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Time Dependent Representations of the Stationary
Wave Operators for “Oscillating”
Long-Range Potentials

By

Kiyoshi MocHizukr* and Jun UCHIYAMA**

Introduction

Since the original paper of Dollard [7], the long-range scattering theory
for the Schrédinger operators —A4+ V(x) has been studied by many authors
(e.g., Buslaev-Matveev [5], Amrein-Martin-Misra [2], Alsholm-Kato [1],
Hormander [9], Kitada [13], Ikebe-Isozaki [10] and Kako [11]). These works
treat the case that the potential V(x) approaches zero without too much oscil-
lation at infinity:

(0.1) P2V(x)=0(r"11-9) (Ja| =0, 1, 2,...) for some >0

(F =7V, is the gradient in R*, r=|x| and a=(a,,..., ®,) are multi-indices with
le|=ay+--++2,), and prove the existence ([1], [2], [5], [9], [11]) and the
completeness ([10], [13]) of the modified wave operators

(0.2) Wi=s-lim exp {iLt}exp{—iLot—iX.(p, 1)} in L*(R"),
t—> oo

where Lo=—4, L=—4+V(x) on LAR"), i=/—1, p=—iF, and X.(¢ 1),
¢ e R, solve the equations

0.3) 0.X (&, D=V (2t+ X (S, 1) (0,=0[0r)

near t=+oo. The selfadjoint operators X .(p, t) are called time dependent
modifiers for L.
Stationary modifiers Y, (x, 1), A e R— {0}, solve the equation

0.4 F2J20,Ys(x, A)+17 Yalx, D2+V(x)=0(r"17%)
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near infinity. As we see in [10] and [13], Y.(x, 1) can be obtained from X .(&, t)
by a kind of Legendre transformation in classical mechanics and are used to
establish the completeness of W3. On the other hand, Y,(x, 1) are directly
used in [11] to obtain another formulation of the modified wave operators.
Let &,(4), AR, be the spectral measure of L,. Then in [11] is proved the
following: For any pre-compact set e € (0, o), the limits

(0.5) W}—*(e)=s-li1j1;1 exp {iLt}J . (e)exp { —iLyt}&y(e) in L2(R")

exist, are isometry on &y(e)L*(f") and coincide with Wi&y(e), where J.(e):
&o(e)L2(R")— L*(R") are identification operators (cf. Kato [12]) defined by

06) Jo(@f =@y | exp fix-E=iYa(x, 160

with f(¢) being the Fourier transform of f(x) and G(e)={&; |¢|>ce}.

In this paper we shall partly extend the above mentioned results to a class of
“oscillating’’ long-range potentials settled in our previous papers [14] and [15]
(the definite conditions on V(x) will be given in Section 1). Our main purpose
is to show that modified wave operators of the form (0.5) exist and are complete
for each e€(Aj, o), where the real number A; depends on the asymptotic
conditions at infinity of V(x). The results will be summarized in Theorem of
Section 4.

Our ““oscillating’’ long-range class includes the following examples:

(E.1) V(x)=c(x)+ Vx),

(E2) V=19 v =i,
(E.3) ' V(x)=c(x)sin (log r)+ V(x),
(E4) V= ADEL y ),

where c¢(x) (real) satisfies the conditions
c(x)=0(1), Pec(x)=00r"1"1=19) (ja|=1, 2, 1/2<d<1)
near infinity, A(x) (real) satisfies the conditions
Pei(x)=0(r"1«1%) (la|=0, 1, 2, 12<d<1)

near infinity, u is a real number and V((x) (real) is short-range, i.e., V{(x)

=0(r~17%)(6,>0) near infinity. Note that (E.1) generalizes the usual % long-
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range potential which satisfies (0.1) with 6>1/2. Namely, by the terminology
“oscillating” long-range petentials we never exclude ones which are in the
frame of ordinary long-range potentials.

Now, in (0.5) we take Lo=—A4+ Az on L*(R"). This cheice of the free
Hamiltonian mainly depends on the fact that we allow the case 4;<0. In fact,

for the above examples Aj; is given by (cf. (1.2) and Assumption 2 of Section 1)

Co for (E.1),
0 for (E.2),
[coly/1T+E72 for (E.3),
Aol e+ 124 for (E.4),

(0.7) Ay=

where ¢, =lim e(x), 4, =lim sup ﬂ)—‘i‘;‘M and e=4min {3,, 26—1, 1/2},
F— 0 F—00

and so we have A;<0 for (E.1) if ¢, <0. Further, in our case, equation (0.4)

does not work well, and it is necessary to define J.(e) in a different manner.

Let p.(x, 4), A> A3, be two solutions, specified in [15], of the equation

(0.8) 03p+»"‘:l 8.0 —(0,0) + V(x)— A=0(—1-3)
near infinity. Then our identification operators J.(e), e € (A3, oo), are defined
by

09) J@f =55 7§ exp {=p. e DY Fof1 . D,

where X =x/|x| and F,: L2 (R")—L?*((A4;5, 00) x S"1)(S""1 being the unit sphere
in R") is a spectral representation of Ly= —A+ Aj;:

0.10)  [Fof10h D= (h— A1
J2
x (2m)~"/? g exp {—i\/A— A% y—in(n—3)/4} f(y)dy.
RY[

We shall show that the operators exp {iLt}J.(e)exp {—iLyt}&(e) are
bounded in &y(e)L*(R™) and strongly converge as t— 4+ oo to the stationary
wave operators U ,(e). Here the existence and completeness of U_.(e) are
already established in [15]. Our argument essentially bases on [14] and [15],
whose results are summarized in Section 1. To show the boundedness of J_..(e)
we shall follow a method of Calder6u-Vaillancourt [6] on the L2-boundedness
of pscudo-differential operators (Sections 2 and 3). On the other hand, for the
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proof of the convergence the stationary phase method will play an important
role (Sections 4 and 5).

As we see in (0.7) for (E.3) and (E.4), (435 co) does not in general cover the
essential spectrum of L=—A4+V(x). In this sense it remains some ambig-
uousness in our theory.

