Uniqueness of the Infinite Loop Space Structures on Connective Fibre Spaces of *BSO*

By

Akira Kono*

§ 1. Introduction

In [1] J. F. Adams and S. B. Priddy showed that after localization at any prime p the infinite loop space structure on the space BSO is essentially unique. Let $BO(d, \infty)$ be the (d-1)-connected fibre space of BO. Then the purpose of the present paper is to show after localization at any prime p the infinite loop space structure on the space $BO(d, \infty)$ is essentially unique if $d\geq 2$. If the word 'localization' is replaced by 'completion', the result continues to hold.

Let K_R be the spectrum which represents classical (periodic) real K-theory. Let d be a fixed integer; let $bo(d, \infty)$ be the spectrum obtained from K_R by killing the homotopy groups in degree $\leq d$, while retaining the homotopy groups in degree $\geq d$. Then $bo(d, \infty)$ represents (d-1)-connected real K-theory; similarly K_C and $bu(d, \infty)$ in the complex case. Let Λ be either the ring Z_p of p-adic integers or the ring $Z_{(p)}$ of integers localized at p. We can introduce coefficient Λ into any spectrum X by setting

$$X_A = MA \wedge X$$

where $M\Lambda$ is the Moore spectrum for the group Λ . We write F_p for the field with p elements and A_p for the mod p Steenrod algebra. Let us arrange for $bo(d, \infty)_A$ and $bu(d, \infty)_A$ to be Ω -spectra. Note that the equivalence $X_0 \simeq \Omega X_1$ determines an H-space structure on X_0 . Then the main purpose of the present paper is to show the following theorem:

Communicated by N. Shimada, August 28, 1981.

^{*} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

Theorem 1.1. Let $X = \{X_i\}$ be a connected Ω -spectrum. Suppose given a homotopy equivalence of spaces

$$X_0 \simeq BO(d, \infty)_A$$
,

where $BO(d, \infty)_{\Lambda}$ is the 0-th term of the Ω -spectrum $bo(d, \infty)_{\Lambda}$. If $d \ge 2$, then there is an equivalence of spectra

$$X \simeq bo(d, \infty)_{\Lambda}$$
.

The paper is organized as follows:

In Section 2 an \mathcal{Q} -spectrum $\Sigma^n X$ which represents the *n*-fold suspension of X is defined. In the next section the uniqueness of the infinite loop space structures of the space $\mathcal{Q}Sp_A$ or the *H*-spaces $\mathcal{Q}Spin_A$ and SO_A (definitions are given in Section 3) is proved. In Section 4 the main theorem is proved.

Throughout this paper we use the following notation: for a space X, X(n, m) denotes that term in the Postnikov system of X whose homotopy groups π_r are the same as those of X for $n \leq r \leq m$. We use the notation X(n, m) for spectra analogous to that which we use for spaces. The symbol $\cong \frac{1}{m}$ means H-equivalence.

§ 2. Suspension of *Q*-Spectra

Let $X = \{X_i, \varepsilon_i : X_i \rightarrow \mathcal{Q}X_{i+1}\}$ be an \mathcal{Q} -spectrum and n an integer. Define Y_i and λ_i as follows:

$$Y_{i} = \begin{cases} X_{i+n} & i \ge -n \\ \mathcal{Q}^{-n-i}X_{0} & i < -n , \end{cases}$$
$$\lambda_{i} = \begin{cases} \varepsilon_{i+n} \colon X_{i+n} \to \mathcal{Q}X_{i+n+1} & i \ge -n \\ \mathcal{Q}^{-n-i}\mathbf{1}_{X_{0}} \colon \mathcal{Q}^{-n-i}X_{0} \to \mathcal{Q}\mathcal{Q}^{-n-i-1}X_{0} & (=\mathcal{Q}^{-n-i}X_{0}) & i < -n . \end{cases}$$

Then clearly $\Sigma^n X = \{Y_i, \lambda_i: Y_i \rightarrow Q Y_{i+1}\}$ is an Q-spectrum. Moreover $\Sigma^n X$ represents the *n*-fold suspension of X. The following is easily proved:

Lemma 2.1. (1) Let X and X' be Ω -spectra. Then X is equi-

valent to X' if and only if $\Sigma^n X$ is equivalent to $\Sigma^n X'$ for some n.

(2) $H^*(\Sigma^n X; F_p)$ is isomorphic to $\Sigma^n H^*(X; F_p)$ as a module over A_p where the graded module $\Sigma^n M$ is defined by regarding M so that an element of degree k in M appears as an element of degree k+n in $\Sigma^n M$.

 $(3) \quad \boldsymbol{\Sigma}^{n}(\boldsymbol{\Sigma}^{m}\boldsymbol{X}) = \boldsymbol{\Sigma}^{n+m}\boldsymbol{X}.$

§ 3. Some Postnikov Invariants

In this section p=2 and so $A=A_2$ and $\Lambda=\mathbb{Z}_{(2)}$ or \mathbb{Z}_2 . A generator of $H^n(EM(\Lambda, n); \Lambda)$ (resp. $H^n(EM(\mathbb{Z}/2, n); \Lambda)$) is denoted by u_n (resp. v_n) and the mod 2 reduction of u_n (resp. v_n) is denoted by u'_n (resp. v'_n).

