Semantical Analysis of Constructive PDL

By

Hirokazu NISHIMURA*

§ 1. Introduction

Propositional dynamic logic or PDL is an interesting arena of logical research which was born to modal logic as his father and verification logic in the tradition of Floyd/Hoare as his mother. Several completeness proofs of PDL have been presented and the most recent one is Leivant's [4], where constructive or intuitionistic PDL (simply CPDL) plays an auxiliary role. The main purpose of this paper is to give a semantical analysis of CPDL after the manner of Nishimura [5]. In Section 2 we give a Kripkian semantics to CPDL, with respect to which the semantical completeness of a Gentzen-style system introduced in Section 3 is established in Section 4. A secondary purpose of the paper is to show that the existence of a test program A? does not make our completeness proof so tedious, contrary to Leivant's remarks.

§ 2. Formal Language and Semantics

There are letters a_i and p_i $(i=0,1,2,\cdots)$ for atomic programs and propositions respectively, for which we use a,b,\cdots and p,q,\cdots as syntactic variables. We define the notions of a *formula* and a *program* by simultaneous induction as follows:

- (1) Each atomic proposition p is a formula.
- (2) If A and B are formulae, so are $A \land B$, $A \lor B$, $\neg A$ and $A \supset B$.
- (3) If α is a program and A is a formula, then $[\alpha]A$ is a formula.
- (4) Each atomic program a is a program.

Received July 8, 1981.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

- (5) If α and β are programs, so are α ; β , $\alpha \cup \beta$ and α^* .
- (6) If A is a formula, then A? is a program.

true is an abbreviation of $p_0 \supset p_0$. We define α^n by induction on n; $\alpha^1 = \alpha$ and $\alpha^{n+1} = \alpha^n$; α .

A sequent is an ordered pair (Γ, Δ) of finite sets of formulae, which we usually denote by $\Gamma \rightarrow \Delta$.

A structure is of the form (S, \leq, ρ, π) , where

- (1) S is a nonempty set;
- (2) \leq is a partial order on S;
- (3) ρ is a function assigning to each atomic program a binary relation $\rho(a)$ such that $t \leq s$ and $(s, s') \in \rho(a)$ imply $(t, s') \in \rho(a)$ for any $s, s', t \in S$;
- (4) π is a function assigning a value in $\{0, 1\}$ to each pair (t, p), where $t \in S$ and p is an atomic proposition, such that $\pi(s, p) = 1$ and $s \leq s'$ imply $\pi(s', p) = 1$ for any $s, s' \in S$.

 ρ and π are extended to all programs and formulae by simultaneous induction as follows:

- (1) $\rho(\alpha; \beta) = \rho(\alpha) \circ \rho(\beta)$ (composition).
- (2) $\rho(\alpha \cup \beta) = \rho(\alpha) \cup \rho(\beta)$ (union):
- (3) $\rho(\alpha^*) = \rho(true?) \cup \rho(\alpha) \cup \rho(\alpha^2) \cup \rho(\alpha^3) \cup \cdots$ (iteration).
- (4) $\rho(A?) = \{(s, t) \in S \times S | s \leq t \text{ and } \pi(t, A) = 1\}.$
- (5) $\pi(t, A \land B) = 1 \text{ iff } \pi(t, A) = 1 \text{ and } \pi(t, B) = 1.$
- (6) $\pi(t, A \setminus B) = 1$ iff $\pi(t, A) = 1$ or $\pi(t, B) = 1$.
- (7) $\pi(t, \neg A) = 1$ iff for all $s \in S$, $t \le s$ implies $\pi(s, A) = 0$.
- (8) $\pi(t, A \supset B) = 1$ iff for all $s \in S$, $t \leq s$ and $\pi(s, A) = 1$ imply $\pi(s, B) = 1$.
- (9) $\pi(t, [\alpha]A) = 1$ iff for any $s \in S$, $(t, s) \in \rho(\alpha)$ implies $\pi(s, A) = 1$.