Here we note that potentials of the special form

(0.11) V(x)= V(r)=% +V(r) (4, u are real constants)

including the case a=f=1 (cf. (E.4)) have been studied by Dollard-Friedman
[8], Ben-Artzi-Devinatz [4] and others. They reduce the problem to the study
of ordinary differential operators on the half line R, =(0, ), and prove the
absolute continuity of the positive spectrum (0, c0) of —A4 + V(r) except for one
possible eigenvalue u?/4, and the existence and completeness of the Mgller wave
operators. In this paper, we do not assume that V(x) is spherically symmetric.
However, our results for the concrete potential (0.11) with a=f=1 (von
Neumann-Wigner’s adiabatic oscillator) is weaker than theirs. Also we have
not shown whether or not our wave operators are equivalent to the ordinary
Mgller ones.

In case V(x)=V,(x), we can see that our modified wave operators coincide
with the Mgller wave operators modulo some simple unitary operators.
Similar results can also be expected to the potential V(x) which is improper
integrable in r=|x] e R,. It remains as an open problem so far.

§1. Assumptions and Preliminaries

Let Q be an infinite domain in R"” with smooth compact boundary 0Q2
lying inside some sphere S(Ry)={x;|x|=R,}. We consider in Q the
Schrodinger operator — 4 + V(x), where 4 is the Laplacian and V(x) is a potential
function. We assume

Assumption 1. V(x)=V,(x)+ V(x), where V;(x) is a real-valued function
satisfying the ““Stummel condition’’ for some u>0:

sup( Ok -y dy<oo G n24),
xeR J|x—y|<1

xef2

supgl , 0)Pdy<eo Gf n<3),
x=-y|<1



STATIONARY WAVE OPERATORS 951

and V(x) is a real-valued bounded measurable function in 2. Moreover, the
unique continuation property holds for both —A4+ V(x) and — 4+ V,(x).

Assumption 2. V,(x) is an ““oscillating’’ long-range potential; that is, there
exist some constants C,;>0, R; >Ry, a>0 and 1/2<d;<1 (j=1, 2) such that
for any xe B(R,)={x; |x|>R,},

(i) i¥I<Cy,

(i) 10,V1()|<Cyr,

(i) [02V;(x)+aVi(x)<Cyrmto,

(iv) |(F =0V ()| <Cyrm'70%,

(v) |(F=%0)0,V(x)|<Cyr 170,

(vi) (7 —%0,)-(F —%0)V,(x)| < Cyr172%,

On the other hand, V/(x) is a short-range potential; that is, there exist some con-
stants C,>0 and 0<J,<1 such that for any x € B(R,),
(viD) V() < Cor17%.

In the following we put § =min {8y, &, d,} and d =min {5, 26,—1}. Note
that the condition 6;<1 (j=0, 1, 2) does not restrict the generality.

We put
(1.0 E(y)=1lim sup —;—{ra,Vl(x)ﬂVl(x)} for >0,
and define 4,, 6>0, as follows:

(1.2) A, =E(min {40, 2})+a/4,

where a>0 is the constant given in (iii) of Assumption 2. Then as is discussed
in [14; §8], we have the

Lemma 1.1. A, is non-increasing and continuous in ¢>0, and

(1.3) Ay =min A,>lim sup V,(x)+a/4,
>0 r—o
where
(1.4) Vi(x)|<Cyr7t in B(Ry) if a>0.
We put
(1.5) n(A)=41/(4h—a) for Ai>Ay;,.

Note that 7(A)=1if a=0. Then by means of (1.3) and (1.4) we can easily prove
the following
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Lemma 1.2. Let ¢ be any constant satisfying 0<e<1. Then there
exist some constants C,>0 and R; >R, depending only on ¢ such that for any
(X, )h) € B(RII) X [Al/l +&, OO)’

(1.6) < A—n V(%)L +Cy,
(1.7 12<8;{2—n(A)Vi(x)} <2 (0,=0[07),
(1.8) [04{2 —n(D)V(x)} < Cyr? (I=2~6).

For some R, >Rj and any (x, )€ B(R,) x[A4,,+¢, ) we put

(1L9)  pa(x )
- ?—ig; JI=OViRds + 25 L tog r+ L 1og (1 —nyvi (0}

Then by a straight calculation (cf. Lemma 1.1 of [15]) we have the

Lemma 1.3. There exists a constant Cs>0 depending on ¢ such that
Jor any (x, ) e BRy) X [Ay,,+¢, ),

(1.10) 107p+ + n: L ops (0,02 )2+ Vy(x) =2 < Cyr1-1
(1.11) I(V =X6,)p:|<Csr7?2,

(1.12) [(V —%0,)0,p 4| < Csrm1mmin 91,82} |

(1.13) (7 —X0,)-(F —%0,)p+| < Csr2%.

For any real number ;1 and G < Q, let L2(G) denote the space of all functions
f(x) such that

(1.14 1£1z.6=|, (1+r7H f(Pdx <o

If u=0 or G=Q, the subscript u or G will be omitted. Let a, f be a pair of

positive constants satisfying
(1.15) O<a<f<1 and a+f<26.

For 2> A;,,(>4;) and fe L% ;) ,,(2) let us consider the exterior boundary-
value problem
(=4+V(x)—Du(x)=f(x) in Q
(1.16) u
Bu=4 or =0 on 0Q,
v(x)-Fu+d(x)u

where v(x)=(v(x),..., v,(x)) is the outer unit normal to the boundary 02 and



STATIONARY WAVE OPERATORS 953

d(x) is a real-valued smooth function on 0Q. The outgoing (+) or incoming
(—) solution of (1.16) will be distinguished by the radiation condition

(L17):  ue L2, ,2(2) and Ju+(0,p4(x, Aue L .p5,2(B(R,)).
Now let Lbe the selfadjoint operator in L%(Q) defined by

(1.18) {Q(L)z{u e LX(Q); Aue L*(Q) and Bu=0 on 0Q}
‘ Lu=—Au+V(x)u for ueg(L),

and let R({) ((eC—R) and &(1) (A€ R) be its resolvent and spectral measure,
respectively. Then the main results of [14] and [15] can be summarized in the
following propositions. To show Proposition 1.1 we require (1.10) and (1.12)
(see Theorems 1—5 of [14]). To show Proposition 1.2 we require (1.10) and
(1.11) (see Theorem 2.1 of [15]). (1.13) is used to show Proposition 1.3 (see
Theorems 3.1, 4.1 and 6.1 of [15]).

