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On Pseudo-Runge-Kutta Methods
with 2 and 3

By

Masaharu NAKASHIMA*

§ 1. Introduction

In [3], Butcher has proved the following results for Runge-Kutta methods.

Let p*(r) be the highest order that can be an r-stage method. Then

p*(r) = r ( r = l , 2 , 3 , 4 ) ,

p*(9) = 7,

Pseudo-Runge-Kutta methods have been proposed by Byrne, Lambert

and Costabile. We have seen in [1], [4] and [15] that Pseudo-Runge-Kutta

methods have order

p*(r) = r+l (r = 2, 3,4).

Byrne, Lambert and many other authors have shown that Pseudo-Runge-

Kutta methods are less accurate than Runge-Kutta methods in the same order.

In this paper, we shall present new Pseudo-Runge-Kutta methods which have

order

p*(r) = r + 2 (r = 2, 3, 4).

In comparing our methods and other methods in the same order, our methods

have almost the same accuracy as the Runge-Kutta type methods in order 5 and 6.

The outline of this paper is as follows: In Section 2, we present our new
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method. We see that there exists p-stage methods of order p + 2 for p = 2, 3.

We also discuss a choice of a free parameter of the methods.

In Section 3, we prove the convergence of the methods.

In Section 4, the local truncation error of the method is analysed. We

give an estimate formula of the local truncation error.

In Section 5, we are concerned with systems of first order equations. In

the last section, we present several numerical results. The results for 4-stage

method of order 6 have been given in [7].

§ 2. Numerical Method

In this section, we discuss the initial value problem :

(2.1) -

where /(x, j>) is assumed to be sufficiently smooth on Q.

We introduce the following Pseudo-Runge-Kutta method :

(2.2) y*+i=
3

n-i, xn, yn-i, yn\ h)= Z w,fc,,
i=0

k0 =/(*„_ 19 j^), fcj =f(xn, yn) ,
2

3
k3=f(xn + a3h, yn + c0(yn -yn-1) + h .Z

a2=ibi9 a3=^Ci (0^«2,
i=0 i=0

In the above formula (2.2), the value yn is to be an approximation to the

value X*n) °f tne solution of (2.1) for xn = x0 + nh.

The coefficients a2, a3, bi (z = 0, 1, 2) and ct (i = 0, 1, 2, 3) are real constants

to be determined. The special case fe0 = fc1 = c0 = c1 = w0 = 0 in (2.2) is Runge-

Kutta method. The case b0 = c0 = Q in (2.2) is due to Costabile [4].

We define the local truncation error T(xn, z(xn)'y K) at xn of the method

(2.2) by

T(xn9 z(xn), h) = z(xn+i)-{z(xj + h$(xn-l9 xn, z(xn_1), z(xn)'y K)} .

where z(x) is the solution of the initial value problem z'=f(x, z\ z(x^ = yn.
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Let D be the differential operator defined by

~

and put

D'f(xn, >'n)=r (i = l,..., 5), D*ffxm jg = S' (i=], 2, 3),

(Dfy? (x,,, jO = P , (DfY (xn, yn) = Q, Dfyy(xn, yn) = R,

/A,, yn) =/y > fyy(xn, >») =/«• •

We also introduce an abbreviation

z=i .
i=2

Assume that jw — z(xw) = O(fi5). Then by the Taylor expansion about (xn,

_yn), the formula (2.2) may be written as

The constants {At}, {Bt}, {CJ and {JDJ are

3
^i = w0+ X w,-, >42=

= W0 + S flf Wp C2 = W0 +

= W0 + Z 0^2^, C4 = W0 +

= W0 + Z 03/Wi, C6 = C5 + flf 2 Wi9 C7 = C6

D3 = 10( - W0 + Z fl?02iWi)> D4 =
 5( ~ W0 + Z fli«3iWi)
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D7 =

where

P1=-b0-2b1,

flf 3 = 12c3(a2 + fl3) (P! - fli), ^4 =

= 30c3(a§ + ai) (Pl - a2,), g8 = 2(k3(a2 + a3) (p2 -

The method (2.1) is of order 5 if

(2.3) A, = l, A2 = ±, A3 = At = ±-, B}=±

Q = i (i = l,...,8),

and the condition (2.3) can be replaced by

(2.4) ^ = 1, A2 = ±, ^4 = y, BI=-J, €

From (2.4), we have

_ 35a2-27 _ lQai-7
-- 50a2-35 ' 3 12a3(l+a3)(a2-a3) '

5-(
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y-ai, C2 = a3

The Opitimal Method. If we assume that

1 (x,y)eQ,/'+J(*.jQ

then we have

The constant C in the inequality is estimated by

(2.5) 5!C^32 D!--^- +8 D2~4 +|D2 + 4D8-2|+4

5 + 3 25

6

+ 2

+ 2

»«-i
9

+ 2

14

i3 +ID |T

'"+|£14-2|

~T

£>14+3D12-^

: + 3D2-5|

I

Let us denote the expression on the right hand side as m(a2).

We see that m(a2) is minimized if we set a2 = 0.4, in which case the formula

7=1(2.2) becomes

(2.6) k2=f(xn + 0.4/1, 0.392j;,, +0.608jvi+0.224^0 + 0.784/7^),
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(60198640.32;; ,,-37444363.32;,^

-131 79377. 1 2htc0 - 39765362hk1 + 352207 '49. 2hk2)

__ -45.5 14749 56875 _ 35437.5
W°~~ ' Wl~

__ _
°~~ 107016' l~ 107016' 2~ 107016' 3~ 107016'

and bound for C is

C = 0.52.

