1

2.19) 2 <B, Apy=0.

Proof. The same as the proof of Lemma 2. 2.

Remark 2.7. Later Lemma 4.1. (i) asserts _L,(M, %) =L,(M,7)
for 2<p<{oo. Lemma 2.5 and Lemma 2.6 then show _L}(M,7)C
L,(M,n)* for such p (modulo the equivalence relation).

Lemma 2.8. Let 2<p,q,7r<oo0, p ' +q '+r'=1, Aic L, (M,7),
A,e L (M) and Ay L, (M,7). Then the formal product A,A,is
in L¥(M,n) and,

(2.20) KA As, Ao | S A || Anllg || Asy [
Proof. The inequality follows from Lemma 2.4 and 2.5.

Lemma 2.9. Let p7'+ (p') '=1, 1<p<oo, A=udi?c L,(M,7),
and B=vdjy € L, (M, n) C L¥(M,4). Then

(2.21) ¢ (1) "?=max{|<{B, A>wl|, $(1)<1}.

(The maximum is attained.) If A=uwud;, e L,(M,n) and C=zx&
LFEM, ), then

(2.22) $ (1) =max{lKC, A, |x]|=1},

(2.23) Izl =sup{IKC, Adwl, $(1) <1}.

Proof. Lemma A (iii) implies inequality = in (2.21)-(2.23).

The equality in (2.21) is obtained by setting v=w% and ¢ =¢ (1) "'¢. The
equalities in (2.22) and (2.23) follow from <{C, A>, =¢ («*x).

§ 3. Polar Decomposition in D (4§ 7*%)

The aim of this section is to show the existence of polar decomposition

in D(4§"®7**). We consider the involution operator
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3.1) TP =J4m=

where « is real and J is the modular conjugation J,,. Due to J4,J=4;*
and J*=1, D(4%”7**) is invariant under the action of J? and (J®)?c1.
With a fixed element £ of D (4{"?7*%), we associate two operators T, and
R, defined by,

(3.2) Toyy =024 ()&
(3.3) Royn =032, () JPC

where 077(y) =4;%y4? for y&M’ and y is in the set M; of all entire
analytic elements of M’ with respect to the modular automorphisms 077
Note that the domain D(T}) = D(R,) =M% is dense in H.

Lemma 3.1. 7T, and R, are closable operators. Their closures
T and R satisfy,

3.4 T*DR, R*DT.

Proof. It is sufficient to prove that for any y;, v, in M,
(3.9) (Toym, y21) = (317, Roya) -

By definitions of 7, and R,, the two sides of (3.5) are computed as

follows;
(3.6) (Toym, y21) = (02 (01 €, ya1) = (€, 02 (31) *327)
3.7 (37, Royan) = (w17, Oad (v2) JAL® 7228

= (038 (o) ¥y, JAP7C)

= (4827, Jo3k (v2) *3177)

= (4§27, A7 P yEasl (v2) ) -
The proof is completed by the following formula,
(3.8 47205k (v2) =47 V0 e (V) 7

which is an analytic continuation of the following identity from real ¢

to pure imaginary 2ic.

(3.9) 47 yEay (ve) 1 =47 VP T (5E) e«
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Next, we consider the polar decomposition of the closed operator
T=u|T|.

Lemma 3.2. For any yeM;,

(3.10) IT °0 e (y) DY T .

Proof. For arbitrary elements vy, vy, in M;, we have,

(3.11) Toy,350 = O3 (315) € = O3 (31) 03 (%) €
=058 () Toyey -

This implies Tyy; D035 (v1) Ty. By taking the closure, we obtain, for any
y in Mj,
(3.12) Ty>0 (T .
Taking the adjoint of this relation and replacing y* by vy, we obtain,
(3.13) T*0 %0 (y) DyT™* .
Combining these formulas, we obtain the following:

T*T0 % (v) DT*0 % N TOYT*T  (yEMS).

Lemma 3. 3.
(1) Let p=s(T) be the support projection of T. Let,

(3.14) I'T "= [exp{z (log| T'|) p} ] P .
Then,
(3.15) YT C|T 70 %0 ()

for any yeM; and any complex z. For pure imaginary z, equality
holds for any yeM’.

(2) p and the partial isometry u in the polar decomposition of
T belong to M.

Proof. Because of (3.12), é€ker T implies y¥§&D(T') and Ty§=0
for any yeM;. So, (1—p) H is Mj-invariant. The 0-weak density of
M;{ in M’ then implies (1—p) € M and hence pc M.

To show the formula (3.15), we consider the function,
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(3.16) F (@) = OIT "6, &) — (0 e (0) &, | T |76

of a complex number g, where y& M’ has a compact support with respect
to the spectrum of 077 and &’s have compact supports with respect to the
spectrum of (log |7T'|)p. The following three properties of f implies
f=0 due to Carlson’s Theorem (Boas [14]).

(a) By the choice of vy, &, and §,, f(2) is exponentially bounded
for Re 22>0.

(B) The estimate
(3.17) |f (i) IS T 176 ly*€ell + 1045 O & T 776,
=Z2[yl1&:[€-]

implies that
(3.18) h<ig—>zmilogff<iir)|go.
r—oc0 77

(r) Due to Lemma 3.2,
(3.19) | T "0 ina (v) DT |

and hence f (n) =0 for any non negative integer 7.

Since the set of §’s we have used is a core of |T|* (for any z),
we obtain (3.15) from f=0.

Lastly, we show M. By (3.12) and (3.15), we have [#, y]|T|
=0 for all yEM; and hence [%, y]p=0. Since wp=u and [y, p]=0,
we obtain [#, y] =0 and hence uc M.

Lemma 3.4. Let T, be defined by (3.2) and T=T, for non-
zero real o. There exists a unique normal semifinite weight ¢ such
that

(3. 20) |T | = 4%, .

Proof. We consider the following one parameter family of partial

isometries;
(3. 21) U, = ]T I (I/Za)ftA”—iL (tE R) .

Then #, is strongly continuous and belongs to M due to
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(3.22) ity = | T |31 4
= |T (g7 (y) 7
= |T et gity
=uy
for any yeM’. Moreover,
(8.23) Ugyy =T |M201GEHD foitato
=|T ‘ (1/2a)isdﬂ—isA;s| T I (1/2a)£LA7—ﬂA1]—is
=u03 ()
(3.24) ufu, =4y pdy" =01(p),
(3.25) wuf=p.

According to the characterization of normal semifinite weight by M-valued
0} one cocycle (Theorem B.1 in Appendix B), there exists a unique

normal semifinite weight ¢ such that,
(3. 26) u,= (D¢: Dw,), = 4% 47" .
It follows that |7"|"*®®=4% and (3.20) follows.

Lemma 3.5. Let 0<a<1/2. For any normal semifinite weight
@, 43y belongs to V2, if 9 is in the domain of 47,

Proof. By the property of Radon-Nikodym cocycle,
(3.27) 0¥ D03 () 45,
for any yeM;. If y runs over Mj, then
(3.28) 4A7%y*y =0Tl (y*y) 7

is dense in V{®7%  Since V7 is the polar of V{"*7¢ it is enough to show

the following:
(3. 29) (4551, 0% (v*y) 1) =0
for any yeM;. By (3.27),

(4%, 0 (y*y) 1) = (012 (9) 4557, 0% (9) )

= (4307 (¥) 1, 075 (¥) 1) =0
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Lemma 3. 6.

Q) For any L& D487 with non-zero real o, there exists
a partial isometry u in M and a normal semifinite weight ¢ such that
ne D45, C=uliy and uu*=s"(£) (or equivalently w*u=s(g)).

@) For any L&D (4%, there exists a closed operator T affili-
ated with M such that 7€ D(T) and {=T%.

Proof. By (38.2), {=T%. By Lemma 3.3, T=u|T| with a partial
isometry # in M satisfying wu*=5s(T*) (and u*u=s(7T)). Since 7 is
separating, s¥(§) =s(T*) =wu*. If a0, |T|=4%, for a normal semi-
finite weight ¢ by Lemma 3.4 and if =0, |T'| is a non-negative self-
adjoint operator affiliated with M by (3.15) for a=0.

§ 4. Polar Decomposition in L,(M, ), 2<p<oco

In this section, we shall apply the polar decomposition in D(47),
(0Za<1/2) to elements in L,(M, ), 2<p<oco. The polar decomposi-
tion for the case 1<p<(2 will be given in Section 10.

Lemma 4. 1.
1) Let LeL,(M,y), 2<p<oo. Then there exists a unique ¢
M3 and a partial isometry uc M such that

4.1) C=udfsy.

In this case, |C[>=01)"".

(2) Let 1<p<2, 7€ D(4{%) for a normal semifinite weight ¢
and &=udf?y where u is a partial isometry in M such that u*u=s(p).
Then ¢ is bounded and ||| =¢(1)"2.

Proof. (1) Taking §=7% in the definition (1.3), any & L,(M, %)
is in D(4{"”~"P) and hence { is of the form {=udy?y by Lemma 3.6.
By definition (1.3), {&D4W2~"P) for any n € H. For any m€ H
satisfying s (7)) <s(4,) where ¢, (x) =9 («*xu), we prove the following

consequence in Lemma 4,2 below:

(4.2) u*n e D(4Y5),
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4.3) 1452~ P u /P = | 485,270
Therefore for any such 7, of unit length,
4.9 I 4385,u* 7| <€) <oo .

Since ¢ and hence ¢, are normal, there exists an increasing net of

$.=M;i with sup@.=¢,. By Lemma C.3,

4.5 1452, 1| =1 4420 = | 445,20

[P

(Last equality is due to Theorem C.1.) If we take 7, =§&,/| .| for the

vector representative £,& PE of @,, then

(4.6) 14Y2, 0l =& )| 477:] = 3o (1) .
Combining (4.6), (4.5) and (4.4), we obtain

4.7) $(1)V7=¢.(1)"?= sup Fa(D7P<E)P <00

This proves the existence of the decomposition (4.1) with ¢ M5, Then,

owing to Lemma C.2, [[432~YPudf?y| =|442,7|. Hence
4.8) 1€hs = sup 432,70 <. (1) "? =6 (1),
Mli=

due to |42, 7] =¢.(1)"* and the three line theorem. This shows [[&
=¢(1)"? due to (4.7).

To prove the uniqueness of the decomposition, assume vdy%y = with
a partial isometry ve M and ¢ € My satisfying v¥v=s(). Let T=udy?.
For yeM;, we have

4.9 Ty =038 ) E=0ilm (¥) vdiin=0vd{ty7.

By definition, Mg is a core of T. If Mgy is also a core of 4%, then
we obtain T'=wv4}/% and by uniqueness of polar decomposition, we obtain
u=v and ¢=¢. Hence the decomposition is unique.

To see that Mgy is the core of 45, for 0<<a<1/2, it is enough to
prove it for ¢ =1/2 because of the inequality [AC|<|AL|P|E| for
any A=0 and 0<v<1. For xeM, xp=J4°x*p=y7 where y=
JO7 i (x*) JEM;. Therefore Mip>DMyy. (Actually equality holds.)
By definition, My is a core of 4%%. Since [[4%zy|=[x*¢()| and M,

12

is #-strongly dense in M, My is also a core of 4J% This proves that
M7 is the core of 4% and hence that of 45, for 0<<a<1/2.
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For the assertion (2), the boundedness of ¢ follows from Lemma
C.4. To prove the equality, we start from &€ P2 such that ¢=w,.
Let n,=j(w)ué/|€] where j(u) =JuJ. By Lemma C. 2,

(4.10) Ty ndil7 ™ P u b5 = 0 Ay, 0,
=[§1*7 u* 457 =|§*u*yy ,
and hence,
(4.11) I€1E> = inf {[ 457~ 2C]: |7 =1, s* (D =s" (D}
=[4;7-"¢l
= [ &7l e*m] = 1)V
The inequality |£|®=¢(1)"? now follows from
(4.12) dD) V=i (w)ué|”
= 47tug, .1

for any m&€H such that s" (o) =>s" (udi/®y) =s" (wj(w)€), |m|=1 and
NE D (48yuer,). The inequality in (4.12) follows from |d4Yyuey, 7l
=|s"(p)j(@ut)| = |j(x)uf]| and the Holder inequality [A7n||*<| A%
for A=0, a=>1 and ||| =1. Hence we have || =¢(1)"".

Lemma 4.2. Let p=2, ¢ be a normal semifinite weight on M,
u be a partial isometry in M satisfying u*u=s(@), n€ P2 (the natural

positive cone) and s" (p,) Suu*. Assume that
(4.13) 7€ D (437" Pudyh)
for all yi € H and, if |71 =1,

(4.14) | 44m -0 gy <A

for a constant A independent of 7;. Then (4.2) and (4.3) holds.

Proof. Let
(4.15) v(t) =454, €M .
Then v(&)v (&) *=5"() and
(4.16) v () ¥4, ,v () =45, (z€C)
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for 7, () =v (&) *j(v (&) *)7, by Theorem C.1 (84). Hence the following

expression makes sense by the assumtion of Lemma:
(4.17) v () *AVD=UP g (1) u A2y
=0 ) AR AY, udi
=v(£) *47(,},/3,)_(1/?)_"”%49,/7") ity
Since 45,0, = |1:*45,, for 7 =n.(£)/|n:l| and |7i[=1, we have
(4.18) PV R TES A it

for == (1/p) +1it and any ¢=R. For any £ H with a compact support

relative to the spectrum of 4,,, we set
(4.19) fe(2) = (udi, 0, 4377°6).

Then f(z) is holomorphic in the strip region 0</Re 2<(1/p, continuous

on its closure and satisfies
(4.20) | fe @) <A™ *P Ay2R2 & |, ]| 7PRe2

by (4.18), 492"t 7] = |wian| < || for w,=4%,45" & M, and three
line theorem. It follows that the mapping §— f:(2) is norm continuous.
Hence udi e D827, fe(2) = (427 udy n, €) for any = satisfying
0<<Re 2<1/p and

(4.21) 1452~ udy,u| < AR for 7] =1.