Propoesition 1.1. (a) Let o,  be any pair satisfying (1.15), and let ¢ and N
be any constants satisfying 0<e<l<N<oo. Then there exists a constant
Ce>0such that for any fe Lt ;) ,,(RQ) (which is dense in L2(Q)), A€ [Ay,+¢,
Apja+N] and te€(0, 1),

(1.19) [RALIO - (1402 < Coll flliopy2 -

Moreover, R(Z+it)f converges in L2 i,,,2(Q) to the unique outgoing [or
incoming] solution u, =R .(4)f of (1.16) as 7 { 0.

(b) The above convergence is uniform in Ae[Ap,+e, Ag+N]1.  Thus,
Ri(Df is continuous in L2, ,(Q) with respect to (A, f)e(Ag,, ©)
X L1 15)2(€2).

(c) Let RE(A): LE . ,)2(2)> L2 (14p),2(Q) be the adjoint of R.(A). Then
we have for any fe L 4 ,(Q) (=L ,,,(R)) and 2e(Ay,, o),

(1.20) RE() f=R=(2) .

(d) For any pre-compact set eC(Ay),, ©) and f, geLEp2(Q) we
have

(L.21) (&), g)=<2m‘)~1g (R (D) f—R_(A)f, g)d2.,

where (, ) denotes the inner product in L*Q), or more generally, the
duality between L2, (2) and L%, (2). Thus, the part of L in
E(Ay, 0))LAQ) is absolutely continuous with respect to the Lebesqgue measure
on Le(A;, ).
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Remark 1.1. Let R, ;(4) be the operator R, (A) with V(x)=0. In this case
we can choose f=1 in (1.15), where « should be chosen as
(1.22) 0<a<2min {d,, 6,}—1.

Proposition 1.2. (a) For any a, p satisfying (1.15), let fe L% . z,,(RQ)
and 2= Ag;,+e. Then there exists a sequence ry=r(a, B, f, A) diverging to
oo such that

=0

(1.23)  lim SS( IRy s(DF P+ U7 +50,0 R, £ () 12}dS =0

(b) For any Ae[A,,,+¢, ) and fe LA Q), let ry=r(a, 1, f, A), where o
satisfies (1.22). Then

(1.29) F1,:(4, r,)fzw\/lg exp {p+(ri-» D} [Ry, (D) f1(r;-)

strongly converges in L*(S"') as l-»co. Let Fy .(1): L3(2)—»>L*S"!) be
defined by

(125) eff'"l‘i(l)f=s-llim ‘g‘-l,i(/ls rl)f in LZ(Sn—l).

Then we have

(1.26) 121, :Df 1R2¢sn-1y= Qi) MRy, + (A =Ry, -(Df, f) -

Moreover, #; .(4) is independent of the choice of r,.
(c) Let &, B satisfy

1.27) 0<d<f<1 and G+p<25=min {25, 46,—2}

((1.27) is a stronger condition than (1.15)). Then for any Ae[Az,+¢, )
the operator %, 4(A) can be extended to a bounded operator from L% , ) ,,(Q)
to L*(S"~1) by continuity. Denoting the extended operator by F, (1) again,
we have for any fe L, 5,,(2), ¢ € LA(S" ') and L e[ Ay, +¢, ),

(1-28) (5’_1,1(/1)f’ ¢)L2(s"-1) =llif£ ('9‘-1,1(1, ”1)f~ ¢)L2(S"-1) s
where ri=r(&, B, f, A).

Remark 1.2. 1In [15] we neglect the fact that R} in Lemma 1.2 depends on
g, and then &, ,(4) depends on ¢ and R, >R} by (1.9) and (1.25). So the above
and the following propositions are corrections of [15]. Let ¢’ and R] be another
pair and let #7 ;(4) be the operator &#; ,(4) corresponding to & and some
R3>R7. Then for Ae[Ag,+e ©)N[As,+¢, ©), Fi +(4) coincides with
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#,,.(A) modulo a unitary operator on L2(S"~1):

(129)  [#5,. 0@ =exp {1 | VIV 0d5} £, 011D
for fe L? 4 5y/2(82).

Remark 1.3. Let #y(4) be the operator &, ,(1) corresponding to the
selfadjoint operator Lo=—A4+ A; on L?*(R"). In this case, n(A)Vi(x)=4;
being constant, we can choose R, =0. Then for any A> A3, %,(2)fis represented
by the right side of (0.10) (see Remark 6.2 of [15]).

Proposition 1.3.  Let &, f satisfy (1.27) and A5< Az, < As+e.
(a) For Ae[Ag,+e, ) let

(1.30) F20)=F, L) (1= V.R (D)}
Then it defines a bounded operator from L}, 5)5(R) to L*(S"*). Moreover,

it depends continuously on A.
(b) Let Fy: L 125)2(Q)—>L2([A5+2e, 00)x S*1) be defined by

(1.31) [Fe 10 D) =[F. (1), (4, %) e [A;+2e, 00)x 1.

Then &%, can be extended to a partial isometric operator from L2(Q) onto
L2([A3+2e, 00)x S*™1) with initial set &([Az+2¢, c0))L2(Q). The extended
operator will be denoted by &, again.

(c) (Spectral representations) For any bounded Borel function b(t) on
R and any fe L*(Q), we have

(1.32)  &([A;+2e, 0)b(L)f=FLb(\)F. f

—s-lim Sj _FAOBDFLIC M in LD,
52

N—-o

where F%: L2([A5+2e, 00) X S"1)—>L2(Q) is the adjoint of F., and F*%(A):
LA(S"Y)—>L2 (14 5),2(RQ) is the adjoint of F.(2).

(d) (Stationary wave operators) We put for any pre-compact set e
€ [/13+28, ),

(1.33) Us(e)=F1Fé(e),

where &y(A), Ae R, is the spectral measure of L,. Then each Uji(e) is a
unitary operator from &o(e)L*(R") onto &(e)L*(Q), which intertwines the
operators &y(e)L, and &(e)L. Namely, we have for any bounded Borel
function b(t) on R,
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(1.34) E(Ob(L)=U ()6(B(Lo)U% (),
(1.35) Eo(e)b(Lo)=U%(e)é(e)b(L)U +(e),
where U%(e): &(e)L2(Q)—&Ey(e)L2(R™) is the adjoint of U 4(e).

