Actions on Invariant Spheres around Isolated Fixed Points of Actions of Cyclic Groups

Ву

Masayoshi KAMATA*

§ 1. Introduction

Fix a prime number p and let Z_p be a cyclic group of order p. We consider a pair (M,ϕ) consisting of a compact simply connected almost complex manifold M without boundary and a smooth Z_p -action ϕ : $Z_p \times M \to M$ preserving the almost complex structure of M. We suppose that M is given an invariant Riemannian metric. If $a \in M$ is an isolated fixed point, then the induced action of Z_p on the tangent space at a gives a complex Z_p -module V_a which has no trivial irreducible factor. Let ξ : $EZ_p \to BZ_p$ be a universal principal Z_p -bundle and let $\xi(V_a): EZ_p \times_{Z_p} V_a \to BZ_p$ be the V_a -bundle associated with ξ . If a and b are isolated fixed points, we compare the cobordism Euler classes $e(\xi(V_a))$ and $e(\xi(V_b))$ which belong to the complex cobordism group $MU^*(BZ_p)$ of the classifying space BZ_p of Z_p . Let F_U be the universal formal group law over MU^* , and write

$$x+_F y=F_U(x, y)$$
.

For a positive integer n, $[n]_F(x)$ is inductively defined by

$$\lceil 1 \rceil_F(x) = x$$

and

$$[n]_F(x) = [n-1]_F(x) +_F x$$
.

It is known that the cobordism ring $MU^*(BZ_p)$ is formal power series algebra $MU^*[[x]]$ over MU^* modulo an ideal generated by $[p]_F(x)$

Communicated by N. Shimada, August 3, 1981.

^{*} Department of Mathematics, College of General Education, Kyushu University, Fukuoka 810, Japan.

[15]. Let us write

$$[p]_F(x) = px + a_1^{(p)}x^2 + a_2^{(p)}x^3 + \cdots,$$

where $a_i^{(p)} \in MU^{-2i}$, and

$$\langle p \rangle_F(x) = p + a_1^{(p)} x + a_2^{(p)} x^2 + \cdots$$

Let S denote the multiplicative set in $MU^*(BZ_p)$ consisting of cobordism Euler classes $e(\xi(V))$, V the non trivial complex Z_p -module, and let λ : $MU^*(BZ_p) \rightarrow S^{-1}MU^*(BZ_p)$ be the canonical map [9]. In this paper we show the following

Theorem A. Assume that $H^i(BZ_p; \{\pi_i(M)\}) \cong 0$ for $1 \leq i \leq 2n$ -1 (cf. [4, p. 355]), and $\lambda(\alpha) = e(\xi(V_a))/e(\xi(V_b))$. Then for any Landweber-Novikov operation S_{ω}^v , $\omega \neq (0)$ [14], [17], $S_{\omega}^v(\alpha)$ belongs to an ideal generated by x^n and $\langle p \rangle_F(x)$ in $MU^*(BZ_p)$, where $x = e(\xi(L))$ and L is the canonical one dimensional complex Z_p -module with an action of Z_p given by multiplication by $\rho = \exp(2\pi i/p)$ on C^1 .

The action of Z_p on M induces a natural action on a unit sphere $S(V_a)$ in a tangent space V_a at an isolated fixed point a which is equivalent to the action of Z_p on a sphere around the fixed point. The action $\phi_a \colon Z_p \times S(V_a) \to S(V_a)$ determines a weakly complex bordism class $[S(V_a), \phi_a]$ of the bordism group $MU_*(Z_p)$ of fixed point free Z_p actions preserving a weakly complex structure, which is generated as an MU_* -module by the set of Z_p -manifolds $\{[S^{2^{n+1}}, \widetilde{\phi}]\}$, where the action $\widetilde{\phi}$ of Z_p on a sphere $S^{2^{n+1}} \subset C^{n+1}$ is defined by $\widetilde{\phi}(g, z) = \rho z$, g a generator of Z_p [6], [11]. Kasparov in [13] showed that the weakly complex bordism class $[S(V_a), \phi_a]$ is computable. By making use the Kasparov theorem and Theorem A, we obtain the following

Theorem B. Assume that $H^i(BZ_p; \{\pi_i(M)\}) \cong 0$ for $1 \leq i \leq 2n-1$. If $V_a = L^{l_1} \oplus \cdots \oplus L^{l_k}$ and $V_b = L^{m_1} \oplus \cdots \oplus L^{m_k}$, then

$$\begin{split} l_1 \cdots l_k \big[S(V_a), \phi_a \big] - m_1 \cdots m_k \big[S(V_b), \phi_b \big] \\ = & \widetilde{\mu}_1 \big[S^{2k-3}, \widetilde{\phi} \big] + \widetilde{\mu}_2 \big[S^{2k-5}, \widetilde{\phi} \big] + \cdots + \widetilde{\mu}_{k-1} \big[S^1, \widetilde{\phi} \big] \end{split}$$

where $\tilde{\mu}_1, \tilde{\mu}_2, \dots, \tilde{\mu}_{n-1}$ belong to an ideal generated by $p, a_1^{(p)}, a_2^{(p)}, \dots$

 $a_{l}^{(p)}, \cdots in MU^*$.

In Section 2 we investigate S^1 -actions on a product space $S^{2n+1} \times S^{2m+1}$ of spheres and equivariant maps between the S^1 -spaces. In Section 3 the Umkehr homomorphism of some map between the orbit spaces $(S^{2n+1} \times S^{2m+1})/S^1$ is computed to give a slightly different proof of the Kasparov theorem [13] in Section 4. In Section 5 we discuss about relations among cobordism characteristic classes [7] of $\xi(V_a)$ and $\xi(V_b)$ and give a proof of Theorem A. Section 6 is devoted to prove Theorem B. In Section 7 we study the isolated fixed point set of Z_3 -actions.

Bredon in Section 10 of Chapter VI of [4] compared representations at two fixed points of a smooth action, by using equivariant K-theory.

$\S~2.~$ On Orbit Spaces of $S^{2m+1} \times S^{2n+1}$ with Respect to S^1

We define
$$\phi(l_0, l_1, \dots, l_n): S^1 \times S^{2m+1} \times S^{2n+1} \to S^{2m+1} \times S^{2n+1}$$
 by
$$\phi(l_0, l_1, \dots, l_n) (z, (u_0, u_1, \dots, u_m), (v_0, v_1, \dots, v_n))$$
$$= ((zu_0, zu_1, \dots, zu_m), (z^{l_0}v_0, z^{l_1}v_1, \dots, z^{l_n}v_n)).$$

This is differentiable and the orbit space $(S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n)$ is an orientable smooth manifold. Let S^1 act on $S^{2m+1} \times C^1$ by

$$z \cdot ((u_0, \dots, u_m), v) = ((zu_0, \dots, zu_m), zv).$$

The orbit space induces a complex line bundle over the complex projective space

$$\pi: S^{2m+1} \times_{S^1} C^1 \to S^{2m+1}/S^1 = CP^m, \ \pi([u, v]) = [u]$$

which is denoted by η . The total space $S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})$ of the sphere bundle associated with $\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}$ is diffeomorphic to $(S^{2m+1} \times S^{2n+1}) / \phi(l_0, \cdots, l_n)$. The structure of the integral cohomology group $H^*(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}))$ is determined as follows in [18].

Proposition 2.1. (1) If $m \leq n$, then $H^{2j}(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})) \cong H^{2j}(CP^m)$ and $H^{2j-1}(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})) \cong H^{2j-2(n+1)}(CP^m)$.

(2) If
$$m > n$$
, then

$$H^{2j}(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})) \cong \left\{egin{array}{ll} 0, & j{>}m \ Z/(l_0 \cdots l_n), & n+1{\leq}j{\leq}m \ H^{2j}(CP^m), & j{\leq}n \end{array}
ight.$$

$$H^{2j-1}(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})) \cong \left\{egin{array}{ll} 0, & 0 {\leq} j {\leq} m \ & H^{2j-2(n+1)}(CP^m), & m+1 {\leq} j \end{array}
ight.$$

The map $f: S^{2m+1} \times S^{2n+1} \rightarrow S^{2m+1} \times S^{2n+1}$ defined by

$$f((u_0, \dots, u_m), (v_0, \dots, v_n)) = ((u_0, \dots, u_m), \frac{1}{r}(v_0^{l_0}, \dots, v_n^{l_n})),$$

$$r = \sqrt{|v_0|^{2l_0} + \cdots + |v_n|^{2l_n}}$$
,

induces a map of the orbit spaces

$$\tilde{f}: (S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n).$$

Denote by [M] the fundamental class of a compact orientable manifold M. Then we have

Proposition 2.2.
$$\tilde{f}_*[(S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1)]$$

= $l_0 l_1 \dots l_n [(S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n)].$

Proof. \tilde{f} is a fiber preserving map of sphere bundles $S((n+1)\eta)$ and $S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})$, as $\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}$ is isomorphic to a bundle of an orbit space of an S^1 -action on $S^{2m+1} \times C^{n+1}$ defined by

$$z \cdot (u, (v_0, \dots, v_n)) = (zu, (z^{l_0}v_0, \dots, z^{l_n}v_n)).$$

Let f_1 be a fiber preserving map from $(n+1)\eta$ to $\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}$ defined by

$$f_1(u, (v_0, \dots, v_n)) = (u, (v_0^{l_0}, \dots, v_n^{l_n}))$$

which induces a map between the Thom complexes

$$\tilde{f}_1: T(1, \dots, 1) \rightarrow T(l_0, \dots, l_n),$$

where $T(l_0, \dots, l_n) = E(l_0, \dots, l_n) / \{E(l_0, \dots, l_n) \text{-the zero section}\}$, and $E(l_0, \dots, l_n)$ is the total space of $\eta^{l_0} \oplus \dots \oplus \eta^{l_n}$. $S(\eta^{l_0} \oplus \dots \oplus \eta^{l_n})$ and $E(l_0, \dots, l_n) - \{\text{the zero section}\}$ are of the same homotopy type, and the following diagram is homotopy commutative

$$E(1, \dots, 1) - \{the \ zero \ section\} \xrightarrow{f_1} E(l_0, \dots, l_n) - \{the \ zero \ section\}$$

$$\cup \Big) \simeq \qquad \qquad \cup \Big) \simeq$$

$$S((n+1)\eta) \xrightarrow{\tilde{f}} S(\eta^{l_0} \oplus \dots \oplus \eta^{l_n}).$$

Let $t(l_0, \dots, l_n)$ be the Thom class of $\eta^{l_0} \oplus \dots \oplus \eta^{l_n}$. Then we have $\tilde{f}_1^*(t(l_0, \dots, l_n)) = l_0 l_1 \dots l_n t(1, \dots, 1)$. Since the coboundary homomorphism $\delta \colon H^{2m+2n+1}(S(\eta^{l_0} \oplus \dots \oplus \eta^{l_n})) \to \tilde{H}^{2m+2n+2}(T(l_0, \dots, l_n))$ is isomorphic, the fundamental class of $(S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n)$ is the dual class of $\delta^{-1}\{\pi^*([CP^m]^*) \cup t(l_0, \dots, l_n)\}$, where $\pi \colon E(l_0, \dots, l_n) \to CP^m$ is the projection and $[CP^m]^*$ is the dual of $[CP^m]$. Then the assertion follows.

