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Poisson's Summation Formula and
Hamburger's Theorem

By

Leon EHRENPREIS* and Takahiro KAWAI**

Poisson's summation formula tells us that the Fourier transform of

the sum of Dirac's (J-functions supported by the integral points is again

the sum of Dirac's (^-functions supported by the integral points. In this

paper we first consider the converse problem, that is, we characterize a

distribution which is a sum of distributions supported by the integral

points and whose Fourier transform is again of the same form. Using

this result we give another proof of the classical theorem of Hamburger

on the characterization of the zata function of Riemann. We also show

a generalization of the result to the zeta function associated to the imagi-

nary quadratic field Q(^ — 1) -.

In what follows, we use the notation 2 (f) or f to denote the Fou-

rier transform of f normalized in the form I f (x) exp(27Tv — 1<(^, ?)>) dx.

We denote by Z>£ (resp., xa} (a= (al9 • - - , am) eZJ) the differential

operator d™/da%* — da%? (resp., the monomial x"l~>x°tf), where Z+
m

denotes the set of ra-tuple of non-negative integers and \a\ = XI #/•
j=i

We denote Dirac's d-f unction supported at x — n by 8(x — 7i) and its deriv-

ative Da
x8(x-n) by 8(a}(x-n).

Now the first result is stated as follows:

Theorem 1. Let N and m be strictly positive integers. Let

aa>n and bffl, (a,@<=Z™, \a\, \{1\<N, n,v^.Zm) be complex numbers

-which satisfy

(1) \aa
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and

(2) Î .Î CM*

for some constants C and M. Suppose that

(3) 5(I>c,nS(a'(^-«))

Then there exists a linear differential operator P(x, Dx) -with poly-

nomial coefficients such that

(4) IX.,,ff""(*-») = P(x,Dx) ( £ 8(x-n».
a,n nG^m

Furthermore the order of P is less than N and the degree of each

coefficient of P is less than N.

Remark. Conditions (1) and (2) guarantee that both sides of (3)

are well-defined tempered distributions.

Proof of Theorem 1. Let *Si(f) denote the distribution *$ -1(sin (nxi) ),

i.e.,

and let TL (f ) denote the JV-th interated convolution product of St> i.e.,

Since \a\<N,

[sin(7T^)]W( S a«,^(a'(^-«)) =0
a, 7i

holds. Hence we have

(5)

Now let J^ denote J] ^, „(? (f — y) . Since Tt is a sum of finitely many
y

d-f unctions, TZ*(Z>9J0) is again of the form D* (22 Cpt9ti8 (£ — ]>)) with
y

CpiVii in C. Hence (5) implies

for any I and /?. Then, by the inverse Fourier transformation, we get
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Since *3i~l(Ti) =sm(njCi)N holds by definition, (6)^? entails that

supp(£F~1J /3) is contained in {x— (xly • • • , xm) eJ2m; xt^Z}. Since this

is true for each /, suppCS^J/?) is contained in {x^.Zm}. In particular,

(7) 5-'J,= ^ ds,rd
w(x)

Irl^Nff

holds in a neighborhood of the origin, for some integer N$ and constants

dp>r. On the other hand, we have

Hence S~ldp is periodic. Therefore (7) entails

Then, by Poisson's summation formula, we obtain

(8) ff-^= I] ^DKff-1

Hence we have

This implies

that is, ^|V is a polynomial B$(y) of y whose degree is ^Ng.

By applying the inverse Fourier transformation to (3) we see that

aa>n is also a polynomial Aa(n) of w whose degree is Na. In what follows

N' denotes max {Na, Np} . Thus (3) takes the form

(9) 5 ( E Att(n)D«8(x-n)) =
a,n

Since

E
a, n
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holds, (9) combined with Poisson's summation formula entails

(10) I] (-arV=I£)«C

- 27T J=IS ) Ma (I),/ 27T V^l) ( S * (£ - V) )

Now we rewrite the operator XI ( — 27T\/^Tf ) "A* ( A/^V — 1) (resp.,

£A'-5*(f)) in the form X] aMD?-f£ (resp., £ bu>vDf-£v) with aM
£ s,tez+ M.^e^™

and Z?M>t, being complex numbers. Then it follows from the assumption

that

(11)

and

(12) *«fV = 0 if \u\^N.

