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Actions on Invariant Spheres around Isolated
Fixed Points of Actions of Cyclic Groups

By

Masayoshi KAMATA*

§ 1. Introduction

Fix a prime number p and let Z, be a cyclic group of order p.
We consider a pair (M, ¢) consisting of a compact simply connected al-
most complex manifold M without boundary and a smooth Z,action ¢:
ZyX M—> M preserving the almost complex structure of M. We suppose
that M is given an invariant Riemannian metric. If a(€M) is an isolated
fixed point, then the induced action of Z, on the tangent space at a gives
a complex Z,module V, which has no trivial irreducible factor. Let §:
EZ,—~BZ, be a universal principal Z,bundle and let §(V,): EZ,Xz, V.
—BZ, be the V,-bundle associated with §& If a and b are isolated fixed
points, we compare the cobordism Euler classes ¢(§(V,)) and e(§(V3))
which belong to the complex cobordism group MU* (BZ,) of the classify-

ing space BZ, of Z,. Let Fy be the universal formal group law over
MU*, and write

x+r y=Fy(z,v).

For a positive integer n, [#]r(x) is inductively defined by
[1]r(x) =x

and
[7]lr(x) =[n—1]r(x) +F x.

It is known that the cobordism ring MU* (BZ,) is formal power series
algebra MU*[[x]] over MU* modulo an ideal generated by [p]r(x)
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[15]. Let us write
[Plr(x) =px+aP P+ aP 2+ -,

where a{® € MU %, and
por(x) =p+aPrxt+aPx®+ ..

Let S denote the multiplicative set in MU* (BZ,) consisting of cobordism
Euler classes ¢(§(V)), V the non trivial complex Z,module, and let A:
MU*(BZ,) —>S'MU*(BZ,) be the canonical map [9]. In this paper

we show the following

Theorem A. Assume that H'(BZ,; {nr;(M)}) =0 for 1<i<2n
—1 (cf. [4, p.355]), and A(a@) =e(E(V.))/e(E(Vy)). Then for any
Landweber-Novikov operation Sy, w=(0) [14], [17], SY(®) belongs
to an ideal generated by z" and {p)r(x) in MU*(BZ,), where x=
e(§(L)) and L is the canonical one dimensional complex Z,-module

with an action of Z, given by multiplication by p=exp (2ri/p) on C.

The action of Z, on M induces a natural action on a unit sphere
S(V,) in a tangent space V, at an isolated fixed point a which is equiv-
alent to the action of Z, on a sphere around the fixed point. The
action @, Z, X S(Vy) —>S(V,) determines a weakly complex bordism class
[S(V.), ¢a] of the bordism group MU, (Z,) of fixed point free Z, actions
preserving a weakly complex structure, which is generated as an MU,-
module by the set of Z,manifolds {[S**',§]}, where the action @ of
Z, on a sphere S™'cC™"' is defined by ¢ (g, =) =0z, ¢ a generator of
Z, [6], [11]. Kasparov in [13] showed that the weakly complex bord-
ism class [S(V,), ¢.] is computable. By making use the Kasparov theo-

rem and Theorem A, we obtain the following

Theorem B. Assume that H*(BZ,; {m;(M)}) =0 for 1<i<2n—1.
If Vule'@"‘@le and Vszm‘®...®Lmk’ then

ll"'lk[S(Va) s ¢a] “ml"'mk[S(Vb) ’ ¢b]
=7 [Szk_s, 5] + L [S%_s, $] e _1_22,‘_1[51’ $]

where Jiy, ls, *+, fin_1 belong to an ideal generated by p, a{®,ad?, ---.
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a®, - in MU¥*.

In Section 2 we investigate S'-actions on a product space S™*'xX
S#"*! of spheres and equivariant maps between the S'-spaces. In Section
3 the Umkehr homomorphism of some map between the orbit spaces
(81 81 /S' is computed to give a slightly different proof of the
Kasparov theorem [13] in Section 4. In Section 5 we discuss about
relations among cobordism characteristic classes [7] of §(V,) and &§(V,)
and give a proof of Theorem A. Section 6 is devoted to prove Theorem
B. In Section 7 we study the isolated fixed point set of Zj-actions.

Bredon in Section 10 of Chapter VI of [4] compared representations

at two fixed points of a smooth action, by using equivariant K-theory.

§ 2. On Orbit Spaces of $**"'x §"*' with Respect to S'

We define ¢ (&, &, -+, L) : S'XS™¥!x §2H! §2m+l o S+ by

G (b, by, ++, L) (2, (hoy 1, »+ Un) s (W0, V1, *+, UR))
= ((Rtyy Ry, *+*, RUUy), (2%, 2hy, +ov, 2Pm0,)).
This is differentiable and the orbit space (S*™*'XS™*") /¢ (&, -+, L) is an
orientable smooth manifold. Let S' act on S™*'xC"' by
2z ((toy vy ), 0) = ((Rthy, *++, 2Uy) , 20) .

The orbit space induces a complex line bundle over the complex pro-

jective space
T S X O S /ST = CP™, 7 ([u, v]) = [«]

which is denoted by 7. The total space S(7"@-:--@7%**) of the sphere
bundle associated with %*@---@»'* is diffeomorphic to (S**'xS**)/
(L, -+, ). The structure of the integral cohomology group H* (S (7@
-+@7**)) is determined as follows in [18].

Proposition 2.1. (1) If m<n, then HY(S"@--Dn'™)) =
sz (CPm) and sz—l (S(?]L"@ .. '@771") ) ;H2j~2(‘n+1) (CPm) .
(2) If m>n, then
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0, j>m
HI(S @@ D)) =3 Z/(le+l), n+1<j<m
H*(CP™), j<n

HZJ—I(S(UL"@"'@WL")) N{ 0, Oé]ém
= | Er-ren (CP™, m+ 1<;.
The map f: S™*!'x S!S+ % §**! defined by

f((uﬂ, Tty um)’ (‘Z)o, Y ‘Un)) =((u09 Tty um)’ _71-_(.030’ Tty 7)5,'" >7

r= A\/Ivolﬂo_l_ e I-vnlzln ,
induces a map of the orbit spaces
Fi (™ XS™N /61, -, 1) > (S XS /¢ (b, -+, L) -

Denote by [M] the fundamental class of a compact orientable manifold
M. Then we have