Hence =482 *udi n is weakly holomorphic for 0<Re=z<1/p and
weakly continuous on the closure.
For any £ H which has a compact support with respect to the

spectrum of 4;,, we put
(4.22) 98° (2) = (J oy, o457 "0 d3,47, £,
(4. 23) 98 (2) = (u*1,, 45,,.6).

Then ¢ (2) and ¢ (z) are holomorphic for 0<Re 2<{1/p and continuous

on the closure. Furthermore
(4.29) 980 (it) = (J 0, 452+ u d35y, €)
= (45,5,0*7, §)

=g (it)
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due to Lemma C.2. It follows g’ (1/p) =9 (1/p). Hence (4.2) holds

and
1/2)— (1, L 1
(4. 25) J'IuﬂA;u/"l) ””)u-’-'e/,‘;’? =A¢/.I”hu*771 .

This implies (4.3) due to Jj ,J,.,=s" (1) =sdy/P~VP).

Lemma 4. 3.

(4.26) Ly (M, n)={dfm: M3}, 2=p<oco.

Proof. Let =4y, ¢=Mj. By Lemma 3.5, £Vy®”. Con-
versely, let {€ Ly (M, n) and £ =udy2y be the polar decomposition. Then

for yeMj,
(4.27) (wd$5y1, y1) = (0i8m (¥ E, ¥7)
= (&, 0iwm (¥*) y71) =0
due to
(4.28) 0oy (9 %) 97 = 4700 fgy (9) *0% oy (9) 7

eV am-uem

By the proof of Lemma 4.1, Mgy is a core of udy%. Hence udy?=>0.

Since { is assumed to be in V%, a=1/(2p), we have JPL=C by
Theorem 3 of [2] where J is defined by (3.1). On the other hand,
due to Lemma C.2 and Theorem C.1 (84), we have

(4.29) JQudPn=u*4Y? 7 .
Hence the uniqueness in Lemma 4.1 (1) implies
(4.30) udfr=u*4Y?,= 4y2u* .
Hence udy% is self-adjoint and positive as was shown above. Therefore
udyt=4y* by the uniqueness of polar decomposition.
Lemma 4.4, For x&M and 2Zp<oo,

(4.31) =g =1Lz -

Proof. By Lemma 4.1 (1), {=udy?y with || =¢(1)"?. Hence
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(1.25) implies (4.31) in view of the definition (1.3).

§ 5. Special Cases p=1,

In this section, we shall give canonical isomorphisms of L. (M, 7)
with M and of L,(M,7) with M,.

Lemma 5.1. Let =L . (M,7). Then there exists a unique
xEM satisfying E=xn and |C|P=|xz|. Under the correspondence
xeM—zxypeL,(M,7%), L.(M,7) is isomorphic to M as a Banach

space.

Proof. By (1.3), £eD(4Y*). By Lemma 3.6 (2), there exists
a closed operator T affiliated with M, satisfying the relation {=7T%. For
any unit vector 7€ H and any yeM’,

(5.1) (oudi5E, y1) = (S, ©)
= (¥*7, C)
= (7, ¥%)
= (1, Ty7)

where S,,, is given by (1.2), which implies S¥ yp=y*y for yeM’.

T

Since M’7 is a core of T, we obtain 7, € D(T*), J,,,4¥%8="T*y, and

1

5.2) €19 = sup | 421 = sup [T*n] =|T*|.

I7gll=1

It follows that T* and hence T are in M. This proves {=xy, x=T
€M, and |x||=[£|?. Since 7 is separating, x& M satisfying &=x7 is
unique.

Conversely, if {=x7 with z&M, then {&€ D4y} for any é€ H

and,

(5.3 sup [[45C] = sup [[z*¢]=[z*|=z].
1€1=1 ien=1

Lemma 5.2. L3i(M, %) =M..

Proof. M.pcV,. Hence M,pC LL(M,7n). Let{eL:i(M,y). By
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Lemma 5.1, there exists unique x&M such that {=x7 and (xy7, y7)
= (&, y*yp) =0 for any y&M; due to y*ypeVy?. Hence x>0 and
L (M, 7) € M.y.

Lemma 5.3. Let £ H and we,,(x) = (&, 2*9) for x&€ M. Then
(5.4) 111" = ||, -

Proof. Let w,(x) =¢(xu) with a partial isometry # in M and
o ML satisfying «*u=5s(@) be the known polar decomposition of w,
€ M,. (Theorem 1.14.4 of [19].) Let é& PP be a vector representa-
tive for ¢.
Since 1—uwu* is the largest projection p& M satisfying wr,,(xp) =0
for all zeM, it is 1—s"(&) and hence s¥ (&) =uu*. Therefore
(5.5) (@, w*x*y) = (€, x*9) = (xu, §)
= (Je,,,dé,/f,u*x*ﬁ, Jé.v"é{?]ﬂ)
= (W, Burzv).
If ¥ is in (1 —u«*x) H, then it is obviously orthogonal to #*{. Itis also
in ker 42 because s”(§) =s(¢) =u*u. Hence
(5.6) (@*C, wruxy+¥) = (&, 45 @ uxy+¥))

for all ;& M. Since w*uMy+ (1—u*u) HD My is a core for 4%, (5.6)
implies 4¢2p€ D (42) and

(5.7) W =dg .

Therefore 7€ D(4,,) and

(5.8) € =udey

with 2*u=s"(€). By Lemma 4.1 (2), we have
(5.9) ICIZ =1€1°= 8]l = lzve,, | -

Lemma 5.4. L,(M,%) and M, are isomorphic as Banach spaces

through the unique continuous extension of the mapping

(5.10) te Horwe, & M, .
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Proof. By Lemma 5.3, it remains to prove that the set of w,
is norm dense in M,. Since M’y is dense in FH, Wyysyy,;= Wuyyyy, With
y&eM’ and a partial isometry #&€ M is norm dense in M,. (Note that

W,y 1S norm dense in ME.).

Lemma 5.5. Through the identification of L,(M,7) with M,,

(5.11) Li (M, 7)) =My, L (M9 nH=V.

Proof. If £E€V¥*(= PP), then (&, x*7)=0 for r&M™* by the duality
of V& and V{"®~%, Hence Vy’CMji. Since the relation <, *7)=0
for xeM™" is stable under limit, we have L;(M,7%) (as the closure of
V¥*) in M%. On the other hand, wys,,=w,, with y&M’ is norm dense
in M. Hence we have Li(M,n) =M}. By the proof of Lemma 5.3,
wy,, EMj implies £=4,,7€VY* due to Lemma 3. 5.

Remark 5.6. Any {€ H has a polar decomposition {=u«|{| with
£1eVy?= PP satisfying u*u=s"(1|). By applying J, this is the same as

the existence of a vector representative in P¥ for any state.

Remark 5.7. We have [L,(M, %) =L,(M,7) via Lemma 5.4, the
identification of ud;,= _[(M,7) with upe M, due to

(5.12) {udy,q, %y = (4§71, 4§70* x*7) = ¢ (xu) = up ()

for all x& M and polar decomposition ¢ =up for any p= M,. (See Theo-
rem 1.14.4 of [19].) Then |uds,|P=06Q). If ¢(xuw) =¥, x*y) for

some ¥ & H, then the proof of Lemma 5.3 implies 7€ D(4,,) and ¥
=ud, 7.

§ 6. Completeness of L, (M, ), 2<p<co

Lemma 6. 1.
Q) For &eL,(M,n) and 2<p<co,

6.1) Izl -

(2) IFf 1<p<?2, and = H, then
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(6.2) 11 < 0E N ] >
(3) For 2<p<oo, |-|9 is a norm and L,(M,7) is complete.

Proof. (1) The case p=oo follows from [x7|<|x||7| and
Lemma 5.1. Let 2<p<{oo and {=ud}?y be the polar decomposition of
e L,(M,y) given by Lemma 4.1 (1). Then |[£|?=[¢]*? and, due to
I 4721 = €], we obtain ||| =427 |<[|€]*7|7]'"*” by the Holder ine-
quality.

(2) We compute as follows: let {=u|{|, u € M, |{| e P°.

6.3 I€112> =inf{|| 452~ : ] =1, s (1) =" (©)}
=1 4&n, 77|
=4 i i

Due to the Hélder inequality,

(6.4) VPl 1 bl V7 Prid
where 0<a= (1/p) — (1/2)<1/2 and 47 =s"(€)uy. Therefore,
(6.5) ICIP=azign === s" € uy||*»

I ="

(8) Definition (1.4) and positive definiteness of 4, for separating
¢ imply that [|-|{” is a norm. We now prove the completeness. Let

{. be a Cauchy sequence in L, (M, 7) with respect to ||-||’-norm. Then,

(6.6) sup 4577 P(Ln—Ca) [0 as 7, m—>oo
I7yl=1

and hence, for each 7;, there exists the limit
6.7 S (1) = lim 45279,
and satisfies,

6-8) sup | 482U, — £(1)[~0 as m—co.
I7gli=1

On the other hand, (6.1) and (6.6) imply that &, is a Cauchy sequence
in H. Let {=1im{,. It then follows from (6.7) and the closedness of

Nn—o0

ALD=9 that £& D(AYP~YP) and £ (p,) =442 ~P¢. Furthermore (6. 8)

implies,
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(6.9) sup [ 472~ = lim €] <oo

imll=

Hence, £€ L,(M,7) and lim [|£—C,]|P =0 by (6.8).

Remark 6.2.  Since |48 VPxy| < | 42,20 4P |2y |¥? =
lz*m ||~ |2n|**< | x| |7]*® for any [7] =1, we have MycCL,(M,7),
2<p<<oo, and hence L,(M,7), 2<p<co is dense in H with respect to
the topology of H.

Lemma 6.3. For x&eM and 1<p< oo,

(6.10) lxnl Izl 2]**.

Proof. Since 7=42y, |7|§”=|7|*® by Lemma 4.1. Hence (6.10)
follows from Lemma 4.4 for 2<{p<oco and from (6.2) together with
ler| Izl l7] for 1<p=2.

Lemma 6.4. Any {& H may be identified with an element of
L,(M,n)* (2Zp<oo) through the inner product (,{’) in H for
C'eL,(M,y) (CH) and, for p=oo, {& L,(M,7)=L(M,7).

Proof. By Lemma 6.1 (1), | (£, &) I<[C]IC"[=c|¢’|? and hence
e L,(M,7)*. The case p=oco has already been proved in Lemmas 5. 3
and 5. 4.

§ 7. A Sesquilinear Form between L, and L,

In this section, we shall introduce the sesquilinear form between
L,(M,7) and Ly (M,7) for p7'+ (p')7'=1 and imbed L, (M,7),
Lo (M,n) and L¥(M, %) into the dual space L,(M,7)* of L,(M,7).

Lemma 7. 1.

Q) For 1=p=2 and for any {c H, |{||{P<oo

@ If '+ @) 7'=1, CeL,(M,)) NH and {'eL,(M,7) NH,
then

(7.1) [& N I=ICIIE 1157 -
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Proof. (1) There exists a partial isometry # in M and |l P5,
such that {=#!¢| and «*u=s"(|]) by eq. (7.3) of [2]. Then |&]|=J|C]
=47, and 4% ,=udiy ,u*. Hence 475”C=uy, which implies & D (4% ,)
for any — (1/2) <« <0 and in particular for o= (1/2) — (1/p) if 1<p<2.
(2) We may assume 1<p<<2. If £ H and ¢>>0, there exists 7, with
I =1 such that |42 "L <€)l +e. Since 27— + 27— () ™)
=0, we obtain for any 'L, (M, 7),

(7.2) (€, € [ = (4gr-emg, ggm-ormg?)|
=&l +e) g 1.
Since ¢ is arbitrary, | (&, ") I<[C1PIC7(I5-

Lemma 7.2, For 1<p<2 and {=udi?y(n€ D (4?)) with a par-
tial isometry uc M satisfying w*u=s"(§),

(7.3) €19 =sup{{ €, )T eLy (M, 7), [CIP<1, p7'+ () =1}

Proof. By Lemma 4.1 (2), [{[|"=[§]*". The equality is attained
in (7.1) by the homogeneity of relative modular operator if we set {’
=ud{%y where §=£/|¢| and p7'+ (»") '=1. Hence (7.3) holds.

Lemma 7.3. If 2<p<oo and p~'+ (p') '=1, then any element
in L}(M,y) can be viewed as an element of L,(M,7n) in the sense
that ne D(A) and Ane L,(M,%) for any
(7.4 A=xd} 2145 s xn€ LE(M, 1) (2€I0),

(see Notation 2.3 (2) for definition of L} (M,%) and I{)), and

(7.5) [ATIP = CIT Ll CIT (D™, ()7 735

If 1<p=<2, p7'+ (p') '=1 and A is given by (7.4), then A can be
viewed as an element of L, (M,%)* through the inner product {A,
B>, for Be€ L, (M,7) =L, (M,5) and (7.5) holds.

Proof. First let 2<{p<"co. By Lemma A, % is in the domain of
A and A7 is in the domain of 4{?~“P for any §H. Furthermore
the estimate (1.25) of Lemma A (iii) implies that A7y is in L,(M,7)
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and (7.5) holds. Next consider the case 1<<p<<2. By Remark 2.7 and
Lemma 4.1 (1), we may view L% (M,7) as an element of L, (M, 7)*
and (7.5) follows from (1.25).

Lemma 7.4. For 2<p<oco, (') '=1—p" und A=ud/? <
Lo (M, n) with uw*u=s"(£),

(7.6) I€17” =max{I[<{B, A>qp|: BE LH(M,7), | Byl =1}.

(The maximum is attained.)
Proof. By Lemmas 2.9 and 4.1 (1).

Remark 7.5. This Lemma shows that the norm [A|%’ of A as
elements in the dual space L,(M,7)* is |§|¥? for 2<p<loco. In view
of Lemmas 2.9 and 4.4 (1), there exists A= L#(M,y) for any given
Be L,(M,7) (2<p=<oc0) such that (B, A>q=|B|[ Al

Notation 7.6. Let .L¥,(M,%) be the set of all formal expression
(2.9) satisfying iRe z;=1— (1/p) in addition to all conditions stated
below (2.9). Ti1=e1 adjoint B¥e L¥,(M,y) for Bin L¥,(M,7) given
by (2.9) is defined as

7.7 Y HAE S R

n 7

The product BCe L}¥,(M,7) of Be L}¥,(M,7) and Ce _LF,(M,7) is
defined if »'=p"'+¢g7'—1 and 1<r, p, g<<oco as the expression obtained
by writing expressions for B and C together in that order and combine

the last x in B and the top x in C according to the product operation
in M.