On the other hand, comparing the coefficients of D™d(g — y) in (10),

we find

(13) 2*«.iv'= I]*-.."'

holds for every 7X>eZ^ and yeZm. Since aW j t (resp., &W|tJ) vanishes if
7'' (resp., jt;|>Ar'), (13) implies that aWit = bw,t holds for every

Z+. In particular, aw>t vanishes if \w\^N. This means

that the operator X! as, *£)!*<?' is of order <^N. Defining P(xJDx) by
s,t

we obtained the required operator P. Q.E.D.

We now discuss how Theorem 1 is related to the classical theorem

of Hamburger [3] on the characterization of the zeta function C(s) of

Riemann.

Let {an}n=1>2,... and {bv}y=li2i... be sequences of complex numbers which

satisfy the following condition.

(14) There exist constants C and M for which
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\an\<CnM and \bv\<^CvM

hold.
00

Condition (14) guarantees that the series ZA(s) = ^an/n* and
def n=l

ZB(S) — ^L}by/vs both converge on the domain {5^ C; Re s^>M}. Fur-
def v=l

thermore it is clear that they are bounded on {s^C; Res*^>M+e} (e

>0). We now suppose that ZA(s) and Zs(s) can be analytically con-

tinued to the whole 5-plane as meromorphic functions having their poles

only at 5 = 1. We denote thus extended functions again by ZA(s) and

ZB(S), respectively. We further assume that (s — 1)ZA(s) and (5 — 1)

ZB(S) are entire functions of finite order.

Now our result corresponding to the classical result of Hamburger

is the following:

Theorem 2. Suppose that ZA(s) and ZB(s) satisfy

Then ZA(s)=ZB(s) and it is a constant multiple of the zeta function

C(s) = XI1A* of Riemann.
n=l

Proof. Following Sato [6] we first define the following integral

IA(S><P) f°r 9 m the Schwartz space & when Re 5>M.

(16) IA(S,<P)= fV J( I] ancp(tn}+ I] a_n(p(tn^dt.
JO neZ+ n<=Z~

Here and in what follows Z+ (resp., Z~) denotes the set of strictly

positive (resp., strictly negative) integers. Similarly we define JB(s,(p)

by

r
Jo

on the domain {s<=C; Re 5<1— M}. Since <p is in &, the condition (14)

guarantees that IA(s,cp) and JB(s,(p) are well-defind when Re 5 (resp.,

— Re 5) is sufficiently large. Furthermore we can easily verify that

(17) IA(s, <p) =ZA(s
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holds on {s^C; Res>M+l> and that

(18) JB(S,V) = Za(l-5) r |£|-W)<#
J-oo

holds on {stEC; Res<-M}.

Integration by parts (see Gel'fand-Shilov [2], p. 90) shows that

J \x\s~l(p(x)ds and I \£\~s(p($)dg are meromorphic functions of 5;
-00 J— 00

thus IA (s, (p) and JB (s, (p) are also meromorphic functions of s. Further-

more, in view of

we conclude from (15) that

(~\ Q} T (? (o\ — J (c co\

holds on the entire s-plane.