Proposition 2.2. f,[(S™'xS™"/6(, -, 1)]
=bLb L[ (S XS /6 (by oy D) ]

Proof. f is a fiber preserving map of sphere bundles S((z+1)7)
and S (7"@P---Py'*), as 7°@P---@y** is isomorphic to a bundle of an orbit
space of an S'action on S*™*!x C™! defined by

2 (uy (vﬂa "ty 'Un)) = (zu) (zlov% % zlmv")).
Let f; be a fiber preserving map from (z+1)7 to 7*°@---@y** defined
by
fl (u, ('Uo, R ’U,,)) = (u’ (vso, B .v%n))

which induces a map between the Thom complexes

fl: T(19 "ty 1) _>T(l€h "ty ln)a

where T' (b, *++, L) = E(&, -+, L) /{E (b, ++-, L,) -the zero section}, and E (4,
-+, 1) is the total space of %"@.--@Py'*. SH"P---P7**) and E(4, -,
l,)-{the zero section} are of the same homotopy type, and the following

diagram is homotopy commutative
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EQ,---,1) — {the zero section} --Jil-> E(, -,

ul= ) ul=
S(+Dm)  —L S (7@ @),

Let ¢(l, -, L) be the Thom class of 7"*@---@P7x'*. Then we have
Fi¥ oy -+, 1)) =boly---1,¢(A, ---,1). Since the coboundary homomorphism
8: HP™ (S (@ -- @) ) > H?™ (T (L, -+, 1,)) is isomorphic, the
fundamental class of (S™*'xS**")/é (L, .-+, ) is the dual class of
O Hm* ([CP™]*) U t(b, »++, L)}, where m: E(l, -+, l,) >CP™ is the pro-
jection and [CP™]* is the dual of [CP™]. Then the assertion follows.

ln) — {the zero section}

Suppose that M™ and N™ are orientable manifolds. A continuous

map h: M™—>N" determines the Umkehr homomorphism

D By D
heHF(M™ = Hp_ o (M™ —> H,_.(N®) =~ H"™*(N"

where D is the Poincare duality.

Proposition 2.3. Assume that g is an embedding of (S™™*!
X S™N /¢ (A, -+, 1) into SY for a large N. Then the Umkehr homo-

morphism of

F=Fxg: (S™XS™) [ (1, -, 1) > (S X S /6 (b, -+, ) X SY,
fxg@ = (f(2),9(2), satisfies

F(f*(3) =b+Lyx [S"]*
where [SY]* is the dual of [SV].

Proof. The Umkehr homomorphism satisfies F,(F*(a) Ub) =aU
F(b) [8]. We calculate using Proposition 2.2,

F(f*)
=(xHUFkQ)
= (XD UD(Fxg) (XS /g (1, -+, 1)]
= (XD UD((b-L) LS XS [ (b, -+, L) ] X 1)
= (yX1) UL (1 X [S¥]%). Q.E.D.
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If m<n, then we get a short exact sequence
Tk
0> MU*(CP™ — MU*(S(H"@---D1™))

0 -~
—> MU*(T (L, -+, L)) =0

and 0: MU™ (SR - @7') ) — MU (T (lyy -+, &) is isomorphic.
In this case we may determine the ring structure of MU * ((S*™"'x S$™*")/

¢ (b, -+, 1)) (cf. [18]).

Proposition 2. 4. If m<n, then MU* ((S*"' XS /¢ (b, =+, ln))
is MU*[x, v]/ (™", y%) where x is the first cobordism Chern class
cy (') and y is an element of MU™ (S (4"@---@n'")) such that Oy
is the Thom class of 7"@---D7y'=.

Proof. MU*(S(y"@---@7y'*)) is isomorphic to the direct sum of
MU*(CP™ and MU*(T (b, -, 1)). We have
(=% §(n*aJb) =n*a )b
(cf. Chapter 13 of [20]), and MU*(S(7"@D---Py'*)) is a free MU*-
module generated by {(x*x)? i=1,2, -, m} and {(z*x)‘Uy, i=1,2,
«.,my. It follows from Proposition 2.1 that MU?*** (S (y"@---@Dy'*))
is zero. Q.E.D.

§ 3. On the Umkehr Homomorphism of f
with the MU*-Orientation

For any set w= (4, ---, ;) of positive integers, let > £i*..-£ir be the
symmetric polynomial of variable #; 1<<j<<# to be the smallest symmetric
polynomial containing the monomial #!---¢¥, which is expressible uniquely
as a polynomial with integral coefficients in the elementary symmetric

polynomials &, &,, :--, S, of the #’s and write
P, (€1, s, 0, @n) =21 L8

For an n-dimensional complex vector bundle £ over X, we define
ca(§) =Py (cu(@), cz(Q), -+, c& ()

and c§,...o () =1, where ¢4 ({) are the ordinary cohomology Chern classes.
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Suppose that x& MU¥*(X) is represented by
g: S EX*— MU (N).
We define
S8 (x) =0"""g*0ci (1),
where @: H* (BU(N)) —>H*(MU(N)) is the Thom isomorphism, ¢*~*¥
denotes (£—2N)-fold iterated suspension isomorphism and 7y is the N-

dimensional universal complex vector bundle. The ring H,(MU) is

isomorphic to Z[#, 2, ---]. Let

[L): (1’ .." 1’ 2’ ..., 2’ .'.? k’ ...’ k)

7 iy iy
and we define
|o| =17,+ 27,4 -+ + ki)
and
0=t 1k
There exists a multiplicative natural transformation
Bu: MU*(X)—(HAMU)*(X) =H*(X) [[4, t, ---]1]
defined by
Br(x) =2, 55 (x) 2°

which is called Boardman map (cf. [1]). Bu: MU*(S*) —->H,(MU) is
the Hurewicz homomorphism which is injective [16]. Given xe MU * (X)
with z=[g: S*™ *X*—->MU(N)], the Thom homomorphism x: MU*(X)
—H*(X) is defined by u(x) =0 g*0 (1) =S§,..0 (T).

Proposition 3. 1. Suppose that a finite CW-complex X has no
torsion in its integral cohomology, then the Boardman map [y is

injective.

