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Semantical Analysis of Constructive PDL

By

Hirokazu NISHIMURA*

§ 1. Introduction

Propositional dynamic logic or PDL is an interesting arena of logical
research which was born to modal logic as his father and verification
logic in the tradition of Floyd/Hoare as his mother. Several completeness
proofs of PDL have been presented and the most recent one is Leivant’s
[4], where constructive or intuitionistic PDL (simply CPDL) plays an
auxiliary role. The main purpose of this paper is to give a semantical
analysis of CPDL after the manner of Nishimura [5]. In Section 2 we
give a Kripkian semantics to CPDL, with respect to which the semantical
completeness of a Gentzen-style system introduced in Section 3 is establish-
ed in Section 4. A secondary purpose of the paper is to show that the
existence of a test program A ? does not make our completeness proof so

tedious, contrary to Leivant’s remarks.

§ 2. Formal Language and Semantics

There are letters a; and p; (¢=0,1, 2, --.) for atomic programs and
propositions respectively, for which we use @, b, --- and p, g, --- as syntactic
variables. We define the notions of a formula and a program by simul-

taneous induction as follows:

(1) Each atomic proposition p is a formula.
(2) If A and B are formulae, so are AAB, A\VB, 1A and ADB.
(8) If o is a program and A is a formula, then [a]A is a formula.

(4) Each atomic program a is a program.
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(5) If a and B are programs, so are
a;B, aUpf and o*.

(6) If A is a formula, then A? is a program.

true is an abbreviation of p,Dp,. We define a® by induction on #z;

a'=a and ""'=a"; a.
A sequent is an ordered pair (7, 4) of finite sets of formulae, which

we usually denote by I'—4.
A structure is of the form (S, <, o, ), where

(1) S is a nonempty set;

(2) < is a partial order on S;

(3) p is a function assigning to each atomic program a binary relation
o(a) such that ¢<s and (s,s’) €p(a) imply (¢, s’) €p(a) for any
s, s, teS;

(4) m is a function assigning a value in {0, 1} to each pair (¢, p), where
te.S and p is an atomic proposition, such that 7 (s, ) =1 and s<s’

imply 7 (s’,p) =1 for any s, s’ES.

0 and 7 are extended to all programs and formulae by simultaneous

induction as follows:

1) o(a;8) =p(@)°0(B) (composition).

@) o(@Uph) =o(@) Up(B) (union):

B) pla@®) =p(true?) Up(a) Up(a®) Up(a®) U--- (iteration).

4) p(A?)=A{(s,t)eSXS| s<t and 7 (s, A) =1}.

b)) w( ANB) =1 iff n(¢, A) =1 and 7 (¢, B) =1.

6) =w(t, AVB) =1 iff n(¢, A) =1 or 7 (¢, B) =1.

(7) 7w(, 1A4) =1 iff for all s&.S, s implies 7 (s, A) =0.

@®) =n(t, ADB) =1 iff for all s&.S, ¢t<sand 7 (s, A) =1 imply 7 (s, B)
=1.

9) 7w(¢ [a]A) =1 iff for any s S, (¢ 5s) €p(a) implies 7 (s, A) =1.

We can readily see the following proposition.
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Proposition 2.1. For any program « and any formula A, we

have that:

Q) t<s and (s,s')€p(a) imply (¢, s") €p() for any s,s’,tES.
2) t<s and w(t, A) =1 imply (s, A) =1.

Proof. By induction on a or A.

Our syntax is slightly redundant because A D B can be regarded as an
abbreviation of [ A ?]B and similarly for "] A. However we do not neces-
sarily prefer to get rid of this redundancy because several subsystems of
our syntax (e.g., a test-free variant) are of interest.

A sequent I'—4 is called realizable if for some structure (S, <,

0,7) and some (.S, we have that:

1) =(, A) =1 for any AT
(2) n(, B) =0 for any Bed.

A sequent I'—4 which is not realizable is called walid (notation:
=r—4).