§2. Expressions of #%(2) and the Identification Operators J, (e)

Let p.. be as given in (1.9) with some R, >R} and e=(4,, 4,) be a bounded
interval in [A5+2¢, 00). For any ¢(4, X) e CF(e x S*™1) we put

0D bt JL)Z{J—%exp{—pr, MGG, W), Ixl=r>Ry+1

0, |x|=r<R,+1,
2.2) 9o, +(x, A={—=4+V(x)— A}y, +(x, 1),

where Y(r) is a smooth function of »>0 such that 0<y(r)<1, Y(r)=0 for r
<R,+1and =1for r>R,+2. Note that

(23) o= D (=P} (Ppat "0 00u = (@p a4 V=AU

+{(F =50)- (7 =50)p. — (7 =0)p) pur—y"+ " Ly
=20,p W'} —{(F —%0,)-(F —%0,)¢p —2(F —%0,)p+ -V $p}Y].
Here (F —%0,)- (FV —%0,)¢=0(r"2) and F¢$=0(r"") near infinity. Then as is

easily seen from (1.9), (vii) and Lemma 1.3, we have

Lemma 2.1. There exists a constant C,>0 such that for any (x, 1)
€ B(R,+1) xe,

24 19,206 D] < CormDr2p=(143),

2.5) [0g, +(x, A< Cor= =112,

Moreover, we have

(2.6) {0,+0,p .(x, A)}vg +(x, 1)=0 in (x,A)eB(R,+2)xe,
2.7 Bug +(x, 2)=0 on (x,A)edQxe.

Let & f be as given in Proposition 1.3. Then (2.4) implies that 94+
€ L% 4 5y,2(2), and it follows from (2.5)—(2.7) that v, . determines an outgoing
[incoming] solution of (1.16) and (1.17). with f=g, ., =& and B=§.
Namely, we have
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(2.8) Vg, +(+5 AA=[R:(D)gg,+(-, V](-), Lee.

Proposition 2.1. For any ¢(4,X)eCq(ex S*1), FEX()P(2, - )EL2 4 4 5y;2(2)
is expressed as follows:

29 [FEHDC: =T {vg,205 D=[Re(Dgy,-(-, DI}

Proof. For fe L} 52(2) and 1ee let
(2.10) ug(+, )=R.(ADf=R, (D) {1-VR.(D}f.
Noting {l—V,R ()} fe Lt i5,2(R2), we choose a sequence r=r(d, B, {1
—V.R,(M)}f, 4) diverging to oo as in Proposition 1.2 (2). Let Q(r)={xeQ;
|x|<r}. Then by the Green formula, (2.6) and (2.7) we have

@.11) _ll_

|

—
Q0

. {usgs,+ -f@}dx
ry

1

I+

o

0 —u, 0, . 3dS
1 SS(H){ MU, = U2 0r00,x

17 ) — o
L 55(”)(a,+arpi>uiv¢.id5+§

I+

(Im G,pz)uivd,jds.
S(ry)

Here by (1.9) and (2.1),

T Sg (I 8,0 120y 2 dS = gs RO A IO
S(ry) (r1)

- ﬁs \7‘%— exp (s (%, Do (r, S0 DdS; .

So, letting - o0 in (2.11), we have

1y L g - ax

Rt L e s (- :
=tim (e lpstr, Mustre, 2, 905 ) L

By means of (2.10) and Proposition 1.1 (c), the left side of (2.12) equals

(f, i’;i] {0y, + —R;(A)gd,’i}) On the other hand, by means of Proposition 1.2
(¢) and (1.30), the right side equals (f, #%(1)p(4, -)). Thus, we obtain (2.9).

g.e.d.
Now we define the operator K (e) as follows:

@13 [Ku@dCs N@=Z v, 02

Tp ), (=0 e DI D), x> Ryt 1

2
0, Ix| <R, +1
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for ¢(4, X) e C¥(ex S*~1). In the next section we shall show that K (e) can be
extended to a bounded operator from L2%(ex S"1) to L%(Q). The extended
operator will be denoted by K.(e) again. Then our identification operators
J +(e) are:

(2.14) J.(@f=K.(F,f for fe&(e)LAR").

§3. L2-Boundedness of K . (e)

We begin with a lemma which is a slight modification of Calder6n-
Vaillancourt [6].

Lemma 3.1. Let I be a bounded interval of R=(— o0, o) and let A(r)
(rel) be a weakly measurable and uniformly bounded family of operators in
a separable Hilbert space . If the inequalities

LA A*( ) <h*(r, ¥')  and | A*()AE)I < h(r, 1)

hold for r, ¥’ €1 with a non-negative function h(r, r') which is the kernel of a
bounded integral operator H, in L2>(I) (A*(r) being the adjoint of A(r)), then
the operator S A(r)dr defined by

I

([, 40ar)s=S awrpar sor fes

is a bounded operator in $ with norm

o

<[ Hll-

Proof. By assumption we can admit |A(r)|<M for any rel. From

the two inequalities
[ A(r)A*(r) A(r3)- - A*(ram)| < N A D) A*E) ) I A(r 2 - DA 2
and

I A(r)A*(r2)A(r3)- - A*(ram)l| < [ A A*(r) A(r3)) -
[ A*(r2m— ) AT 2 - DI | A¥(r2) ] 5

we have for r,el (i=1, 2,---, 2m),

(3.1) [l AGr)A*(r)A(r3)--- A*(r2m)| S Mh(ry, 72)h(rs, 73) BT om— 15 T2m) -

Since S A(r)dr(S A(r)dr>* is a bounded selfadjoint operator in $ and
I I
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<g A(r)dr)*=g A*(r)dr, we have from (3.1)
I I

=[], aa(§ acrar)

< <S - .Szz,,, [ A(r)A*(r;)A(rs)--- A*(rap) | dry - 'd”zn.)l/m

1/m

(3.2) ”gl A(P)dr

/m
<(M{[ ardra, (| ns b e dr, )
12 I2m-
<{M(H?" gy XD} < (M) || H | 2= 1) tm,

wherte x(r)=1on I and || is the length of I. Letting m go to oo in (3.2), we have
the assertion. q.e.d.

Remark 3.1. By Petti’s theorem the weak measurability of A(r) and
the separability of § show that A(r)f, fe 9, is strongly measurable on I. More-
over, A(r)f is Bochner integrable on I since || A(r)|| is bounded in I (see Yosida
[16], pp. 130—134).