Proof. Since the cohomology of X has no torsion, the Thom homo-

morphism is surjective. Suppose that y{, y{ .-, y{® are the basis of

H"(X), then we can take «{” with u(«{”) =y$°. The correspondence
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3 yPREP - bPus® yields an isomorphism H*(X)QMU * = MU *(X)
(cf. [6]). We see )

Bz (X 6Pu) = 3 Ba (6 {v P+ ZiaiseSa (#§) 27},

Let £4 (2] 65Pu$®) =0, and we can derive inductively that 8z (6$”) =0 and
™ =0. Q.E.D.

For an #n-dimensional complex vector bundle { over X, consider a

formal power series of #s:
Q) =2bcs ().

This satisfies the naturality and cZ (&@E&.) =cZ (&) c?(&.). Suppose that
X and M are weakly almost complex manifolds. An embedding 2: M
—X with the normal vector bundle y equipped with the complex struc-

ture induces the Umkehr homomorphisms:
hy: MU* (M) ->MU* (X),
and
Bt EHI* (M) ([, 1, 11> H* (X) [[8s, 1, 1],

Now we recall the following (cf. [19])
Theorem 3.2. By (1)) =~ (ci V).

Progf. A composition of a collapsing map ¢ of the Thom construction
and a classifying map g, for v
c g,
§: X — T W) — MU (k)

represents A, (1) e MU*(X). By making use of the following commuta-
tive diagram:
D
o *
H,(X) <— H*(X) <— H*(T ()

e,

H, (M) = H* (M)
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we calculate
Bu(h(1)) =3, S5[9.c]2°
=200 *0ucs ()2
=h{' (L. c5(»)2°).
Q.E.D.

MU*(BU(1)) is isomorphic to MU*[[xxy]], xwr=cr(r). The
first cobordism Chern class ¢k (7f) of the k-fold tensor product of 7; is

described as
ey (1) = [k] r (xar)
= kx];[[]‘l" a{“x?w + dg(k).r?m] + e

Let g: X—>BU(1) be a classifying map for a complex line bundle & over
X. We see

>r(ey () =9*{k+ aPxyp+ a$Pxyp + -}

The map f: (S™'XS™) /¢, -, 1) = (S™'XS™) /B (b, -+, [,) de-
fined by

f([(u‘h ) um), (‘Uo, Tty ‘Un)]
=[(u0’ ey um), l(v{’]“’ ey Av;'n)]’
r

r=+]v|" 4+ [v,[%n,

and an embedding A: (S™*'XxS*™)/d(1, -, 1) —S™ for a large N de-
termine a bordism class [ (S™*!x S8*™*Y) /¢ (1, -+-, 1), F X h] of MU ((S**
XS /b (L, -+, L) X S*). The projection 7: (S*™*1x S™) /¢ (L, -+, L)
—CP™ is defined by wl%, v]=[«]. Then we have

Theorem 3.3. Suppose that m<n. Then it follows that
[ xS /¢(, -+, 1), FxR]
= Dyg* Loy r (cr (D)) > (e (1)) - Lupr (et (1)) X [PCS™]

where P= {a point} and Dyy is the Atiyah-Poincare isomorphism [3].
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Proof. If m<n, then H* ((S*™*'xS*™"") /¢ (b, -+, [,)) has no tor-
sion from Propositions 2.1 and 3.1 implies that
BH: W*((52m+lxszn+l) /¢(101 ey Zn) XSHV)
_)H*((S2m+1><52n+1)/¢ (ZOy B Zﬂ) XSzN) [tla tZy '”]
is injective. The tangent bundle of (S*™*'xS**") /¢ (L, -+, l,) is stably
isomorphic to 7' (v (CP™) @7"@®---@7'*) where 7 is the Hopf bundle over
CP™ and (M) denotes the tangent bundle of M [18]. The normal
vector bundle v for fXh satisfies that v@r ((S**'x.S™1) /61, -+, 1))
is isomorphic to f't ((S*™*'x S /¢ (L, -+, L)) D2Ne, where ¢ is a trivial
real line bundle. It follows directly from the definition that
cE) =1+xt,+ 2%+ + 2™, x=ck ()

and

o _ el @) --- e (')
et ) =] (F @ g

since the following diagram is commutative

(S2m+1xs2n+1)/¢(l, .. £(52m+lxszn+l)/¢(lu, ey Z,,,)
/71'

N

CcpP™

51D
AN

By using Theorem 3.2 and Proposition 2.3 we have
Bu ((fx ) (1)) = (fx k) el (v)

R lu-“Z,,c{I(')?l")-“cf(')?l") 2N
== (Em) X571

On the other hand, we see that
Bu (et (1)) = cu (%) ¢ (%) = ke (0) ¢ (1)
and

B (cv (1)) =B K& 5 (v (1)) - cv (1)) =Br KkDr (v (1)) Ba (v (1))

Therefore we have

Ba (s (el (1)) ="—,’,§'(§’77)J .
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Noting that 8y maps Dzy ([P S*]) to [S*]*, we obtain
B (0* {<lopr (¢ (1)) +++Llwpr (et (1)) } X Dy ([P S*])
=Bu((fxh)(1)).

This completes the proof.

§ 4. Another Proof of the Kasparov Theorem

449

Let 4, 4, -++, I, be integers prime to p. An action of Z, on S**!

X S**! is defined by
¢P(ZO: Tt ln) (g’ ((uOy B HM)’ ('Uo, B 7)11)))

= ((puOy "ty pum)’ (plnv(h ) Aolﬂvn))a

where p=exp(27i/p) and g is a generator of Z,. The map f: S*™"'x

SZn+l__>S2m+l><S2n+l Wlth

R B ) (A R o)

r=v[vd" + -+ ol
induces a map of orbit spaces:
fp: (SZm+1XSZn+1) /¢P (19 “tty 1) g (SZm+1 X SZn-H) /¢17 (ZO’ ) ln) .

Let m: (8™ X<.S™) /@y (loy +++, L) = (S X S /b (b, -+, L)  be

natural projection. We take up a differentiable embedding
]’L: (SZm+1><S2n+1)/¢(1’ ey 1) __)Szzv

for a sufficiently large N.