First we prove the following:

Lemma 3.1. Let M be a connected Ω -spectrum such that

 $M_0 \simeq \mathcal{Q}^6 BO(8,\infty)_A (= \mathcal{Q}Sp_A),$

then there is an equivalence of spectra

 $M \simeq \Sigma^{-6} bo(8,\infty)_A$.

Proof. Consider the connected spectrum $M' = \Sigma^{-2}M(3, \infty)$, then $M'_{0} \underset{\overline{H}}{\simeq} BO_A$. So $M' \simeq bo_A$ by Theorem 1.2 of Adams-Priddy [1]. In particular

$$H^*(\mathbf{M}'; \mathbf{F}_2) = H^*(\mathbf{bo}; \mathbf{F}_2) = \Sigma^1(A/(ASq^2)).$$

Consider the two stage Postnikov system

$$M(2,3) \rightarrow EM(\Lambda,2) \xrightarrow{k} EM(Z/2,4).$$

Then $k \in H^4(\mathbb{E}M(\Lambda, 2); \mathbb{F}_2) = \mathbb{Z}/2$, which is generated by $Sq^2u'_2$. If k=0, then $M(2,3)_0 \simeq K(\Lambda,2) \times K(\mathbb{Z}/2,3)$ and so $H^3(M(2,3)_0; \mathbb{F}_2) \neq 0$. On the other hand since the natural map $H^3(M(2,3)_0; \mathbb{F}_2) \to H^3(M_0; \mathbb{F}_2)$ is a monomorphism and $H^3(M_0; \mathbb{F}_2) = H^3(\Omega Sp; \mathbb{F}_2) = 0$, it follows that $H^3(M(2,3)_0; \mathbb{F}_2) = 0$. So $k \neq 0$. Then using the A-module exact sequence Akira Kono

$$0 \to \Sigma^4(A/(ASq^2)) \xrightarrow{} \Sigma^2(A/(ASq^1)) \to \Sigma^2(A/(ASq^1 + ASq^2)) \to 0,$$

we have

$$H^*(\boldsymbol{M}; \boldsymbol{F}_2) = \Sigma^2 \left(A / \left(A S q^1 + A S q^2 \right) \right).$$

So by Theorem 1.1 of Adams-Priddy [1], we have $\Sigma^{\circ}M \simeq bo(8, \infty)_{A}$ and so $M \simeq \Sigma^{-\circ}bo(8, \infty)_{A}$.

Next we prove the following:

Lemma 3.2. Let N be a connected Ω -spectrum such that

 $N_0 \simeq \Omega^2 BO(4, \infty)_A (= \Omega Spin_A),$

then there is an equivalence of spectra

 $N \simeq \boldsymbol{\Sigma}^{-2} \boldsymbol{bo} (4, \infty)_{\boldsymbol{\lambda}}$.

Proof. Consider the connected Ω -spectrum $N' = \Sigma^{-4}N(6, \infty)$, then $N'_0 \simeq \Omega^6 BO(8, \infty)_A$. So $N' \simeq \Sigma^{-6} bo(8, \infty)_A$ by Lemma 3.1. In particular,

 $H^*(N'; F_2) = \sum^2 (A/(ASq^1 + ASq^2)).$

Consider the two stage Postnikov system

$$N(2, 6) \rightarrow EM(\Lambda, 2) \xrightarrow{k'} EM(\Lambda, 7).$$

Then $k' \in H^{r}(EM(\Lambda, 2); \Lambda) = \mathbb{Z}/2$. Note that since $H^{r}(EM(\Lambda, 2); F_{2})$ $(=\mathbb{Z}/2)$ is generated by $Sq^{2}Sq^{3}u'_{2}, k' \neq 0$ if and only if $k'^{*}(u'_{7}) = Sq^{2}Sq^{3}u'_{2}$. If k'=0, then as an infinite loop space $N(2, 6)_{0} \simeq K(\Lambda, 2) \times K(\Lambda, 6)$. So as an algebra over the Dyer-Lashof algebra,

$$H_*(N(2,6)_0; F_2) = H_*(K(\Lambda,2); F_2) \otimes H_*(K(\Lambda,6); F_2).$$

In particular $Q^4 x'_2 = 0$, where x'_2 is a generator of $H_2(H(2, 6)_0; F_2)$. On the other hand the natural map $H_*(N_0; F_2) \rightarrow H_*(N(2, 6)_0; F_2)$ is isomorphic for $*\leq 6$ and commutes with the Dyer-Lashof operations. But by Theorem 6.9 of Nagata [2], $Q^4 x_2 \neq 0$, where x_2 is a generator of $H_2(N_0; F_2)$. So $k' \neq 0$. Then using the A-module exact sequence

$$0 \to \Sigma^{7} (A/ASq^{1} + ASq^{2})) \xrightarrow{Sq^{2}Sq^{3}} \Sigma^{2} (A/(ASq^{1}))$$
$$\to \Sigma^{2} (A/(ASq^{1} + ASq^{2}Sq^{3})) \to 0$$