Suppose that M^m and N^n are orientable manifolds. A continuous map $h\colon M^m{\to}N^n$ determines the Umkehr homomorphism

$$h_!: H^k(M^m) \stackrel{D}{\cong} H_{m-k}(M^m) \stackrel{h_*}{\longrightarrow} H_{m-k}(N^n) \stackrel{D^{-1}}{\cong} H^{n-m+k}(N^n)$$

where D is the Poincare duality.

Proposition 2.3. Assume that g is an embedding of $(S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1)$ into S^N for a large N. Then the Umkehr homomorphism of

$$F = \tilde{f} \times g: (S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n) \times S^N,$$

 $\tilde{f} \times g(x) = (\tilde{f}(x), g(x)), \text{ satisfies}$

$$F_{!}(\tilde{f}^{*}(y)) = l_{0}\cdots l_{n}y \times [S^{N}]^{*}$$

where $[S^N]^*$ is the dual of $[S^N]$.

Proof. The Umkehr homomorphism satisfies $F_!(F^*(a) \cup b) = a \cup F_!(b)$ [8]. We calculate using Proposition 2.2,

$$\begin{split} F_{1}(\tilde{f}^{*}(y)) &= (y \times 1) \cup F_{1}(1) \\ &= (y \times 1) \cup D^{-1}(\tilde{f} \times g)_{*} [(S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1)] \\ &= (y \times 1) \cup D^{-1}((l_{0} \dots l_{n}) [(S^{2m+1} \times S^{2n+1})/\phi(l_{0}, \dots, l_{n})] \times 1) \\ &= (y \times 1) \cup l_{0} \dots l_{n} (1 \times [S^{N}]^{*}). \end{split}$$
 O.E.D.

If $m \le n$, then we get a short exact sequence

$$0 \to MU^*(CP^n) \xrightarrow{\pi^*} MU^*(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}))$$
$$\xrightarrow{\delta} \widetilde{MU}^*(T(l_0, \cdots, l_n)) \to 0$$

and $\delta \colon MU^{2n+1}(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})) \to \widetilde{MU}^{2n+2}(T(l_0, \dots, l_n))$ is isomorphic. In this case we may determine the ring structure of $MU^*((S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n))$ (cf. [18]).

Proposition 2.4. If $m \leq n$, then $MU^*((S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n))$ is $MU^*[x, y]/(x^{m+1}, y^2)$ where x is the first cobordism Chern class $c_U^1(\pi^!\eta)$ and y is an element of $MU^{2n+1}(S(\eta^{l_0} \oplus \dots \oplus \eta^{l_n}))$ such that δy is the Thom class of $\eta^{l_0} \oplus \dots \oplus \eta^{l_n}$.

Proof. $MU^*(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}))$ is isomorphic to the direct sum of $MU^*(CP^m)$ and $\widetilde{MU}^*(T(l_0, \cdots, l_n))$. We have

$$(-1)^{\operatorname{deg} a} \delta(\pi^* a \cup b) = \pi^* a \cup \delta b$$

(cf. Chapter 13 of [20]), and $MU^*(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}))$ is a free MU^* -module generated by $\{(\pi^*x)^i, i=1, 2, \cdots, m\}$ and $\{(\pi^*x)^i \cup y, i=1, 2, \cdots, m\}$. It follows from Proposition 2.1 that $MU^{2(2n+1)}(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}))$ is zero. Q.E.D.

\S 3. On the Umkehr Homomorphism of \widetilde{f} with the MU^* -Orientation

For any set $\omega=(i_1,\cdots,i_r)$ of positive integers, let $\sum t_1^{i_1}\cdots t_r^{i_r}$ be the symmetric polynomial of variable $t_j,\ 1\leq j\leq n$ to be the smallest symmetric polynomial containing the monomial $t_1^{i_1}\cdots t_r^{i_r}$, which is expressible uniquely as a polynomial with integral coefficients in the elementary symmetric polynomials $\mathfrak{S}_1, \mathfrak{S}_2, \cdots, \mathfrak{S}_n$ of the t's and write

$$P_{\omega}(\mathfrak{S}_1,\mathfrak{S}_2,\cdots,\mathfrak{S}_n)=\sum t_1^{i_1}\cdots t_r^{i_r}$$
.

For an *n*-dimensional complex vector bundle ζ over X, we define

$$c_{\omega}^{H}(\zeta) = P_{\omega}(c_{H}^{1}(\zeta), c_{H}^{2}(\zeta), \cdots, c_{H}^{n}(\zeta))$$

and $c_{(0,\dots,0)}^H(\zeta)=1$, where $c_H^i(\zeta)$ are the ordinary cohomology Chern classes.

Suppose that $x \in MU^k(X)$ is represented by

$$g: S^{2N-k}X^+ \to MU(N)$$
.

We define

$$S^H_\omega(x) = \sigma^{k-2N} g^* \Phi c^H_\omega(\gamma_N),$$

where \emptyset : $H^*(BU(N)) \to \widetilde{H}^*(MU(N))$ is the Thom isomorphism, σ^{k-2N} denotes (k-2N)-fold iterated suspension isomorphism and γ_N is the N-dimensional universal complex vector bundle. The ring $H_*(MU)$ is isomorphic to $Z[t_1, t_2, \cdots]$. Let

$$\omega = (\underbrace{1, \cdots, 1}_{i_1}, \underbrace{2, \cdots, 2}_{i_2}, \cdots, \underbrace{k, \cdots, k}_{i_k})$$

and we define

$$|\omega| = i_1 + 2i_2 + \dots + ki_k$$

and

$$t^{\omega}=t_1^{i_1}t_2^{i_2}\cdots t_k^{i_k}.$$

There exists a multiplicative natural transformation

$$\beta_H: MU^*(X) \rightarrow (H \land MU)^*(X) = H^*(X) \lceil [t_1, t_2, \cdots] \rceil$$

defined by

$$\beta_H(x) = \sum_{\omega} s_{\omega}^H(x) t^{\omega}$$

which is called Boardman map (cf. [1]). β_H : $MU^*(S^0) \to H_*(MU)$ is the Hurewicz homomorphism which is injective [16]. Given $x \in MU^*(X)$ with $x = [g \colon S^{2N-k}X^+ \to MU(N)]$, the Thom homomorphism $\mu \colon MU^k(X) \to H^k(X)$ is defined by $\mu(x) = \sigma^{k-2N}g^*\Phi(1) = S^H_{(0,\dots,0)}(x)$.

Proposition 3.1. Suppose that a finite CW-complex X has no torsion in its integral cohomology, then the Boardman map β_H is injective.

Proof. Since the cohomology of X has no torsion, the Thom homomorphism is surjective. Suppose that $y_1^{(n)}, y_2^{(n)}, \dots, y_{i_n}^{(n)}$ are the basis of $H^n(X)$, then we can take $u_j^{(n)}$ with $\mu(u_j^{(n)}) = y_j^{(n)}$. The correspondence

 $\sum y_j^{(n)} \otimes b_j^{(n)} \to \sum b_j^{(n)} u_j^{(n)}$ yields an isomorphism $H^*(X) \otimes MU^* \cong MU^*(X)$ (cf. [5]). We see

$$\beta_H(\sum b_j^{(n)}u_j^{(n)}) = \sum \beta_H(b_j^{(n)}) \{y_j^{(n)} + \sum_{|\omega| > 0} S_{\omega}^H(u_j^{(n)})t^{\omega}\}.$$

Let $\beta_H(\sum b_j^{(n)}u_j^{(n)})=0$, and we can derive inductively that $\beta_H(b_j^{(n)})=0$ and $b_j^{(n)}=0$. Q.E.D.

For an *n*-dimensional complex vector bundle ζ over X, consider a formal power series of t's:

$$c_t^H(\zeta) = \sum_{\omega} c_{\omega}^H(\zeta) t^{\omega}$$
.

This satisfies the naturality and $c_t^H(\zeta_1 \oplus \zeta_2) = c_t^H(\zeta_1) c_t^H(\zeta_2)$. Suppose that X and M are weakly almost complex manifolds. An embedding $h: M \to X$ with the normal vector bundle ν equipped with the complex structure induces the Umkehr homomorphisms:

$$h_!: MU^*(M) \rightarrow MU^*(X)$$

and

$$h_!^H: H^*(M)[[t_1, t_2, \cdots]] \to H^*(X)[[t_1, t_2, \cdots]].$$

Now we recall the following (cf. [19])

Theorem 3.2.
$$\beta_H(h_!(1)) = h_!^H(c_t^H(\nu)).$$

Proof. A composition of a collapsing map c of the Thom construction and a classifying map g_{ν} for ν

$$\widetilde{g}_{\nu}: X \xrightarrow{c} T(\nu) \xrightarrow{g_{\nu}} MU(k)$$

represents $h_1(1) \in MU^*(X)$. By making use of the following commutative diagram:

$$H_{*}(X) \stackrel{\cong}{\longleftarrow} H^{*}(X) \stackrel{c^{*}}{\longleftarrow} \widetilde{H}^{*}(T(\nu))$$

$$\uparrow h_{*} \qquad \qquad \qquad \cong \uparrow \emptyset$$

$$H_{*}(M) \qquad \stackrel{\cong}{\longleftarrow} \qquad H^{*}(M)$$

we calculate

$$eta_H(h_!(1)) = \sum_{\omega} S^H_{\omega} [g_{
u}c] t^{\omega} \ = \sum_{\omega} c^* \mathcal{O}_H c^H_{\omega}(
u) t^{\omega} \ = h^H_! \left(\sum_{\omega} c^H_{\omega}(
u) t^{\omega}\right).$$
 Q.E.D.

 $MU^*(BU(1))$ is isomorphic to $MU^*[[x_{MU}]]$, $x_{MU}=c_U^1(\gamma_1)$. The first cobordism Chern class $c_U^1(\gamma_1^k)$ of the k-fold tensor product of γ_1 is described as

$$egin{aligned} c_U^1(\gamma_1^k) &= \llbracket k
bracket_F(x_{MU}) \ &= k x_{MU} + a_1^{(k)} x_{MU}^2 + a_2^{(k)} x_{MU}^3 + \cdots \,. \end{aligned}$$

Let $g: X \rightarrow BU(1)$ be a classifying map for a complex line bundle ζ over X. We see

$$\langle k \rangle_F (c_U^1(\zeta)) = g^* \{ k + a_1^{(k)} x_{MU} + a_2^{(k)} x_{MU}^2 + \cdots \}.$$

The map \tilde{f} : $(S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n)$ defined by

$$\begin{split} \tilde{f}([(u_0, \dots, u_m), (v_0, \dots, v_n)] \\ &= \left[(u_0, \dots, u_m), \frac{1}{r} (v_0^{l_0}, \dots, v_n^{l_n}) \right], \\ r &= \sqrt{|v_0|^{2l_0} + \dots + |v_n|^{2l_n}}. \end{split}$$

and an embedding $h: (S^{2m+1} \times S^{2n+1})/\phi(1, \cdots, 1) \to S^{2N}$ for a large N determine a bordism class $[(S^{2m+1} \times S^{2n+1})/\phi(1, \cdots, 1), \tilde{f} \times h]$ of $MU_*((S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n) \times S^{2N})$. The projection $\pi: (S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n) \to CP^m$ is defined by $\pi[u, v] = [u]$. Then we have

Theorem 3.3. Suppose that $m \leq n$. Then it follows that $[(S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1), \tilde{f} \times h]$ $= D_{MN}\pi^*(\langle l_n \rangle_F(c_H^1(\eta)) \langle l_1 \rangle_F(c_H^1(\eta)) \dots \langle l_n \rangle_F(c_H^1(\eta))) \times [P \subset S^{2N}]$

where $P = \{a \text{ point}\}\$ and D_{MU} is the Atiyah-Poincare isomorphism [3].