Let eg=(A;,,+¢, Ay;3+N), where N is chosen so large that e=(4,, 4,)
cey. Let {(A) e CF(ey) be a real function such that {(A)=1 on e, and let y(r) e
C*(R) satisfy the following: y(r)=1 for r<1, =0 for r>2 and O0<y(r)<1 for
1<r<2. Weputforpu, Aeey, r>R,+1 and XeS"1,

I R R AIAC BN mIAGHE

(34) PRty s 7, B) =5 U (r 2 RYLA k)

X A4 =V (PR} H{u—n(u)Vi(r)} 174,

where Y(r) is as given in (2.1) and R>(R,+1)/2.
For any r, >R, +1, we have

(35 Suw & r D+SLE A D= YEHOVLGHs

{1 va=ntisDas- [ Ja=nvisds)

and
(3.6) a2 exp {J_r j g JEHOVGR) (sx)ds}

~au (& r v Rexp {£1 || JE—n@ViGHds}



960 KivosHt MocHizuki AND JuN UcHIYAMA
(€X) BN ()
2 (N GG ENE N GIACE
-3 S ag\/gtT(st(g:, ENETRIACIEOR

Then the following inequalities are consequences of Lemma 1.2. Namely,
there exists a constant Cg > 1 such that forany r, ¥ >R, +1, &, y, Ae ey, X e S"!
and R>(R,+1)/2,

3.8) lou(&, 7, ¥, B)=>Cgllr—r3=Cglr—r],
3.9) Lo (&, 7, 7 S Ce(L+[r—7P) (I=1,2, 3),
(3.10) 0L Lpa(ts & 7 Dpa(Es 4 ¥, D<Cs (=0, 1,2, 3).

With these inequalities we can apply Lemma 3.1 to prove the following

Lemma 3.2. The operator Py . defined by

o]

G11) [Prsd](n i)=§

for ¢(4, D) e H=L%*eyx S* 1) is bounded in $, and there exists a constant
Cy>0 such that

(3.12) | Pr,+ Il <Co for any R=(R,+1)/2.

[ exp{isutu 4 o DIpalis 4 7, D0, Dirds

R>+1

Proof. We define the family Ag .(r), relx=(R,+1, 2R), of operators
in $ by

(3.13)  [Ag,=(Ne1(u, J?)=Seo exp {iS+(, 4, 1, D)}pr(u, 1, 1, )P4, X)dA.

Obviously, each 4y ;(r) is bounded and selfadjoint in . Since we have

(3.14) Il <sup § | 1patu 47, DPdidy2,

eo

it follows from (3.10) that
(3.15) |4z, :(MI<Cyo forany R>(R,+1)/2 and rely.

Further, by the Lebesgue theorem, Ag .(7) is strongly continuous in I. Thus,
to complete the proof we have only to show the existence of a kernel hg(r, r')
which satisfies the following inequalities:

(3.16) Il Ag, +(N)Ag,+ (F)| < hg(r, ),

(.17) S:R | SIR har, P 1) | *ar<cy, SIR () v
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for any R>(R,+1)/2, r, ' €Iz and f(r) e L% (), where C,,>0 is independent
of R.
We can choose C,,>0 and C,5>0 to satisfy

Ci,+Cel13—Cgt>Cy5(1+13) for any 1>0.
It then follows from (3.8) that
(3.18) [FiCipsgn(r—r)+o.(l r, r', HDI=Ci(1+[r—r']?),
where sgnt=1if t>0and = —-11if 1<0. So by (3.6),
(3.19) exp { il ye= n(é)V](sa?)ds} —{FiCy,sgn (r—r)+0.(E, 1, ', )}

X {FiCy,sgn (r—r')+03} exp {i iy' \/E——n(f)Vl(si)ds} .

Note that the support in & of pp(u, &, r, X)pr(&, A, ', X) is contained in e,.
Then (3.5), (3.19) and integrations by parts give

S exp {iS(w, & r, D) +1S(E 4, 1/, D}pr(tss <, 1y X)pr(&, 4, 17, K)dE
eo

=S exp (iS4 (1, & r, ) +iSL(E 4 1, R} {FiCy, sgn (r— 1) — 3}
eg
X [{;lcll sgn (r_r’)_l_o-i:(:’ r, V,, _)?)}_IPR(‘L[, (;:, v, i)pR(‘fa la }"’, x)]di

Applying (3.9), (3.10) and (3.18) in this equality, we obtain

(3.20)

g CXP {isi(.ua és r, i)+lsi(£’ '{? r,’ i)}pk(ﬂ’ 5: r, i)pR(“:a /L 7", X)dé
eo
<CrallH =),

where C,,>0 is independent of R>(R,+1)/2, r, r' €lg, u, Aeey and X e S"1,
Now for any ¢(4, X) e 9,

[Ag,+(NAg,=(r)d] (1, %)

X pR(/'l9 és r, x)pR(Str Aa r’s i)d‘: .

exp {iS+(u, & r, X)+iSL(& A, 7', %)}
eo
So (3.20) has shown the inequality
(321) AR, :(NAg,(MI < Cla(1+r—r'?)™" with Ciy=Cy4leg|.
Hence, choosing hg(r, r)=./Cis(1+|r—r>)"1/2 for any R>(R,+1)/2, we
2
have (3.16) and (3.17) with c11=cg4{g (1+r3)—1/2dr} <. g.ed.
R

Remark 3.2. The method of the above proof, which apparently seems to
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be much different, however, follows the idea employed in Calderén-Vaillancourt
[6]. If Vi(x) is sufficiently smooth, e.g., € C1°(B(R,)), a general theory of
Asada-Fujiwara [3] can be applied to obtain the above result.

As a corollary of Lemma 3.2 we can now prove the following

Proposition 3.1. For any ¢(1, X) e CF(ex S" 1), where e € e, let K. .(e)p
be defined by (2.13). Then we have K .(e)¢ € L¥(2) and

(3.22) 1K ()2 < Coll@llZa(exsn-1-
Thus, K .(e) can be extended to a bounded operator from L*(e x S*~1) to L Q).
Proof. By integration by parts we have

(K +(@81(0=5 7 Ty (r)

x S exp {i i SR JI=1() Vl(si_)ds} (=), ()}~ V4(h, R)di

2\}? F=(=D/2s(r) Se exp { +i S;z \//1 —n(A)V,(sx)ds
x| {]. s/ TnViDas} GV} 14900, %) Ja2.