Lemma 7.7.

1) Any element Be L} (M,7) is equivalent to an element in
L3 (M, 7).

@) If BeLE(M,y) i=1, -, n andinzz B; =0 either as elements

in Ly (M,7) for 1<p<2 and (') =1—p—" (Lemma 7.3) or as ele-
ments in L,(M,9)* for 2<p<loco (Remark 2.7), then i:Bi*IO in
=
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the same sense and Zn: BC= Zn‘, CB;=0 in L,.(M,7n) for1=r<2 and
i=1 i=1

) '=1—7r"" or in L.(M,9)* for 2<r<oco where Cc L}, (M,7),

ri=pl4+q'—1 and 1<r, p, g<oo.

Proof. (1) Let Bbe given by (2.9) with 2€I{®,,, w=1— (1/p)
—i z; and B’=Bd4Y. Then B is equivalent to B’ (due to 477=%) in
.E:;;(IM 7) and B’ _L},(M,7).

(2) First consider the case 1<<p<<2. Then ) By =0. For zeM,

we have
(7.8) (x9, 20 B¥n) = (G(0Lin ()7, 20 Bfn)
=G (O4m-am (x*)) > B, m) =0.

Hence we have ) Bfy=0. If 1<r<2 in addition, we have } CBy=0
from ) B¢ =0. Combining with the preceding result, we obtain Y C* Bf
=0 and hence ) B.C=>)(C*B})*=0. If 2<r<oo and A= [.(M,7)
=L,(M,%), then > XC*A, B;>,,=0 by Lemma 2.6. Since <C*A, B>,
={(A, CB;>,, we have 2 CB;=0 in L,(M,7)*. Combining with the
next result, this implies Y B;C=0 as before.

We now consider the case 2<<p<Too. Then Y XB;, A;>op =0 for any
Ae L,(M,g) =L,(M,%). Since xype L. (M,%) CL,(M,7) for all x
€M, we take A, such that Ap=x%. Then Lemma 2.2 and (1.27)
imply

(7.9) (B, Apy=0,(Bf Ar) =0, (B¥zy)
=0, (2:47/*Bf) = w, (z*BY)

where x& M, and x; is taken to be 07;,(x*).
Hence
(7.10) A, 2 Bf)p=0
for all Ae _[,(M, %) such that Ayp=xy for xE M,.

If x, tends to x *-strongly in M with ||z.[|<| x|, then o,(x}B¥)
tends to w,(x*BfF) by Lemma A (vi). Since any x& M can be approxi-
mated by such x,& M, (7.10) holds for A such that Ay=xy for x& M.

In particular we may take x=udi’, 4;* & M where u is a partial isometry in
M. Since xp=A(2)y for A(¢) =udi, we have (7.10) for A=A(?).
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By an analytic continuation and continuity, we obtain (7.10) for A=
A(—i/p). Hence > BFf=0 in L,(M,7)*.
Since C*Aye L,(M, ) for A= L,(M,7), we obtain

(7.11) (A, 3 CBF>,, =<C*A, 3 B¥>,, =0

and hence > CBf=0 in L,(M,7)*. From )} C*Bf=0, we then obtain
STB,C=3Y'(C*Bf)*=0.

Lemma 7.8. For 2<p<oo, ;e M, &€ H and Ai=xidi?, i=1,

-, n, we have
(7.12) (22 Al =1 2 A Al 51"
1 %7

where AfA;=M4Pxfo, e LF(M, ) with q7'=1-2p™" are consider-
ed as elements of Ly(M,n)* if 2<p=<4 and as elements of Ly, (M, )
if A<p<oo. The norm ||-|{W" denotes the norm in the dual space
L,(M,p)* if 2<p<4 and |-|$), if 4<p<oco. (The two coincides for
p=4)

Progf. If p=oco, the statement is a property of C*norm. Let
2<p<oo. By Lemma 4.1 (1), there exists a partial isometry « in M
and § H such that

(7.13) 21 A=A, A=udiy,

w*u=s"(§) and Ni Ag|?=[§1*". By Lemma 7.7, we have >} A¥A;
—A*A;=0 for all _7 and hence ZA*AJ A*A=0 in I;"(M,Ln). If
4<<p, this implies ZA*Aﬂ A*A?? 42y and (7.12) holds due to
1425715 =117 (Lemma 4.1 (1)).

Now let 2<<p<C4. For x€ M,, we have xp& L,(M, ), xp=1yy for
y=7 (0%, (x*)) €M; (elements of M’ entire analytic for 077 (y) =4;"y4i")

and

(7.14) $z, L ALA D =0,(2 AT A:z)

= iZj (Axn, A;n) = 12 (A, A
s 27
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= Zj (i (v) Adt, Ayn) = (035, (9) An, A7)
= (Ayn, Ap) =<z, A* A,
=Lz, 4{Te -
By the same proof as the preceding Lemma, (7.14) for x& M, im-
plies
(7.15) (B, 3] AL Ay =B, £

for all B€L,(M, 7). Hence Z A¥A;=47 in L,(M,7)*. For 2<p<4,
we have 2<qg<Coo and hence we obtain by Lemma 7.4

vr= (2 Aal®)*.

/2

(7.16) | 2 AFA,I5R= 423
s J

If p=2, then (7.14) for x& M, implies the same for x& M by the ap-

proximation argument of the preceding Lemma. Together with
(7.17) 2, de, )y = (A7, 470) = (§, =*§),

(7.14) for x& M implies

I i?; AFA; [0 =€) = (I 22 Aml”)*.

§ 8. Clarkson’s Inequality

In this section, we shall show Clarkson’s inequality for L,(M,7),
2<p<oo. It implies the reflexivity of the Banach space L,(M,7), 1<p

<oo.

Lemma 8.1. For 2<p<loo and &, . L,(M,7), the following
inequality holds,

8.1 G +E) P+ (G =Gl ) =2 &I 7+ (16157

Proof. The following inequality is the key point of the proof:
8.2) i+ 8 8w +<6i—C, Cdwl
27L& P+ A& LAY ™ + A e 3,
where p7'+ (') "=1and & and & in L, (M, 7). Before proving (8.2),
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we derive (8.1) from (8.2). By Notation 2, 3, Remark 7.5, and Lemma
4.1 (1), there exist & and &; in L, (M, %) such that

8.3) 48 E = GG 11,
(8.4) &= o= 15—CIP IS 15 .

We have still freedom of choosing s= &7 [|%” and ¢=[&;]|$” and hence

we choose them such that [s|+ [£|5=0 and
(8.5) 16+l s+ 16— Call 2
= {U&G+EI + (6Ll P2 (7 + 7).

Substituting (8.3) and (8.4) into the left hand side of (8.2) and using
(8.5), we obtain

(8.6) LUGA+CI+ (G—El )7
<2 PG+ (ISl

We now prove the inequality (8.2). For &;=u4%y and & =wui 4%,

(i=1,2) (cf. Lemma 3.6), we consider the following function,
(8.7 F(2) =0, (di5u ¥ uds, ) + 0, (di7u *us b3, ,)
+ o, (Aéz—’,zﬂu; *uldgn'l) — 0y (A};f,ué*uzzléh 71) .

By Lemma A, I'(z) is a continuous and bounded function of z for

0<Re £<1/2, holomorphic in the interior of this strip region. We have
(8.8) [FQA/p) | = [KC6i+Ce, C1Dmp +<Ei =85, Do
where we have used Lemma 2,6 for <&, +&,, Ci>m =<&, Cidm £<E, Eid s
(8.9) |FGt)| = o, (deziui *uidi, ;) + o, (disui *usdi, ,)
+ 0, (degius uids,7) — 0, (degfus *usds;, ) |

=2([&1 1P+ 1621

=2{(I&IE) "+ (€15}
where we have used (1.25), and
(8.10) |F((1/2) +it) |

= (uadE* 0+ uadE7 50, i AEL5 )

1/2) +it 1/2) +-1it. ’ 1/2) +1it
+ (1 A&V — wa dED T, wa 4877 Y) |
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s dQD+ 0 - u dED 0| | 42,
+ e d§D 0 — uadG2 | || 422, 0
S {lwdED* )+ uadE7 |
+ s 4GP — us dED |7}
X {42, + || 4e2, 1%
= {2(Nrd&7* 0" + luad &P 0]}
X {111+ 1€ 1%
=V 2ZR&I+ &N+ 162 1%
=V 2{UGIP) 7+ (1&I) 7}
X LU+ A&7

By the three line theorem, the inequality (8.2) follows.

A Banach space X with norm ||-|| is said to be uniformly convex
if for each ¢ with 0<(e<<2 there exists a 0(€) >0 such that z,yeX,
lzI<1, yl=<1 and |z—yl=e imply [|(z+)/2[|<1—0d(e).

Proposition 8.2. L,(M,7) is uniformly convex for 2<p<oco.

Proof. From Clarkson’s inequality
(8.11) UG +&IM 7+ (6 —=ElP) P=2?
for &, € Ly (M, 7), 2<p<oo satisfying |{;|"<1, j=1,2. If [§i=C]P

=&, we obtain
[C+8) 219 <{1— (&—&lP/2)7
={1—(/2)"}"*,

which shows the uniform convexity of L,(M,7), 2<p<co.
Corollary 8.3. L,(M,7n) 2<p<oo) is a reflexive Banach space.

Proof. By Proposition 8.2 and Milman’s theorem (§26, 6. (4) of
[14]).



L,-SPACES FOR VON NEUMANN ALGEBRAS 373

§9. Uniform Strong Differentiability of the
Norm for 1<p<{oo

Let X be a Banach space. Its norm |-|| is said to be uniformly
strongly differentiable if for any x& X satisfying x50 and | x| <1 there
exists a continuous real linear functional z, on X and a monotone increas-

ing function 0,(0) (0>>0) such that 1im §,(0) =0 and
0—0

9.1 (lx+ vyl — 2l — <oz, y2) < ¥110= (21D

for all y. In this section, we show the uniform strong differentiability
of the norm |||, 1<<p<{oo. The uniform strong differentiability of
the norm is equivalent to the uniform convexity of dual norm in the
dual space (§26, 10. (12) of [14]) and implies the reflexivity of the

space. Therefore we have only to consider the case 2<p<loo.

Lemma 9.1. The norm ||-|{P (2<p<oo) is uniformly strongly
differentiable.

Proof. Let n<p<2n, n=2,3,---. We prove by induction on 7.

As a preliminary remark, L, (M,7) for 2<q’<co is uniformly con-
vex by Proposition 8.2 and hence the norm of its dual L, (M,%)* is
uniformly strongly differentiable.

Let £, {.e L, (M, ) and ;= w47y be the polar decomposition given
by Lemma 4.1 (1). Then each term in

9.2 C=usdi?+ u d¥?,|?

=5+ i udiP + A u s dh A+ A2,
is in L,(M,») with g=p/2 if n>>2 due to Lemma 7.3 and in L, (M,
7N* ((@)7'+q¢'=1) if n=2 due to Remark 2.7. Since 2<q’<oco for
n=2, the norm of L, (M,7%)* is uniformly strongly differentiable. For

other 7, the norm of L,(M,%) is uniformly strongly differentiable by

inductive assumption. In either case, we have

.3 (&+&lP) =181, U&= ek

by Lemma 7.8 and the uniform strong differentiability implies
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.49 HEN® — ekl —u (8 =170 (1€ 127 *)

where # is a continuous real linear functional on L,(M,7%) (or on

Lo (M,m)* if 2=p=4),
(9.5) ¢ = AP u AP+ dEPutu, 447+ JY% e Lin (L (M, 7))

where the linear hull Lin(.L§ (M, %)) is in L,(M,7) if 4<p<<oo or in
L, (M, 7)* if 2<p=<4, and 0(p) is a monotone increasing function of 0>>0
vanishing as p—0. Both # and 0 may depend on &, through &, but they

are independent of {,. We have

(9.6) |4t llam® = 1€:0"7 = (1&)1 5"
©.7 €71 ©=2[ &:177 €17 + (1€
= CI&IP + &N 1615,

where equalities are due to Lemma 4.1 (1) and Lemma 7.4, the in-
equality for 2<<p<{4 is due to Lemma 2.8 and Lemma 7.4 and the in-
equality for 4<p is due to Lemma 7.3. Hence

9.8) [UE+Cel ) — UG ) — 2 (E) | =<l 20, (I E: N1,
9.9) 0:(0) = 2| &[P+0)0 &I 0+0") +olu],
(9.10) v (Cs) =u (diPufu, A%+ A %ufu 447, .

Then v is a real linear functional of {, (for fixed {;) by Lemma 7.7
and is continuous by Lemma 7.3 for 4<p<<oco and by Lemma 2.8 (in
view of Lemma 2,6) for 2<{p<<4. From this we obtain

(9.1 JIG+&IP — IGIPI=ICN0 (161,

0.12) () =& Azl +0:(0)).

Therefore, we obtain

(9.13)  [I&G+Gl— &1 — CIGI) v (&) |
<ICIGHD) T = US4 Ll P+ 16 v (&) |

+ (184 &l + 180157 71 Cell 5705 (U Ee 115

=[C120: (181,

(9.14)  0:(0) = (1G] 7'0:(0) + [lw]o (@) 0 2{I&I7) "



L,-SPACES FOR VON NEUMANN ALGEBRAS 375

Since 0;(0) =0 as p—0 and §,(p) is monotone increasing, we have the

uniform strong differentiability.
Corollary 9.2. L,(M,7)* is uniformly convex for 2< p< oco.

Proof. By the equivalence of the uniform strong differentiability
derived in Lemma 9.1 and the uniform convexity of the dual space, as

quoted before Lemma 9. 1.

§ 10. Polar Decomposition in L, (M, 7), 1<p<2

Lemma 10.1. Let 2<p<loo and p '+ (p’) '=1.