Proof. If $m \leq n$, then $H^*((S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n))$ has no torsion from Propositions 2.1 and 3.1 implies that

$$\beta_{H}: MU^{*}((S^{2m+1} \times S^{2n+1})/\phi(l_{0}, \dots, l_{n}) \times S^{2N})$$

$$\rightarrow H^{*}((S^{2m+1} \times S^{2n+1})/\phi(l_{0}, \dots, l_{n}) \times S^{2N}) [t_{1}, t_{2}, \dots]$$

is injective. The tangent bundle of $(S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n)$ is stably isomorphic to $\pi^!(\tau(CP^m) \oplus \eta^{l_0} \oplus \dots \oplus \eta^{l_n})$ where η is the Hopf bundle over CP^m and $\tau(M)$ denotes the tangent bundle of M [18]. The normal vector bundle ν for $\tilde{f} \times h$ satisfies that $\nu \oplus \tau((S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1))$ is isomorphic to $\tilde{f}^!\tau((S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n)) \oplus 2N\varepsilon$, where ε is a trivial real line bundle. It follows directly from the definition that

$$c_t^H(\eta) = 1 + xt_1 + x^2t_2 + \dots + x^mt_m, \quad x = c_H^1(\eta)$$

and

$$c_t^H(\mathbf{y}) = \pi^* \left\{ rac{c_t^H(\mathbf{y}^{l_0}) \cdots c_t^H(\mathbf{y}^{l_n})}{\left\{c_t^H(\mathbf{y})
ight\}^{n+1}}
ight\},$$

since the following diagram is commutative

$$(S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1) \xrightarrow{\tilde{f}} (S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n)$$

$$\pi \xrightarrow{\Gamma} \pi$$

$$CP^m$$

By using Theorem 3.2 and Proposition 2.3 we have

$$\beta_{H}((\tilde{f} \times h)_{!}(1)) = (\tilde{f} \times h)_{!}^{H} c_{t}^{H}(\nu)$$

$$= \pi^{*} \left\{ \frac{l_{0} \cdots l_{n} c_{t}^{H}(\eta^{l_{0}}) \cdots c_{t}^{H}(\eta^{l_{n}})}{\left\{c_{t}^{H}(\eta)\right\}^{n+1}} \right\} \times [S^{2N}]^{*}.$$

On the other hand, we see that

$$\beta_{H}(c_{U}^{1}(\eta^{k})) = c_{H}^{1}(\eta^{k}) c_{t}^{H}(\eta^{k}) = k c_{H}^{1}(\eta) c_{t}^{H}(\eta^{k})$$

and

$$\beta_H(c_U^1(\eta^k)) = \beta_H(\langle k \rangle_F(c_U^1(\eta)) \cdot c_U^1(\eta)) = \beta_H(\langle k \rangle_F(c_U^1(\eta))) \beta_H(c_U^1(\eta)).$$

Therefore we have

$$eta_H(\langle k
angle_F(c_H^1(\eta))) = rac{kc_t^H(\eta^k)}{c_t^H(\eta)} \ .$$

Noting that β_H maps $D_{MU}^{-1}([P\subset S^{2N}])$ to $[S^{2N}]^*$, we obtain

$$\beta_{H}(\pi^{*}\{\langle l_{0}\rangle_{F}(c_{U}^{1}(\eta))\cdots\langle l_{n}\rangle_{F}(c_{U}^{1}(\eta))\}\times D_{MU}^{-1}([P\subset S^{2N}])$$

$$=\beta_{H}((\tilde{f}\times h)_{!}(1)).$$

This completes the proof.

§ 4. Another Proof of the Kasparov Theorem

Let l_0, l_1, \dots, l_n be integers prime to p. An action of Z_p on $S^{2m+1} \times S^{2n+1}$ is defined by

$$\phi_p(l_0, \dots, l_n) (g, ((u_0, \dots, u_m), (v_0, \dots, v_n)))$$

= $((\rho u_0, \dots, \rho u_m), (\rho^{l_0} v_0, \dots, \rho^{l_n} v_n)),$

where $\rho = \exp(2\pi i/p)$ and g is a generator of Z_p . The map $f: S^{2m+1} \times S^{2n+1} \to S^{2m+1} \times S^{2n+1}$ with

$$f((u_0, \dots, u_m), (v_0, \dots, v_n)) = \left((u_0, \dots, u_m), \frac{1}{r}(v_0^{l_0}, \dots, v_n^{l_n})\right),$$

$$r = \sqrt{|v_0|^{2l_0} + \dots + |v_n|^{2l_n}}.$$

induces a map of orbit spaces:

$$\tilde{f}_p: (S^{2m+1} \times S^{2n+1})/\phi_p(1, \dots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \dots, l_n).$$

Let $\pi: (S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \to (S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n)$ be the natural projection. We take up a differentiable embedding

$$h: (S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1) \to S^{2N}$$

for a sufficiently large N.

Proposition 4.1. In the following commutative diagram

$$(S^{2m+1} \times S^{2n+1})/\phi_p(1, \cdots, 1) \xrightarrow{\pi} (S^{2m+1} \times S^{2n+1})/\phi(1, \cdots, 1)$$

$$\downarrow \tilde{f}_p \times h\pi \qquad \qquad \downarrow \tilde{f} \times h$$

$$(S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \times S^{2N} \xrightarrow{\pi \times id} (S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n) \times S^{2N}$$

- (1) $\tilde{f}_p \times h\pi$ and $\tilde{f} \times h$ are embeddings
- (2) $\pi \times id$ is transverse regular to $(\tilde{f} \times h) ((S^{2m+1} \times S^{2n+1})/\phi(1, 0))$

$$(3) \quad (\pi \times id)^{-1} (\tilde{f} \times h) \left((S^{2m+1} \times S^{2n+1}) / \phi (1, \dots, 1) \right)$$
$$= (\tilde{f}_p \times h\pi) \left((S^{2m+1} \times S^{2n+1}) / \phi_p (1, \dots, 1) \right).$$

Proof. A tangent vector at a point of $(S^{2m+1} \times S^{2n+1})/\phi_p(1, \dots, 1)$ is described as $\vec{v} + \vec{w}$ with $\vec{v} \in \{the\ tangent\ space\ along\ the\ base\ space\ of\ the\ smooth\ fiber\ bundle\ \pi\colon (S^{2m+1} \times S^{2n+1})/\phi_p(1, \dots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi_p(1, \dots, 1)$ and $\vec{w} \in \{the\ tangent\ space\ along\ the\ fiber\}$. Let $d(\tilde{f}_p \times h\pi)(\vec{v} + \vec{w}) = 0$, then $d(\tilde{f} \times h)(\vec{v}) = 0$. Since $\tilde{f} \times h$ is an embedding, $\vec{v} = 0$. On the other hand, $d\tilde{f}_p$ is injective on each tangent space along the fiber, and $\vec{w} = 0$. This implies that $\tilde{f}_p \times h\pi$ is embedding, because $\tilde{f}_p \times h\pi$ is injective. The differentiable fibration $\pi \times id$ is transverse regular to any submanifold of $(S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n) \times S^{2N}$. Q.E.D.

Considering the geometric interpretation of the cobordism group [19], we can see that Proposition 4.1 implies

Proposition 4.2. The induced homomorphism $(\pi \times id)^*$: MU^* $((S^{2m+1} \times S^{2n+1})/\phi(l_0, \dots, l_n) \times S^{2N}) \to MU^*((S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \dots, l_n) \times S^{2N})$ sends $D_{MU}^{-1}[(S^{2m+1} \times S^{2n+1})/\phi(1, \dots, 1), \tilde{f} \times h]$ to $D_{MU}^{-1}[(S^{2m+1} \times S^{2n+1})/\phi_p(1, \dots, 1), \tilde{f}_p \times h\pi]$.

Let $\psi_p(l_0,\cdots,l_n): Z_p \times S^{2n+1} \to S^{2n+1}$ be an action of Z_p on S^{2n+1} defined by

$$\psi_p(l_0, \dots, l_n) (g, (v_0, \dots, v_n)) = (\rho^{l_0} v_0, \dots, \rho^{l_n} v_n).$$

We have a complex line bundle $\hat{\xi}(L)$: $S^{2n+1} \times_{\mathbb{Z}_p} C^1 \to S^{2n+1}/\psi_p(l_0, \dots, l_n)$ by taking the orbit space of an action of \mathbb{Z}_p on $S^{2n+1} \times C^1$

$$g \cdot ((u_0, \dots, u_n), z) = ((\rho^{l_0}u_0, \dots, \rho^{l_n}u_n), \rho z)$$

where g is a generator of Z_p . Denote by

$$\tilde{\xi}(L): S^{2n+1} \times_{Z_n} C^1 \to S^{2n+1}/Z_p$$

a line bundle over a standard lens space which is the orbit space of an action of Z_p on $S^{2n+1} \times C^1$ defined by $g \cdot ((u_0, \dots, u_n), z) = ((\rho u_0, \dots, \rho u_n), \rho z)$. The bordism class of $\tilde{f}_p \times \tilde{h} \colon (S^{2m+1} \times S^{2n+1})/\phi_p(1, \dots, 1) \to (S^{2m+1} \times S^{2n+1})$

 $S^{2n+1})/\phi_p(l_0,\cdots,l_n)\times S^{2N}$ with the embedding \tilde{h} for a large N is described as follows.

Proposition 4.3. Suppose that $m \le n$. Then

$$\begin{split} & \left[\left. (S^{2m+1} \times S^{2n+1}) / \phi_p(1, \, \cdots, \, 1) \,, \, \tilde{f}_p \times \tilde{h} \, \right] \\ &= D_{MU} \{ \pi^* \left\{ \langle l_0 \rangle_F (c_U^1(\tilde{\xi}(L)) \, \cdots \langle l_n \rangle_F (c_U^1(\tilde{\xi}(L))) \right\} \right\} \times \left[P \subset S^{2N} \right], \end{split}$$

in $MU_*((S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \dots, l_n))$, where $P = \{a \text{ point}\}\$ and $\pi \colon (S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \dots, l_n) \to S^{2m+1}/\psi_p(1, \dots, 1)$ is the natural projection.

Proof. Theorem 3.3 and Proposition 4.2 imply that

$$\begin{split} & \left[\left. (S^{2m+1} \times S^{2n+1}) / \phi_p(1, \, \cdots, \, 1) \right., \, \tilde{f}_p \times h\pi \right] \\ &= D_{MU} \left\{ \pi^* \left\{ \langle l_0 \rangle_F(c_U^1(\hat{\xi}(L))) \cdots \langle l_n \rangle_F(c_U^1(\tilde{\xi}(L))) \right\} \right\} \times \left[P \subset S^{2N} \right]. \end{split}$$

But $h\pi$ is homotopic to \tilde{h} , and the bordism class is homotopy invariant, and hence the proposition follows.