We can readily see the following proposition.

Proposition 2.1. For any program α and any formula A, we have that:

- (1) $t \leq s$ and $(s, s') \in \rho(\alpha)$ imply $(t, s') \in \rho(\alpha)$ for any $s, s', t \in S$.
- (2) $t \leq s$ and $\pi(t, A) = 1$ imply $\pi(s, A) = 1$.

Proof. By induction on α or A.

Our syntax is slightly redundant because $A \supset B$ can be regarded as an abbreviation of [A?]B and similarly for $\neg A$. However we do not necessarily prefer to get rid of this redundancy because several subsystems of our syntax (e.g., a test-free variant) are of interest.

A sequent $\Gamma \rightarrow \Delta$ is called *realizable* if for some structure (S, \leq, ρ, π) and some $t \in S$, we have that:

- (1) $\pi(t, A) = 1$ for any $A \in \Gamma$.
- (2) $\pi(t, B) = 0$ for any $B \in \Delta$.

A sequent $\Gamma \to \Delta$ which is not realizable is called valid (notation: $\models \Gamma \to \Delta$).

§ 3. Formal System

Our formal system LJP for CPDL consists of the following axioms and inference rules:

Axioms:
$$A \rightarrow A$$

Rules: $\frac{\Gamma \rightarrow \Delta}{\Pi, \Gamma \rightarrow \Delta, \Sigma}$ (extension)
$$\frac{\Gamma \rightarrow \Delta, A}{\Gamma, \Pi \rightarrow \Delta, \Sigma}$$
 (cut)
$$\frac{\Gamma \rightarrow \Delta, A}{\Gamma, \Pi \rightarrow \Delta, \Sigma}$$
 ($\rightarrow \land$)
$$\frac{\Gamma \rightarrow \Delta, A}{\Gamma \rightarrow \Delta, A \land B}$$
 ($\rightarrow \land \land$)
$$\frac{A, \Gamma \rightarrow \Delta}{A \land B, \Gamma \rightarrow \Delta}$$

$$\frac{B, \Gamma \rightarrow \Delta}{A \land B, \Gamma \rightarrow \Delta}$$
 ($\land \land \rightarrow$)

$$\frac{\Gamma \to A, A}{\Gamma \to A, A \lor B}
\Gamma \to A, B}{\Gamma \to A, A \lor B}
\frac{A, \Gamma \to A}{A \lor B, \Gamma \to A} (\lor \to)$$

$$\frac{A, \Gamma \to A}{A \lor B, \Gamma \to A} (\to \neg)$$

$$\frac{A, \Gamma \to A}{\Gamma \to A, \Lambda} (\to \neg)$$

$$\frac{A, \Gamma \to B}{\Gamma \to A, \Lambda \to B} (\to \to)$$

$$\frac{A, \Gamma \to B}{\Lambda \to B, \Gamma, \Pi \to A, \Sigma} (\to \to)$$

$$\frac{\Gamma \to A, A}{\Lambda \to B, \Gamma, \Pi \to A, \Sigma} (\to \to)$$

$$\frac{\Gamma \to A}{\Lambda \to B, \Gamma, \Pi \to A, \Sigma} (\to \uparrow)$$

$$\frac{\Gamma \to A, [\alpha][\beta]A}{\Gamma \to A, [\alpha;\beta]A} (\to \uparrow; \uparrow)$$

$$\frac{[\alpha][\beta]A, \Gamma \to A}{[\alpha;\beta]A, \Gamma \to A} (\uparrow; \uparrow)$$