Proposition 4.1. In the following commutative diagram

(ST XS [y (1, v, 1) = (SH 874 61, -+, 1)
lfp X hw lfx h

the

2m 41 2n+1 e 2N T X id 2m+1 27 41 2N
(SEXST) [y Loy -0y L) XS —— (SIS /@ (Lo, ++v, L) X S

(1)  foxhn and fxh are embeddings

(2) wXid is transverse regular to (fxh) ((S™"'xS™% /¢,
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1))
@ @xid) " (Fxh) (™) S™ /6, 1, 1))
= (Fx hm) ((S™ XS [ (1, -+, 1))

Progf. A tangent vector at a point of (S*™"'xS*™") /é,(1, -+-, 1) is
described as D+ W with ¥&€ {the tangent space along the base space of
the smooth fiber bundle m: (S™"'xS8™")/d,(1, ---,1) = (™' x S™*)/
¢, -, 1)} and we {the tangent space along the fiber}. Let d(f;
X h7) (D+w) =0, then d(FfXxh) (D) =0. Since fx% is an embedding,
©=0. On the other hand, df, is injective on each tangent space along the
fiber, and @ =0. This implies that f,X A7 is embedding, because f,X hx
is injective. The differentiable fibration 7 Xid is transverse regular to
any submanifold of (S*™*"'x.S*™*Y) /¢ (L, -+, L) X S?. Q.E.D.

Considering the geometric interpretation of the cobordism group [19],

we can see that Proposition 4.1 implies

Proposition 4.2. The induced homomorphism (nXid)*: MU*
(S XS/ (lay -+, 1) X S™) > MUA((S™ X S™*) [l -+, L)X S™)
sends Dyy[(S™' X S™) /¢ (1, -, 1), fxh] to Dayp[ (S XS /8,1,
vy 1), fpX Ar].

Let ¢p(ly, =ooy b) 1 Z, X S™*'—>S"*! be an action of Z, on S™' de-
fined by

¢P (10’ ttty ln) (gy (‘Uo, "ty ‘Z)n)) = (pln%’ “tty plnvn)'

We have a complex line bundle &(L): SEX g, C =Sy by =+, 1)
by taking the orbit space of an action of Z, on S*"'xC"

g- ((Zlo, "t un) ) Z) = ((pLDuO, ) pl"un)) pZ)
where ¢ is a generator of Z,. Denote by
?(L) L Sl chl — S2n+1/Zp

a line bundle over a standard lens space which is the orbit space of an
action of Z, on S™"' X C" defined by ¢ ((e, ***, %), =) = ((02t, *+*, 02t3),
0z). The bordism class of f,xh: (S xS /d, (1, -, 1) — (S x
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S JBy (L, +++, L) X S* with the embedding 7. for a large N is describ-

ed as follows.

Proposition 4.3. Suppose that m<Zn. Then

LS X S™) [y (1, -, 1), Fpx 7]
= Dy {m* {<loyr (b G (L)) L ladr (6 (G (L)) }} X [PCS™],

in MU, ((S™'xS™ ") /b, (L, -+, 1)), where P= {a point} and w: (S*™**
XS b (byy vy L) =S /b1, +++, 1) is the natural projection.

Progf. Theorem 3.3 and Proposition 4.2 imply that
[(S™*1 ) S™) /¢y (1, -+, 1), fp X ha]
= Duy Am* {<Lope (€ (G (L)) -l (e (B (L)) }} X [PCS™].

But A7 is homotopic to %, and the bordism class is homotopy invariant,

and hence the proposition follows.

The map f: S™'S™" with £ (s, -, 0,) =~ (0, -+, O}, 7 the
r

norm of (v}, «-+, v), induces a map of orbit spaces

For S/ hy (A, oy 1) =Sy (b, o, 1)

Theorem 4.4. In MU, (S""/¢p(Ly -+, 1)), [S™ /¢, -+, 1), >l
= Duy {<Lopr (cy G (L)) Lupr (ch G (L))}

Proof. Define m,: (S XS™ ) /¢, (L, ++-, L) =S /Py (b, =+, L) by
7o[#, v] = [v] and take a differentiable embedding A: S™™'/¢, (&, -+, 1) —

S* for a sufficiently large N. In the commutative diagram

(S* XS [y (1, 0, 1) > S#4/ (1, -, )

lfp X hty lfp X h
T X id
(SR SHH) [y (la, o L) XSSP T2 ST, (ly, v, 1) X S
fpX hm, is an embedding and 7,Xid is transverse regular to (fpXh)
S™ /A, -+, 1)). Thus it follows that
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(WX id) * Dyy [S™ /iy (A, -+, 1), fpX h]
= Dy [ (S™ xS /¢, (1, -+, 1), Fp X hts].

We now note that the induced bundle 7'€ (L) by the projection m: (S***!
XS JBo (Lo, +oy L) =S /Pp(1, ---,1) is isomorphic to the induced
bundle 7€ (L) by the natural projection m,: (S**'X S /@, (Lo, -+, Ly)
—S™* /o (b, +++, I,). Proposition 4.3 implies that

(M x id) * Dy ([S™* /4 (1, -+, 1), Fp X 1)
= {loyr (cy G (L)) <Ly r (b € (1))} X Dy [PCS™].
Since (7, Xid)* is injective, it follows that
[S™/ 9 (L, -, 1), Fp X k]
= Dug {<loyr (¢ (L)) -+ LLupr (cy (E (L))} X [PCS™].
Applying the homomorphism MU, (S** /¢, (b, -+, Lz) X S*) —> MU, (S***'/

¢p(doy +++, L)) induced by the projection, we obtain the assertion.

Theorem 4.5. Let §,: S™ /Pyl -+, ) =S /0@, -+, 1) be
the map of orbit spaces defined by

Go[0, -+, 0] = [}(vzé, vﬁ)}

where Ll=1 modulo p and r is the norm of (vl -+, v%). Then

D.Z?l%l [Szn+1/¢11 (ZOy ttty lﬂ-) ’ ap]
={Lor ([b]r(2)) - LL>r([L]r(x))  modulo  ({p)r(x))

where {p>p(x) € MU* (S /¢, (1, ---, 1)) and z=cy(E(L)).

Proof. Consider the natural injection j: S**'/¢,(1, ---, 1) -»S**%/
g1, ---,1). We can see that j@,,fp:j and §h (?(L)) ~&(L). We note
that the Atiyah-Poincare isomorphism Dyy: MU*(X) >MU(X), X a

weakly almost complex manifold, is given by
Dyy (2) =2 N [X, identity].