In passing, we note that there exist some constants C0 and MQ such

that

(20)

on {sE^C; -l-M^Re5^M+2, |Im5|^l}. Since (s-I)ZA(s) and

(5 — l)Zs(5) are of finite order by assumption, it follows from the Phrag-

men-Lindelof theorem that (15) and (20) imply that

(21) \ZA(s)\, \ZB(s)\^C'\lms\M'

holds on {s^C\ —l — M<,Res<;M-{-29 |Ims|;>l} for some constants

C' and Mf. On the other hand,

holds on {s^C; Re5>l — L} , we have

(22) f" \x\"<p(x)dx=rT± - f" \xrL-l(-J-~ n J-ro

there. Hence, by choosing L sufficiently large, we conclude from (22)

that
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r«
(23)

holds on the domain {seC; — 1 — M<^Re sfJM+2, |Im s\^>l} for some

constant C9 depending on (p. Therefore (21) combined with (23) enables

us to apply Cauchy's formula to IA(s, #0 £~s (O>0) to obtain

1 (*-l-M+S=l°o

(24) ^-4=f I*(s99)t-dS27TV — 1 J-i-Jf-,/=ioo

-I pJf + 24V=l«>

= -1 IA (s, <p) t-ds + Res [I, (S, <p) r '] ,
27TV — 1 JJf+z-v^oo seP(A)

where -P(-A) denotes the set of poles of IA(s, <p}t~s in the domain

— 1 — M<Re 5<M+2}. Here we may assume that IA(s,9)t~s has no

poles either on the line {s^ C^Re s— — 1— M} or on the line {seC;
f °°Re s=M+2} by changing M slightly, if necessary. Since I \x\s~l(p(x}dx

J — oo

has its poles only at 5 = 0, — 2, — 4, •-• (Gel'fand-Schilov [2] , p. 90) ,

and since ZA(s) is supposed to have its pole only at 5 = 1, P(A) con-

sists of 1, 0, — 2, • • • , — 2p with p = max{q(=Z; — 1 — M< — 2q} , Note

that t~s is an entire function of 5, if £>0. Since the residue of the

distribution |x|s~J at s = 2q is known to be 2L%d(x)/ (2q)l (Gel'fand-

Shilov [2], p. 91), (19) and (24) imply

(25) —±= _ JB(s,(p)rsds

27rV:il Jjr+2-./zioo A 9 J-cx

2A2

where B(t) is Res(Z^(s))A and A2q(t) = ZA(2q) t~2q. By the theory

of Mellin transformation we obtain from (25)

(26) *-'( J]

= Snez+

Here we have used the fact that the equality
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J *(.',&= fV'( S b,<p(v/t) + U b-#(v/t»dt,
Jo vez+ vez-

holds by changing t to \/t. Setting t = I in (26), we have

(27) 2( S W(f-v)-5(l)5(f)+ S *-.*(£ -JO)

f;

Then it follows from Theorem 1 that the right hand side of (27) has the

form P(x, Dx} ( ]>] d(jc-nj) for some linear differential operator with poly-
n<=Z

nomial coefficients P(x,Dx). If we rewrite P in the form Q(D;c>jr),(*)

then the order m of P is the same as that of Q. Suppose that m were

not zero. It follows from the definition of Q that

holds. On the other hand, the right hand side of (27) contains no

derivatives of d(x — n) if n=^=0. Since the m-th order term of Q has the

form D™-qm(x) with a polynomial qm(x) , this means that <2 r
m (^)=0

shold hold for n=j^0. Hence the polynomial qm(x) should be zero. This

is a contradiction. Therefore P(x, Dx) is of the form P(x), where P(x)

is a polynomial. Hence _A2?(1) must be zero if q^Q.^**^ Since no deriv-

ative of d(? — v) is contained in the inverse Fourier transform of the left

hand side of (27), a special case (m = N=~L) of Theorem 1 asserts that

P(x) is a constant. Therefore there exists a constant c such that an — c

and bv = c hold for every n and v in Z+. This means that ZA(s) =ZB(s)

holds. Q.E.D.

Next we show a generalization of Hamburger's result to the zeta

function associated to Q(V — 1) • In this case we consider not only the

usual zeta function but also the zeta function with Grossencharacter.

Let {<2m,n}(m,7i)ez2-{o} and {bfttV}(fliV)<=z*-{D} be sets of complex numbers

<*) Thjg means that the multiplication by x is applied first and then comes the differ-
entiation.