The map $f \colon S^{2n+1} \to S^{2n+1}$ with $f(v_0, \dots, v_n) = \frac{1}{r} (v_0^{l_0}, \dots, v_n^{l_n}), r$ the norm of $(v_0^{l_0}, \dots, v_n^{l_n}),$ induces a map of orbit spaces

$$\widehat{f}_p: S^{2n+1}/\psi_p(1, \dots, 1) \to S^{2n+1}/\psi_p(l_0, \dots, l_n).$$

Theorem 4.4. In $MU_*(S^{2n+1}/\psi_p(l_0, \dots, l_n))$, $[S^{2n+1}/\psi_p(1, \dots, 1), \hat{f}_p]$ = $D_{MU}\{\langle l_0 \rangle_F(c_U^1(\hat{\xi}(L))) \dots \langle l_n \rangle_F(c_U^1(\hat{\xi}(L)))\}$.

Proof. Define π_2 : $(S^{2n+1} \times S^{2n+1})/\phi_p(l_0, \dots, l_n) \to S^{2n+1}/\psi_p(l_0, \dots, l_n)$ by $\pi_2[u, v] = [v]$ and take a differentiable embedding $h: S^{2n+1}/\psi_p(l_0, \dots, l_n) \to S^{2N}$ for a sufficiently large N. In the commutative diagram

$$(S^{2n+1} \times S^{2n+1})/\phi_p(1, \cdots, 1) \xrightarrow{\pi_2} S^{2n+1}/\psi_p(1, \cdots, 1)$$

$$\downarrow \widetilde{f}_p \times h\pi_2 \qquad \qquad \downarrow \widehat{f}_p \times h$$

$$(S^{2n+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \times S^{2N} \xrightarrow{\pi_2 \times id} S^{2n+1}/\psi_p(l_0, \cdots, l_n) \times S^{2N}$$

 $\tilde{f}_p \times h\pi_2$ is an embedding and $\pi_2 \times id$ is transverse regular to $(\tilde{f}_p \times h)$ $(S^{2n+1}/\psi_p(1,\cdots,1))$. Thus it follows that

$$egin{aligned} &(\pi_2\! imes\!id)^* D_{MU}^{-1} ig[S^{2n+1}/\psi_p(1,\,\cdots,\,1)\,,\,\widehat{f}_p\! imes\!h ig] \ &= D_{MU}^{-1} ig[\, (S^{2n+1}\! imes\!S^{2n+1})/\phi_p(1,\,\cdots,\,1)\,,\,\widetilde{f}_p\! imes\!h\pi_2 ig]. \end{aligned}$$

We now note that the induced bundle $\pi^{l}\tilde{\xi}(L)$ by the projection π : $(S^{2n+1} \times S^{2n+1})/\phi_{p}(l_{0}, \dots, l_{n}) \to S^{2n+1}/\psi_{p}(1, \dots, 1)$ is isomorphic to the induced bundle $\pi_{2}^{l}\hat{\xi}(L)$ by the natural projection π_{2} : $(S^{2n+1} \times S^{2n+1})/\phi_{p}(l_{0}, \dots, l_{n}) \to S^{2n+1}/\psi_{p}(l_{0}, \dots, l_{n})$. Proposition 4.3 implies that

$$\begin{split} &(\pi_2 \times id) * D_{MU}^{-1}([S^{2n+1}/\psi_p(1,\cdots,1), \hat{f}_p \times h]) \\ &= &\pi_2^* \{ \langle l_0 \rangle_F(c_U^1(\hat{\xi}(L))) \cdots \langle l_n \rangle_F(c_U^1(\hat{\xi}(L))) \} \times D_{MU}^{-1} \lceil P \subset S^{2N} \rceil. \end{split}$$

Since $(\pi_2 \times id)^*$ is injective, it follows that

$$\begin{split} & \left[S^{2n+1}/\psi_p(1,\cdots,1), \, \widehat{f}_p \times h \right] \\ & = & D_{MU} \{ \langle l_0 \rangle_F(c_U^1(\hat{\xi}(L))) \cdots \langle l_n \rangle_F(c_U^1(\hat{\xi}(L))) \} \times \lceil P \subset S^{2N} \rceil. \end{split}$$

Applying the homomorphism $MU_*(S^{2n+1}/\psi_p(l_0,\cdots,l_n)\times S^{2N})\to MU_*(S^{2n+1}/\psi_p(l_0,\cdots,l_n))$ induced by the projection, we obtain the assertion.

Theorem 4.5. Let \hat{g}_p : $S^{2n+1}/\psi_p(l_0, \dots, l_n) \rightarrow S^{2n+1}/\psi_p(1, \dots, 1)$ be the map of orbit spaces defined by

$$\left[\widehat{g}_{p}\left[v_{0},\,\,\cdots,\,\,v_{n}
ight]=\left[rac{1}{r}\left(v_{0}^{l_{0}^{\prime}},\,\,\cdots,\,\,v_{n}^{l_{n}^{\prime}}
ight)
ight]$$

where $l_j l'_j \equiv 1$ modulo p and r is the norm of $(v_0^{l'_0}, \dots, v_n^{l'_n})$. Then

$$D_{MU}^{-1}[S^{2n+1}/\psi_p(l_0,\,\cdots,\,l_n)\,,\,\widehat{g}_p]$$

$$\equiv \langle l_0' \rangle_F([l_0]_F(x)) \cdots \langle l_n' \rangle_F([l_n]_F(x)) \quad \textit{modulo} \quad (\langle p \rangle_F(x))$$

where $\langle p \rangle_F(x) \in MU^*(S^{2n+1}/\psi_p(1,\dots,1))$ and $x = c_U^1(\tilde{\xi}(L))$.

Proof. Consider the natural injection $j: S^{2n+1}/\psi_p(1, \dots, 1) \to S^{2n+3}/\psi_p(1, \dots, 1)$. We can see that $j\hat{g}_p\hat{f}_p\simeq j$ and $\hat{g}_p^1(\tilde{\xi}(L))\cong \hat{\xi}(L)$. We note that the Atiyah-Poincare isomorphism $D_{MU}: MU^*(X) \to MU_*(X)$, X a weakly almost complex manifold, is given by

$$D_{MU}(z) = z \cap [X, identity].$$

We put $U = [S^{2n+1}/\psi_p(1, \dots, 1), identity] \in MU_{2n+1}(S^{2n+1}/\psi_p(1, \dots, 1))$ and $\widetilde{U} = [S^{2n+1}/\psi_p(l_0, \dots, l_n), identity] \in MU_{2n+1}(S^{2n+1}/\psi_p(l_0, \dots, l_n))$. Let us compute with Theorem 4.4

$$\begin{split} j_*(U) &= j_* \widehat{g}_{p*} \widehat{f}_{p*}(U) \\ &= j_* \widehat{g}_{p*} \{ \left[S^{2n+1} / \psi_p(1, \cdots, 1), \, \widehat{f}_p \right] \} \\ &= j_* \widehat{g}_{p*} \{ \widehat{g}_p^* \{ \langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \} \cap \widetilde{U} \} \\ &= j_* \{ \langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cap \widehat{g}_{p*}(\widetilde{U}) \} \\ &= j_* \{ \{ \langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cup D_{MU}^{-1}(\widehat{q}_{p*}(\widetilde{U})) \} \cap U \}. \end{split}$$

Hence $\langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cup D_{MU}^{-1}(\widehat{g}_{p*}(\widetilde{U})) - 1$ belongs to $D_{MU}^{-1}(j_*^{-1}(0))$. We recall the following commutative diagram:

where Φ_U is the Thom isomorphism and c is the canonical collapsing map. Since $\Phi_U^{-1}c^{*-1}(0)$ is generated by $\langle p \rangle_F(x)$ (cf. [12]), $\langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cup D_{MU}^{-1}(\widehat{g}_{p*}(\widetilde{U})) - 1$ belongs to the ideal generated by $\langle p \rangle_F(x)$ in $MU^*(S^{2n+1}/\psi_p(1,\dots,1))$. On the other hand, since $\{\widetilde{\xi}(L)^{l_j}\}^{l_j} \cong \widetilde{\xi}(L)$, we get

$$\{\langle l_j' \rangle_F([l_j]_F(x))\} [l_j]_F(x) = x$$

and it follows from Lemma 5 of [9] that $\{\langle l'_j \rangle_F([l_j]_F(x))\}\langle l_j \rangle_F(x) - 1$ belongs to an ideal generated by $\langle p \rangle_F(x)$. Then we have

$$\begin{split} D_{\mathit{MU}}^{-1}\widehat{g}_{p*}(\widetilde{U}) \\ &\equiv \{\langle l_0\rangle_F(x)\cdots\langle l_n\rangle_F(x)\}\,\{\langle l_0'\rangle_F([l_0]_F(x))\cdots\\ &\qquad \qquad \langle l_n'\rangle_F([l_n]_F(x))\cup D_{\mathit{MU}}^{-1}(\widehat{g}_{p*}(\widetilde{U}))\} \quad \textit{modulo } (\langle p\rangle_F(x)), \end{split}$$

and

$$D_{\mathit{MU}}^{-1}(\widehat{g}_{p*}(\widetilde{U})) = \langle l_0' \rangle_F([l_0]_F(x)) \cdots \langle l_0' \rangle_F([l_n]_F(x)) \quad \text{modulo} \quad (\langle p \rangle_F(x)).$$
Q.E.D.

Let us consider the composite

$$j_*: MU_*(S^{2n+1}/\psi_p(1, \dots, 1)) \xrightarrow{i_*} MU_*(BZ_p) \cong MU_*(Z_p)$$

where i_* is the MU_* -homomorphism induced from the natural injection and ϑ is the natural isomorphism given in [5]. Now we shall prove the Kasparov theorem.

Theorem 4.6. Assume that $l_i l'_j \equiv 1$ modulo p. Then

$$\begin{split} & \left[S^{2n+1}, \psi_p(l_0, \, \cdots, \, l_n) \, \right] \\ & = j_* D_{MU} \left\{ \langle l_0' \rangle_F([[l_0]_F(x)) \, \cdots \langle l_n' \rangle_F([[l_n]_F(x)) \right\}, \end{split}$$

where $x = c_U^1(\tilde{\xi}(L)) \in MU^2(S^{2n+1}/\psi_p(1, \dots, 1)).$

Proof. From Theorem 4.5 there exists $h(x) \in MU^2(S^{2n+1}/\psi_p(1, \cdots, 1))$ such that

$$\begin{split} D_{MU}^{-1} \big[S^{2n+1} / \psi_p(l_0, \, \cdots, \, l_n), \, \widehat{g}_p \big] \\ = & \langle l_0' \rangle_F([l_0]_F(x)) \cdots \langle l_n' \rangle_F([l_n]_F(x)) + \langle p \rangle_F(x) \, h(x) \end{split}$$

and

$$\begin{split} & \left[S^{2n+1}/\psi_p(l_0, \, \cdots, \, l_n) \,, \, \widehat{g}_p \right] \\ & = \left\{ \langle l_0' \rangle_F([l_0]_F(x)) \, \cdots \langle l_n' \rangle_F([l_n]_F(x)) + \langle p \rangle_F(x) \, h(x) \right\} \cap U \end{split}$$

where $U = [S^{2n+1}/\psi_p(1, \dots, 1), identity]$. Let \overline{x} be the first cobordism Chern class of the canonical line bundle $\tilde{\xi}(L)$ over $S^{2n+3}/\psi_p(1, \dots, 1)$ and let

$$\overline{U} = [S^{2n+3}/\psi_p(1, \dots, 1), identity]$$

which belongs to $MU_{2n+3}(S^{2n+3}/\psi_p(1,\,\cdots,\,1))$. Then we have

$$\overline{x} \cap \overline{U} = i_* U$$
 (cf. [11]).