$$\frac{[\alpha]A, \Gamma \to A}{[\alpha \cup \beta]A, \Gamma \to A}$$

$$\frac{[\alpha]A, \Gamma \to A}{[\alpha \cup \beta]A, \Gamma \to A}$$

$$\frac{[\beta]A, \Gamma \to A}{[\alpha \cup \beta]A, \Gamma \to A}$$

$$\frac{[\beta]A, \Gamma \to A}{[\alpha \cup \beta]A, \Gamma \to A}$$

$$\frac{A \to [\alpha]A}{[\alpha^*]A, \Gamma \to A} (\to \uparrow *)$$

$$\frac{A, \Gamma \to A}{[\alpha^*]A, \Gamma \to A}$$

$$\frac{[\alpha][\alpha^*]A, \Gamma \to A}{[\alpha^*]A, \Gamma \to A}$$

$$\frac{[\alpha][\alpha^*]A, \Gamma \to A}{[\alpha^*]A, \Gamma \to A}$$

$$\frac{[\alpha][\alpha^*]A, \Gamma \to A}{[\alpha^*]A, \Gamma \to A}$$

$$\frac{[\alpha^*]A, \Gamma \to A}{[\alpha^*]A, \Gamma \to A}$$

$$\begin{array}{c} \frac{A, \Gamma \to B}{\Gamma \to \Delta, [A?]B} & (\to [?]) \\ \\ \frac{\Gamma \to \Delta, A}{[A?]B, \Gamma, \Pi \to \Delta, \Sigma} & ([?] \to) \end{array}$$

A proof P (in **LJP**) is a tree of sequents satisfying the following conditions:

- (1) The topmost sequents of P are axiom sequents.
- (2) Every sequent in P except the lowest one is an upper sequent of an inference rule whose lower sequent is also in P.

A sequent $\Gamma \to \Delta$ is said to be *provable* (in **LJP**) if there exists a proof whose lowest sequent is $\Gamma \to \Delta$. If a sequent $\Gamma \to \Delta$ is provable, then we write $\vdash \Gamma \to \Delta$ (in **LJP**). A sequent $\Gamma \to \Delta$ which is not provable is said to be *consistent* (in **LJP**). A sequent $\Gamma \to \Delta$ is called *intuitionistic* if Δ consists of at most one formula. We denote by **LJP**' the formal system obtained from **LJP** by allowing only intuitionistic sequents.

Proposition 3.1. For any intuitionistic sequent $\Gamma \rightarrow \Delta$, $\vdash \Gamma \rightarrow \Delta$ in LJP iff $\vdash \Gamma \rightarrow \Delta$ in LJP'.

Proof. (1) if part: obvious.

(2) only if part: Prove that for any sequent $\Gamma \to \Delta$, if $\vdash \Gamma \to \Delta$ in **LJP**, then $\vdash \Gamma \to B_1 \lor \cdots \lor B_m$ in **LJP**, where $\Delta = \{B_1, \cdots, B_m\}$.

Proposition 3.2 (Soundness Theorem of LJP). For any sequent $\Gamma \rightarrow \Delta$, if $\vdash \Gamma \rightarrow \Delta$ in LJP, then $\models \Gamma \rightarrow \Delta$.

Proof. By induction on a proof of $\Gamma \rightarrow \Delta$.

§ 4. Completeness

The main purpose of this section is to establish the following theorem.

Theorem 4.1 (Completeness Theorem for LJP). Any consistent

sequent $\Gamma \rightarrow \Delta$ is realizable.

A finite set Φ of formulae is called *closed* if it satisfies the following conditions:

- (1) If $(A \land B) \in \emptyset$, then $A \in \emptyset$ and $B \in \emptyset$.
- (2) If $(A \lor B) \in \emptyset$, then $A \in \emptyset$ and $B \in \emptyset$.
- (3) If $\neg A \in \emptyset$, then $A \in \emptyset$.
- (4) If $(A \supset B) \in \emptyset$, then $A \in \emptyset$ and $B \in \emptyset$.
- (5) If $\lceil \alpha \rceil A \in \emptyset$, then $A \in \emptyset$.
- (6) If $[\alpha; \beta] A \in \emptyset$, then $[\alpha] [\beta] A \in \emptyset$.
- (7) If $[\alpha \cup \beta] A \in \emptyset$, then $[\alpha] A \in \emptyset$ and $[\beta] A \in \emptyset$.
- (8) If $[\alpha^*]A \in \emptyset$, then $[\alpha][\alpha^*]A \in \emptyset$.
- (9) If $[A?]B \in \emptyset$, then $A \in \emptyset$ and $B \in \emptyset$.