(**) 'pkjg fact can ke directly verified by observing that the poles of JB(s,<p) are confined
to {5=0,1,3,5, •••}. See the proof of Theorem 3 below, where we will use the
reasoning of this type.
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which satisfy the condition (28) below.

(28) There exist constants C and C" for which

\am>n\<C(m2 + nY' and \b^\^C(tf + W

hold.

This condition guarantees that the series

71 /c\ _ v1 n exP ( V37!^ arg O + V11

^V^iAW — 2_J am,n - - - ; - IT-I
def (w fn)eZ»-{0> (m* + H*}

and

71 /c\ _ v< h exp ( V^IZ arg (/£ + V

converge on the domain {^eC; Re 5>C'} for every integer I. We now

suppose that (5-!) Z^liA(s) , (5-!) Z^1>B (5) , Z^j4(5) (/^=0) and

Zt^jB (5) (/^O) can be analytically continued to the whole 5-plane as

entire functions of finite order. We denote these extended functions

again by Zl/^i>A(s) and 2v^ijB(s), respectively. Then we have the fol-

lowing generalization of Hamburger's result.

Theorem 3. Suppose that Zlv^A(s) and Zl/^i>B (s) satisfy

(29)
7TS 7T1-8

(for all /eZ).

Then Zl/^ A( s) = Zlv^itB(s) holds and there exists a constant c such

that it is equal to cQ-^s) , -where

Cz —(s)= V exp ( V^IZ arg (m + J^-

Proof. We first define the following integral IA (s, (p) for cp in J^f^

when Re 5>CX.

(30) #(,,0

= I ( I ( Zj am,n(p(mtcosO — nts'md, mt sin 0 -\-ntcos 0}}
JO \ JO (m,n)£Z2-{0>

X
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X exp ( - V=T 10) t*s~ldt\ dd .

For the simplicity of notations, we denote cos 0 + V — 1 sin 6 and m-\-^/ — In

by & and M, respectively. Similary, let JB(s,(p) denote

(.«,v)eZ2-{0}

Im (tffiff) ) ) exp ( - V=

where M is, by definition, jU-\--\/ — lv. Since ^ is in J^Ra, tne condition

(28) guarantees that JB(s,cp) is well-defined on the domain {s^C; Res

It immediately follows from the definition that

^,y) x

X exp ( - /^ arg (^ + /^Ty ) ) (^2 + /) s~ldxdy

and

X exp ( - V=I/ arg (f + V^^) ) (f 2 + f) ~s

hold on their respective domain of convergence. Since Z/^A^S) and

Zl/-^i>B(s) define meromorphic functions of s, 7j(^^) and Jj (.?, ̂ ) can be

analytically continued to define meromorphic functions of s. The thus

extended functions are also denoted by /|(s, (p) and JJ (s, (p) , respectively.

Before proceeding further, let us recall the following formula:

Lemma 4. 2" (r2<rexp (

= n

-where (r, 0) an^f (p, I) denote respectively the polar coordinate

systems of R*XtV and J?|,7, that is, x = rcos6, y = rs'md, £ = pcosd and
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This formula follows from the integral representation of the Bessel

function Jt (z) , i.e.,

2n Ja

and a formula for Hankel transformation, i.e.,

(31)

(Bateman Manuscript Project, vol. II [1], p. 22 (7)). Note that the

restriction on the parameters given in [1] can be removed by the

analytic continuation.