We put U=[S"""/y,(Q1, -, 1), identity] € MU, (S™ /1, -+, 1))
and U =[S/, (o, -+, L), identity] € MUy, (S™/Pp(l, -+, L)). Let
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us compute with Theorem 4.4

% (U) = jxGps o (U)
= jxox LS/ (A, -+, 1), Fpl}
= j0p4 {03 oy r (@) - Ladr (@)} NT}
=75 Ly r (x) Ly r () NGox TN}
= js 4Ly r () - {Ladr () U Dty (@ (0O} N U}

Hence <L r(x) <L, r(x) U Dxy (Gpx (U)) —1 belongs to Dy (55 (0)).

We recall the following commutative diagram:

DMU * A~
MU (™ (1, -+, 1)) S MU* (S%%/4, (1, -+, D) <M U*(T (¢ (L)

2 05

Dy
MU, (™, (1, -+, 1)) 7 MU*(S™/¢,(1, -, 1))

—~

where @y is the Thom isomorphism and ¢ is the canonical collapsing
map. Since @z'c*7'(0) is generated by <{p>r(x) (cf. [12]), <{lppr(x)---
e (x) U Dy (Gps ((7)) —1 belongs to the ideal generated by <{p)r(x)
in MU*(S*™'/¢,(1, ---,1)). On the other hand, since {&(L) & (L),
we get
{Lr([41r ()} [4]r(2) =2
and it follows from Lemma 5 of [9] that {{JDr([4]r(x))}<{Dr(x) —1
belongs to an ideal generated by <{p)r(x). Then we have
Dy (ﬁ)
= {I>r (2) - ()} LI Dr ([b]r () -~
e ([L]# () U Dxy @s (0))}  modulo (e (),

and

Digy s (0)) =L >r ([h]r (2)) =<l >r ([L]r (2)) modulo ((pDr(2)).
Q.ED.

Let us consider the composite
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; D)
z
Jui MU (S /g, (1, -+, 1)) —> MU, (BZ,) =M U (Z5)

where 7, is the MU,-homomorphism induced from the natural injection
and ¥ is the natural isomorphism given in [5]. Now we shall prove

the Kasparov theorem.

Theorem 4.6. Assume that Lly=1 modulo p. Then
[S™*, by (oy =+, L) ]
=Jsx Dy <6 Dr ([L]r (2)) =K LD>r ([l]r (2)) },
where x=cy(E(L)) € MU*(S™"/¢,(1, -+, 1)).

Proof. From Theorem 4.5 there exists h(x) € MU*(S*™"'/y,(1, -+,
1)) such that

Dy [S™ /¢y (b, -+, In), G
=l ([h]r(2)) <G> r ([L]r (2)) +<L>r (2) h(2)
and
(S /s (b, ==+, 1) » ]
= {L>r ([L]r (@) -+ <ldp ([L]r (x)) +<)r () R (x)} N U

where U=[S"""/¢,(, ---, 1), identity]. Let T be the first cobordism
Chern class of the canonical line bundle & (L) over S***/¢,(1, ---, 1) and
let

U =[5, (1, -+, 1), identity]
which belongs to MUp.s(S™**/¢,(1, ---,1)). Then we have
zNU =4, U (cf. [11]).
Noting that [p](Z) =0, we calculate

2 [S™ /o (o, o, 1a), Ga]
=2 {e* K >r ([L] @) D r (] r (@) +<0r (@) R (@)} N U}
= ([L]r @) - ldr ([La] s (@) +<00r @) 2 (@)} Ny (U)
=<lo>r ([L]r (@) e ([La] 7 (@) Nis (V)
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=14 {Dur Loy r ([L] () ---{0Dr ([La] r (@)}
Q.E.D.

§ 5. Characteristic Classes of £(V,)

The product space IXX of a Z,space X and an interval I=[0,1]

has a Zjaction with ¢g- (¢, ) = (¢,9-x), and we have Z,spaces
S(X) : the usual suspension of X
CH"(X)=Xx[1/2,1]/Xx {1}
C (X)=Xx1[0,1/2]/Xx {0}.

Denote by p, and p, vertices obtained by the identification of X X0 and
X x1 in these spaces. A map &;: EZ,,XZP {p}—>EZp><Zp S(X) is defined
to be & (x,p) = (x,p), and a map 7: EZ, X, X—EZ,Xz,{p} =BZ, is
defined to be 7w (y, x) = (v, ). We can derive the following propositions
after the fashion of Proposition 10.1 and Theorem 10.2 of [4].

Proposition 5.1. Suppose that X is a compact Z,-space. Then

there exists an exact sequence:

efF—ef *

T
MU*(EZ, X ,8(X)) MU*(BZ,) —>MU*(EZ,% 5,X).

s
Proof. MU*((EZ,)" /\z,—) is an equivariant cohomology theory
described in [10]. Consider the Mayer-Vietoris exact sequence for a

triple ({S(X)}"; {CT(X)}7, {C7(X)}7)

]

s MU*(EZy % 7,8(X)) s MU* (EZ, % 5,C* (X))
BMU*(EZ,x z,C~ (X))
k
—>MU*(EZ, X 7,X) —>
where j*(x) = (¥ (x), ¥ (x)) and k* (x, x,) =if (x;) —if (=), and j; and
is are natural inclusions. The isomorphisms MU *(EZ, X z,C* (X))=MU*
(BZ,) and MU*(EZ,X 2,C™ (X)) =MU*(BZ,) yield the proposition.
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Let ¥: Vectc(—)—>MU*(—) be a natural transformation assigning
a complex vector bundle over X to an element of MU * (X) which satisfies
(O =r7Q).
Consider complex vector bundles
§(Vo); EZ,X2,Ve—>BZ,

where V, is the complex Z,module obtained by the tangent space at an
isolated fixed point a of an almost complex Z,manifold M. Then we

have

Proposition 5.2. Suppose that a and b are isolated fixed points
of a simply connected almost complex Z,-manifold. If H'(BZ,;
{m: (M)})=0 for 1<i<2n—1, then ¥ (E(V,))—¥ (§(Vs)) belongs to an
ideal generated by x"* in MU*(BZ,) =MU*[[z]]/([P]r(x)), where

x=cy(§(L)), L the canonical one dimensional complex Z,-module.