This with Lemma 1.2 shows that

(3:23) IIK (0] ()< Cysr~"D/2~1 in B(Rp+1),

ie., K.i(e)p e L2(Q). Thus, we can apply the Lebesgue theorem and the Fubini
theorem to obtain

G249 IK.(Jo]*= lim SQ [x(r/R) [K +(€)¢] (x)|>dx

—tim { 3G Dduas " | explisutu 2,7, 9)
R—w Je JSn-1 Ry Je

x pr(tts 4, 7, X)P(4, )?)drd/1=1£i_r'1;10 (PR,:|:¢> ¢)L2(e><s"—1)

= lim (Pg,+ ¢, ¢)L2(eoxs"-1) .
R—o

(3.12) and (3.24) imply (3.22). g.e.d.

§4. Theorem; Time Dependent Representations of U, (e)

First we note the following lemma which can easily be proved by Lemma
1.2



STATIONARY WAVE OPERATORS 963

Lemma 4.1. Let ¢ and N be any constants satisfying 0<e<1 and
N>As—A,,,+2. Then there exist some constants C;4>1 and R,>R] such
that for any (x, A) € B(R,) x [45+2¢, 41,,+N],

4.1 Cie < —JA—nWVi(x)<Cys -

In this and next section we choose R, > R; defining p_(x, 4) as in the above
lemma, and prove the following theorem which gives time dependent represen-
tations of the stationary wave operators U.(e) with ec[A;+2e, 4,,,+N].
Note that the operators U .(e) and J ,(e) and functions v, .(x, 4) and g4 .(x, 1)
are now determined depending on the above R,.

Theorem. Let ¢, N and R, be as in the above lemma. For any interval
e=(Ay, A)c[As5+2¢e, Ay +N] let Ji(e): E(e)LH(R")—L2(Q) be defined by
(2.14). Then the strong limits

4.2) Wj—'(e)zs-li}rn exp {iLt}J . (e) exp { —iLyt}&0(e)
t— 1w
exist in L*(Q) and coincide with the stationary wave operators U .(e) defined

by (1.33). Thus, Wjx(e} are unitary operators from &y(e)L*(R") onto
&(e)L3(Q) satisfying

(4.3) (LW (e)f=Wi(e)o(e)Lof for any feD(Lo).

Remark 4.1. K,(e) and J.(e) depend on the function y(r) given in (2.1).
However, W5 (e) does not depend on the choice of y(r).

The following proposition will be proved in the next section by use of
Lemma 4.1 and the stationary phase method.

Proposition 4.1. For ¢(4, X) e CF(ex S*~1) let
4.4) Goa(x, t)=g exp {—i21}g, + (e, DdA (£1>0),
where g4 +(x, A) is defined by (2.2). Then we have

4.5) ig:m gg,=(-, Dldi<o0.

Based on Propositions 2.1, 3.1 and 4.1, we can now follow the idea employed
in Kitada [13], Ikebe-Isozaki [10] and Kako [11], where is treated the case of
“non-oscillating’’ long-range potentials, to prove the above theorem.

Lemma 4.2. We have for any ¢(, X) e C¥(e x S*™1),
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4.6) [§ RetgysC Dar| < £ (7 195, Dl

Proof. Noting that g, . (-, 2) € L}, 4,,(2), where B is as given in Prop-

osition 1.3, we put
G-(9)=| RelDgs,sx D,
Gos()=| RUFiDNg a0 D2 (20,

where the measurability of the integrands is guaranteed by Proposition 1.1
(b) and the continuity of g4 (-, 4) in Aee. In virtue of (2.4) we have

G, o()=—i S B:w exp {i(L— i+ it)t}dt:} Gy, (%, D2
— i S:w exp {i(L+ i1)t}d 5, (x, )dt.
Thus,
4.7 IG. .ll<+ S:w 19¢.+(-, Dldt<co  forany ©>0.
Further, since we have for any fe L} . 3,,,(2) and 1>0,
(Gees N={ G0, 2, RO£ID) A2,

it follows from Proposition 1.1 (a), (b), (c) and the Lebesgue theorem that
lim (G,.ss N={ @20 2, R
| Regy2(, 1, Nd2=(Go, 1)

L% 4 5),2(R) being dense in L2(Q), this and (4.7) imply that G, is the weak limit
as 7l 0of G, . in L%2(Q). Hence, G, € L¥(RQ) and
afeo]
G-l <liminf |G < £ " 19,.2C. Dldr,

which is to be proved. g.e.d.

Proof of Theorem. Let fe&y(e)L*(R") satisfy [Fof](4, X) e CT(ex S"1),
and put u(f)=exp {—iLot}f. Since Fou(t)=exp{—ilt}#,f by Proposition
1.3 (c), we see that Z,u(t) also belongs to CP(ex S"'). By Propositions 1.3
(d) and 2.1 we then have
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4.83) exp { —iLt}U +(e)f= U +(e)u(?)

+
= EL{ s DR, DY

Here by definition

@9 ELT o DA=T L @u) =T (e exp {—iLot} .

On the other hand, the equality

gfou(t),i( ] 1)=6Xp {_ M't}g.ﬁ'of,:t( ) /1)
and (4.4) show that

g.?’gu(t),i('ﬂS)=§fof,i('as+t) for any iS>0,

and hence, we have from Lemma 4.2 and Proposition 4.1,

(4.10) |

| R s (o DA < £ g 5401
=2 [ — 0 a5 1 k.

(4.8), (4.9) and (4.10) prove the following:
(4.11) Iiin llexp {iLt}J +(e)exp { —iLot} f—U.(e)f||=0.
t— o
Since CZ(ex S"1) is dense in L?*(ex S*~1) and &, is a unitary operator from

&o(e)L2(R™) onto L2(ex S 1), (4.11) holds for any fe &,(e)L*(R").
The proof is thus completed. q.e.d.

§5. Proof of Proposition 4.1; The Stationary Phase Method

We put for the sake of simplicity
5.1) O R A

(5.2) Lo, x(x, D=/mexp {p=(x, D}gg,=(x, ),
where @(4, X) € CF(ex S*1) with e=(4;, 4,)=[45+2¢, A{;,+N]. We can
find a concrete form of {, 4(x, 4) in (2.3).