In the rest of this section we fix such a closed set, say, \emptyset . A sequent $\Gamma \rightarrow \mathcal{A}$ is called \emptyset -saturated if it satisfies the following conditions:

- (1) $\Gamma \rightarrow \Delta$ is consistent.
- (2) $\Gamma \cup \Delta = \emptyset$.

It is easy to see that for any Φ -saturated sequent $\Gamma \rightarrow \Delta$, $\Gamma \cap \Delta = \emptyset$.

Lemma 4.2. Any consistent sequent $\Gamma \rightarrow \Delta$ can be extended to some consistent sequent $\widetilde{\Gamma} \rightarrow \widetilde{\Delta}$ such that $\Phi \subseteq \widetilde{\Gamma} \cup \widetilde{\Delta}$.

Corollary 4.3. Any consistent sequent $\Gamma \rightarrow \Delta$, where $\Gamma \cup \Delta \subseteq \Phi$, can be extended to some Φ -saturated sequent.

Now we define the Φ -canonical Structure $\Omega(\Phi) = (S, \leq, \rho, \pi)$ as follows:

- (1) $S = \{ \Gamma \rightarrow \Delta | \Gamma \rightarrow \Delta \text{ is } \emptyset \text{-saturated} \}$.
- $(2) \quad (\Gamma_1 \to \Delta_1) \leq (\Gamma_2 \to \Delta_2) \text{ iff } \Gamma_1 \subseteq \Gamma_2.$
- (3) $\rho(a) = \{ (\Gamma_1 \rightarrow \Delta_1, \Gamma_2 \rightarrow \Delta_2) \in S \times S | \{A | [a] A \in \Gamma_1\} \subseteq \Gamma_2 \}$

for each atomic program a.

(4) $\pi(\Gamma \rightarrow \Delta, p) = 1$ iff $p \in \Gamma$ for each atomic proposition p.

It is easy to see that $\mathcal{Q}(\Phi)$ satisfies the conditions of the definition of a structure. The rest of this section is devoted almost completely to the proof of the following theorem, from which Theorem 4.1 follows at once.

Theorem 4.4 (Fundamental Theorem of $\Omega(\Phi)$). For any formula $A \in \Phi$ and any sequent $\Gamma \rightarrow \Delta$ of S, $\pi(\Gamma \rightarrow \Delta, A) = 1$ if $A \in \Gamma$ and $\pi(\Gamma \rightarrow \Delta, A) = 0$ if $A \in \Delta$.

We define a notion of the *test degree* of a program α and a formula A, denoted by $td(\alpha)$ and td(A) respectively, by simultaneous induction as follows:

- (1) td(a) = td(p) = 0 for any atomic program a and atomic proposition p.
- (2) $td(A \land B) = td(A \lor B) = td(A \supset B) = \max\{td(A), td(B)\}.$
- (3) td(A) = td(A).
- (4) $td(\lceil \alpha \rceil A) = \max\{td(\alpha), td(A)\}.$
- (5) $td(\alpha; \beta) = td(\alpha \cup \beta) = \max\{td(\alpha), td(\beta)\}.$
- (6) $td(\alpha^*) = td(\alpha)$.
- (7) td(A?) = td(A) + 1.

Our strategy of the proof of Theorem 4.4 is to prove the following theorem by induction on i.

Theorem 4.4 (i). For any sequent $\Gamma \rightarrow \Delta$ of S and any formula $A \in \Phi$ such that td(A) < i, $\pi(\Gamma \rightarrow \Delta, A) = 1$ if $A \in \Gamma$ and $\pi(\Gamma \rightarrow \Delta, A) = 0$ if $A \in \Delta$.