Noting that $[p]_F(\overline{x}) = 0$, we calculate

$$\begin{split} &i_*\big[S^{2n+1}/\psi_p(l_0,\,\cdots,\,l_n),\,\widehat{g}_p\big]\\ &=i_*\big\{i^*\big\{\langle l_0'\rangle_F([l_0]_F(\overline{x}))\cdots\langle l_n'\rangle_F([l_n]_F(\overline{x}))+\langle p\rangle_F(\overline{x})\,h(\overline{x})\big\}\cap U\big\}\\ &=\{\langle l_0'\rangle_F([l_0]_F(\overline{x}))\cdots\langle l_n'\rangle_F([l_n]_F(\overline{x}))+\langle p\rangle_F(\overline{x})\,h(\overline{x})\big\}\cap i_*(U)\\ &=\langle l_0'\rangle_F([l_0]_F(\overline{x}))\cdots\langle l_n'\rangle_F([l_n]_F(\overline{x}))\cap i_*(U) \end{split}$$

$$=i_*\{D_{MU}(\langle l_0'\rangle_F([l_0]_F(x))\cdots\langle l_n'\rangle_F([l_n]_F(x))\}.$$

Q.E.D.

§ 5. Characteristic Classes of $\xi(V_a)$

The product space $I \times X$ of a Z_p -space X and an interval I = [0, 1] has a Z_p -action with $g \cdot (t, x) = (t, g \cdot x)$, and we have Z_p -spaces

S(X): the usual suspension of X

$$C^+(X) = X \times \lceil 1/2, 1 \rceil / X \times \{1\}$$

$$C^{-}(X) = X \times [0, 1/2]/X \times \{0\}.$$

Denote by p_0 and p_1 vertices obtained by the identification of $X \times 0$ and $X \times 1$ in these spaces. A map $\varepsilon_i \colon EZ_p \times_{Z_p} \{p\} \to EZ_p \times_{Z_p} S(X)$ is defined to be $\varepsilon_i(x,p) = (x,p_i)$, and a map $\pi \colon EZ_p \times_{Z_p} X \to EZ_p \times_{Z_p} \{p\} = BZ_p$ is defined to be $\pi(y,x) = (y,p)$. We can derive the following propositions after the fashion of Proposition 10.1 and Theorem 10.2 of [4].

Proposition 5.1. Suppose that X is a compact Z_p -space. Then there exists an exact sequence:

$$MU^*(EZ_p\times_{Z_p}S(X)) \xrightarrow{\varepsilon_1^*-\varepsilon_0^*} MU^*(BZ_p) \xrightarrow{\pi^*} MU^*(EZ_p\times_{Z_p}X).$$

Proof. $\widetilde{MU}^*((EZ_p)^+ \bigwedge_{Z_p} -)$ is an equivariant cohomology theory described in [10]. Consider the Mayer-Vietoris exact sequence for a triple $(\{S(X)\}^+; \{C^+(X)\}^+, \{C^-(X)\}^+)$

$$\longrightarrow MU^*(EZ_p \times_{Z_p} S(X)) \xrightarrow{j^*} MU^*(EZ_p \times_{Z_p} C^+(X))$$

$$\bigoplus MU^*(EZ_p \times_{Z_p} C^-(X))$$

$$\xrightarrow{k^*} MU^*(EZ_p \times_{Z_p} X) \longrightarrow$$

where $j^*(x)=(j_1^*(x),j_0^*(x))$ and $k^*(x_1,x_0)=i_1^*(x_1)-i_0^*(x_0)$, and j_s and i_s are natural inclusions. The isomorphisms $MU^*(EZ_p\times_{Z_p}C^+(X))\cong MU^*(BZ_p)$ and $MU^*(EZ_p\times_{Z_p}C^-(X))\cong MU^*(BZ_p)$ yield the proposition.

Let Ψ : Vect_c(-) $\to MU^*(-)$ be a natural transformation assigning a complex vector bundle over X to an element of $MU^*(X)$ which satisfies

$$\Psi(f^!\zeta) = f^*\Psi(\zeta).$$

Consider complex vector bundles

$$\xi(V_a)$$
; $EZ_p \times_{Z_p} V_a \rightarrow BZ_p$

where V_a is the complex Z_p -module obtained by the tangent space at an isolated fixed point a of an almost complex Z_p -manifold M. Then we have

Proposition 5.2. Suppose that a and b are isolated fixed points of a simply connected almost complex Z_p -manifold. If $H^i(BZ_p; \{\pi_i(M)\}) \cong 0$ for $1 \leq i \leq 2n-1$, then $\Psi(\xi(V_a)) - \Psi(\xi(V_b))$ belongs to an ideal generated by x^n in $MU^*(BZ_p) \cong MU^*[[x]]/([p]_F(x))$, where $x = c_U^1(\xi(L))$, L the canonical one dimensional complex Z_p -module.

Proof. The (2n-1)-skeleton of EZ_p can be taken to be S^{2n-1} with the action given by the complex n-dimensional Z_p -module nL. We take an invariant subspace $EZ_p \times \{0,1\}$ is a Z_p -space $EZ_p \times I$ with $g \cdot (e,t) = (g \cdot e,t)$. Consider the constant maps

$$h_0: EZ_p \rightarrow \{b\}$$
 and $h_1: EZ_p \rightarrow \{a\}$

which induce maps

$$\tilde{h}_0: S^{2n-1} \subset EZ_p {\longrightarrow} \{b\} \text{ and } \tilde{h}_1: S^{2n-1} \subset EZ_p {\longrightarrow} \{a\}.$$

We can construct an equivariant homotopy $h: S^{2n-1} \times I \to M$ between \tilde{h}_0 and \tilde{h}_1 , by using the condition for the cohomology $H^i(BZ_p; \{\pi_i(M)\})$, and an equivariant map $\tilde{h}: S(S^{2n-1}) \to M$ (cf. [4, p. 355]). Since

$$\label{eq:definition} \hat{\boldsymbol{\varepsilon}}\left(\boldsymbol{V}_{a}\right) = \boldsymbol{\varepsilon}_{1}^{!}(id\times_{\boldsymbol{Z}_{p}}\tilde{\boldsymbol{h}})^{!}\tilde{\boldsymbol{\tau}} \quad \text{and} \quad \hat{\boldsymbol{\varepsilon}}\left(\boldsymbol{V}_{b}\right) = \boldsymbol{\varepsilon}_{0}^{!}(id\times_{\boldsymbol{Z}_{p}}\tilde{\boldsymbol{h}})^{!}\tilde{\boldsymbol{\tau}} \; \text{,}$$

where $\tilde{\tau}$ denotes a vector bundle $EZ_p \times_{Z_p} E(\tau(M)) \to EZ_p \times_{Z_p} M$, it follows from Proposition 5.1 that $\pi^*(\Psi(\xi(V_a)) - \Psi(\xi(V_b))) = 0$. By using the Gysin exact sequence

$$\longrightarrow MU^*(BZ_p) \xrightarrow{\cdot x^n} MU^{*+2n}(BZ_p) \xrightarrow{\pi^*} MU^{*+2n}(EZ_p \times_{Z_p} S^{2n-1}) \longrightarrow$$
 we complete the proof.

We consider the symmetric polynomial $P_{\omega}(\mathfrak{S}_1, \dots, \mathfrak{S}_n)$ discussed in Section 3, and put $c_{\omega}^{U}(\gamma_n) = P_{\omega}(c_{U}^{1}(\gamma_n), \dots, c_{U}^{n}(\gamma_n))$, where $c_{U}^{i}(\gamma_n)$ is the *i*-th cobordism Chern class [7]. The Landweber-Novikov operation

$$S^{U}_{\omega} \colon MU^{*}(X) \to MU^{*+2|\omega|}(X)$$

is defined as follows: for x = [f], $f: S^{2n-k}X^+ {\rightarrow} MU(n)$,

$$S_{\omega}^{U}(x) = \sigma^{k-2n} f^{*} \Phi_{U}(c_{\omega}^{U}(\gamma_{n}))$$
 (cf. [14], [17]).

The Boardman map $\beta_{U}: MU^{*}(X) \to (MU \land MU)^{*}(X) \cong MU^{*}(X)[[t_{1}, t_{2}, \cdots]]$ is defined by

$$\beta_{U}(x) = \sum_{\omega} S_{\omega}^{U}(x) t^{\omega}$$
 (cf. [2], [19]),

which is natural and multiplicative. Let J(G) be the set of isomorphism classes of non trivial irreducible complex Z_p -modules, and let $CV = \{V_{j_1}^{k_1} \oplus \cdots \oplus V_{j_l}^{k_l} | V_{j_s} \in J(G)$ and k's are non negative integers}. We consider the multiplicative system S consisting of cobordism Euler classes $\{e(EZ_p \times_{Z_p} V) | V \in CV\}$ in $MU^*(BZ_p)$. For a Z_p -space X, $MU^*(EZ_p \times_{Z_p} X)$ is a $MU^*(BZ_p)$ -module by a map $EZ_p \times_{Z_p} X \to BZ_p \times (EZ_p \times_{Z_p} X)$ sending [e, x] to ([e], [e, x]). The localized module $S^{-1}MU^*(EZ_p \times_{Z_p} X)$ of the $MU^*(BZ_p)$ -module $MU^*(EZ_p \times_{Z_p} X)$ consists of all fractions $\{x/e; x \in MU^*(EZ_p \times_{Z_p} X), e \in S\}$. For a complex vector bundle ζ over X, we put

$$c_{t}^{U}\left(\zeta
ight)=1+\sum_{\omega}c_{\omega}^{U}\left(\zeta
ight)t^{\omega}$$

which is an invertible element of $MU^*[[t_1, t_2, \cdots]]$. We define $\tilde{\beta}_U$: $S^{-1}MU^*(EZ_p\times_{Z_p}X)\to S^{-1}MU^*(EZ_p\times_{Z_p}X)$ [[t_1, t_2, \cdots]] by

$$\widetilde{\beta}_{v}(y/e(\xi(V))) = \left(\beta_{v}(y) \cdot \frac{1}{c_{i}^{v}(\xi(V))}\right) / c(\xi(V))$$

which is multiplicative and natural. Moreover, we define

$$\begin{split} \widetilde{S}^{U}_{\omega} \colon \, S^{-1}MU * (EZ_{p} \times_{Z_{p}} X) \, {\to} \, S^{-1}MU * (EZ_{p} \times_{Z_{p}} X) \\ \text{by } \, \, \widetilde{\beta}_{U}(x/e) = \sum_{\omega} \widetilde{S}^{U}_{\omega}(x/e) \, t^{\omega}. \end{split}$$

Proposition 5.3. The operation $\widetilde{S}_{\omega}^{U}$ on $S^{-1}MU^{*}(EZ_{p}\times_{Z_{p}}-)$ have the following properties:

- (1) $\widetilde{S}_{\omega}^{U}$ is natural.
- (2) $\widetilde{S}_{\omega}^{U}((x_{1}/e_{1})\cdot(x_{2}/e_{2})) = \sum_{\omega=(\omega'\omega^{*})} \widetilde{S}_{\omega'}^{U}(x_{1}/e_{1}) \widetilde{S}_{\omega^{*}}^{U}(x_{2}/e_{2}), \text{ where for}$

$$\omega' = (j'_1, \dots, j'_s)$$
 and $\omega'' = (j''_1, \dots, j''_t), (\omega'\omega'')$ denotes $(j'_1, \dots, j'_s, j''_1, \dots, j''_t)$.