§ 3. Formal System

Our formal system LJP for CPDL consists of the following axioms

and inference rules:

Axioms: A—A
I'— 4

Rules: (extension)
I, r-4,2
I'—4, A A II-2% (cut)
r,og—4,2z
I'—4,A I'-4,B
I'—4, AN\B =N
A, I'—>4
ANB, I'—4
(A=)
B, I'—4

ANB, T—4
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I'—4, A
I'-4, A\VB
=V)
I'—-4,B
I'—-4, A\VB
A, I'—>4 B, -4 -
A\ B, I'—4 V=)
A, I'> N
I'—4," 1A =D
I'—4, A .
A, I'->B R
I'-»4, ADB (=)
I'—4, A B, II-2% .
ADB, I',lI—4,% 5=)
Ir'—-A
>[4 =L D
r—4,[[B1A .
I'>4,[a;8]A LD
[Q1[B1A, T—>4 1.,
(@84, T4 17
I'—4, [a]A I'—4,[f1A .
I'—4 [aUBlA (=[UD
[a]A, '—>4
[aUBTA, I'—>4
([Ul-)
[B1A, I'—4
[aUBJA, I'>4
A-[a]A R
Ao[at|A (=[xD
A TI'—4
[a*]A, -4
([x1-)

[a][a*]A, -4
[a*]1A, >4
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A,I>B
-4, [A?]B

[A?]1B, T, -4, 5

=D

A proof P (in LJP) is a tree of sequents satisfying the following

conditions:

(1) The topmost sequents of P are axiom sequents.
(2) Every sequent in P except the lowest one is an upper sequent of

an inference rule whose lower sequent is also in P.

A sequent I'—4 is said to be provable (in LJP) if there exists a
proof whose lowest sequent is I'—4. If a sequent /'—4 is provable,
then we write —/"—4 (in LJP). A sequent /'—4 which is not provable
is said to be comsistent (in LJP). A sequent I'—4 is called intuitionis-
tic if 4 consists of at most one formula. We denote by LJP’ the formal

system obtained from LJP by allowing only intuitionistic sequents.

Propesition 3.1. For any intuitionistic sequent I'—d, \-I'—4
in LJP iff —I'—4 in LJP’.

Proof. (1) if part: obvious.
(2) only if part: Prove that for any sequent /'—4, if —/1"—4 in

LJP, then —I"—>B,\/:--\/B,, in LJP’, where 4={B,, -+, B,}.

Proposition 3.2 (Soundness Theorem of LJP). For any sequent
I'—4, if =I'—4 in LJP, then |=1"—4.

Proof. By induction on a proof of I'—A4.

§ 4. Completeness

The main purpose of this section is to establish the following theorem.

Theorem 4.1 (Completeness Theorem for LJP). Any consistent
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sequent I'—d is realizable.

A finite set @ of formulae is called closed if it satisfies the following

conditions:

Q) If (AAB)e€0, then A=® and B0.

@2 If (AVB) €0, then Ac0 and Be0.

3) If T1Ae0, then A€0.

(4) If (ADB)e0, then A0 and Bed.

B) If [a]A0, then AcO.

6) If [a;B]A€0, then [a][B]lAE0.

(7 If [a¢UB]AE0, then [¢]AE0@ and [f]AE0.
®) If [a*]A€0, then [a][a*]Acs0.

9 If [A?]Be0, then A0 and Be0.

In the rest of this section we fix such a closed set, say, . A

sequent I'—4 is called @-saturated if it satisfies the following conditions:

(1) I'—4 is consistent.

(2) I'ud=o.
It is easy to see that for any @-saturated sequent I'—d4, 'N4=0.

Lemma 4.2. Any consistent sequent I'—4 can be extended to

some consistent sequent F—4 such that (I)ngZ.

Corollary 4.3. Any consistent sequent I'—d, where I'U4Z0,

can be extended to some O-saturated sequent.