Q) For &, & L, (M7), £=C in L,(M,7)* if and only if
&i=C, (ie. =y, $pr=0, for =wdy?, L, i=1,2). (Uniqueness of polar
decomposition)

2) L,(M,g)=L,(M,7n)*. (Existence of polar decomposition.)

Proof. (1) Let {=udi?,e L, (M,7) and {=wudi?,€ L,(M,7)
(=1,2). Then (5 =;(1) = [E1E 1P due to Lemmas 4.1 (1)
and 7.4. Since L,(M,y) is uniformly convex (Proposition 8.2),
satisfying such a relation and with a given p-norm is uniquely determined
by & If §i=&,, then LI =6 (1)Y= (&) *77 = (|&I9) 7= &1
and hence {7 =&;. The uniqueness of the polar decomposition in L, (M, 7)
(Lemma 4.1 (1)) then implies u =u,, ¢;=3,.

(2) We already know that [, (M, %) can be imbedded in L,(M,
7)* (Remark 2.7 and Lemma 7.4). Let {&L,(M,7)*. Since u#=0,
$=0 gives O=udf?’ € L, (M, %), we assume {#0. Then there exists
a nonzero {'& L,(M,7n) such that (£,&") =|C[C|P. Let &' =udf?y
be the polar decomposition (Lemma 4.1 (1)). Then " =udf? € L, (M,
7) satisfies <", "D =" |I|C’|. By the uniform convexity of L,
(M, 9)* given by Corollary 9.2, such ¢” is unique up to multiplication
by a positive number 7, ie. {=7C". Let ¢=7r"@. Then {=udi? as is
easily seen from the formula 4,4,=s54,, Therefore any & L,(M,7)*
is in L, (M,7).
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Remark 10.2. Lemma holds also for p’ =1 if we replace L,(M,7)*
by M, due to the known polar decomposition of ¢ M, (Theorem 1.14. 4
of [19]) and the correspondence given by Remark 5.7.

Lemma 10.3. Let 2<p<oo and (p') '=1—p'. If ¥ H and
e L, (M,n) coincide as elements of L (M, 7)* (i.e. &, MNu=<E >
for all &' L,(M,7)), then 1 is in the domain of § and ¥ ={7.

Proof. Let =ud{?, u*u=s(p) and take the special elements
'=xpeL,(M,n) with x&M. We have

(10.1) @, zn) =<, D= (45, 4577~ Pu*xy).

Since the set of xeM with «*x=0 is (1—u«*)M and 7 is cyclic,
A—uu*)¥ =0. Hence (¥, xy) = (@*¥,u*xy) and (10.1) implies

10.2) (427, 43797 0) = (w7, 0)

whenever @ =u*xy+@ with 0’ (1—u*u) H because 4,,0'=0 due to
s(ds,) =s(@). Since w*My=u*ulMy is dense in w*uH and w*uly—+
(1—wu*u) H (which contains My) is a core of 4§27~"® we have 4{’y<

D (A;I/ﬂp’) -(1/2)) and,
(10.3) A= AP P L =u¥Y .

Therefore ¥ =uu*¥ =udf? 7.

Lemma 10.4. Let 2<p<<oco and p '+ (p') '=1. Under the
identification of L,(M,7) with L,(M,%) and L, (M,%) with L,(M,
N>, &\ w defined by (1.29) for L& Lo(M,n), '€ Ly (M,7) is a
continuous sesquilinear form on L,(M, %) QL,(M,9)* coinciding with
the inner product in H if £ is in H, and hermitian in the sense

<C’ C'><w = <‘:/, C>(7])-

Proof. Hermiticity follows from the definition (1.22) of w,. Then
conjugate linearity of <{’,{>, in { follows from Lemma 2.6 while the
linearity in {’ follows from the identification of _[,. (M, %) with L,(M,
7)* through this form. The continuity [<C’, &> (718 [C[ precedes
the identification of [, (M,%) with L,(M,%)* (Lemma 7.4). By
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Corollary 2.1, <&’, &>, coincides with the inner product in H if {’is in
H (Lemma 10. 3).

Lemma 10.5. For 1<p<2 and (p") '=1-—p", ¥€H can be
identified with an element of L, (M, %) * through the inner product
in H. Then ¥,=V¥, in L, (M, 7)* only if ¥",=¥, in H,

(10.4) 11 =1%1z",

H is dense in L, (M,7)* and L,(M,n) =L, (M, 7)*, where the equal-
ity (10.4) holds for all ¥ L,(M,7). For A=udi?c [ ,(M,7), |A]
=41y,

Proof. By Lemma 7.1 (2), ¥€H is in L, (M,7)* and |¥|P
>|#%°. By Lemmas 10.1 and 10. 3, there exists {& [, (M, %) such
that ¥ =C». Lemmas 7.4 and 4.1 (2) imply (10.4). It now follows
that ||| is a seminorm on F. Since L, (M, %) is dense in H (Remark
6.2), it must be a norm.

Since H separates L, (M,7n) (cH), H is weakly dense subspace of
L, (M, n)* (L, (M,7) is the dual of L, (M, %)*). By the Hahn-Banach
separation theorem the norm closure of A must coincide with its weak
closure. Therefore the completion of H relative to |- | can be identified
with L, (M, %) *.

By (10.4) and Lemma 7.4, we have |A|P=¢Q)""

Lemma 10.6. Let 1<p<2. The subset L3 (M,n) of L,(M,7)
consisting of all AY%, ¢=Mg, coincides with L (M,7) through the
identification of L ,(M,%) and L% (M, 7).

Proof. By Lemmas 10.3 and 3.5, L;(M,%) N H is contained in
VY The set of vector states w,, with ye M, is norm dense in M¥*
because Mgy is dense in H. If |@§,—¢||—0 in M,, () '=1—p~"

Ce Ly (M),

(10. 5) A2 0 O — <445 Owl

tends to O due to Lemma A (vi). Since [|4y2,|P =¢,.(1)""is uniformly
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bounded, the weak closure of V¥®” in L,(M,7) contains [} (M,7).
Again the norm closure of the convex set V3®” coincides with its weak
closure. It remains to prove the converse. For this purpose we use two
properties of ¥ eVy®”,

By Theorem 3 (2) of [2], ¥ is in the domain of J,(7,7) defined
by (11.3) and invariant under J,(7,7%). Since J,(7,7%) has the unique
continuous extension J,(7,7%) to L,(M,7) as a conjugate linear isometry,
as will be shown in Lemma 11. 2, the invariance property will be preserved
in the closure of Vy/*”, As will be shown in the same Lemma, ud¥?
€ L,(M,7) will be mapped by this isomorphism to #*4%?, and the invari-
ance implies u=u* and ¢ («*xu) =¢(x) for all xr& M (i.e. u commutes
with 4,,).

For yeM; and (p) '=1—p7",

(10. 6) 07 (3*) y1= 477D {07y (V) } 01 femy (9) 7
cVyer

by the definition V¢= (4fM.n) = (42" M’7)~ for 0<a<1/2. (Note
that yp=4,%j(y*)n for yeM’.) By Theorem 3 (5) of [2], ¥V

satisfies

Since @ =zxy with x=7(07%(0"%,(v*)y))*E M, we have 0 L..(M, ) C
L, (M,7). By Lemma 10.5, we obtain

7, =0

for the above x and any ¥ in the closure of V¥®? in L,(M, 7). By de-
finition (1.22) and (2.11), we have for such ¥=wudf?c L,(M,7)

Y, 2= (44570, 445 u*zx7)
= (44571, 4457 w0y (v*) 97)
= (4457 v, 4457 u*y7)
= (udySPy, 45757,
where we have used the first result above that z commutes with 4;,.

Since M7= My is a core of 4§, (by the definition of 4,, and by |[4{%x7||

=[x*y]), and since s(d4,) =s(@) =u*u, 4{¢"Miy is dense in w*uFl.
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Therefore 2->0 and hence u#=s(¢). Therefore any ¥ in the closure of
vyven in L,(M,7) is of the form 4.

Remark 10.7. In the first part of the above proof, [442,[

= b, (1) "P—¢ (1) V2= | 442|| . Therefore 4y, actually converges to 4%

in L,norm due to uniform convexity.

§ 11. Change of the Reference Vector 3

In this section, we discuss the change of reference vector 7 and the
associated isomorphism t, (%, 71) from L,(M, ) to L,(M,7,). Let# and

7, be two cyclic and separating vectors.

Lemma 11.1. Lez 2<p<loco. The mapping J,(4., 1) defined by
(11.1) T (e, 1)E = 0,0, 483 70PC

Jfor £ L, (M, n,) is a conjugate linear isometric map of Banach spaces
L,(My1) and L,(M,1). If 2<p<oo, it maps ulfs,c L,(M,7,)
(with w*u=s(@)) to w*dy?, (={udf}*) e L,(M,n,), where ¢.(x)
=¢(«*xw). If p=oo, it maps xp< L, (M, %) to x*¥p,e L., (M,7,).

Proof. Let 2<p<loco and {=udy%7y be the polar decomposition
given by Lemma 4.1 (1). By Lemma C.2,

(11.2) S o0 A5 YD (w dY5,700) = A5 u* N =u* 42,7, .
It follows that

IC1Z° =)V =u(1)?= || T (72, 1) E[1 57 -

The case p=oco follows from S,,, =Jy, . dri0.-

Lemma 11.2. Let 1<p<L2. The mapping J, (7, N1) defined on
CED(A(I/Z)—(I/;:)) by

72, 1
(11.3) o2y 1) E=d 4, AYD=DE

has a unique exiension (again denoted by J,(Ms, 7)) Lo a conjugate

linear isometric map of L,(M,n) onto L,(M, 7). It maps ud{s &
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LM, ) to u*di/ﬁvze Lo(M,n,). Moreover Jy,(ns,7) and Jor (1, 1)
are adjoint of each other relative to the form <, >, for L& L,(M,
) and '€ L, (M,7), where p7'+ (p') '=1.

Proof. Let §'&L, (M,n,) and & D4LP-""). By the relation

w2 - asp _ /2 -aspH .
4505 Syone = Jnnadiy my , we obtain

AL 4 T 10E CDan = T n i P8, C)
= (Jo,nl’s 4507 MP0)
= o (1, 18, ).
By Lemma 11.1 and the formula (1.6) proved in Lemma 10. 5, we have

(11.5) I (o, 1) NS = 1 E ||

for L€ D 42~9P), which is a dense subset of H, hence dense in H
relative to |- ¢Y due to Lemma 6.1 (2) and therefore dense in L, (M, 7:)
due to the density of H proved in Lemma 10.4. Since J, (%, 7:) is con-
jugate linear on D (4$/7~ "), this proves the first assertion of Lemma.

At the same time, (11.4) implies

(11.6) {Ip (2 M) E, > =<Jp 11, 1) C, O tans
for all {eL,(M,7,) and 'L, (M,7,) and hence the last assertion of

Lemma.
Let 1<p=L2, A=udf? € L,(M,n) and B=vd{® L, (M,7,). By
(11.6) and Lemma 11.1, we obtain

(11.7) <Jp (72, 1) A, B>('Iz) :<W*Aslb<f;m A>(m)
=0, (450> 4J2) = 0,, (45u*v* 447,)
=0,,(@* 442,145 0*) = 0,, (45 0% u* 447,,)
=<u* 442 s BD o
where the third equality is due to Lemma A (vii), the fourth equality
utilizes u*45,,,, =45 ,u* and v*4j,, =45, v* in the definition (1.22) and

(1.26) of w, and the fifth equality is due to (1.27). This proves J, (7.,
M) A=u*4y?, for 1<p<2.

Bu, 72

Let p=1, A=ud,, € L,(M,7) and B= 27, & L., (M, 1,) with x& M.
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The same computation as (11.7) shows
(11.8) Ip (s M) A, By = <”*A};s/f,vp By

and hence J, (7, 1) A= u*A]/up,’]z'

Remark 11.3. 1If 9, =%, this mapping J,(7,%) corresponds to the
complex conjugation in the commutative case and to the adjoint * in the
case of L, spaces defined by trace. By the explicit description of the
map J, (%, 7:) given in Lemmas 11.1 and 11.2, we see that J,(7, 72)

=Jp, (12, ) " and Jp (7, 7)*=1.

Lemma 11.4. If DM Py (1<p<2) or LeL,(M,7y)
C<p< o), then

(11.9) o (1, 1) € = JPom€
where J is defined by (3.1).

Proof. For pstoo, E=udf®y (= D(4Y%)) by Lemmas 10.1 (2) and
10.3 for 1<p=<2 and by Lemma 4.1 (1) for 2<<p<{oo. Then Lemma
C.2 implies (11.9) due to an explicit description for J, (%, 7){ given by
Lemmas 11.1 and 11. 2. For p=oo, { =7 with & M and JPE=J4%xy
x*n=J,(,7)& (see Lemma 11.1).

We define 7,(7., 7)) by (1.9).

Lemma 11.5.

Q) T, M) s an isomorphism of L,(M, %) onto L,(M,7,) and
is independent of 7.

() (s, M) T (2, M) =75 (s, ), where 7; (=1, ---,3) are any
cyclic and separating vectors.

(8) Let 1=<p<oo. C=udfh & L (M, 7). Then t,(1s 1) =udy?,
€ Ly(M, 7).

(4) Let L=xpes L. (M,n). Then t,(%s, 1) &= x7,.

Proof. By Lemmas 11.1 and 11.2, J,(%,, 7)) maps udih = L, (M,
%) onto w*dYt e L ,(M,7,) for 1< p< oo and xp € L., (M, 7;) onto x*7,
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€ L. (M,7,) for p=oco. Hence t,(7,7) maps udf? & L,(M,7) onto
udf? e L ,(M,7,) for 1<p<loco and xp, € L.. (M, 7,) onto x7,& Lo, (M, 7).

Hence the assertions follow.

§ 12. Product and Hélder Inequality

Let us recall Notation 7.6 for LF,(M,7) (1<p=<o0), adjoint and
product. By Lemma 7.3, we may identify elements of _LF,(M,7)
(modulo induced equivalence) with elements of L, (M,7) (directly for
2<p'<<oo, through duality L, (M,7) =L,(M,7)* for 1<p'<2 and
through L, (M,7) CL,(M,%)* together with *-strong continuity on
bounded sets in Lemma A (vi) for p’=1.