The following lemma is easily proved by a straight calculation (cf. Lemmas
1.2, 1.3 and 4.1).

Lemma 5.1. There exists a constant Cy;>1 such that for any (x, 1)
€ B(R,+ 1) xe,
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(5.3) Crir<d,&(x, )<Cyqr,

(5.4) Crir< —%(x, )< Cyqr,

(5.5) 04(x, 1) <Cpor (1=3, 4, 5),

(5.6) 10484, +(x, )| <Cyqr178  (1=0, 1, 2).

Let e, =[5, 4,]<e be a closed interval which contains the support in 4
of {4 +(x, 4) for any xe B(R,+1). We put

5.7 t{(x)=(0,8) (x, 4;).
Then we have
(5.8) CTIr <t(x) <ty(x) <t3(x) <ty (x) < Cy,r

since (0,;¢) (x, A) is by (5.4) a monotone decreasing (in a strong sense) function of
Ae€e for any x e B(R,+1). Moreover, we have the

Lemma 5.2. There exists a constant C1g>1 such that for any xe B(R, +1),
(5.9) Crar<ty(x)—13(x) < Cysr,
(5.10) Cidr<t (x)—ty(x) < Cypr.
Proof. Since we have
t1(x) = 13(x) = (A1 = 23)03(x, Ay + (43— 4,)0)

for a suitable 8 (0<0=0(x)<1), (5.9) is a consequence of (5.4). (5.10) can
similarly be proved. g.e.d.

With the above lemmas we shall estimate the function

(5.11) g, 2(x, t)=Se exp { — iAt}gg,+ (x, A)dA

___1_,,—("—1)/2 S

=7 exp { —idt£i8(x, AHA—n@)Vi(x)} 4Ly, +(x, D)dA.

e

Our estimation will be done in the each case +it>1t,(x), 0< tt<t,(x) or
() < H 1<t (x).
In the case +t>1¢,(x) or 0< +t<t,(x), it holds that

(5.12) 10, {ArF E(x, DY =[t—0,&(x, D=1l —t3(x) or t,(x)—]|
for any (x, A)e B(R,+1)xe;. So we can prove the
Lemma 5.3. There exists a C;4>0 such that

(5:13) 144, +(x, OIS Cror D2 173{{t] — t5(x)} [ 1+ r2{t] — t3(x)} ]
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for any xe B(R,+1) and +t>t,(x), and
(5.14) 1y, «(x, DI Cyor= D2y 17301, (x) — [t} 21 +r2{ty(x) — 1]} 7]
for any xe B(R,+1) and 0< +t<t,(x).

Proof. Integrating by parts gives

A )= 1 —(n—1)/2 1*_—1—6 2 iAt+i&(x. A
grﬁ,i(x, )=—=r1 ol 0, (—idt L&) % exp { —ilt+il(x, )}

\/
X {A=n()Vi(x)}7 140y, 4 (x, D)dA

= ——f=romni2| exp (—idr+id(x, D} (IF 0,02
J e

L

T
X [OH(A—nV )44, 3 2 3(038) (0 F 0,810, {(A—nVy) ™14, 1 }
+ {303 (1 F 0,2 £ (3O (1F 0,01 (A—n V)14, . 1dA.

Thus, noting (5.12), (5.4), (5.5) and the inequality

(5.15) 10 {(A—nV) 4y s H<S Coor™™? (1=0, 1,2)

which follows from (5.6) and Lemma 1.2, we obtain (5,13) and (5.14). q.e.d.
Next we consider the case t,(x) < +t<t,(x).

Lemma 5.4. There exists a (unique) function A(x, t) such that for any
x€B(Ry+1) and ty(x) < +1<1,(x),

(5.16) 111=(0;9) (x, A(x, 1),
(5.17) Ay <ALx, )< A,,
(5.18) Alx, —t)y=24(x, 1).

Proof. We have only to solve in A the equation |t|=(0,¢)(x, 4), which is
possible by the monotonicity of (9,&) (x, 4). g.e.d.

2.(x, 1) is the so-called critical point of A|t| —&(x, A).

Let w(4) be a C*-function of 1€ R such that 0<w(A)<1, w(A)=1 for |2]
<1/2 and =0 for [A|>1. By use of this function we divide g, +(x, ) into two
parts:

(519)  Gosl, =m0 exp (it iE(x, 1)

el

X o(v(x, N {A=A(x, DN {A=nV (X)) 74, 1 (x, A)dA

+ 7%— ron=hj2 S exp { —idt+ié(x, A)}
1

e

x {1 =w(v(x, ) {A—2A(x, DN} {A—nV1(X)} 714, 1 (x, A)dA
=gP(x, H+gP.(x, 1),
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where v(x, f)>1 is given later. Note that
MT &0, D=2 T ECx, )T (A= 2P030) (x, 1)
?%(ﬂ»—if S; (1=0)%(330) (x, 2.+ (A —A)t)dT .
Then we have

(520 gulo, 0=V Rexp {— AL, O£ I A5, )

x g exp {J_r L (0= )2(328) (x, ;LC)}ai(x, t, A)exp {+ ib(x, 1, 2)}dA,

|

where

(5:21)  ax(x, 1, D=w(v(x, N {A=2x, D) {A—n(D)V1(x)} 714y +(x, 4),
(5.22)  b(x, 1, z)=%{,1_zc(x, £)}3 S;a —T)(33E) (x, Iy + (I~ A)T)dx .

By (5.15) and (5.5) we have noting v(x, t)>1,

(5.23) [0%a.(x, t, )| < Cyvl(x, t)r—1738 (I=0,1,2)
(5.24) [04b(x, t, D)< Cyyld—ALx, )3~ r (1=0,1, 2).
We put

(5.25) ho(x,t, A)=as(x, t, A)exp {xib(x, t, 1)}.

Then obviously,
(5.26) 0,hy={0,a, tia,0,b}exp {+ib},
(5.27) 0%h, ={0%a, +2i0,a,0,b+ia,03b—a.(0,b)*} exp {+ib}.

Lemma 5.5. Let v(x, )=r'/3 in (5.19). Then there exists a C,,>0
such that for any x € B(R,+1) and t,(x)< +t<t,(x),

(528) Igz(bl,)i(xa t)lSczzr'("'l)/zr'3/2‘5.