Now we define the @-canonical Structure £(@) = (S, <,p0,7) as
Sollows:

Q) S={I'—-4|'-4 is O-saturated}.
@) (P1—>41)§(Fz—>42) iff ICT,.
) 0@ ={"1—d, I''>d) eSXS|{A|[a] A} &1}
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for each atomic program a.

(4) wm('—d,p) =1 iff pel for each atomic proposition p.

It is easy to see that £(@) satisfies the conditions of the definition
of a structure. The rest of this section is devoted almost completely to
the proof of the following theorem, from which Theorem 4.1 follows

at once.

Theorem 4.4 (Fundamental Theorem of 2(@)). For any for-
mula A0 and any sequent I'—d of S, n(I"'—4, A) =1 if A€’ and
n(l'—4, A) =0 if A4

We define a notion of the test degree of a program & and a formula
A, denoted by #d(a) and td(A) respectively, by simultaneous induction

as follows:

1) id(a) =td(») =0 for any atomic program a and atomic proposition
b.

2) td(ANB) =td(A\/B) =td(A>DB) =max{td(A), td(B)}.

3) d(14A) =td(A).

4) td([a]A) =max{td(x), td(A)}.

(6) td(a;B) =td(aupB) =max{td(a), td(B)}.

(6) td(a*) =td(a).

™ td(A?) =td(A) +1.

Our strategy of the proof of Theorem 4.4 is to prove the following

theorem by induction on 7.

Theorem 4.4 (i). For any sequent I'—>4 of S and any formula
A€ such that td(A)<i,n(I'—4, A) =1 {f A€l and n(I"—4, A) =0
if Aed.

It is obvious that Theorem 4.4 (0) holds vacuously. Hence what
we have to do is to prove Theorem 4.4 (Z+41), assuming Theorem 4. 4
(7). To do it smoothly, we need several auxiliary notions and lemmas.

We define the notions of the characteristic formula ¢ (I"—4d) of a
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sequent I'—4 and of the characteristic formula ¢(X) of a finite set

X of sequents as follows:

1) =4 =A N NA, where I'={A,, -+, A.}.
©2) ¢X)=¢T"—=4)V - NV¢U'v—T"y), where
X=A{l"1—4, -, 'v—4,}.

For any YCS and any program «, the weakest precondition of
with respect to Y, denoted wp(a,Y), is defined as follows:

wp(a,Y) ={s&S|(s,t) €o(x) implies &Y for any t&.S}.

For any X, YCS and any program &, we say that « is partially
correct with respect to precondition X and postcondition Y (notation:

{X}a{Y}) if XCwp(a,Y)

Lemma 4.5 (+1). For any X, YCS and any program « such
that td(a) <i+1, if {X}a{Y}, then

Fo(X) —[ald¥).

Progf. The proof is carried out by induction on &. Here we deal
only with the following three critical cases.
(1) « is an atomic program, say, a:

Let X={I";—4;]1<j<n}. We assume, for the sake of simplicity,
that n=2.

Suppose, for the sake of contradiction, that the sequent ¢ (/';—4,)
—[a]¢(Y) is consistent, which implies that the sequent I';—[a]¢ (Y) is
also consistent. So the sequent {A|[a]A& [} >¢(Y) is also consistent,
for otherwise I';—>[a]¢(Y) would be provable by rules (—[ ]) and
(extension). By Lemma 4.2, the sequent {A|[a]AE} —>¢(Y) can be
extended to some consistent sequent "4 such that 0C7 U4. Then
it is easy to see that (I,—4, I' NO—>AN0) cp(a). Since {[—4}a{Y}
by assumption, (J'N0—4NB) Y. Hence

o NO—4N0)—>p(Y). (A)
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This implies that
FIN0—¢ ). B

This contradicts the assumption that the sequent I'—J is consistent
and ¢(Y)ed. Thus we can conclude that

Fo—4) —[a]¢ ). ©
A similar argument shows that
o> dy) > [a]¢ (Y). D)