It is obvious that Theorem 4.4 (0) holds vacuously. Hence what we have to do is to prove Theorem 4.4 (i+1), assuming Theorem 4.4

(i). To do it smoothly, we need several auxiliary notions and lemmas. We define the notions of the *characteristic formula* $\psi(\Gamma \rightarrow \Delta)$ of a

sequent $\Gamma \rightarrow \Delta$ and of the *characteristic formula* $\psi(X)$ of a finite set X of sequents as follows:

(1)
$$\psi(\Gamma \rightarrow \Delta) = A_1 \wedge \cdots \wedge A_n$$
, where $\Gamma = \{A_1, \cdots, A_n\}$.

(2)
$$\psi(X) = \psi(\Gamma_1 \rightarrow \Delta_1) \bigvee \cdots \bigvee \psi(\Gamma_k \rightarrow \Gamma_k)$$
, where
$$X = \{\Gamma_1 \rightarrow \Delta_1, \cdots, \Gamma_k \rightarrow \Delta_k\}.$$

For any $Y \subseteq S$ and any program α , the weakest precondition of α with respect to Y, denoted $wp(\alpha, Y)$, is defined as follows:

$$wp(\alpha, Y) = \{s \in S | (s, t) \in \rho(\alpha) \text{ implies } t \in Y \text{ for any } t \in S\}.$$

For any X, $Y \subseteq S$ and any program α , we say that α is partially correct with respect to precondition X and postcondition Y (notation: $\{X\} \alpha \{Y\}$) if $X \subseteq wp(\alpha, Y)$

Lemma 4.5 (i+1). For any X, $Y \subseteq S$ and any program α such that $td(\alpha) < i+1$, if $\{X\} \alpha \{Y\}$, then

$$\vdash \psi(X) \rightarrow [\alpha] \psi(Y)$$
.

Proof. The proof is carried out by induction on α . Here we deal only with the following three critical cases.

(1) α is an atomic program, say, a:

Let $X = \{\Gamma_j \rightarrow \mathcal{L}_j | 1 \leq j \leq n\}$. We assume, for the sake of simplicity, that n = 2.

Suppose, for the sake of contradiction, that the sequent $\psi(\Gamma_1 \to I_1) \to [a]\psi(Y)$ is consistent, which implies that the sequent $\Gamma_1 \to [a]\psi(Y)$ is also consistent. So the sequent $\{A \mid [a]A \in \Gamma_1\} \to \psi(Y)$ is also consistent, for otherwise $\Gamma_1 \to [a]\psi(Y)$ would be provable by rules $(\to [\])$ and (extension). By Lemma 4.2, the sequent $\{A \mid [a]A \in \Gamma_1\} \to \psi(Y)$ can be extended to some consistent sequent $\widetilde{\Gamma} \to \widetilde{A}$ such that $\emptyset \subseteq \widetilde{\Gamma} \cup \widetilde{A}$. Then it is easy to see that $(\Gamma_1 \to I_1, \widetilde{\Gamma} \cap \emptyset \to \widetilde{A} \cap \emptyset) \in \rho(a)$. Since $\{\Gamma_1 \to I_1\} a \{Y\}$ by assumption, $(\widetilde{\Gamma} \cap \emptyset \to \widetilde{A} \cap \emptyset) \in Y$. Hence

$$\vdash \psi (\widetilde{T} \cap \mathcal{O} \to \widetilde{\mathcal{A}} \cap \mathcal{O}) \to \psi (Y). \tag{A}$$

This implies that

$$\vdash \widetilde{\Gamma} \cap \mathcal{D} \rightarrow \psi(Y)$$
. (B)

This contradicts the assumption that the sequent $\widetilde{\Gamma} \to \widetilde{\mathcal{A}}$ is consistent and $\psi(Y) \in \widetilde{\mathcal{A}}$. Thus we can conclude that

$$\vdash \psi(\Gamma_1 \rightarrow \Delta_1) \rightarrow [a] \psi(Y).$$
 (C)

A similar argument shows that

$$[-\psi(\Gamma_2 \to \Delta_2) \to [a]\psi(Y).$$
 (D)

By using rule $(\bigvee \rightarrow)$ we can deduce from (C) and (D) that

$$[-\psi(\Gamma_1 \to \Delta_1) \lor \psi(\Gamma_2 \to \Delta_2) \to [a] \psi(Y), \tag{E}$$

which was to be proved.