Proof. Note that the supportin 4 of h,(x, ¢, A) is contained in ¢;. Then by
use of the equality

ho(x, £, D=hy(x, £, A)+(A—1) g1 (03h2) (X, 1, At (=2 )T)de
JO

we have for any sufficiently large N,
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(5.29) S exp { £ 271i(A — 2)HA2E) (x, A h(x, t, A)d)
—har 6, 20| exp (£2710— 2@ (x, A}
+ QN exp { 27 1i(A — 2228 (x, 7)) (A=A )d).
x g; (0:h)(x, 1, A+ (= 2)0)d7 .
Here applying the Fresnel integral formula, we have
(5:30) Tim | exp {27010 - 202030 (v, 203

=/2ml(93E) (x, A)I71/2 exp (F mi/4).

On the other hand, since the Lebesgue theorem shows that

lim g;(ami)(x, t, Ao +(+£ N=2)0)de =0,
integrating by parts and changing the order of integration, we have
(530 lim | exp (£2710— L@ (x, 20} (- 2

x S; 0,112 (x, 1, Ao+ (A=A )T)de

= 2@ (x 217 | wde | exp (£27110- )2

X (03¢) (x, A} (03h ) (x, 1, A+ (A=A )T)dA,
where

S={A; A=A <(h=A)t<ldy—7, and |(A—2)T|<v-1],

969

if we note that w(1)=0 for || >1 and h(x, t, ))=0 for A& e,. Taking account
of (5.5), (5.23) and (5.24), we now have from (5.20), (5.27) and (5.29)—(5.31) the

following inequalities which prove (5.28):

< 1
1942 (3, ] < Cogr 0tz itz eyt e
0

XS
[A=2cl<(ve)~!

) 1
=Czsr“"‘l)/zr"“’(r‘l/z+r‘1g 21{\)1‘1—{-%—;'\)‘2‘:"
/0

l
+ %r\' SRR gl rtv 51“}er

(2Pl = 22T rl =l 4 P21 = 2 4210
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= C23r‘("‘1)/2r‘1‘5Lr“/2 +r! {2v +—§—rv‘2 + %rzv‘s};[

—_ Czsr—(n—l)/zr—1—s<,.—x/2 +%r—2/3>

where in the last equality we have used v=r1/3, g.e.d.

Lemma 5.6. Let v(x, t) be as in the above lemma. Then there exists a
C,4>0 such that for any x € B(R,+1) and t,(x) < +t<1t,(x),

(5.32) |92 (x, £)]| < Cpgr=(n=1)/2p=5135
Proof. We put

(5:33) du(x, 1, H={1—w((x, ) {2—A(x, DN} {A—n(DV1(x)} 7144 +(x, 2).

Then it follows from (5.15) that

(5.34) [04d 4 (x, t, DI < Cysvi(x, t)r178 (1=0,1, 2)

in the whole e;. Note that d.(x,f, 2)=0 in {ieey; |A—1]<(@2v)"'}. On
the other hand, it follows from (5.16) and (5.4) that for any Aee, satisfying
A=A (x, DI =(2v)7,

(5.35)  [tF0,8(x, M| =10,8(x, Ar)—0:¢(x, A)l
=|A=2 I3 (x, 2. +(A-2)0)  (0<6<1)
>(2v) ICHr=(2C,;)"1r?/3.

Now, integrating by parts gives
(5.36)  /mr(=D12g@) (x, t)=S exp { —iAt+ié(x, D)}d(x, t, A)dA

== exp (—iltiZx, ) (17 0,072[03. + 303 F 0,010,
+{3(030*(t F 0,£) 2 £ 03(1F 0,8)~1}d . 1dA.
So, applying (5.34) and (5.35) in the right side of (5.36), we obtain
|G Cx, )| < Copr™ M DI2p=4/3p =178y 2 4 pp=213y - (P2r=413 4 rr=213)},
which proves (5.32) since v=r1/3, g.e.d.

Proof of Proposition 4.1. Let u be a constant satisfying 0<u<25. Then

we have
to 2
530 {£]7 100, 0t}

v]
o +o0

<" +[t|)‘1“‘dt{g+ a +|t|)1+/‘dtg 19,2 (%, t)|2dx}
0 0 B(Ry+1)
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T
—_— g dxg 1Gg,(x, DL+ 1)1 4dt
0

B(R2+1)

We divide the integrand of the right side as follows:
+w

(5.38) iS 14, (x, DIP(L+[e])*4dt
0

*ta(x) +4(x) tw
=iB +S +S ]gy,i(x,t)|2(1+|z|>1+ﬂdt

0 Tta(x) t11(x)
=11 +IZ +13 .

By (5.14) of Lemma 5.3 we have

+ta(x)
1< £2C 07072728 [0 (L ) oy o) ey

X [14+r*(t,(x) —¢])~*]dt .

Thus, it follows from (5.10) and (5.8) that

L <22+ )71 C2oCligr 1= 0p=2-28,=4(1 4 C,pr) 244 (1 + Cl)

< C27r-—(n—l)r—4—25+u .

By (5.13) of Lemma 5.3 we have

13 #2022 |7 (L =150
x [14+r4(Jt] — t5(x))"*]dt
o 2l = 1O () + D)
X (1] = £5() L1+ F4(11]— 13) Tl
Thus, it follows from (5.9) and (5.8) that

< i 2C%9r~(n—l )I.—Z—ZS S

*i11(

L <2V Cgr~ (= Dp=2728 (2 — 1) ~1(Cygr) T2 4+ 371 (1 + Cypr) 1H#
X (Cigr) 2} (14 Cty)

< Czsr—(n—l)r—4—-25+y_

Further, by Lemmas 5.5 and 5.6,

B2 [ (LI 194 (5 0P+ 10§, D1}
S22+ p) L (D (CEpr3728 4 CRyrm103-28) (1 44, (x)) 244
Thus, it follows from (5.8) that
I, < Cogr=(n=Dy=1-25%s

Summarizing these inequalities, we have from (5.37) and (5.38),
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<u! S {(Cyy + Czs)r—4—25+u + ngr—1—25+u}’.—(n—1)dx< © .
B(Ry+1)
Thus, (4.5) holds and the proof of Proposition 4.1 is complete. q.e.d.
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