Proof. The (2n—1)-skeleton of EZ, can be taken to be S*! with
the action given by the complex n-dimensional Z,module nL. We take
an invariant subspace EZ,X {0,1} is a Z,space EZ,X I with g- (e, t) =
(g-e,t). Consider the constant maps

ho: EZ,— {6} and h,: EZ,—{a}
which induce maps
o 8™ EZ,—{b} and h,: S 'C EZ,—{a}.
We can construct an equivariant homotopy A: S* !X I— M between %, and
Ry, by using the condition for the cohomology H*(BZ,;{m;(M)}), and
an equivariant map £: S(S* ) —M (cf. [4, p.355]). Since
E(Vo) =el(@d X 7,h)'T and §(V,) =eb(id X ,1)'T,

where 7 denotes a vector bundle EZ, X 7, E(rt (M)) —EZ,X z,M, it follows
from Proposition 5.1 that #* (¥ (§(V.)) —¥ (6(V,))) =0. By using the

Gysin exact sequence

o T*
> MU*(BZ,) —> MU*** (BZ,) ——> MU*** (EZ, X 7 ™) -

we complete the proof.
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We consider the symmetric polynomial P,(&,, ---,&,) discussed in
Section 3; and put Cg (Tn) :Pm(c}/ (Tﬂ), Tt C7ILI (Tﬂ))’ where C;-f (rn) is the
i-th cobordism Chern class [7]. The Landweber-Novikov operation

SY: MU*(X)—MU**** (X)
is defined as follows: for x=[f], f: S®*X*>MU(n),
So () =0"77 f*Oy (cd (ra))  (cf. [14], [17]).

The Boardman map By: MU*(X)— (MUANMU)*(X)=MU*(X) [[4,
t, -+-]] is defined by

Bu(x) =200 S5 (x)2*  (cf. [2], [19D),

which is natural and multiplicative. Let J(G) be the set of isomorphism
classes of non trivial irreducible complex Z,-modules, and let ¢}/ = {V!

- @VE51V,, €J(G) and k’s are non negative integers}. We consider the
multiplicative system S consisting of cobordism Euler classes {e(EZ,X,
MIVedV} in MU*(BZ,). For a Z,space X, MU*(EZ,Xz,X) is a
MU *(BZ,) -module by a map EZ,X z,X—>BZ, X (EZ,Xz,X) sending [e,
z] to ([e], [e, x]). The localized module ST'MU*(EZ,Xz,X) of the
MU * (BZ,) -module MU*(EZ,X z,X) consists of all fractions {x/e; x&
MU*(EZ,Xz,X), e€S}. For a complex vector bundle { over X, we put

Q=142 (O

which is an invertible element of MU*[[#, &, ---]]. We define By
STMU*(EZy X 2,X) —»ST " MU* (EZpX 7,X) [[ s, 2, ==+ 1] by

Bo(9/e @ (V))) = (Bu(o)- ) e

1
el (V)
which is multiplicative and natural. Moreover, we define

88: STMU*(EZyX £,X) S MU* (EZ, % ;,X)
by By(z/e) =3 8% (x/e) 1*.

Proposition 5.3. The operation SY on S MU * (EZyXz,—) have
the following properties:
Q) 8Y is natural.

@) SU((x/e) - (22/€)) = Duetwon S% (21/€) ST (25/€2), where for



458 MASAYOSHI KAMATA
o = (ji, -, j2) and 0" = (47, i), (0’0”) denotes (ji, -,
Joy Jis ey IO
(3) 8%(x/1) =SY(x) /1, where SY is the ordinary Landweber-
Novikov operation, i.e. AST=8Y), where A: MU*(EZpX z,—)
—STMU*(EZy,X z,—) is the canonical map.
(4) For w= (1"“’ 1,29”',2""sk""3k)s

iy 2] iy

82 (/e @ (@)) = (~ v [t 0o gy /1.

i]! Z.g' . ‘ik!

Proof. By making use of the multiplicativity and the naturality of
By, we derive (1) and (2). For a zero dimensional complex Z,module

0, we have ¢(£(0)) =1 and ¢Z (6(0)) =1, and

Bo(z/1) =By (z) Tlm/e €0)

=PBy(z)/1
which implies (3). To prove (4), we calculate

Bu(1/e(E(L)))

= {0 -c—?@%ﬁ}/e@@))

~ 1
- {1+e(S(L))t,+e(E(L))2tz+...}/3(5(*'3))

= {2 (=D (G L) t+eE (L) ta+ )} /e (E(L)).

This completes the proof.
We see easily the following
Proposition 5.4. SJ(e(§(V))) =e(E(V)) I (E(V)).
Taking two complex Z,modules V, and V, obtained from tangent

spaces at isolated fixed points @ and & of an almost complex Z,manifold,

a fraction e(§(V,))/e(6(V,)) is an integral element from the following
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proposition.

Proposition 5.5. Suppose that L is a canonical complex one
dimensional Z,-module. Take k; and I; such that (k;, p) =1 and (I,
p) =1. Then for n>=m, e(£ (L:*@---@L*))/e (6 (L"PD---PL™)) belongs
to the image of X: MU*(BZ,) —S 'MU*(BZ,) which sends x to z/1.

Proof. For z=cy(E(L)),
e(6(LY) = [k]r(x) =kx+af?2*+af2’+ -
and
e(§ (L") /x= <k () /1.

Assume that (Z, p) =1, then there is an integer I’ such that !"/=1 modulo
p and

= ([1]r(2)) - [1]r ().
Therefore we have

e(§(LMD---DL™))
e(§(L"®D---DL™)

=r ([L]r (2)) =+ Klndr ([Ln]r (2)) <dp () -
$krpp () [Ana] (x) - [Ra]r (2) /1.
where /5;=1 module p. Q.E.D.

Proof of Theorem A. For brevity, we put e,=e¢(§(V,)) and e,
=e(§(Vy)). We show by induction with respect to the length of the

partition @ that

HEORRAGES

€y €y 1

where h,(x) e MU*(BZ,). By using (2) of Proposition 5.3 we obtain

3 (Ee):”’i <fﬁ>.ﬂ+ﬁ.§tg <e_>
()1 ()cblcb ()1

Hence it follows from (3) of Propositions 5.3 and 5.4 that
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St (£2) = o, oG V) ~cb G

(O]
€y 1

\eb
Proposition 5. 2 implies that there is an element A, (x) &€ MU * (BZ,) such
that ¢§y (6(V.)) —cly (6(V3)) =hw (x) 2", and

S, (&) = 2. Ba @2

@\
Cy €y 1

Suppose the result is proved for @’ whose length is less than the length
of . By using (2) of Proposition 5.3 with the inductive hypothesis we

calculate
87(%e) = Sy (2o 22)
1 €y 1
=§g<ﬁ> S §U<_e_b> Loy Ca, B (z) z"Sa (e)
Cy 1 @ 1 s o="(0"0") e, 1

where A, (x) e MU*(BZ,). Moreover it follows from Propositions 5. 4
and 5.2 that there exists an element %,(x) € MU*(BZ,) such that

Sg(f&) =%Za(x)x”/l— > fh, ()l (V)1

ey 0= e,

and there is an element A,(x) € MU* (BZ,) such that

sz (E;) —fep, (2)z"/1.