Lemma 12.1. Lez 1<p, q,r<<oo, p'+ (p) '=q¢ '+ (¢) '=r"
+ () '=1, pTl g =N

Q) If A, and A, in L},.(M,y) are equal as elements of L,(M,
1), then Af=A¥ in L,(M,7), A\B=A,B and BA,=BA, in L.(M,7)
where Be LE,(M,7).

(2) A* is conjugate linear in A and AB is bilinear in (A, B).

(8) The product is associative and (AB)*= B*A*.

4 [AB|<|A[IPIBI .

Progof. Viewing S C as an element of _[L¥,(M,7), it is easy to
check (BA)*=BA*, (BA)C=A(BC)=BAC and the equivalence of
A=A, with A+ (—1)A,=0 in L,(M, %) form the definition and linear
dependence of @, on x’s. (Lemma A (v).) Therefore Lemma 7.7
(2) implies (1) as well as (2). (3) follows directly from the definition.
To prove (4), we may restrict A€ L,(M,n) and Be L ,(M,7) due to
(1) because L(M, %) is a subset of L ¥ (M, 7) on one hand and (M, 7)
=Ls(M, %) on the other where s=p or ¢q. Then (4) follows from

(12.1) IKAB, Cy»| =0, (C*AB) <[ Al | BI” [Cl2

for any Ce L. (M,y) =L,.(M,7) due to Lemma A (iii), | «dy3|P =4 (1) ?
(proven in Lemmas 4.1 (i) for 2<<p<(oo, in Lemmas 7.4 and 10. 4 for
1<p<2 and Remark 5.7 for p=1) and |z7|?=]|z| (Lemma 5.1).
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Remark 12.2. L,(M,7) is in L% ,(M,7) and L,(M, ) exhausts
L,(M,7n) for 1<p<oo while L, (M, ) exhausts L.(M,7) under the
above identification. Hence the adjoint is defined as a conjugate linear
involution in L,(M,7) and product is defined as a bilinear map from
L,(M,7)QL,(M,7) into L,(M,%). In particular the adjoint coincides
with the map J,(7%,7) as is seen explicitly on _[,(M,7) for 1<p<loo
and on ¥, (M,n) for p=co due to Lemmas 11.1 and 11.2.

Lemma 12.3. The multiplication of x& M= L¥,(M,y) with
Be L} (M,3) makes L,(M,7q) an M-module (p~'+ (p")7'=1). If
there exists Y& H coinciding with B as an element of L,(M,7)
(=L, (M, )*), then xB coincides with =¥ as a multiplication of xr& M

on a vector ¥ in H.

Proof. The special case of Lemma 12,1 shows that L,(M, %) is an
M-module. For 2<p<lco, ¥ =By and xB coincides with ¥ =xBy by
definition. Let 1<p<(2 and A€ [,(M, %) coincide with ¥ as an element
of L,(M,7). (Lemma 10.1 (1).) By Lemma 10.3, y€D(A) and ¥
=Ayn. Then 7€ D(xA) and hence xA coincides with (xA)7=x¥ (pro-
duct in H) by (2.5). Since xB=xA in L,(M,7) by Lemma 12,1, =B
coincides with =¥ in L,(M, 7).

Remark 12.4. Even if there exists ¥ H coinciding with B
e L% (M,7), 7 is not necessarily in the domain of B in contrast to
Lemma 10, 3.

§ 13. Linear Polar Decomposition
Lemma 13.1. Let L& L,(M,y) such that J,(9,m)E=&. Then
there exists £.=>0 and £_=0 such that
13.1) £=¢.—¢-.
This decomposition is unique under the condition,
(13.2) s"(C.) Ls" ()

where s"(C) is the smallest projection P M satisfying PC=C in the
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M-module L,(M,7).

Proof. As is noticed in Remark 12.2 J, (%, %) maps {& L, (M, %) to
C* ie. E=udf?, u*=u, s(¢) =u* and ¢,=¢ (equivalently ud} =45 ,u) for
p7Foo and {=xy, 2*¥=x for p=oo. For p=oo, the unique decomposition
x=x,—x_, £+ & M, implies the existence of decomposition as well as
the uniqueness because 7 is separating for M.

In the case p=~co, let E. be the spectral projection of # for +1
and ¢.=¢oE,. Then E.+E_=5s(¢), s(d,,,) =s(¢.) =E. and 4;,=4;,,
+4;.,,. Hence

(13.3) A+ udf?= (1+u) 442
=2E. 434
=24Y7,.

Therefore

3.9 wdff=4y%— 47,

which proves the existence of the decomposition.

To prove the uniqueness of the decomposition for ps~oco, we assume
&=¢, ¢, .eLi(M,y) be another such decomposition satisfying
s Ls"(Z)). By Lemma 4.3 (2<p<{o0), Lemma 10.6 (1< p<2),
Lemma 5.4 and Remark 5.7 (p=1), &, =4Y2, for some ¢, M} satis-
fying s”(&,) =s(4%). If we define a partial isometry #’ such that ' is 1

on s"(&.), —1 on s”(¢”) and O on their orthogonal complement, then
(13.5) wl =0 —CL=C,5"() = (@)*

where "=, +¢_ =4y2,,., By the uniqueness of the polar decom-
position, #'=u and (' =4y% This means E.d4y%2=4y%, This shows

§L=4Y?, and the uniqueness of the decomposition follows.

Corollary 13.2. Any {cL,(M,7) (1<p<c0) has a unique de-
composition {= (i —Cr-) +7(&iv —&i-) such that .= Li(M,7) and
s (&) Ls"(C..) where t=7r,i and 0=+, —

Proof. Relative to the conjugate linear involutive isometry J,(7, %),
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¢eL,(M,7) has a unique decomposition

(13.6) €=Re&) +i(ImQ),

(13.7) Rel=C+J,mE) /2, ImE=(C—J, (7, ML)/ (29),

where Re{ and Im & are uniquely determined by their J, (%, 7) -invariance
and (13.6). By applying Lemma 13.1 to Re{ and Im{, we obtain
Corollary.

Lemma 13.3. Any{e D) (0<a<<1/2) has a decomposi-

tion
(13.8) =G —Cr -+ —Ci)

such that {..cVy (t=r, 1, 0=%). This decomposition is unique if

we impose the following condition.
(13.9) ") L") T az=1/4,
(13.10) s (C) L5 (€ i akl/4.

Proof. First consider the case 1/2=@=1/4 and let £& D (4{~**).
By Lemmas 6.4 and 10.1 (2), we may apply the prool of decomposition
in Lemma 13.1 £ _L,(M, %) =L,(M, %) for p= (2a)~'. Since J,(1,7)
coincides with JJpn =J& on D(4{"***) by Lemma 11.4, and since the
range of JP is again in D(4{"®7%*) (J® =4£*"%D]J), both Re{ and Im¢
are in D(4{® "), If & D(48?7**) is JP-invariant, then  =udy%y with
7€ D(4y%) by Lemmas 10.1 (2) and 10.3 and «*=u, ¢,=¢ as in the
proof of Lemma 13.1. In the same proof, 4y?,=4{%s(¢.) Ds($.)4{s
and hence = D(4Y?,). Therefore &.. in Lemma 13.1 belongs to V&.
The uniqueness of the decomposition is a special case of Lemma 13.1.

Next consider the case 1/4=>a=>0. If £ D(4{"”*), then JE& D
(42=%) due to Jd,=4;'J. We can apply the above proof for «’
=(1/2) —a (2a— (1/2) =(1/2) —2a’) and obtain a decomposition

(13.11) JE=C — G +i (L - L)

with s”(€7.) 1 s”(¢/_). Therefore we obtain the decomposition (13.8)
satisfying (138.10) with &,=J & due to J V&' =V¢ (Theorem 3 (4)
in [2]) and s"'(J &) =j (s"(§)). Conversely, the decomposition (13. 8)
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satisfying  (13.10) implies the decomposition (13.11) satisfying
sS™(&L) L s™(ZLL) with €,=JE&., and hence the uniqueness of decomposi-

tion for the present case follows from the same for the first case.

§ 14. Proof of Theorems

Theorem 1. (1) For 2<p<oo, L,(M, %) is a Banach space by
Lemma 6.1 (3) and is an M-module by Lemma 4.4. For 1<p<(2, |||
is a norm by Lemma 10.5 and L,(M, ) is a Banach space by definition.
In either case L,(M,7) is an M-module by Lemma 12, 3.

(2) and (3): K, &> is a continuous sesquilinear form on L, (M,
1) X Ly (M, ) for p7'4p' =1 satisfying (1.6) by Lemmas 10.4 and
10.5 for 1<<p<{oo and by (5.12), Lemma 5.1 and Lemma 5.4 for p
=1 or oo. It coincides with (£,&’) in H whenever { and {’ are in H
by Lemma 10.4 for 1<{p< oo and by Remark 5.7 for p=1 or oo. Since
HNL,(M,7%) is either whole L,(M,7) or a dense subset (Lemma 10.5),
{&,&>q can be obtained as the unique continuous extension of (£, ).
By Corollary 8.3, L,(M,7%) is reflexive for 2<{p<(oco and by Lemma
10.5 L, (M, %) =L,(M,7)* for 2<p<co and (p’) '+p'=1. By Lem-
mas 5.1 and 5.4, Liy(M,p)*= (M) *=M=L.(M,7).

(4) By Lemma 8.1.

Theorem 2. By Lemmas 11.1, 11.2 and 11.5 where (1.9) is used

as a definition.

Theorem 3. (1) (3) and (4): By Lemmas 4.1 (1), 4.3 and 3.5
for 2<p<{oo, Lemmas 10.1, 10.5 and 10. 6 for 1<p=<2, by Lemma 5. 1,
Lemma 5.2 and polar decomposition of x& M for p=oco and by Lemma
5.5 and Remark 5.7 for p=1. Note that (1.18) is given by (1.22).
(2) By Lemmas 11.1 and 11.2.

Theorem 4. By Lemmas 5.1 and 5. 4.

Lemma A. Proved in Appendix A.
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Theorem 5. By Lemma 12.1. (Note that (1.30) is obtained by
repeated application of Lemma 12,1 (4) and the equality ||z|=|z|?
for xe LF UM, 7).

Theorem 6. By Corollary 13, 2.

Theorem 7. (1) The first half is by Lemmas 3.5 and 3. 6, except
for |TineV) for T affiliated with M, which follows from the duality
of V3* and V) along with (y*y, |T'|7) = (v, | T |yy) =0 for yeM’. For
the second half, we use JE&Vy if a’+a=1/2 and {&V; (Theorem
3 (4) of [2]) and apply the first half to JE to obtain JE=wu|JE|.-
and hence {=#'|{|’, with «'=j(w)eM’, | .=J{Jl|.€V] and v'u'*
=7 (uu*) =j(s" (JE)) =s"" ().

(2) The first half follows from polar decomposition {=#|{|, in
Li,0e (M, %), which implies |&|,=#*¢ due to u*u=s"(|{|.), and therefore
£l EVE due to L& H, Lemma 12,3 (hence |{|,=H) and Theorem 1
(5). The second half is obtained by applying the first half to J¢ to
obtain J{=u|Jl|, (a¢= (1/2) —a’) and hence {=u"[{], as in (1).

(3) Any LeVicLi(M,y) (p=2a)™") is of the form 4y%y for
a ¢ M{ by Lemmas 10.6 and 10.3. If £&V? is of the form § =4y2y,
then 4y%e _L,(M,7) coincides with & (in L, (M,7)*) by Lemma 2.2,
hence the uniqueness of ¢ for a given .

(4) By Lemma 13.3.

Corollary. Any =M} has a vector representative { & H, to which
we apply the second half of Theorem 7 (2) to obtain {=2"|{|, with [£].
eVy for any 0<a<<1/4. Since #'*u'|{l,=]|{|., the vector states by
€1, and by £ is the same and are ¢. Conversely, any two representative
¢, and &, of the same ¢ are related by & =«’{, where #’ is a partial
isometry in M’ satisfying w'o'*=s"" (%)), v'*u' =s5""(£,). Hence by the
uniqueness of polar decomposition in Theorem 7 (2), we obtain the unique-

ness if {; and ¢, are in V3.

§ 15. Discussion

The Lyspace L,(M) of Haagerup ([18]) is defined as: the set of



388 HUZIHIRO ARAKI AND TETSUYA MASUDA

all r-measurable operator 7' affiliated with N satisfying 6, (T) =e T,
where N=MX ,R is the crossed product of M with the modular action
0, of R induced by w,, 0, is the dual action, and t is the canonical trace
on N. The spatial L,spaces of Hilsum L, (M, w,(J-J)) (see [12]) con-
sists of operators T =ud%/, with the norm |T|=¢@1)"?. Our L,(M,7)
is seen to be the same as L,(M, w,(J-J)).

We note that Hilsum’s theory uses the L,-spaces of Haagerup through
an isomorphism and Haagerup’s construction of L,spaces goes through
the crossed product of M with the modular action. In contrast, our
construction is directly on the Hilbert space H (without using trace any-
where) and reveals a close relation between the positive part of L,spaces
and the positive cones V7 associated with the von Neumann algebra M.
Another advantage of our method is that the linear structure of L,spaces
is clear from its construction in contrast to the discussion of Hilsum
where it is discovered by finding an isomorphism with the L,spaces of

Haagerup. Our discussion of positive cones is closely related to recent

results of Kosaki [16], [17].

Appendix A. N point Analytic Function

In this section we give the proof of Lemma A in Section 1.

Lemma A.1. Let p;eM} and x;&e M (j=0, -, n). Let §=§(d)

be the representative vector of ¢y (in PZ). Then
(A.1) C(2) =xdi e xa1dgn c2a€

is defined for z= (2, -+, 2,) €I (in the sense that & is in the domain

of the product of operators in front), holomorphic in the interior of

I} and sirongly continuous on I} with the bound

a.2) OGN EANTARY

where ||¢;] =8;(1), o] = €)% zo=(1/2) —E z; and I is defined by
(1.21) where 1 is to be replaced by a=0.