472

we have

$$H^*(N; \mathbb{F}_2) = \Sigma^2 \left(A / \left(A S q^1 + A S q^2 S q^3 \right) \right).$$

So by Theorem 1.1 of Adams-Priddy [1], we have $\Sigma^2 N \simeq bo(4, \infty)_A$ and so $N \simeq \Sigma^{-2} bo(4, \infty)_A$.

As a corollary of the above lemmas, we can easily show

Corollary 3.3. Let X be a connected Ω -spectrum such that

 $X_0 \simeq BO(4, \infty)_A$ (resp. $X_0 \simeq BO(8, \infty)_A$),

then there is an equivalence of spectra

 $X \simeq bo(4, \infty)_{A}$ (resp. $X \simeq bo(8, \infty)_{A}$).

Proof. If $X_0 \simeq BO(4, \infty)_A$, then $(\Sigma^{-2}X)_0 \simeq BO(4, \infty)_A$. So by Lemma 3.2, $\Sigma^{-2}X \simeq \Sigma^{-2}bo(4, \infty)_A$. The case $X_0 \simeq BO(8, \infty)_A$ is similar.

Using Theorem 6.9 of Nagata [2], we can prove the following by a quite similar method to Lemma 3.2:

Lemma 3.4. Let X be a connected Ω -spectrum such that $\chi_0 \simeq \Omega BO(2, \infty)_A (= \Omega BSO_A = SO_A),$

then there is an equivalence of spectra

$$X \simeq \Sigma^{-1} bo(2,\infty)_{\Lambda}$$
.

§4. Proof of the Main Theorem

In this section the main theorem, Theorem 1.1 is proved. By the Bott periodicity theorem, $\Omega^{8}BO(n+8,\infty)\simeq BO(n,\infty)$. Then we can easily show

Lemma 4.1. Let n, n' and n'' be non-negative integers such that n = 8n' + n''. Then $\Sigma^{-8n'} bo(n, \infty) \simeq bo(n'', \infty)$.

First we assume that p is an odd prime. Then $\Omega^4 BO(5,\infty)_4 \simeq$

 $BO(1, \infty)_{4}$ and

$$BO(1,\infty)_{\mathtt{A}} = BO(2,\infty)_{\mathtt{A}} = BO(3,\infty)_{\mathtt{A}} = BO(4,\infty)_{\mathtt{A}}.$$

Put $d=4m+m'(1 \le m' \le 4)$. Let X be a connected Q-spectrum such that $X_0 \simeq BO(d, \infty)_A$. Put $X' = \Sigma^{-4m} X$. Then $X'_0 \simeq BO(m', \infty)_A \simeq BO_A$. So by Theorem 1.2 of Adams-Priddy [1], we have $X' \simeq bo_A (\simeq bo(m', \infty)_A$. Then $X \simeq \Sigma^{4m} bo(m', \infty)_A \simeq bo(d, \infty)_A$.

Next we assume p=2. Put d=8n+n' $(1 \le n' \le 8)$. Note that $BO(1,\infty) = BO$, $BO(2,\infty) = BSO$, $BO(3,\infty) = BO(4,\infty) = BSpin$ and $BO(5,\infty) = BO(6,\infty) = BO(7,\infty) = BO(8,\infty)$. So Theorem 1.1 is true for $d\le 8$ by Theorem 1.2 of [1] and Corollary 3.3. We may assume that $n\ge 1$. Put $X' = \Sigma^{-8n}X$, then $X'_0 \underset{\overline{H}}{\simeq} BO(n',\infty)_A$. By Theorem 1.1 of [1] and Corollary 3.3, we have $X'\simeq bo(n',\infty)_A$. Then by Lemma 4.1, we have

$$X \simeq {\it \Sigma}^{_{8n}} {\it bo}\,(n',\infty)_{\scriptscriptstyle A} \simeq {\it bo}\,(d,\infty)_{\scriptscriptstyle A}$$
 .

For K_c we have

Theorem 4.2. Let X be a connected Ω -spectrum. Suppose given a homotopy equivalence of spaces

$$X_0 \simeq BU(d, \infty)_4$$
.

If $d \ge 3$, then there is an equivalence of spectra

$$X \simeq bu(d, \infty)_{\Lambda}$$
.

References

- [1] Adams, J. F., and Priddy, S., Uniqueness of BSO, Math. Proc. Camb. Phil. Soc., 80 (1976), 475-509.
- [2] Nagata, M., On the uniqueness of Dyer-Lashof operations on the Bott periodicity spaces, Publ. RIMS, Kyoto Univ., 16 (1980), 499-511.

474