Now, combining the above formula and the assumption (29) , we

find that

(32) Ij(5,00=J3(s,p)

holds on the entire s-plane. Then, proceeding in the same way as in

the proof of Theorem 2, we obtain

(33) r
2ft v — -i-

•1 /»Cf/ + 2 + x/^oo

= r-^== 1\ (s, 9) t-*ds + Res [ Ji (s,
2ftV — 1 JC"+2-vrioo seP(4,Z)

where P(A, [) denotes the set of poles of Il(5 ?^)^~ s (^>0) in the

domain {seC; — 1 — Cx<Re 5<C7 + 2}. Here we have assumed that

JB(s,(p)t~Zs has no poles on the line {se€; R e s = — 1 — C7} and that

11(5, <p) t~2s has no poles on the line {se€; Re5 = C/ + 2}, which can

be achieved by changing C7 slightly, if necessary. First let us consider

the case where / is equal to zero. Then

has a pole when 2s —1= — (2p— 1) holds for a strictly positive integer

p, i.e., when s is a non-positive integer. Furthermore its residue at 5 = 0
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is known to be it f \d (x) 8 (y) (p (x, y) dxdy. (Gel'fand-Shilov [2], p. 72)

Hence the set of poles of I$.(s,<p) is contained in {s; 5 = 1,0, —1, •••}.

By the same reasoning we find that the set of poles of J£(s,<p) is con-

tained in {5; 5 = 0, 1, 2, 3, •••}. Hence it follows from (32) that Ij(s, <p)

has its poles only at s = 0 or 1. Therefore (33) entails

1 p-l-C" 4V=I°o

(34) r-4== Jl(.s,rtt-»ds
2nv — 1 J-I-C"-V^TOO

= --1 {"'^'^I^tit-t'ds + BW \\<p(x,y-)dxdy
2nv — 1 Jc"+2-v/=ioo jj

where B(t) is Res[Z^jA(5)/£] and A(t) =7rZ!d A(0) . Proceeding
s=l ' '

again in the same way as in the proof of Theorem 2, we obtain

(35) f2

Jo

O (m,n)eZ2-{0}

The same reasoning works equally well for the case when / is

different from zero. As a matter of fact, it immediately follows from the

assumption that P(A, £) is void if I is different from zero. Hence we

have

(36) f ̂  [ I] *„, $ (Re (M<9) , Im (M<9) ] exp ( - J^Ild} dd
Jo (/«,v)ez»-{o>

for any /^O. On the other hand

(5 (1) <p (0, 0) + A (1) <? (0, 0) ) exp ( - J=

holds if / is different from zero. Thus we obtain

(37) f 2* [ I] b,v<p (Re (M0) , Im (M<9) ) ] exp ( - J^lld) dd
Jo CH.jOezs-w
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= TC I] <*„,„? (Re (M0),Im(M0))
Jo (m,i»)e£2-<o>

-i- B (1) £> (0, 0) + A (1) ?> (0, 0) ] exp ( - V^l Iff) dd

for every I. This implies

£ ift ,? (Re

By choosing @ to be 1, we apply Theorem 1 to conclude that

holds for every (w, 72) and (/*, y) in Z2 — {0}. This is the required result.

Q.E.D.

Remark 1. It would be interesting if one could prove the theorem

by assuming the functional equation (29) only for 1 = 0. The celebrated

result of Hecke [5] asserts such a stronger result on the additional

assumption that Z^iiA(s) = Z^^i>B (s) . It is strange that Hecke [4] gave

a new proof of Hamburger's theorem in which A is not assumed to be

equal to B, while in his celebrated paper [5] he made no reference to

the case

Remark 2. It is interesting to compare the results of Theorems 1

and 2 and of Theorems 1 and 3. In Theorem 2 we use Dirichlet series

^ann~s with n^Z+. For this reason we note, by examining the proof

of Theorem 2, that we apply only the special case of Theorem 1 for

m = N=1. but, more important, for sequences {a0i7l}, {bQiV} which are even

in n and v respectively. We could actually use Hamburger's theorem

to derive this special case of Theorem 1, by noting that the linear com-

binations of the distributions \x\s are dense in the even distributions in

&' (if we ignore the point x = 0 which requires the special consideration

given in the proof of Theorem 2) .

On the other hand, Theorems 1 and 3 are, essentially, equivalent

because we used all the Grossencharacters.

A. Weil [7] has given an extension of Hecke's work [5] in a dif-
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ferent direction. He uses ordinary (congruence) characters instead oi

Grossencharacters.
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