Proof. The tube domain I has the following distinguished bound-
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aries corresponding to extremal points of its base:

(A.3) 0I™ = {z: Re 2;=0, j=1, -+, n},
(A.4) 0.1 = {z: Rez;=0 (j#k), Rezy=a}, k=1, n

The expression (A.1) is well-defined and (A.2) holds on 0,I{” obviously
and on 0,I™ (k=1, ---,n) due to the following formulas:
(A- 5) C(z) zonzitf,e"‘xkqu ,
(A- 6) CkZA})ilszykg_JSM(S)y $(¢k>
(A.7 V=807 (Zxthpr1 Un 100, , (Tn_1%07, (L0)) ) Wy,
(A. 8a) A editi=u;s"(§), u;=(D¢;: D1),eM,
(A.8b)  Mixdi¥=01(x)s" (§) (xeM),
(A. 8c) w,= (D7:DE),, t=t,+ -+,
(A.9) (Aol A8 (wans (Ao
dipxa dyEm) ) Ay (4 ded)
=y (£).

Here 7 is any faithful normal semifinite weight, 07 is its modular auto-
morphism, the formula (A.6) is due to (C.1, 3, 4 and 12), the formula
(A.8a) due to (C.5), the formula (A.8b) due to Theorem C1 (B1),
£ (¢x) is the unique vector representative of ¢, in P2 and the rest is a
straightforward computation.

Therefore, if the expression (A.1) is defined for z& I{}, holomorphic

in the interior of I} and weakly continuous on I, then (A.Z2) follows

by the generalized three line theorem for several complex variables
(Theorem 2.1 in [3]) applied to

(A.10) 1€ (=) || =sup{l (€, &) 1= (&=}

To show that & is in the domain of the operator in (A.1) as well
as holomorphy and weak continuity, we use mathematical induction on
n. The case n=1 is known due to x§=D(4y%). Assume the assertion
for n. Let 2= (w, 2, -*-,2,) be in Iz, g M} and &€ D(4Y%). We

consider the function

(A.11) G (2) = (@oddie - 437,678, 43,80),
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which is holomorphic in the interior of I and continuous on I7™
(by holomorphy and strong continuity of 43.; as well as by inductive

assumption) with the bound

(A.12) IG@) =Nzl B ]| %o —Re® ﬁl (sl 1817

due to the generalized three line theorem and estimates at distinguished
boundaries similar to (A.5) and (A.6). Hence G(z) is a continuous
conjugate linear functional of §, and there exists e H such that G(2)
=&,&). Hence ¢(z) is in the domain of 43, (hence of x4, for
xeM) if (w, =z, -, 2,) is in I, Due to the uniform bound on
E:AXVC(z) given by (A.12), this also shows holomorphy of & as a funec-
tion of (w, 21, **+, 2,) in the interior of I{i*Y as well as weak continuity
on I,

The strong continuity can be proved again by induction on n. Step

from 7 to n-+1 is as follows. We use the formula
(A.13) AGRTEIC =T E ek Ain vy 2l A3 e 26 (8),
(A.13a) C=xdg ez 450 enf

which is obtained for pure imaginary 2’s from the formula (A.6) (with
an appropriate change of notation such as ¢,—¢, £+1—1, t—0, w,—1,
ty—>1=—21;, and wy—u= (D$: Dy),) by using the first formula of
(A.8a) and the formula (A.8b) (both depending on & only through
s" (§)) with a change §—&(#) for replacing 07,(-)zfs" (6(#)) in y* by
Al 4554 s where s (€ (4)) is to be supplied from € (¢) by s™ (£ (9)) € (4)
=&(@) and commutativity of s” (§(@)) with ;& M and 4;%, and for
a similar replacement of ¢7(-)«*, and hence holds for z& I} by analytic
continuation and weak continuity (with a help of edge of wedge theorem
as applied to the difference of two sides compared with analytic function
0). For 0<Re 2,<(1/2) —Re Y z;=w,, we have

(A.14) #el={d3:(1+ 4507 A+ 43¢
with & given by (A.18a). The first factor on the right hand side is
strongly continuous with norm <1 and the rest is strongly continuous

by inductive assumption and (A.13). Therefore we have strong continu-

ity for n.
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Lemma A. For the sake of convenience in the proof, we replace
7 in Lemma A by §=£€(¢) (d=M}) everywhere and call it Lemma A.
(Namely we drop the assumption that , is faithful. Since we shall use
another faithful normal semifinite weight 7 as an auxiliary tool in the
proof, we introduce ¢, M} instead. In our application in the present
paper, we need only the faithful case.) In the following proof, 7 in the
statement of Lemma A is understood to be replaced by & whenever equa-
tions or statements in Lemma A are quoted. In addition x;=xjs" () x]
in (1.27).

Proof of Lemma A. Let the right hand side of (1.22) be F;. By
the holomorphy, strong continuity and boundedness of (A.1l) proved
above, we see that F; is holomorphic in the interior of the domain I;
defined by (1.23) and (1.24), continuous on I; and bounded as in (1.25).
Within I;, F; depends on zj and 2 only through their sum z; and F;
=F;.; on I;N I;;;, both of which are seen by transposing operators from
one member of the inner product to the other. Since 2 I; for all j if
0> Re 2;<X1/2, we have single function F(z2) satisfying (1.22), (i),
(ii) and (iii).

We use notation (1.26) and let the right hand side of (1.27) be
G; where x;=2xs"(£) 27 in addition to replacement of 7 by & If =z
=14, (treR) for ks~j and z;=1+1it; (L€ R), we have
(A.15) F(2) = (4{ieyi€, 473ey:8) = (s () y#E (1), v¥E(85))

= (s" (&) yss" (§) ¥5€ (8), 27%€ (45))
= (44625, 447 (:95) *€)
=G;(2),
where y,=x35s"(£) s,
(A.16) LAY ex s AR e dg it = (&) yy
(A' 163) y3=x.l;uj+lo-¥jﬂ(x.7'+1”'un—la;]n.l(xn—lunazn(xn)) "')wj EM Y
(A17) At it A = @),
(A. 17a) ¥o=v50", (xF i vFo,, (xFvFor, (xf)) ) wi*e M,

(A.18) wy=(D¢y:Dn),eM, vi,=(D1:D¢) _,,eM ,
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(A. 19) W ;= (Dﬂ H DS) byt bny wlj = (DS : D77) —ty—ee—tjy
(A. 20) s @) vayF= 17:1/ iy:,l,éxj-{-l'"xnde—,gstho' "xj_ldi?,e
and 7 is any faithful normal semifinite weight for the purpose of com-
putation. By using continuity of F' and G; and edge of wedge theorem
(for F—Gj; on one side and 0 on the other), we have F(2) =G;(2) as
an analytic function and hence F(z) =G;(z) for z&I™ by continuity.
This proves (iv).
In passing we note the following: Using the third member of (A. 15),
we have
(A.21) F(2)= (55,65, §,.=5(¢5),
(A.22) V155" (§)) = 2yt 107, (X0 0a07, (20) ) W w50
v s (€))
=-73in5{+11,€,$]'+1"‘xnde_,ggtﬁ'"“")
X xodi?,ej"'xj_ldg,jej .
Therefore, denoting 2y=1— Y 2;, we have
k=1
(A. 23) F(z) = 0)51 (xjA;‘?fhfj' . 'an;:’éjxo' . A;;::,ejxj_l)
for z,=1it;, (ksj) and z;=1+1i¢. Since
(A.24) 2= (211, ") Zn, 2o, 21, **7, Zjo1) € LM

if and only if 2 If™, (A.23) holds for 2 I{™ again by edge of wedge
theorem.

If > 2;=1, then 2,=0 in (A.23) and hence information on @, van-
ishes from the right hand side of (A.23). Therefore F'(2) is independ-
ent of @ if X" z;=1, which shows (vii).

(v) is immediate from definition.

To prove (vi), let us write F(z;v) instead of F'(z) where v indi-

cates x’s and ¢’s together. Suppose that V,—V in some sense and for

any K,
(A.25) sup{|F(z;v) —F(z;va) |: z€0L”, X|2z><K}—0.
Then we have

(A.26)  sup{ie” (F(239) —F(z;%) |: 2€0L7}—0
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where 2*=32% By the maximum principle for analytic functions, we

have

(A.27) sup{le” (F(z;v) —F(2;v2)) |: s€ M} —0,
namely

(A.28) sup{|F(z;v) —F(z;va) |1 z€ I 3|z’ <K} —0.

We use the original definition (such as (1.26)) on 0, and the right
hand side of (A.23) on 0;I{” where all z; are pure imaginary. If x’s
are restricted to a bounded set, all operators in sight are therefore uni-
formly bounded.

For boundary values, we have the following type of estimates when

|| <K and |ye|<K:

(A. 29) ]iykA%”"‘yldit‘yof— Yia L;:akt"'yludizzlyﬂaéH
L] 5 L] FF . n . 3
SRR 258l D K (4= 45T

(A. 30) i=APy i yidityeg, C=v;.85

We note that 4% —4% uniformly in te[—T,T] if |ga—@|—0 (see
proof of Theorem C.1 for ¢) by proof of Theorem 10 of [2], and hence
the same holds for Ai’,mea—»Affﬁe. To deal with uniformity in #’s appearing
in ¢ and {’, we use a finite number of Z; such that any s,e[—T, T]
has some ¢, such that [4ifiy,&— 4ty & <<e. After replacing # by iy,
we proceed with approximation of t,&[—7, 7] by a finite number of
points. We can then approximate (A.30) for #z&[—7,7T] by a finite
number of vectors (up to &) and hence the convergence of (A.29) is

uniform over (%, -+, £;) provided that #’s are bounded. This proves (vi).

Appendix B. Partially Isometric Radon-Nikodym Cocycles

Let ¢, and ¢ be normal semifinite weights on M, ¢, be faithful, the

relative modular operator 44, be defined by

(B.1) ,00=S5% 650,00

(B.2) Spanle (@ =1,z  (z€N, NN

where N, is the set of all x&€M with ¢(x*x)<co and 7,(x) is the
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vector in the GNS construction associated with ¢ satisfying (7, (1),
7y (%)) = ¢ (zfz1), and

(B. 3) u,= (D¢: D), = 4y 4,43

where 4%, is defined as the sum of 0 on (1—s($))H and the usual
power of 444 on s(¢) H.

Theorem B. 1. u, defined by (B.3) is a continuous one-parameter

Sfamily of partial isomeiries in M satisfying the cocycle condition
(B. 4) w0 () =ty

and the suppori properties

(B.5) wuf =P, wufu,=0(P)

for a projection P in M (P=s(¢)). Conversely, for any continuous
one-parameter family of partial isometries u, in M satisfying (B.4)
and (B.5), there exists a unique normal semifinite weight ¢ on M

such that (B.3) holds. (Then P=s(9).)

Progf. (B.4) and (B.5) follow from the definition (B.3). The
fact that z, belongs to M follows from the Tomita-Takesaki theory for
2 X 2 matrices over M restricted by the projection <é S(O¢)>. (Theorem
C.1m

To prove the converse, let ¢ be a faithful normal semifinite
weight on 1—P)MA—P) and ¢,(x) =, (A1—P)x(A—P)). Let v,=
(D¢y: Dy); and w;=wu,+v,. Then w, is a unitary 0%-cocycle and hence
there exists a faithful normal semifinite weight ¢ on M such that
wy= (DY: Dgy);. (Theorem 1.2.4 of [9].)

From (B.5) for #, (by assumption) and for v, with P replaced by
(1—P) (by the first half of Theorem), we have

(B.6) 0{ (P)=w o (P)wf=ugf(P)uf=P,

namely P commutes with ¢ and hence with 4¥,. Furthermore (1— P)w,
=v, and Pw,=#. From the first equation explicitly written in terms

of 4’s, we obtain

(B'7) (1—P)A$.¢o:A“,¢o(l_P)=A;L2,¢o'



L,-SPACES FOR VON NEUMANN ALGEBRAS 395

Since 4% ,.4;%. is independent of ¢, we may replace ¢, by ¢ and we
obtain

(B. 8) 450 —P) =4,

for =it and hence for all 2. By taking ==1/2, we see that z&
N, N N# (which is equivalent to 7, (x) € D(4y*)) implies 7,((1—P)x)
D (4% (because P commutes with ¢), hence x*&N,, and

(B.9) ¢ ((1—=P)xzx*(1—P)) = ()

(due to ||4¥2 7, () |IP= |74, (x*) |?). For any xy&M,, there exists an
increasing net z,€ M, such that ¢ (x,) oo (i.e. zY’€N,NN¥) and
X, =sup x, due to semifiniteness of ¢. If xy& (M;_p). in particular, then
Zo € (M,_p) . and hence, by (B.9),

(B.10) B2 (20) =sup P (2a) =sup ¢ (xa) = (o).

Since the support of ¢, is 1— P, we have for any x& M,
(B.11) $(x) = (1—P)x(1—P)) =¢(A1—-P)x(1—-P)).
Since P commutes with ¢,

(B.12) ¢ (x) = (x) —¢s(x) =p(PxP), x€M,

is a normal semifinite weight on M and Theorem C.1 implies
(B.13) bpe= 4550 4560 >

with s(444,) =P. Hence u,= (D¢: Dgy),.

The uniqueness of ¢ for given #, follows, for example, from the
uniqueness of faithful ¢ =@+ @, for a given (D¢: D¢y). (Theorem 1.2.4
in [9].)