- (3) $\widetilde{S}_{\omega}^{U}(x/1) = S_{\omega}^{U}(x)/1$, where S_{ω}^{U} is the ordinary Landweber-Novikov operation, i.e. $\lambda S_{\omega}^{U} = \widetilde{S}_{\omega}^{U}\lambda$, where $\lambda \colon MU^{*}(EZ_{p} \times_{Z_{p}} -) \to S^{-1}MU^{*}(EZ_{p} \times_{Z_{p}} -)$ is the canonical map.
- (4) For $\omega = (\underbrace{1, \dots, 1}_{i_1}, \underbrace{2, \dots, 2}_{i_2}, \dots, \underbrace{k, \dots, k}_{i_k}),$ $\widetilde{S}_{\omega}^{v}(1/e(\xi(L))) = (-1)^{i_1 + \dots + i_k} \left\{ \frac{(i_1 + \dots + i_k)!}{i_!! i_!! \dots i_k!} e(\xi(L))^{|\omega|-1} \right\} / 1.$

Proof. By making use of the multiplicativity and the naturality of β_U , we derive (1) and (2). For a zero dimensional complex Z_p -module 0, we have $e(\xi(0)) = 1$ and $c_t^U(\xi(0)) = 1$, and

$$\tilde{\beta}_{v}(x/1) = \beta_{v}(x) \cdot \frac{1}{c_{i}^{v}(\xi(0))} / e(\xi(0))$$
$$= \beta_{v}(x) / 1$$

which implies (3). To prove (4), we calculate

This completes the proof.

We see easily the following

Proposition 5.4.
$$S_{\omega}^{U}(e(\xi(V))) = e(\xi(V)) c_{\omega}^{U}(\xi(V))$$
.

Taking two complex Z_p -modules V_a and V_b obtained from tangent spaces at isolated fixed points a and b of an almost complex Z_p -manifold, a fraction $e(\xi(V_a))/e(\xi(V_b))$ is an integral element from the following

proposition.

Proposition 5.5. Suppose that L is a canonical complex one dimensional Z_p -module. Take k_i and l_j such that $(k_i, p) = 1$ and $(l_j, p) = 1$. Then for $n \ge m$, $e(\hat{\xi}(L^{k_1} \oplus \cdots \oplus L^{k_n}))/e(\hat{\xi}(L^{l_1} \oplus \cdots \oplus L^{l_m}))$ belongs to the image of λ : $MU^*(BZ_p) \to S^{-1}MU^*(BZ_p)$ which sends x to x/1.

Proof. For
$$x = c_u^1(\xi(L))$$
,

$$e(\xi(L^k)) = [k]_F(x) = kx + a_1^{(k)}x^2 + a_2^{(k)}x^3 + \cdots$$

and

$$e(\xi(L^k))/x = \langle k \rangle_F(x)/1.$$

Assume that (l, p) = 1, then there is an integer l' such that $l'l \equiv 1 \mod p$ and

$$x = \langle l' \rangle_F(\lceil l \rceil_F(x)) \cdot \lceil l \rceil_F(x)$$
.

Therefore we have

$$\frac{e\left(\xi\left(L^{k_{1}}\bigoplus\cdots\bigoplus L^{k_{n}}\right)\right)}{e\left(\xi\left(L^{l_{1}}\bigoplus\cdots\bigoplus L^{l_{m}}\right)\right)} \\
=\left\langle l'_{1}\right\rangle_{F}\left(\left[l_{1}\right]_{F}(x)\right)\cdots\left\langle l'_{m}\right\rangle_{F}\left(\left[l_{m}\right]_{F}(x)\right)\left\langle k_{1}\right\rangle_{F}(x)\cdots\left\langle k_{m}\right\rangle_{F}\left(x\right)\left[k_{m+1}\right](x)\cdots\left[k_{n}\right]_{F}(x)/1.$$

where $l'_j l_j = 1$ module p.

Q.E.D.

Proof of Theorem A. For brevity, we put $e_a = e(\xi(V_a))$ and $e_b = e(\xi(V_b))$. We show by induction with respect to the length of the partition ω that

$$\widetilde{S}_{\omega}^{U}\left(\frac{e_{a}}{e_{b}}\right) = \frac{e_{a}}{e_{b}} \cdot \frac{h_{\omega}(x) \cdot x^{n}}{1}$$

where $h_{\omega}(x) \in MU^*(BZ_p)$. By using (2) of Proposition 5.3 we obtain

$$\widetilde{S}_{(i)}^{\textit{U}}\left(\frac{e_{\textit{a}}}{1}\right) = \widetilde{S}_{(i)}^{\textit{U}}\left(\frac{e_{\textit{a}}}{e_{\textit{b}}}\right) \cdot \frac{e_{\textit{b}}}{1} + \frac{e_{\textit{a}}}{e_{\textit{b}}} \cdot \widetilde{S}_{(i)}^{\textit{U}}\left(\frac{e_{\textit{b}}}{1}\right).$$

Hence it follows from (3) of Propositions 5.3 and 5.4 that

$$\widetilde{S}_{(i)}^{U}\left(\frac{e_a}{e_b}\right) = \frac{e_a}{e_b} \cdot \frac{c_{(i)}^{U}(\xi(V_a)) - c_{(i)}^{U}(\xi(V_b))}{1}.$$

Proposition 5.2 implies that there is an element $h_{(t)}(x) \in MU^*(BZ_p)$ such that $c_{(t)}^{\mathbf{U}}(\xi(V_a)) - c_{(t)}^{\mathbf{U}}(\xi(V_b)) = h_{(t)}(x) x^n$, and

$$\widetilde{S}_{(i)}^{v}\left(\frac{e_a}{e_b}\right) = \frac{e_a}{e_b} \cdot \frac{h_{(i)}(x) x^n}{1}.$$

Suppose the result is proved for ω' whose length is less than the length of ω . By using (2) of Proposition 5.3 with the inductive hypothesis we calculate

$$\begin{split} \widetilde{S}_{\omega}^{U}\left(\frac{e_{a}}{1}\right) &= \widetilde{S}_{\omega}^{U}\left(\frac{e_{a}}{e_{b}} \cdot \frac{e_{b}}{1}\right) \\ &= \widetilde{S}_{\omega}^{U}\left(\frac{e_{a}}{e_{b}}\right) \cdot \frac{e_{b}}{1} + \widetilde{S}_{\omega}^{U}\left(\frac{e_{b}}{1}\right) \cdot \frac{e_{a}}{e_{b}} + \sum_{\omega = (\omega',\omega')} \frac{e_{a}}{e_{b}} \cdot \frac{h_{\omega'}\left(x\right) x^{n} S_{\omega''}^{U}\left(e_{b}\right)}{1} \end{split}$$

where $h_{\omega'}(x) \in MU^*(BZ_p)$. Moreover it follows from Propositions 5.4 and 5.2 that there exists an element $\tilde{h}_{\omega}(x) \in MU^*(BZ_p)$ such that

$$\tilde{S}_{\omega}^{U}\left(\frac{e_{a}}{e_{b}}\right) = \frac{e_{a}}{e_{b}}\tilde{h}_{\omega}(x)x^{n}/1 - \sum_{\omega=(\omega'\omega')}\frac{e_{a}}{e_{b}}\{h_{\omega'}(x)x^{n}c_{\omega'}^{U}(\xi(V_{b}))\}/1,$$

and there is an element $h_{\omega}(x) \in MU^*(BZ_p)$ such that

$$\widetilde{S}_{\omega}^{U}\left(\frac{e_{a}}{e_{b}}\right) = \frac{e_{a}}{e_{b}}h_{\omega}(x)x^{n}/1.$$

It is pointed out by [9] that the canonical map λ : $MU^*(BZ_p) \to S^{-1}MU^*$ (BZ_p) with $\lambda(x) = x/1$ has the kernel which is an ideal generated by $\langle p \rangle_F(x)$. We then complete the proof.

§ 6. On the Bordism Classes of Actions on Invariant Spheres around the Isolated Fixed Points

The Thom homomorphism μ : $MU^*(-) \rightarrow H^*(-)$ is the multiplicative natural transformation with the following properties.

Proposition 6.1. Let ζ be a complex vector bundle over X. Then

- (1) $\mu c_{\omega}^{U}(\zeta) = c_{\omega}^{H}(\zeta)$
- (2) $\mu \Phi_U(x) = \Phi(\mu(x))$, where $\Phi_U: MU^*(X) \to \widetilde{MU}^*(T(\zeta))$ and $\Phi: H^*(X) \to \widetilde{H}^*(T(\zeta))$ are the Thom homomorphisms.

Recall the following property of the Umkehr homomorphism [8].

Proposition 6.2. $g_!(g^*(x) \cup y) = x \cup g_!(y)$.

We observe S^H_{ω} : $MU^*(X) \to H^*(X)$ for a weakly complex manifold X.

Proposition 6.3. Take an element $x = [M \xrightarrow{g} X] \in MU_*(X)$, where X is a weakly complex manifold and g is a differentiable map. Then,

$$S_{\omega}^{H}D_{MU}^{-1}(x) = \sum_{\omega=(\omega'\omega'')} c_{\omega'}^{H}(\widetilde{\tau}(X)) g_{!}(c_{\omega''}^{H}(v))$$

where ν is the normal bundle of M in a Euclidean space with the complex structure and $\tilde{\tau}(X)$ is the Whitney sum of $\tau(X)$ and some trivial bundle which is a complex bundle.