By using rule (V—) we can deduce from (C) and (D) that

Foi—=d) NV > 4) —>[a]g (), (E)
which was to be proved.
(2) « is of the form A?:

Let X={I';—4;) 1<j<n}. We assume, for the sake of simplicity,
that #=2. Suppose, for the sake of contradiction, that the sequent ¢ (/;
—I') >[A?]J(Y) is consistent, which implies that the sequent /';}—[A ?]
¢ (Y) is also consistent. Hence the sequent A, I';7—¢(Y) is also con-
sistent, for otherwise the sequent I';7—[A?]¢(Y) would be provable by
rule (—[?]). By Lemma 4.2, the sequent A, I';—>¢(Y) can be ex-
tended to some consistent sequent /'—/4 such that OCT'Ud. Since
td(A)<i, t(I'N0—-4Nd, A) =1 by Theorem 4.4 (i). Since I,CI,
—4)< T N0—4N0). Therefore ('NO—->4N0) Y. Hence

FOT NO—-IN0) (). (&)

This implies that
I Nno—y¢(Y). (B)

This contradicts the assumption that the sequent =4 is consistent
and ¢(Y)ed. Thus we can conclude that

Fo—d)—[A?]d (). ©

Similarly,
Fo U —d) > [A?](Y). (D)

By using rule (\/—), we can deduce from (C) and (D) that
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Y=Y NG —d) > [A?]P (X)), E)

which was to be proved.
(8) « is of the form B*:
Since XCT wp(F*,Y) by Assumption,

F¢(X) =g (wp(B*, Y)). (A)
Since {wp(B*,Y)}B{wp(B*,Y)},
¢ (wp (B, Y)) — [B]¢ (wp (8%, Y)). (B)
Hence by using rule (—[*]), we have that
¢ (wp(B*,Y))—[B*]¢ (wp (8%, Y)). ©
Since o (true ?) S0(8%), wp(B8*, Y)CY.
Hence
Fo(wp(B*,Y))—¢(Y). (D)
By using rule (—[ ]), we can deduce from (D) that
[B*1¢ (wp (B*, Y)) —~[B*]¢ (Y). (E)
By using rule (cut) twice, we get from (A), (C) and (E) that
FoX)—[6*]1¢(X). (F)

Lemma 4.6 (:+1). For any formula A any program o and
any sequents I'—4 of S such that td(a) <i+1, if [@]A €4, then there
exists a sequent I''—A" of S such that (I'—d, I'"'—>4")cp(®) and
Aed.

Proof. Let X={(II—3)eS|AcIl}. Suppose, for the sake of
contradiction, that {"—>4}a{X}. Then by Lemma 4.5 (i+1)
Fo(I'—=4) —[a]¢(X). (A)
It follows from the definition of X that
Fo(X)—A. (B)

By using rules (cut) and (—[ ]), we can deduce from (A) and
(B) that

FoT—d)—[a]A. ©
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It follows from (C) that
Fr—[a]A, D)

which contradicts the assumption that the sequent /'—4 is consistent and

[¢]Ae4d. This completes the proof.

Lemma 4.7 (¢+1). For any formula A, any program « and
any sequents I'—d, I''"—4" of S such that td(a)<i+1 and (I'—4,
I'"'-s4)Yep(a), if [w]l]Ael’, then AsT”.

Progf. Similar to that of Lemma 4.5 (z+1).

Now we are ready to complete the proof of Theorem 4.4 (+1).

Proof of Theorem 4.4 (i+1). By induction on the construction
of a formula A€®. Use Lemmas 4.6 ({+1) and 4.7 (+1) in dealing
with formulae of the form [a]A.

We have completed the proof of Theorem 4.4. By combining Pro-

position 3.2 and Theorem 4.1, we have

Theorem 4.8. For any sequent I'—4,

HI—d iff =I—4

The finite model property shown in Theorem 4.4 establishes

Theorem 4.9 (Decidability of LJP). LJP is decidable.
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