(2) α is of the form A?:

Let $X = \{\Gamma_j \rightarrow \mathcal{I}_j | 1 \leq j \leq n\}$. We assume, for the sake of simplicity, that n = 2. Suppose, for the sake of contradiction, that the sequent $\psi(\Gamma_1 \rightarrow \Gamma_1) \rightarrow [A?] \psi(Y)$ is consistent, which implies that the sequent $\Gamma_1 \rightarrow [A?] \psi(Y)$ is also consistent. Hence the sequent A, $\Gamma_1 \rightarrow \psi(Y)$ is also consistent, for otherwise the sequent $\Gamma_1 \rightarrow [A?] \psi(Y)$ would be provable by rule $(\rightarrow [?])$. By Lemma 4.2, the sequent A, $\Gamma_1 \rightarrow \psi(Y)$ can be extended to some consistent sequent $\widetilde{\Gamma} \rightarrow \widetilde{\mathcal{A}}$ such that $\mathscr{O} \subseteq \widetilde{\Gamma} \cup \widetilde{\mathcal{A}}$. Since td(A) < i, $\pi(\widetilde{\Gamma} \cap \mathscr{O} \rightarrow \widetilde{\mathcal{A}} \cap \widetilde{\mathscr{O}})$, A) = 1 by Theorem 4.4 (i). Since $\Gamma_1 \subseteq \widetilde{\Gamma}$, $(\Gamma_1 \rightarrow \mathcal{A}_1) \leq (\widetilde{\Gamma} \cap \mathscr{O} \rightarrow \widetilde{\mathcal{A}} \cap \mathscr{O})$. Therefore $(\widetilde{\Gamma} \cap \mathscr{O} \rightarrow \widetilde{\mathcal{A}} \cap \mathscr{O}) \in Y$. Hence

$$\vdash \psi(\widetilde{\Gamma} \cap \Phi \to \widetilde{\Delta} \cap \Phi) \to \psi(Y). \tag{A}$$

This implies that

$$\vdash \widetilde{\Gamma} \cap \mathcal{O} \rightarrow \psi(Y)$$
. (B)

This contradicts the assumption that the sequent $\widetilde{\Gamma} \to \widetilde{\Delta}$ is consistent and $\psi(Y) \in \widetilde{\Delta}$. Thus we can conclude that

$$\vdash \psi(\Gamma_1 \rightarrow \Delta_1) \rightarrow [A?] \psi(Y).$$
 (C)

Similarly,

$$\vdash \psi(\Gamma_2 \rightarrow \Delta_2) \rightarrow [A?] \psi(Y).$$
 (D)

By using rule $(\bigvee \rightarrow)$, we can deduce from (C) and (D) that

$$\psi(\Gamma_1 \to \Gamma_1) \bigvee \psi(\Gamma_2 \to \Delta_2) \to [A?] \psi(Y), \tag{E}$$

which was to be proved.

(3) α is of the form β^* :

Since $X \subseteq wp(\beta^*, Y)$ by Assumption,

$$\vdash \psi(X) \rightarrow \psi(wp(\beta^*, Y)).$$
 (A)

Since $\{wp(\beta^*, Y)\}\beta\{wp(\beta^*, Y)\}$,

$$\vdash \psi(wp(\beta^*, Y)) \rightarrow [\beta] \psi(wp(\beta^*, Y)).$$
 (B)

Hence by using rule $(\rightarrow [*])$, we have that

$$\vdash \psi(wp(\beta^*, Y)) \to \lceil \beta^* \rceil \psi(wp(\beta^*, Y)). \tag{C}$$

Since ρ (true?) $\subseteq \rho(\beta^*)$, $wp(\beta^*, Y) \subseteq Y$.