Appendix C. Relative Modular Operators

We shall use standard results on Tomita-Takesaki Theory [23].
Let ¢ be a normal semifinite weight, s(4) be its support projection, N,
be the set of all xe M satisfying @ (x*x) oo, NF be the set of x*
with x& Ny, M, be the linear hull of N¥N, (to which ¢ is extended
as a finite-valued linear functional), 6f be modular automorphisms of

s(¢) Ms(¢) determined by @, Ny be the set of all x&s(9) Ngs(4) such
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that x is of-entire analytic, 0¢(x) €Ny for all z and 7,4 (07 (x)) =474 (x)
(which is dense in s(¢) Ms(¢) due to 0%invariance of s(@) Nys(9)), 7, (x)
for x&N; be a GNS-representation vector satis{ying (74(x1), 75(x2))
=@ (xfx) and x4 (x)) =74 (x.x;) and PF be the closure of the vectors
A% (x) with xENyN M, (ds4 is defined by (C.2) below), which is
a proper convex cone. (Any 7(x), x€N;N M., is in the domain of
4{% and hence of 4y%.) In the following all #74(x) is in one Hilbert
space I on which M has a standard representation (although all discus-
sions can be carried through even if %,(x) for different ¢ are in different
Hilbert spaces). For each ¢, there are many choices of the map xr& M
—74(x) € H and we shall deal with all possibilities for 7,. Hence we
denote the set of all 7; by 4 and we introduce a notation ¢ =w, for any
given 7=7%, We also write N, for Ny and 07 for ¢° if y=7,. If g M,,
then 74(x) =7 for a vector =%,(1) and the vector state w, is . The
closure of 7 (V) is M-invariant and the corresponding projection operator
(eM’) is denoted by s (), while s(w,) (€M) is denoted by s"(7).
If w,eMjy, then they are M’- and M-support of the vector 7=7(1).
For », and 7, in 4, we define

C.1 Spone (12 (x) + A —=5" (1)) ©) = 5" (1) 171 (x*)
for all xeN,,NN¥ and L€ H. If 7,(x) + 1—5"" (1)) =0, then each

term (having mutually orthogonal M’-support) vanishes and hence
x5 (,) =0, which implies the vanishing of the right hand side. Therefore
Syn is @ well-defined, conjugate linear operator. We shall see below
that it is closable and has a dense domain. By polar decomposition of

the closure §,,,, we obtain the relative modular operator
(C.2) Ay =S50S,

and the associated partially isometric conjugate linear operator J,, ,.:

(C 3) Sh,h = th’izA%?h ’

and JF ;.0 = 5" (1) s (72) I s (2) s (1) -

In the following, A* for a positive selfadjoint operator A denotes
the sum of 0 on (1—s(A))H and usual power A*=exp(zlog A) on
s(A) H.
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Theorem C.1. (a) S, is a densely defined closable operator
with its support s(S,,,) =s"(n)s™ (9.) and the closure of its range
5 (Sp00) = 5" (1) s™ () .

B 4,,, is a positive selfadjoint operator with the support

(C. %) 5 (4y0) = 5" (1) 5™ (72),
depends on vy, only through the weight w, and have the following
properties.

(B1) 4% ,xd;% =01 (x)s" (0,) for xes" () Ms™ (1)

(82) There exists a continuous one-parameter family of elements
(Déy: D), of s(¢) Ms(9,) depending only on ¢;=w,, (j=1,2) and
satisfying

(C.5) 43, 455= (Déy: Déy) 5™ (1)
for all 7.
(B3) If zeN, NN} and 0<a<1/2, then
(C.6) I 452,,7 () | = || s™ (m) (%) ||
(C.7) 145,55 () I 8™ Coa) () 725 8™ (o) 70 (%) |1

(R4) If u is a partial isometry in M such that u*u commutes

with w, (in particular, if w*u=s"(y)), then
(C- 8) udgfvﬂzu* = A‘fltﬂh:ﬂz
where we define (uon) (x) =7 (xu) and hence Wy., (x) =w, (u*xu).
(85) ‘]771:72A”11772"I']2:7h =A"7—21171 °
1)  If s(¢y) and s($,) commute, (Dg,: Dp,), is a partial isometry
with initial and final projections 0¥ (s($) s(dy)) and 0¥ (s(d) s(d.)),

having the following properties.
(1) (Dév: D) = (Dgy: D) .
(2)  If s($e) =s(9y), then
(€.9) (Dg,: Dgy) 03 ((Dr: D) o) = (Dépy: Dep) st -
(13) If [s(d),s(@)]1=0 and x& M5y, then
(C.10) (Déy: D) 0f (x) (D2 Dipy) ¥ =0 ().
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(7d) If either s(¢.) =s(d)) or s(@s) =s(¢s), then
(C.11) (D¢y: Do) o (Dy: Dips) = (Depy: Deps) .

©) If w, is faithful, then PP is a selfdual convex cone having
the following properties.

(01) Any normal semifinite weight ¢ has a unique 7=7% such
that ¢=w, and PV is contained in (if ¢ is faithful, identical with)
PR

(02) Any other y=1, satisfying ¢=w, is related to 7% by 94(x)
=u'7y(x) with a unique partially isometric operator v’ in M’ having
initial and final projections w'*u’ =s" (%) and w'u'* =s" (3,).

(03) Any M} has the unique representative vector & (@)
=751) in P,

(04) For §,e PT, |§—CI'<llw:—ex] .

(&) Let J=J,,,, for a fixed 7, for which w, is faithful. Then J
is a conjugate unitary involution, j(x) =JxJe M’ for any x€ M, j(y)
=JyJe M for any yeM’ and J has the following properties.

(el)  Let n;=ujms, for ¢;=w,, (j=1,2) where 7y, is given by (01).
Then

(C.12) S =2t Jus*
(C.13) §(Jpm) =" ) S (1) s (T 0) =5" (1) s™ (0,
(C' 14) J';liv?z = "f’iz-'ﬂl .

(82) If ' is a partial isometry in M’ and u'*u'>s" (). then
(C.15) WMy =AY,

(e3) For zeN,, j(x)n(x) e Py,

(e4) The set of j(x)n(x), xEN), is dense in PE.
(eb) Any £ P2 satisfies JE=E.

(e6) For any é€ PR and xe M, zj(x)é€ PE.

Remark. In the situation of (01), PF=s(d)j(s(@)) PE.

Proof. (a) Let M, be the nxn full matrix algebra with matrix

units z; and M, be its commutant with matrix units wv;; acting on a
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Hilbert space of n* dimension with an orthonormal basis e;; satisfying
ey =0yuer; and vue;=0en. Let My=MQKM, and consider M=
(M) g with E=3" s" (%) Quu, a faithful normal semifinite weight (3 on
M given in terms of weights ¢; on M by

(C.16) ¢ (X xQuiz) = 2 b ()
and its GNS representation given in terms of 7; satisfying ¢,=w,, by
(C.17) 7 (20 iy Q@uiy) =25 7, (i) Qes;

on H=3"s"(7:) s (n;) HRes;, where xy;&s" (1) Nys,s"(1;). (Note that
7;(s™ (1) Nos,SM 1)) =s" (9:) 75 (N,,;) is dense in s () s™ (9) H.)
By the Tomita-Takesaki Theory, we have

(C.18) S;i(z) =7(z*) (zeN;NNJ),
(C. 19) Aﬁ:S?S% Sq:J;,AI;,/Z.

Since 1®zy; commutes with @, it commutes with 45,
(C. 20) (A Qu:) J AR 7 (x) =7 (AQuis) x A1 Quy5) ) =7, (x1;) Kes;

for & N;N N} (which implies 7(Z;;) €D(S;) and hence Zj;&N;N N}
for Zy= AQui) x (1Qu;;) = x:;Qu;;), and vectors (C.20) are dense in
AQuiu) J AQuy) H. From (C.20), 7 1Qu;) =1Qwv;; and 7;(x:;) with
zi;Qui;€ Ny N N are dense in s™ (7:) s (7;) H.  Since 7 (x:;;Qui;) =7;(xs;
Res; and T ((xi;Qui;) *) =7:(x8) Qeji, we have x;,;& Ny, N N§,. Therefore
7,(x) with xEN,, N N¥Ns(¢:) Ms($,) are dense in s” (7,) s" (7,) H.

Since Ny, = Ny,s(¢:) + M(A—s(p,)) and Ny, is a left ideal in M, (1
—5(h)) Ny,s(d) is in Ny, It is also in N because Ny DM —s(4y)).
Thus (1—s5(@)) Noys (@9)is in Ny, N N% and 7,((1—s(6)) Nyys (8)) = (1
—5(@:)) 7. (N,,) is dense in (1—s(¢,))s" (7.) H. Combining with the
above, we see that 7,(Ny, N N¥) is dense in s () H and S,,,, is densely
defined.

By definition, S,,,, is 0 on (1—5($1))7.(INys,) and on (1 —s" (7)) H.
It is closable on s(¢,)7:(N,) and its closure has zero kernel on
s(¢,) s™ (,) H because of the same known property for S;. Therefore
S,.7 is closable and the support of its closure is s” (7:) s™ (7).

By interchanging ¢; and ¢,, 7 (2*) with x*& Ny N N§, is dense in
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s™ (p) H. Therefore s(S¥,.) =s" () s" (7).

(8) By definition and the above result for s(S,,,), 4.y, is a posi-
tive selfadjoint operator with its support given by (C.4). If ] and %
give the same weight ¢;, then define #’ as the sum of 0 on (1—s" (3,)) H
and the closure of /7, (x) =7 (x), xEN,, on s" (p)H. Then # is

partially isometric and commutes with o€ M due to
(C.21) Wz () = @' (1) =7 (1x) =201 (x) = 200/ 7: (X)) -
Therefore #’€M’. We obtain from (C.1)

(C.22) Sﬂ;:’]z = u’Svpﬂe .
Since
(C.23) S (leli:’lz) =S (S,?:,,,,ﬂ,) =s5"(7,) s" ()

<5 () =
u'J,,,, is partially isometric and we obtain

(C. 24) =4

71072

as well as

(C. 25) Ty =t'J

772 °

(61) By comparing definition of 4; and 4,,,, we have

(C 26) A.;, = 2 Avi,ﬂj@)uﬁvﬁ .
For x;,€ 5" () Ms™ (), we have
(C.27) A (20 Q) 47" =07 (2 Retry)

Since 1®wu; commutes with $ and the restriction of 5 to Migu,=
M, Quin~ My, is ¢y, the characterization of modular automorphisms by

KMS condition implies
(C. 28) Ol (2 Quy) =071 (1) Reay,

By restricting (C.27) to (1Quuvs) H, we obtain (81) on s” () s (42) H
and hence on H (due to the support property of two sides of the equa-
tion).

(82) Since 1®uw (k=i or j) is 0*invariant, Uy = Ugjlly ; = Us;

implies
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(C.29) 07 (s (2) s () Quiz) = U:Quwy;
for some U,€s(¢;) Ms(¢;). By (C.26),
(C. 30) U Qui;= ; 43 4 4755 Qusvr -

By multiplying 1®ws, we obtain (C.5) with U,= (D@:: Dg,), and 7=7,
on s"(7,)s"™ (g:) H and hence on H. Since 4,,, depends on 7; only
through ¢;, U, depends only on ¢; and ¢,.

(83) The first equation follows from

(C.31) Is™ @)1 (2*) || = 11,872 () || = | 44507 () ||
Then (C.7) is due to Hélder inequality. (Note that 4;,,,=s" (1) s (1)
and 5™ () 7. (x) =7.(x).)

(B4) We have

(C.32) Suersns (2 () + A —5" (7)) €)
=" () 7 (x*2) =S5, (72 (w*2) + (1—5" (1)) w*)
= Syt (12 (2) + L —5" (1)) 0) .

Therefore

(C.33) Sueryre = Syt

Hence we have

(C. 34) Ayog, g = udy, 0" .

Since s5(4,,,) commute with the initial projection z*u of #, we have (C.8).

(85) From definition S;=J;45% we have

(C.35) I3 (2 CuResy) =23 (0,Cip) Desi -
Hence (85) follows from J;4;J;=4;".

@) I s(¢) and s(#,) commute, then s(¢,)s(@:) Ry, is partially
isometric and hence (C.29) shows that (Dg¢,: Dg,), is a partially iso-
metry. Since s(¢;)s(®:) Qui; (=2 and 1) are initial and final projec-

tions for s(4,) s () Qure, 07 (s (1) 5(B2) Quss) =07 (s (1) 5(82)) Ruaar (=2
and 1) are those for U,Xu,. Hence (7) holds.

(1) ~ (r4) follows from (C.5).

(¢) This is a standard result of the Tomita-Takesaki theory.
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(1) (C.13) follows from (a). (C.35) and Ji=1 implies
Jooredrnn =" () s™ () on s™ (%) s™ (p) H and hence on H. Multi-

plying J¥ ., we obtain (C.14).
Due to J; (s($) s (¢s) Quas) J;=M’, we have

(C. 36) W=Jp,2,5(81) $ (B5) Sppny = oy nuSnn, € 5™ (1) M's™ ()
on s”(y,) H and w is independent of 7,. Hence

(C.37) JrmsS" () = Wy,

on H. Taking 7,=%s=%, we obtain

(C.38) Joone = wrd

with a partial isometry w, in s” (4,)M’. By taking adjoint, we have

Jpomn =Jwi. Taking 7,=%, in (C.37), we then obtain
(C- 39) ']711:72 = wl']%:ﬂz = 'lew;‘ .

We have wiwi=J,,,J&, =s" (). Hence 7,=wy satisfies o,

=w,, h=wo and J, ., =wFJ, , =wifwJ=s" (90)J. After proof of
(01), we prove that Jy ,=s""(n)J for 7,,=7% given by (01). Let
u’ be given by (02) satisfying 7,=u#"7}. By definition, we have S,
=u'S,

o . . . ’__ M
e and hence J, ., =u'Jy .. This implies &' =s"" (77,) and hence

No=u*10="75. Therefore w,=2]. Similarly w,=u;. Thus we obtain
(C.12).

(¢2) By replacing z’ by «'s™ (y,), we may assume that #'*u =
s (75). Then s™ (&'7,) =w'w'* and s" (u'7,) =" (72) (due to Wy, =wy,).