()

It is pointed out by [9] that the canonical map i: MU*(BZ,) ->S'MU*
(BZ,) with 2(x) =x/1 has the kernel which is an ideal generated by
{pyr(x). We then complete the proof.

§ 6. On the Bordism Classes of Actions on Invariant Spheres

around the Isolated Fixed Points

The Thom homomorphism g#: MU*(—)—H*(—) is the multiplica-

tive natural transformation with the following properties.

Proposition 6.1. Let { be a complex vector bundle over X.
Then
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Q) pel @) =i ()
2) why(x) =0(u(x)), where Oyp: MU*(X)—->MU*(T()) and
0: H*(X)>H*(T()) are the Thom homomorphisms.

Recall the following property of the Umkehr homomorphism [8].
Proposition 6.2. ¢,(9*(x) Uy) =xUg.(y).

We observe S¥: MU*(X)—-H*(X) for a weakly complex manifold

Proposition 6.3. Take an element x:[MLX]E MU, (X), where
X is a weakly complex manifold and g is a differentiable map. Then,

SaIJIDIT!}] (1') = Zm=(w'm”)cuf‘I (? (X) ) g! (CaI:{' (V) )

where v is the normal bundle of M in a Euclidean space with the
complex structure and T(X) is the Whitney sum of t(X) and some

trivial bundle which is a complex bundle.

Proof. Let §: M—XXR"' be an embedding with the normal bundle
¥ equipped with a complex structure and §==¢. Dy (x) is represented

by the composition

c .
SIAX*—T (5) 2> MU (&)
which ¢ is the collapsing map and § is the map induced by the classify-

ing map for y. The Whitney sum V@r (M) is stably equivalent to
g't(X) and

et () e T (M) =g*ei’ (F(X)).

Hence we have that cff () =g*c? (F(X)) -c? (V). We calculate with Prop-
ositions 6.1 and 6.2

S& Diy ()= 1S3 Dy (x) =07'c*{0 (i (9))}
=0:(ca ()

=0:( 3] 0B EE) )
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= Z”)Cf'(?(X))gs(CZ(V))-

o= (0’0

Q.E.D.

MUY* is isomorphic to MU _, and a bordism class [M] of a weakly
almost complex manifold can be regarded to be in MU*. Directly Pro-

position 6.3 implies

Corollary 6.4. uSY[M]=<{cZV), [M]), where v is the normal
vector bundle of M in a Euclidean space which is equipped with the

complex structure, where ¢, ..., is the Chern class for Y tit--- 4.

We consider the ideal 4, in MU* which is generated by p, af?,

a®P, -+, aP, .-+ which are coefficients of
[£]r(x) =px+aP2*+aPx’+ - .

We recall the following property of 4, .

Proposition 6.5 (cf. [9]). [M] belongs to I, if and only if
cE[M] =<LcZ (c(M)), [M]>=0 modulo p, for any w, where p is prime.

Proof. Let y=ck (%) be the cobordism first Chern class of the Hopf
bundle 7 over CP~. It is known (cf. [14], [17]) that

{[pl= N} i o=()

otherwise.

NAGARIODE
We see SZ([p]r(¥))=0 modulo p, and

SE (py+aPy’+aPy*+ ---)=0 modulo p.

Then we can deduce that S¥(a®)=0 modulo p. Therefore we have
that the Chern numbers of [N] are zero modulo p if [N] belongs to
Jp. The Hopf bundle 7 over CP" satisfies that

Dyy (cy (79)) = q[CP"'c CP"] + a®@[CP**CCP*] + -+ +a@,[PC
CP"], in MU,(CP". Let Dyy(cy(79) =[Vip'cCP"], then

) [V'l=q[CP']+aP[CP"" ]+ -+ a2,
We note that Vi;' is a U-submanifold dual to ¢ (%% (cf. [7, p.81]),
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and the fundamental classes of Viy"' and CP" satisfy that 7, [Vig'] =ck (59
N [CP"], i: V' CP". Noting that the normal bundle v of V' in
CP" is isomorphic to 7%, we have that ¢y, (t (Vi) =i*{(n+1) —¢" '}
y
[V ]=q(n+1) —g". Using (%) and ch_,[CP" '] =n, we have cfa_y

[a®,]=g—q". For prime g, we take

n—1

, where ¥ =c5 (7). Therefore it follows that the Chern number c%&_;,

W] =a@ 4+ ¢"[CP*], b=¢*"—%k and u=q¢"*—1
q q

whose Chern number cfe_y,[ Wy-1] equals to g. Take a 2i-dimensional
weakly almost complex manifold W;, i£¢"—1 for any prime g, such that
cy[Wil=1. According to [16], MU*=Z[[W,], [w,],--]. Assume
that ¢f[M]=0 modulo p for any w and

[M] =3 ai.c,[Wi]"- [W,]*.
Noting that

S8ttt m [Wi1 A W] [W]5

= (et [WiD (et [Wal) - (el [Wal) =,

we inductively deduce that if Z,=0 for s=p*—1, then a;,.;,=0 modulo

p, and [M] €Y,. Q.E.D.

We now go back to consider the cobordism Euler class of complex
vector bundle §(V,): EZ,Xz,V,—~BZ, V, the complex Z,module given
by the tangent space at the isolated fixed points of a Z,manifold.

Proposition 6.6. Suppose that V, and V, are complex Z,-mod-
ules given by tangent spaces at isolated fixed points a and b of a
simply connected almost complex Z,-manifold M, and 2 () =e(E(Va))/
e (W), where A: MU* (BZ,) »S7MU*(BZ,) is the canonical homo-
morphism. If H*(BZp;{m:(M)}) =0 for 1<i<2n—1, then

=+ Ax+lx’+

where Ay, Ay, +++, Aoy belong to .