Hence

$$\vdash \psi(wp(\beta^*, Y)) \rightarrow \psi(Y).$$
 (D)

By using rule $(\rightarrow [])$, we can deduce from (D) that

$$[\beta^*]\psi(wp(\beta^*, Y)) \to [\beta^*]\psi(Y). \tag{E}$$

By using rule (cut) twice, we get from (A), (C) and (E) that

$$\vdash \psi(X) \to \lceil \beta^* \rceil \psi(Y)$$
. (F)

Lemma 4.6 (i+1). For any formula A any program α and any sequents $\Gamma \to \Delta$ of S such that $td(\alpha) < i+1$, if $[\alpha]A \in \Delta$, then there exists a sequent $\Gamma' \to \Delta'$ of S such that $(\Gamma \to \Delta, \Gamma' \to \Delta') \in \rho(\alpha)$ and $A \in \Delta'$.

Proof. Let $X = \{(\Pi \to \Sigma) \in S | A \in \Pi\}$. Suppose, for the sake of contradiction, that $\{\Gamma \to \Delta\} \alpha \{X\}$. Then by Lemma 4.5 (i+1)

$$\vdash \psi(\Gamma \to \Delta) \to \lceil \alpha \rceil \psi(X). \tag{A}$$

It follows from the definition of X that

$$\vdash \psi(X) \to A$$
. (B)

By using rules (cut) and $(\rightarrow [\])$, we can deduce from (A) and (B) that

$$\vdash \psi(\Gamma \rightarrow \Delta) \rightarrow [\alpha] A$$
. (C)

It follows from (C) that

$$\vdash \Gamma \rightarrow [\alpha] A$$
, (D)

which contradicts the assumption that the sequent $\Gamma \rightarrow \Delta$ is consistent and $\lceil \alpha \rceil A \in \Delta$. This completes the proof.

Lemma 4.7 (i+1). For any formula A, any program α and any sequents $\Gamma \rightarrow \Delta$, $\Gamma' \rightarrow \Delta'$ of S such that $td(\alpha) < i+1$ and $(\Gamma \rightarrow \Delta, \Gamma' \rightarrow \Delta') \in \rho(\alpha)$, if $[\alpha] A \in \Gamma$, then $A \in \Gamma'$.

Proof. Similar to that of Lemma 4.5 (i+1).

Now we are ready to complete the proof of Theorem 4.4 (i+1).

Proof of Theorem 4.4 (i+1). By induction on the construction of a formula $A \in \emptyset$. Use Lemmas 4.6 (i+1) and 4.7 (i+1) in dealing with formulae of the form $\lceil \alpha \rceil A$.

We have completed the proof of Theorem 4.4. By combining Proposition 3.2 and Theorem 4.1, we have

Theorem 4.8. For any sequent $\Gamma \rightarrow \Delta$,

$$\vdash \Gamma \rightarrow \Delta$$
 iff $\models \Gamma \rightarrow \Delta$

The finite model property shown in Theorem 4.4 establishes

Theorem 4.9 (Decidability of LJP). LJP is decidable.

References

- Fitting, M. C., Intuitionistic logic model theory and forcing, North-Holland, Amsterdam, 1969.
- [2] Gabbay, D. M., Semantical investigations in Heyting's intuitionistic logic, D. Reidel, Dordrecht-Boston-London, 1981.
- [3] Harel, D., First-order dynamic logic, Lecture Notes in Computer Science, 68 Springer, Berlin-Heidelberg-New York, 1979.
- [4] Leivant, D., Proof theoretic methodology for propositional dynamic logic, in: Formalization of programming concepts, Lecture Notes in Computer Science, 107

- Springer, Berlin-Heidelberg-New York, (1981), 356-373.
- [5] Nishimura, H., Sequential methods in propositional dynamic logic, Acta Informatica, 12 (1979), 377-400.
- [6] Takeuti, G., Proof theory, North-Holland, Amsterdam, 1975.