Therefore
(C. 40) Spouras @02 (x) + (1 —5" (1)) ©)
=" (@) 7 (2*) = 5" () 7 ()
=8y, () + (1= 5" (7)) &' *C)
=8, 0% * (@7 (x) + A —5" (@'72))C).
This implies
(C.41) Syoruny = Sy astt*

and hence (C.15).
€3) If reN;NW*=N) (due to x¥eN, and 7 (x}) =
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SN (0%, () for x,€N3), then

(C 42) I, (xn) :A%Q% (-1':) =9 (0"1,,(x*)).
Hence
(C.43) A0 (25 20) =10 (0% (050 (2 20) ) *))

=J (0244 (z7) 02414 (22) )

=7 (0% () ) I 0 (%574 (%) )
=7 (0% (z2)) 10 (034 (z7))
=7 (Za1) N (Zn1)

with £, =0";,,(x5¥). Let x&N,, and

(C. 44) 2= (n/7)" jo‘fn (x%) exp (—n (¢4 (i/4))D) dt.
Then x, has the property mentioned above and

(C. 45) m= et (@)= (/0" o1 () exp (~nr)ar,
(C. 46) D0 () = (n/T) j 447, (z) exp (—nt?)dt

which converges strongly to x and 7,(x) respectively as n—oco. There-
fore j(x)7,(x) for zeN,, is in PF as the limit of 7, (0%, (xfz,)) € PL.
(¢e4) For zeN, N M.,

(C.47) ”4%4770 @ = (), A%Z% () = (o (x), 9 (x)).

1/4 1/4,

Hence %, (xs) =7 (x) implies 459, (xa) =470, (x) for xoe N, N M,.

Let yEN,,. Then &r(y) ENg, 7(eF () —>7 (), & (¥)*—>y* and
hence 45, (€% (v) *e% () ) =& (v*y). In view of (C.43), 4£/*(y*y) is
in the closure of the set of j(x)7(x), xEN3J,.

Let e,=e€X be a uniformly bounded net in N, tending to 1. By
approximating 44§ (for a fixed vector §) in norm over a compact set
of ¢ by a finite number of £=¢; we find that the net 00 (el(e.)) for
any fixed z and 7 tends to 1 strongly. For xzeN, NM., we set

y=x"%"(e,). By the formula
(C. 48) 7o (xe) = Jd0 (e*x*) =7 (0™ (e*)) A ()

0

=7 (0% (€*)) 70 ()
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for e*=e=¢,(e.), we see that 7, (y*y) =7 (0%:,.(e*)) % (x) > (x). By
(C.47), 49 (x) for zeN; NM, is in the closure of the set of
49, (v*y), yEN,, and hence of j(x)7,(x), xE Ny,

(e5) If xeN, N M,, then r&N, NN} and
(C. 49) T4, () =70 (2).

Since 4/*J=J4;"*, we obtain Jinvariance of 4;/*7,(x).

(6) If yeN,, then (¢3) implies
(C.50) zj (x) GO (¥)) =7 (xy) 1 (xy) € P7,
for any x& M. By (e4), the set of j(¥)7(y), yEN?), is already dense
in @Y. Hence zj(x)éc Py if £ PE.

(0) The rest of Theorem is proved in [22]. For sake of selfcon-
tained exposition, we include here somewhat different proof. P2 is a
convex cone by definition. For z, yEN;,

(C.51) T (@) 70 (¥) = J270 (0252 (¥*))
=70 (0% ({2020 (¥*) } *))
=yJ7, ()
by (C.42). (The formula holds for any x, yeN,, through an approxi-
mation by &¥(x) and &(y).) Hence for x, r,EN;,
(C.52) G (x)7(x), j(x)Ne(x2)) = (o (1), J(xFx2) 0 (22))
= (o (x1), o0 (2 72))
= (o (xF 1), &0 (2 x1)) 20
By (e4), (61, :) =0 for any &,&,& PE, ie.
(C.53) (PH*D P2

To prove the converse inclusion, let { satisfy (£,&’)=0 for all
e P8, Let £ PE. By (e5), s™ () =7 (s (€)). Let e=s"(£)j(s"(£))
and consider M, on eH. Then & is a cyclic and separating vector
for M, on eH, 4., is the usual modular operator for & on eH (being 0
on (1—e)H) and hence the closure of 4%y (x) = 4Y*x& = 4y *exel, x& M
is V¢*= PF defined in [2]. Hence it is the closure of the set of zj(x)§,
xr& M, which is a subset of @5 by (e6) and hence contained in eP¥F,
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which in turn is contained in P2 by (€6).

For &€ PPc PE, we have (e£,’) = ({,{’) =0. By the selfduality
of P¥ in eH (Theorem 4 of [2]), we have &€ PFc PH. The rest
is to find £, P2 such that e,=s"(£,)7(s"(2)) (as a net) tends to 1.

By (e3), £=j(2)7(z) € PE. We shall show that s”(§) =s(z%)
for x&N). Since N is a dense subset in M, {s(z*): z&N,} with
usual partial ordering of projections is a net tending to 1. Let eeM
and ej(x) 7 (x) =0. Then j(x) % (x) =0 for zy=x*excN, N M.. For
yeN,, we have

(C.54) 0= (70 (3),J (x) % (x1)) = G (&) % (¥), M (x1))

= (yJ7 (x), 70 (21)) = (yAm??o (x1), 70 (x1))

Taking a limit of a net y=1y, tending to 1, we may replace y by 1. Since
4

L, is positive definite, we have 7,(x;) =0. Since 7, is faithful, this implies

(ex)* (ex) =x,=0. Hence ex=0, which shows s¥(§) =s(z*).

(01) First we prove the statement for faithful @¢. There exists
some 7; with w, =@. By the proof of (el), there exists a partial isometry
v’ €M’ such that J, , =u'J. Since 1=s"(7) =7 (@ *«’), &’ must be iso-
metric. Let 7= («’)*7. Then w,=¢ and J,, =J due to

(C. 55) Spagllo () = (&) *11 (2*) = (&) * Ty, 020 ()
= J&i %70 (Z) -

We can now use the formula (C.51) and (¢4) for both %, and 7
with common j and J. For x&N,, and yeN,, we obtain

(C. 56) G (@)% (x),i 7)) = GO*2)7(x), 7(¥))

= (zJ7 (y*2), 7(¥)) = (7 (v*x), 7 (x*Y))

= (7 (x*y), % (¥y*x)) = (L3 (¥*2) , 7 (v*2) ) Z0 .
Hence PP (PE)*= P2 and PHC (PE)*= PE, ie. Po=PE.

Now consider a general normal semifinite weight ¢@;. Let ¢, be a
normal semifinite weight with support s(@;) =1—5s(4;). Then ¢=¢,+ ¢,
is faithful and s(¢;) commutes with ¢. Let 7 be as above and 7, (x)
=7(xs(¢)) for xr&N,;. Then w, =3¢.

By s(4,) =s"(n)s" (m) =s(@)j(s(@))=e,, LT is in e and
is generated by 47 (x) =47 (s($) xs(#1)). The characterization of
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modular automorphisms by KMS condition shows that o0](y) =07 (y) for
yEs(¢) Ms(¢,) (where s(4,) is 0™-invariant) and hence 457 (y) = 4ity, ().
Therefore &% is generated by

(C.57) A, (x) = 4y (s ($) x5 (9)) € PF

with z& N, N M., which shows PEc PF for this 7.

To prove the uniqueness, let 7 be such that w,;=¢; and QPE;C PE.
Then there exists a partial isometry # &M’ such that 71 (x) =u'7 (x)
for x&N,, and «'*u’ =s5" (7). For any xeN§ N M., E=79(0%,.(x))
and &’ =2'¢. Then £€ PEC P and &' PH.Cc P7. We also have o
=w, and hence s¥(§) =s"(€’), as well as s (€) =j(s"(€)) =s"(§).
If we restrict our attention to M, on eH with e=s" (&) s" (§), then e PY
is PP for M, and any normal state on M, has a unique representative
in @PF. In particular §=¢’. For xe N}, let 04 (x) =x,— 2, + 1 (2, — x4)
with £;>0. Linear combination of the above result yields 7, (y) =71 ()
for y=0?%,,(eL (0¢4(x))) =€4(x) and hence for y=x by taking n—oo.
By substituting x=¢}(x;) with ;&€ N, and taking n—>oco0, we obtain
N (x) =71 (x) for all ;& N,, which shows the uniqueness.

(€1, continued) We prove that J, , =s"(7)J (=Js"(¢)) for 7
given above. We have J4/i7 (x) =7(x*) for xeN, NNF. Hence
I3 s (@)% (x) =7 (x*s($1)) =7 (x*). Since s(¢) is Ofinvariant, we
obtain j(s($.))J4ys3% (x) =7 (x*). Therefore J,,,,=7j(s(#))J (and
dy,0.=5($1) 4,,.,) . Due to 0}-invariance of s(@,), we have 7 (x) =7 (xs(¢1))
=j(s($))n(x). Since 7(N,) is dense in H, s" (p:) =j(s(¢,)).

(02) has been shown in the proof of (8).

(03) is a special case of (01).

(04) Let ¢=w;+w,. Then ¢= M, has a unique vector represent-
ative £(¢) in PT satisfying e =i(s()Ji(s(@)) =eJ with e=
s(P)j(s(@)) by (e1). (Note that s” (£§(d)) =7 (s"(€($))).) If we restrict
our attention to M, on eH, then P& =ePT is Vg in [2] and the unique
vector representative & and { (both in ePZ because s”(&)<s(4) due
to 0@, j(s"()) =5"(§) due to £ PT, hence e§=¢ and similarly
e =) which satisfies

(C. 58) 1§ =€l < l|wt—at|
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where o° indicates a vector state on M,. Since e§=§&, we have w;(x)

=wi(exe) and the same for {. Therefore

(C.59) |t — ot | = |w:— x| -

Lemma C.2. (1) Let ¢ be a normal semifinite weight on M,
€ H, 3 be a cyclic and separating vector in H and u be a partial
isometry in M satisfying w*u=s(p). Then

(C. 60) Ty A0y g8 = % 4% £ .

(2) If éeD(4},,) and 7D (4},,) for 0<A<1/2, then ud},n
€D (4¢P and

(C. 61) TondEP = £
where ¢, (x) =¢ (u*zu).

Proof. (1) We have
(C.62) TP udz5n =S, , (i 4355 ) un
=u* (48,45, *6 = w* (45,4570 s ()€
=u*dy, AiEE=u*dy &,
where we have used (C.8) in the first equality,
(C.63) w,=d¢, 43", = (Dog:Dé,) € M
(due to (C.5)) in the second equality, and the formula (C.5) again in
the fourth equality.
(2) For z=it (¢€R) and L&D (44P),
(C.64) (€, JEu*45,,8) = (LEP™°C, udy, )

holds due to (C.60)=¢, and the following computation.

(C.65) (€, JEL) = (&1, Jeol) = (Jeila Jenl)

=", 8) = (¢, 8
for &= AP ud; %y satisfying s (§)£,=C,. Both sides of (C.64) is holo-
morphic in {z& C: 0<CRe 2<{4} and continuous in the closure. Therefore

(C.64) holds for all zeC, 0<Re 2<<A. Hence ud}p D(4{?*) and
(C.61) holds.
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Lemma C.3. Let 7, ¢ and ¢ be normal semifinite weights satis-
fying ¢<¢p. Then D(4,,) cD(4,) and
(C. 66) 145,111 45,2
for all LeD(4},,), where 0<1<1/2.

Proof. For 2=1/2, xeN,N N} and ¢’ (1—s" (7)) H, we have
xEN,NN¥ (due to NyDN,;) and

(C.67) 1455 () +&) [1P=¢(s" (1) z*]%)
=6 (Is" () x*|*) = [ 4451 (2) +E)||*.
Since the set of vectors 7(x) +¢{’ is a core for 4% we obtain (C.66)

for 2=1/2 and for all  in D(4¥%). By (D.2) in Appendix D, we obtain
(C.66).

Lemma C.4. Let v be a cyclic and separating vector and ¢ be
a normal semifinite weight.

1) neD4{y) if and only if ¢(1)<oo.

(2) neD(dy,) if there exists some A>0 satisfying ¢ (x) <lw,(x)
for all positive x in M.

Proof. (1) There exists a net g,€M} such that g=sup@d,. By
Lemma C. 3,

(C. 68) $a (1) = (1442 0 ° <N 44517
and hence
(C. 69) ¢ (1) =sup g (1) <[4 )*<oo .

Conversely, if ¢(1) oo, then 1eNFNN,=M and 7(1) =9 D(4{?).
2) If ¢(y)<dw,(y) for y=x*x and x& M, then

| (45, 4470) | =1 (6 (8), %6 (8)) | = (£ ($), € (9)) |
=¢(z*x) "¢ (V) *<A7 |27 -

1/2

Since My is a core of 4y, we have 4’ne D (4f3), i.e. 7D (4;,).

Lemma C.5. (1) For §, n€H and 0Za<1/2,
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48| < Is" &P s™ @ n €1 ),
@) If neD(4,) and a>1/2, then

B OH RG] sV &/

Proof. Since ||4/77] = |[s" () €| and | 4,7]| = 5" (§) 7], we obtain (1)
and (2) by the Hélder inequality agp<afa;® (0<B<1) for a.=|4E|*
- jl"dﬂ(l).

Appendix D

Lemma D. Let f be an operator monotone function on [0, o)
and A, B be closed operators such that D(A) C D(B) and | BE|<| A€
Sfor any §€D(A). Then D(f(A*A)®) cD(f(B*B)"*) and

(D.1) If(B*B)"*¢| <| f (A*A)*¢] ,
for any E&€D(F(A*A)™). In particular,

(D.2) I (B*B)**¢[<| (A*A)¥%],
for EeD((A*A)"), 0<I<1.

Proof. We may replace A and B by |A| and |B] in the whole
discussion. Hence we may assume that A and B are positive selfadjoint
without loss of generality. Let E and F be spectral projections of A

and B, respectively such that AE and BF are bounded. By the assump-
tion,

(D.3) |EBFES| < | FBEE|<| BES| < | AEE| -
Hence 0<<(EBFE)*< (AE)? which implies
(D. 4) S ((EBFE)*) <f((AE)?).

By taking the limit E—1, we see that the uniformly bounded sequence
(EBFE)? converges to (BF)” and hence (for example, as is clear from
a uniform approximation of f, which is continuous due to Theorem 2.2

in [21], over the interval [0, | BF|?] by a polynomial)

(D.5)  AB)YFE| =] f ((BE))€| =lim | f ((EBFE)®)"*¢|
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< lim £ ((AE)) €| = Lim || £ (A% EC|

= [/ (A%

for any é€D(f(A®"?). By taking the limit F—1, we see that &
D(f(B)»") and (D.1) holds. The function x*is operator monotone on
[0, o0) for 0<KA<{1, which proves (D.2).
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