Proof. Let $\tilde{g}: M \rightarrow X \times R^{i}$ be an embedding with the normal bundle $\tilde{\nu}$ equipped with a complex structure and $\tilde{g} \simeq g$. $D_{MU}^{-1}(x)$ is represented by the composition

$$S^{l} \wedge X^{\perp} \xrightarrow{c} T(\widetilde{\nu}) \xrightarrow{\widehat{g}} MU(k)$$

which c is the collapsing map and \widehat{g} is the map induced by the classifying map for ν . The Whitney sum $\widetilde{\nu} \oplus \tau(M)$ is stably equivalent to $g^!\tau(X)$ and

$$c_{t}^{H}(\widetilde{\nu})\cdot c_{t}^{H}(\widetilde{\tau}(M))=g^{*}c_{t}^{H}(\widetilde{\tau}(X)).$$

Hence we have that $c_t^H(\widetilde{\nu}) = g^* c_t^H(\widetilde{\tau}(X)) \cdot c_t^H(\nu)$. We calculate with Propositions 6.1 and 6.2

$$egin{aligned} S^{ extit{H}}_{\omega}D^{-1}_{ extit{M} extit{U}}(x) &= & \sigma^{-1}c^*\{oldsymbol{arPsi}(c^H_{\omega}(\widetilde{arpsi}))\} \ &= & g_!(c^H_{\omega}(\widetilde{arpsi})) \ &= & g_!(\sum_{\omega = \{\omega'_{\omega''}, \sigma''\}} g^*(c^H_{\omega'}(\widetilde{ au}(X))c^H_{\omega''}(
u))) \end{aligned}$$

$$=\sum_{\omega=(\omega'\omega'')}c_{\omega'}^{H}(\widetilde{\tau}(X))g_!(c_{\omega''}^{H}(y)).$$

Q.E.D.

 MU^k is isomorphic to MU_{-k} and a bordism class [M] of a weakly almost complex manifold can be regarded to be in MU^* . Directly Proposition 6.3 implies

Corollary 6.4. $\mu S_{\omega}^{v}[M] = \langle c_{\omega}^{H}(v), [M] \rangle$, where v is the normal vector bundle of M in a Euclidean space which is equipped with the complex structure, where $c_{(i_1,\dots,i_l)}^{H}$ is the Chern class for $\sum t_1^{i_1} \cdots t_l^{i_l}$.

We consider the ideal \mathcal{I}_p in MU^* which is generated by p, $a_1^{(p)}$, $a_2^{(p)}$, ..., $a_k^{(p)}$, ... which are coefficients of

$$[p]_F(x) = px + a_1^{(p)}x^2 + a_2^{(p)}x^3 + \cdots$$

We recall the following property of \mathcal{I}_p .

Proposition 6.5 (cf. [9]). [M] belongs to \mathcal{I}_p if and only if $c^H_{\omega}[M] = \langle c^H_{\omega}(\tau(M)), [M] \rangle \equiv 0$ modulo p, for any ω , where p is prime.

Proof. Let $y = c_v^1(\eta)$ be the cobordism first Chern class of the Hopf bundle η over $\mathbb{C}P^{\infty}$. It is known (cf. [14], [17]) that

$$S^U_{\omega}(\llbracket p
bracket_F(y)) = \left\{ egin{array}{ll} \{ \llbracket p
bracket_F(y) \}^{i+1} & ext{if} & \omega = (i) \\ 0 & ext{otherwise.} \end{array}
ight.$$

We see $S^H_{\omega}([p]_F(y)) \equiv 0$ modulo p, and

$$S_{\omega}^{H}(py+a_{1}^{(p)}y^{2}+a_{2}^{(p)}y^{3}+\cdots)\equiv 0 \mod p.$$

Then we can deduce that $S^H_{\sigma}(a_i^{(p)}) \equiv 0$ modulo p. Therefore we have that the Chern numbers of [N] are zero modulo p if [N] belongs to \mathcal{G}_v . The Hopf bundle $\tilde{\eta}$ over $\mathbb{C}P^n$ satisfies that

 $D_{MU}(c_U^1(\widetilde{\eta}^q)) = q[CP^{n-1} \subset CP^n] + a_1^{(q)}[CP^{n-2} \subset CP^n] + \dots + a_{n-1}^{(q)}[P \subset CP^n], \text{ in } MU_*(CP^n). \text{ Let } D_{MU}(c_U^1(\widetilde{\eta}^q)) = [V_{(q)}^{n-1} \subset CP^n], \text{ then }$

$$(*) \quad [V_{(q)}^{n-1}] = q[CP^{n-1}] + a_1^{(q)}[CP^{n-2}] + \dots + a_{n-1}^{(q)}.$$

We note that $V_{(q)}^{n-1}$ is a *U*-submanifold dual to $c_H^1(\widetilde{\eta}^q)$ (cf. [7, p. 81]),

and the fundamental classes of $V_{(q)}^{n-1}$ and CP^n satisfy that $i_*[V_{(q)}^{n-1}] = c_H^1(\tilde{\eta}^q)$ $\cap [CP^n]$, $i: V_{(q)}^{n-1} \subset CP^n$. Noting that the normal bundle ν of $V_{(q)}^{n-1}$ in CP^n is isomorphic to $i^!\tilde{\eta}^q$, we have that $c_{(n-1)}^H(\tau(V_{(q)}^{n-1})) = i^*\{(n+1) - q^{n-1}\}$ \tilde{y}^{n-1} , where $\tilde{y} = c_H^1(\tilde{\eta})$. Therefore it follows that the Chern number $c_{(n-1)}^H[V_{(q)}^{n-1}] = q(n+1) - q^n$. Using (*) and $c_{(n-1)}^H[CP^{n-1}] = n$, we have $c_{(n-1)}^H[a_{n-1}^H] = q - q^n$. For prime q, we take

$$[W_{q^{k-1}}] = a_{q^{k-1}}^{(q)} + q^b[CP^u], b = q^k - k \text{ and } u = q^k - 1$$

whose Chern number $c_{(q^{k-1})}^H[W_{q^{k-1}}]$ equals to q. Take a 2i-dimensional weakly almost complex manifold W_i , $i\neq q^k-1$ for any prime q, such that $c_{(i)}^H[W_i]=1$. According to [16], $MU^*=Z[[W_1], [w_2], \cdots]$. Assume that $c_{\omega}^H[M]\equiv 0$ modulo p for any ω and

$$[M] = \sum a_{i_1 \cdots i_n} [W_1]^{i_1} \cdots [W_n]^{i_n}.$$

Noting that

$$\begin{split} S^H_{\underbrace{(1,\cdots,1,2,\cdots,2,\cdots,n,n)}_{i_1}}[W_1]^{i_1}[W_2]^{i_2}\cdots[W_n]^{i_n} \\ &= (c^H_{(1)}\lceil W_1\rceil)^{i_1}(c^H_{(2)}\lceil W_2\rceil)^{i_2}\cdots(c^H_{(n)}\lceil W_n\rceil)^{i_n} \,, \end{split}$$

we inductively deduce that if $i_s = 0$ for $s = p^k - 1$, then $a_{i_1 i_2 \dots i_n} \equiv 0$ modulo p, and $[M] \in \mathcal{G}_p$. Q.E.D.

We now go back to consider the cobordism Euler class of complex vector bundle $\xi(V_a)$: $EZ_p \times_{Z_p} V_a \rightarrow BZ_p$, V_a the complex Z_p -module given by the tangent space at the isolated fixed points of a Z_p -manifold.

Proposition 6.6. Suppose that V_a and V_b are complex Z_p -modules given by tangent spaces at isolated fixed points a and b of a simply connected almost complex Z_p -manifold M, and $\lambda(\alpha) = e(\xi(V_a))/e(\xi(V_b))$, where $\lambda: MU^*(BZ_p) \to S^{-1}MU^*(BZ_p)$ is the canonical homomorphism. If $H^i(BZ_p; \{\pi_i(M)\}) \cong 0$ for $1 \leq i \leq 2n-1$, then

$$\alpha = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \cdots$$

where $\lambda_1, \lambda_2, \dots, \lambda_{n-1}$ belong to \mathcal{I}_p .

Proof. Suppose that $|\omega| = 2i$, $1 \le i \le n-1$. Then $S_{\omega}^{U} \lambda_{k} \in MU^{2i-2k}$.

Note that $\mu: MU^k(P) \to H^k(P)$, $P = \{a \text{ point}\}$, is the zero homomorphism for k>0, and $S_{\omega}^U(\lambda_0)=0$ if $\omega\neq(0)$. Suppose that λ_j , $j=1,2,\cdots,i-1$, belong to \mathcal{J}_p . Then

$$\mu S_{\omega}^{U}(\alpha) = \mu S_{\omega}^{U}(\lambda_{i}) \cdot x_{H}^{i} = c_{\omega}^{H}[\lambda_{i}] x_{H}^{i}$$

where $x_H = c_H^1(\xi(L))$. Since $S_{\omega}^U(\alpha)$ belongs to an ideal generated by x^n and $\langle p \rangle_F(c_U^1(\xi(L)))$ from Theorem A, $c_{\omega}^H[\lambda_i]x_H^i = 0$ in $H^*(BZ_p)$. Proposition 6.5 implies that $\lambda_i \in \mathcal{J}_p$.

Proof of Theorem B. Let $\tilde{\xi}(V)$ be a complex vector bundle $S^{2k-1} \times_{Z_p} V \to S^{2k-1}/Z_p$, where V is a complex Z_p -module and S^{2k-1} has the Z_p -action $\psi_p(1, \dots, 1)$. Let $i \colon S^{2k-1}/\psi_p(1, \dots, 1) \to BZ_p$ be the natural injection. Put $x = c_U^1(\hat{\xi}(L))$ and $\overline{x} = c_U^1(\tilde{\xi}(L))$. Then, $i \not\in L$ $\cong \tilde{\xi}(L)$. We see that in $S^{-1}MU^*(BZ_p)$,

$$\begin{split} &l_1 \cdots l_k \, \frac{x^k}{e\left(\xi\left(V_a\right)\right)} - m_1 \cdots m_k \, \frac{x^k}{e\left(\xi\left(V_b\right)\right)} \\ &= l_1 \cdots l_k \, \frac{x^k}{e\left(\xi\left(V_a\right)\right)} - m_1 \cdots m_k \, \frac{x^k}{e\left(\xi\left(V_a\right)\right)} \cdot \frac{e\left(\xi\left(V_a\right)\right)}{e\left(\xi\left(V_b\right)\right)} \, . \end{split}$$

On the other hand it follows from Proposition 6.6 that

$$m_1 \cdots m_k \langle l_1 \rangle_F(x) \langle m_1' \rangle_F([m_1]_F(x)) \cdots \langle l_k \rangle_F(x) \langle m_k' \rangle_F([m_k]_F(x))$$

$$\equiv l_1 \cdots l_k + h(x) x^n \mod \mathcal{G}_p$$

where $m_i m_i' \equiv 1$ modulo p. Therefore we get

$$\begin{split} l_1 \cdots l_k \langle l_1' \rangle_F ([l_1]_F(x)) \cdots \langle l_k' \rangle_F ([l_k]_F(x)) \\ -m_1 \cdots m_k \langle m_1' \rangle_F ([m_1]_F(x)) \cdots \langle m_k' \rangle_F ([m_k]_F(x)) \\ \equiv \tilde{h}(x) x^n \text{ modulo } \mathcal{G}_p, l_i l_i' \equiv 1 \text{ modulo } p, \text{ where } \tilde{h}(x) \in MU^*(BZ_p). \end{split}$$

Applying i^* to the above, we have

$$\begin{split} l_1 &\cdots l_k \langle l_1' \rangle_F([l_1]_F(\overline{x})) \cdots \langle l_k' \rangle_F([l_k]_F(\overline{x})) \\ &- m_1 \cdots m_k \langle m_1' \rangle_F([m_1]_F(\overline{x})) \cdots \langle m_k' \rangle_F([m_k]_F(\overline{x})) \\ &\equiv \tilde{h}(\overline{x}) \overline{x}^n \quad \text{modulo} \quad \mathcal{G}_p \quad \text{(cf. [12])}. \end{split}$$

Since $j_*D_{MU}\overline{x}^n = [S^{2(k-n)-1}, \phi]$ (cf. [11]), Theorems 4.5 and 4.6 imply the theorem.