Proof. Suppose that |w|=2i, 1<i<n—1. Then SYA & MU %,
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Note that g: MU*(P)—H*(P), P = {a point}, is the zero homomorphism
for 2>0, and SY(4) =0 if w#(0). Suppose that 4; j=1,2, ., i-1,
belong to 4, Then

uSY (@) = pST (A) -z =[] xk,

where xy=ck(E(L)). Since SY(x) belongs to an ideal generated by
2 and (PDr(cy(6(L))) from Theorem A, c¥[A]xk=0 in H*(BZ,).
Proposition 6.5 implies that 4;€Y,. Q.E.D.

Proof of Theorem B. Let &(V) be a complex vector bundle S*~*
szV—>SZ""1/Zp, where V is a complex Z,module and S*7' has the
Zgaction ¢,(1, ---,1). Let 7: S*7'/¢,(, ---,1) > BZ, be the natural in-
jection. Put z=ch(&(L)) and z=cy(E(L)). Then, #6(L)=E(L).
We see that in ST'MU*(BZ,),

ll---lk——xk ——7711---771,,———————'Z’c

e(¢(Va)) e(€ (V)
oy BT €V
e(¢(Va) e (Vo) e(¢(V)

On the other hand it follows from Proposition 6.6 that
e il e (@) <mide ([mile (@) - LLde (@) <miye ([mel e ()
=I-I,+h(x)z" modulo J,
where m;m,=1 modulo p. Therefore we get
L b8 r ([ (2)) - Kl r ([Le] 2 (2))
—my-mlmiyr ([md e (2)) - -{mipr ([me] e (£))
=h(z)z" modulo J,, ;/{=1 modulo p, where % (z) e MU*(BZ,).
Applying i* to the above, we have
L Ll r (L] e (2)) -+ (L] r (2))
—mymilmi Y ([l (Z)) - <mipr ([malr (2))
=h(Z)z" modulo J, (cf.[12]).

Since JjoDupZ"=[S**™7", ¢] (cf. [11]), Theorems 4.5 and 4.6 imply

the theorem.
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§ 7. The Isolated Fixed Points of Z,-Actions

In this section we will consider an complex structure preserving
smooth Zgaction (M, @) on a simply connected closed almost complex
manifold M?*. Let a and b be isolated fixed points. We describe the
induced actions of Z; on the tangent spaces at a and & as complex Z;-

modules

Vo=sL’® (k—s) L
and

Vi=(G+t) L2 (k—s—¢t) L.
Recall that

{2p(x) =aP +aPx+alP 2>+ -, aP e MU
and
ok (aP) =221,

In this situation we shall first indicate a lemma which is derived as proof

of Theorem B.

Lemma 7.1. Suppose that H*(BZy;{r;(M*)}) =0 for 1<i<2n
—1. Then for 1<j<n—1

2 2
Dt aal®  belong to Y, .

Proof. In S™MU*(BZ), MU* (BZ) =MU*[[x]1/[3]¢(x), we

have

e(Va) = ot T A A e, S €
e (V)

from Proposition 6.6 and

25k 25 Htk

=7 x—}—ﬁ x2+...+22 $k+ R
c(Va) c(V2) M 2 k

/71, Tty Un1EYs.

Noting the fact that the kernel of the canonical map A: MU* (BZ,) —
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ST'MU * (BZ;) is the ideal generated by <{3)>r(x), we obtain
2 2Fe (V) — 27+ 2*e (V)
=e(Va) e(Vy) {Tax+ Tox®+ -+ + U™+ -}
and
2°({K2r ()} =2
=+ o e X Ay e €. Q.ED.

Then we obtain the following

Lemma 7.2. Suppose that H(BZ;{m;(M*)}) =0 for 1<i<2n
—1. Then, for 1<m<n—1 the binomial coefficients (7;) are divis-
ible by 3.

Proof. We take a partition
o= (b, - By, 2,0 2,1 - 1,0, -+, 0)
of &, where
lol =1-Gi+2jo+ - +kje=k

and

Jotdit e tie=t.
We define now

loll =g+ -+,

a® = {a@} .- {a®} 1 {aP}’

and

¢!

’zw':f'
Jele g2l gl do!

Then we have the following

2, 2) 2,
a§f~--cz§t)— Z Zmalg)) .
iptetig=4 lo]=7

We take up the case £=1. Since from Lemma 7.1 27%-a® =37 ;. .11,
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a®...al belongs to Js and cf, (af?) = —2, ¢ is divisible by 3. Assume
that m<n and <j>, j=1,---,m—1, are divisible by 3. From Lemma
7.1 3 u=nkea® belongs to J;, and for |w|<m—1

loo]!

lm:.———.—._
el dal gl

< 4 >EO modulo 3.
lo]

By induction we complete the proof.
We shall give some information on isolated fixed points of Zj-actions.

Theorem 7.3. Let a and b be isolated fixed points of a complex
structure preserving smooth action of Z, on the simply connected
closed almost complex manifold M. Suppose that

R=2,3"4 243" '+ - + 43+ A, 04,2 and 2,50
and
HY(BZy; {m; (M*™)}) =0 for 1<i<2.3"+1.

Then V, is equivalent to V.

Proof. Let V,=sL*®(k—s)L and V,=(s+t)L2P(k—s—1¢)L.
Suppose that t=2,3%+2,_,3* '+ .. + 213+ A<k, It follows from Lemma
7.2 that

l{:—i(t >EO modulo 3.
3

Hence 2 =0 and z=0. Q.E.D.

Corollary 7.4. Suppose that Z, acts on a simply connected al-
most complex closed 2k-dimensional manifold M as a complex struc-
ture preserving deffeomorphism with isolated fixed poinis only. Let
k=2,3"+ -+ 243+, 0<A,<2, and 2,50. If H*(BZg;{m,(M)}) =0
Sor 1<i<2-3%+1, then the number of fixed points is divisible by

3[(k—1)/2]+1

Proof. Let n be the number of the fixed points. Theorem 7.3
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implies that

n[S(V,), $.]=0 in MU, (Z;)

where V,=sL?+ (k—s)L. The Kasparov theorem (Theorem 4.6) im-
plies that

n(l+3m) [S*, (E‘] + m [S%3, $] + "'+,Uk—1[Sl, a’] -0

where /%0 modulo 3 and ¢, 1" (3), I’ (3) [[CP?]] = MU, (cf. [6], [11]).

From the result of [6] and [11] we can derive the assersion.
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