§ 7. The Isolated Fixed Points of Z_3 -Actions

In this section we will consider an complex structure preserving smooth Z_{s} -action (M^{2k}, ϕ) on a simply connected closed almost complex manifold M^{2k} . Let a and b be isolated fixed points. We describe the induced actions of Z_{s} on the tangent spaces at a and b as complex Z_{s} -modules

$$V_a = sL^2 \oplus (k-s) L$$

and

$$V_b = (s+t) L^2 \oplus (k-s-t) L$$
.

Recall that

$$\langle 2 \rangle_F(x) = a_0^{(2)} + a_1^{(2)}x + a_2^{(2)}x^2 + \cdots, \ a_i^{(2)} \in MU^{-2i}$$

and

$$c_{(n)}^{H}(a_n^{(2)}) = 2 - 2^{n+1}$$
.

In this situation we shall first indicate a lemma which is derived as proof of Theorem B.

Lemma 7.1. Suppose that $H^i(BZ_{\mathfrak{d}}; \{\pi_i(M^{2k})\}) \cong 0$ for $1 \leq i \leq 2n$ -1. Then for $1 \leq j \leq n-1$

$$\sum_{i_1+\cdots+i_t=j} a_{i_1}^{(2)} \cdots a_{i_t}^{(2)}$$
 belong to \mathcal{J}_3 .

Proof. In $S^{-1}MU^*(BZ_3)$, $MU^*(BZ_3)\cong MU^*[[x]]/[3]_F(x)$, we have

$$\frac{e(V_a)}{e(V_b)} = \mu_0 + \mu_1 x + \dots + \mu_k x^k + \dots, \ \mu_1, \ \dots, \ \mu_{n-1} \in \mathcal{G}_3$$

from Proposition 6.6 and

$$\frac{2^{s}x^{k}}{c(V_{a})} - \frac{2^{s+t}x^{k}}{c(V_{b})} = \widetilde{\mu}_{1}x + \widetilde{\mu}_{2}x^{2} + \dots + \widetilde{\mu}_{k}x^{k} + \dots,$$

$$\widetilde{\mu}_1, \cdots, \widetilde{\mu}_{n-1} \in \mathcal{J}_3$$
.

Noting the fact that the kernel of the canonical map $\lambda: MU^*(BZ_3) \rightarrow$

 $S^{-1}MU^*(BZ_3)$ is the ideal generated by $\langle 3 \rangle_F(x)$, we obtain

$$\begin{aligned} 2^{s}x^{k}e\left(V_{b}\right) - 2^{s+t}x^{k}e\left(V_{a}\right) \\ &= e\left(V_{a}\right)e\left(V_{b}\right)\left\{\widetilde{\mu}_{1}x + \widetilde{\mu}_{2}x^{2} + \dots + \widetilde{\mu}_{k}x^{k} + \dots\right\} \end{aligned}$$

and

$$2^{s}(\{\langle 2\rangle_{F}(x)\}^{t} - 2^{t})$$

$$= \hat{\mu}_{1}x + \hat{\mu}_{2}x^{2} + \dots + \hat{\mu}_{k}x^{k} + \dots, \hat{\mu}_{1}, \dots, \hat{\mu}_{n-1} \in \mathcal{J}_{3}. \quad \text{Q.E.D.}$$

Then we obtain the following

Lemma 7.2. Suppose that $H^i(BZ_s; \{\pi_i(M^{2k})\}) \cong 0$ for $1 \leq i \leq 2n$ -1. Then, for $1 \leq m \leq n-1$ the binomial coefficients $\binom{t}{m}$ are divisible by 3.

Proof. We take a partition

$$\omega = (\underbrace{k, \dots, k}_{j_k}, \dots, \underbrace{2, \dots, 2}_{j_2}, \underbrace{1, \dots, 1}_{j_1}, \underbrace{0, \dots, 0}_{j_0})$$

of k, where

$$|\omega| = 1 \cdot j_1 + 2 \cdot j_2 + \cdots + k \cdot j_k = k$$

and

$$j_0 + j_1 + \cdots + j_k = t.$$

We define now

$$\|\omega\| = j_1 + \dots + j_k$$
, $a_o^{(2)} = \{a_k^{(2)}\}^{j_k} \dots \{a_j^{(2)}\}^{j_j} \{a_0^{(2)}\}^{j_0}$

and

$$\lambda_{\omega} = \frac{t!}{j_k! \cdots j_2! j_1! j_0!}.$$

Then we have the following

$$\sum_{i_1 + \dots + i_t = j} a_{i_1}^{(2)} \dots a_{i_t}^{(2)} = \sum_{|\omega| = j} \lambda_{\omega} a_{\omega}^{(2)}.$$

We take up the case k=1. Since from Lemma 7.1 $2^{t-1}t\cdot a_1^{(2)}=\sum_{i_1+\dots+i_t=1}^{t-1}t\cdot a_1^{(2)}=\sum_{i$

 $a_{i_1}^{(2)}\cdots a_{i_t}^{(2)}$ belongs to \mathcal{J}_{s} , and $c_{(1)}^H(a_1^{(2)})=-2$, t is divisible by 3. Assume that m< n and $\binom{t}{j},\ j=1,\cdots,m-1$, are divisible by 3. From Lemma 7.1 $\sum_{|\omega|=m} \lambda_\omega a_\omega^{(2)}$ belongs to \mathcal{J}_{s} , and for $\|\omega\| \leq m-1$

$$\lambda_{\omega} = \frac{\|\omega\|!}{j_{k}! \cdots j_{2}! j_{1}!} \cdot {t \choose \|\omega\|} \equiv 0 \mod 3.$$

By induction we complete the proof.

We shall give some information on isolated fixed points of Z_3 -actions.

Theorem 7.3. Let a and b be isolated fixed points of a complex structure preserving smooth action of Z_3 on the simply connected closed almost complex manifold M^{2k} . Suppose that

$$k = \lambda_u 3^u + \lambda_{u-1} 3^{u-1} + \cdots + \lambda_1 3 + \lambda_0$$
, $0 \le \lambda_i \le 2$ and $\lambda_u \ne 0$

and

$$H^i(BZ_3; \{\pi_i(M^{2k})\}) \cong 0$$
 for $1 \leq i \leq 2 \cdot 3^u + 1$.

Then V_a is equivalent to V_b .

Proof. Let $V_a = sL^2 \oplus (k-s)L$ and $V_b = (s+t)L^2 \oplus (k-s-t)L$. Suppose that $t = \lambda'_u 3^u + \lambda'_{u-1} 3^{u-1} + \dots + \lambda'_1 3 + \lambda'_0 \leq k$. It follows from Lemma 7.2 that

$$\lambda_i' = \binom{t}{3^i} = 0 \mod 3$$
.

Hence $\lambda_i' = 0$ and t = 0.

Q.E.D.

Corollary 7.4. Suppose that Z_3 acts on a simply connected almost complex closed 2k-dimensional manifold M as a complex structure preserving deffeomorphism with isolated fixed points only. Let $k = \lambda_u 3^u + \cdots + \lambda_1 3 + \lambda_0$, $0 \le \lambda_j \le 2$, and $\lambda_u \ne 0$. If $H^i(BZ_3; \{\pi_i(M)\}) \cong 0$ for $1 \le i \le 2 \cdot 3^u + 1$, then the number of fixed points is divisible by $3^{\lceil (k-1)/2 \rceil + 1}$.

Proof. Let n be the number of the fixed points. Theorem 7.3

implies that

$$n[S(V_a), \phi_a] = 0$$
 in $MU_*(Z_3)$

where $V_a = sL^2 + (k-s)L$. The Kasparov theorem (Theorem 4.6) implies that

$$n(l+3m)[S^{2k-1},\widetilde{\phi}] + \mu_1[S^{2k-3},\widetilde{\phi}] + \cdots + \mu_{k-1}[S^1,\widetilde{\phi}] = 0$$

where $l \not\equiv 0$ modulo 3 and $\mu_i \in \Gamma$ (3), Γ (3) [[CP^2]] = MU_* (cf. [6], [11]). From the result of [6] and [11] we can derive the assersion.

References

- Adams, J. F., Stable homotopy and generalised homology, Chicago, Univ. of Chicago Math. Lecture Notes, 1974.
- [2] Araki, S., Typical formal group in cobordism and K-theory, Lecture in Math. Kyoto Univ., Kinokuniya, 1973.
- [3] Atiyah, M. F., Bordism and cobordism, Proc. Camb. Phil. Soc., 57 (1961), 200-208.
- [4] Bredon, G. E., Introduction to compact transformation groups, Academic Press, 1972.
- [5] Conner, P. E., and Floyd, E. E., Differentiable periodic maps, Springer, Berlin-Heiderberg-New York, 1964.
- [6] ——, Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc., 70 (1964), 574-579.
- [7] ——, The relation of cobordism to K-theories, Lecture Notes in Math., 28, Springer, Berlin-Heiderberg-New York, 1966.
- [8] Dyer, E., Cohomology theories, Benjamin, 1969.
- [9] Tom Dieck, T., Actions of finite p-groups without stationary points, *Topology*, 9 (1970), 359-366.
- [10] ——, Lokalisierung äquivarianter Kohomologie-Theorien, Math. Z., 121 (1971), 253-262.
- [11] Kamata, M., The structure of the bordism group $U_*(BZ_p)$, Osaka J. Math., 7 (1970), 409-416.
- [12] —, Notes on the cobordism group $U^*(L^n(m))$, Osaka J. Math., 9 (1972), 287-292.
- [13] Kasparov, G. G., Invariants of classical lens manifolds in cobordism theory, Izv. Akad. Nauk SSSR. Ser. Math., 33 (1969), 753-747, Math., USSR. Izv., 3 (1969), 695-706.
- [14] Landweber, P. S., Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc., 129 (1967), 94-110.
- [15] ———, Coherence, flatness and cobordism of classifying spaces, Proc. Adv. Study Inst. Alg. Top., Aarhus (1970), 256-269.
- [16] Milnor, J. W., On the cobordism ring Q* and a complex analogue, Part I, Amer. J. Math., 82 (1960), 505-521.
- [17] Novikov, S. P., The method of algebraic topology from the viewpoint of cobordism theories, Izv. Akad. Nauk SSSR, 31 (1967), Math. USSR Izv., 1 (1967), 827-913.
- [18] Ozeki, H. and Uchida, F., Principal circle actions on a product of spheres, Osaka J, Math. 9 (1972), 379-390.
- [19] Quillen, D., Elementary proofs of some results of cobordism theory using Steenrod operations, Advances on Math., 7 (1971), 29-56.
- [20] Switzer, R. M., Algebraic topology-homotopy and homology, Springer-Verlag, Berlin-Heiderberg-New York, 1975.