We compare the formula (2.6) with other methods of order 4 and 5. We

shall present some numerical results in Table II.
These results also show that the formula (2.6) yields better results.

The method with w3 =0.

If we put w3 = 0 in the formula (2.2), then it still gives 2-stages method of

order 4. We may now proceed as in the case w3 ̂  0.
The method (2.2) is of order 4 if

(2.7) Al = l, A2 = -> A3 = --, ^i =~~»

From (2.7) we have

(2.8) k2=f(x + 0.7/7, -1.1

+ 2.023fe/(xw3V)),
-7 221 500

The local truncation error for this formula satisfies

Since the error bound is rather large, we compare this method with other
method of order 3 by examples. These numerical results are given in Table I.

§ 3, Convergence of Our Method

In this section, we investigate the convergence of the method (2.2). Let
en be defined by

Theorem. Let there exist constants L>0, N>Q and p>0 such that

(1) |/(x, yn)-f(x, yn-,)\^L\yn-yn_,\ (x, yj, (x, yn.,
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(2) | T(xn, z(xn) ; h) | ̂  Nh*i (xn, y(xj) e Q ,

and let

lim 1^1=0.
h->0

Then the method (2.2) is convergent.

Proof. From (1), we have

(3.1) l^fo-i, xn, jn_i, yn'9 ft) -

where

Pl = K| + |w2|(|l + &ol + ^l&2l)+|w3 |( |l+C0 | + ll^|c2^

Let us consider the following expression

(3.2) y«+i-X^+i) = 3;n-X^) + ̂ (^-i5 *„, yB-i» J«; fc)

-(X^n+l)-X^»))

n-l9 xn, yn-l9 yn; ft)

From (3.1) and (3.2), we have

\eH+l\£(l + hpiL)\eH\ + hp2L\ett-l\ + \T(xn9 Z(XB); ft)| .

It follows that

k+il^("s n^, 2(*j); *)+l
7 = 1

From (2) and the inequality nh^a,we have

This shows that

§ 4. Local Truncation Error Estimate

We represent the truncation error of the formula (2.2) in the form
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Let e(x), v(x) and e^x) be solutions of the following initial value problems.

f e'=ge-(p < v'=gv-b
I e(x0) = 05 I t<x0) = 0, * ei(*o)=1 respectively,

where

e = e(x), v = v(x), <p = <p(x, y(x)), g =fy(x, y(x)) ,

b = p(x, X*)) - a(jc) - ^-(flf(xMx) - 1 cp' (x) ,

«W=Z7^/^ ^ W, <p(x)l h), $j = -fa-(x, x,ul9u2;h).

Then the global error of the formula (2.2) is given by

(4.1) e^tfefrJ + h^xJ + htA^xJ + OW) (n = l, 2,...),

where Al is a function of the starting value.
The detailed proof is given in [9].

Let us now consider the following difference equation :

(4.2) E(xn+29 yn+2) = h^bjf(xn+p yn+j) + ^ajyn^,

where the constants {a7-} and {bj} are real solutions of the following equations.

(4.3) qij^bj+Xjiaj-Q fo = l, 2,..., 6),
J=0 j=l

i f lj=°' i j^=-i» t/fl^-3.
Using j;B+7. = XXfH-./) + £»+./ and expanding in powers of en, we have

(4.4) E(xn+2, yn+2} = h EQ bjf(xn+j, yn+j)+ Z ajy(xn+J)

+ Z bjfy(xn+j9 y(xn+j))en+J+ f a^^. + O^7).
y=o j=i

Expanding (4.4) in powers of ft and marking use of (4.1) and (4.2), we have

From (4.2) and (4.3) we have

(4.5) £(xn+2, yn+2)=^5fo5-(-459/(xB, 3V>+18684/(xn+], j;n+

+ 66312/(xB+2, yn+2) + 2160/(xn+3, j;B+3)
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Thus the equation (4.5) is the estimation formula of the local truncation

error of the equation (2.4). The numerical tests are given in Table III.

§ 5. Methods for Systems of Equations of the First Order

In this section, we consider the numerical methods of the initial value

problem for a system of ordinary differential equations:

Y'=F(Y) YeO,

The formula we seek is the form

f=0

= F(Yn+q0(Yn-Yn_1~)+h(ql-q2)K1+hq2K0),

In the above formula (5.2), the value Yn is to be an approximation to the

value Y(xn) of the solution of (5.1) for x,, = a + nh.

The coefficients Wi(i = Q, 1, 2, 3) and q { ( i = 0,..., 6) are real constants to

be determined.

Using the same notation as in Henrici [6], Taylor expansion for (5.2) is

(5.3) Y,+l =

+ £>6ftJleA'BJB* + D^jA'FJ + DsfJ' + D^M1 + B10ftP'

+ DllfiQ'+D12fijA
iHJ+D13fijB

iDJ
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We may try to express the constants {A^, {B(}, {CJ and {5,-} by using the

constants {At}, {Bt}, {C,} and {£>J in Section 2.

If we put

qo = b0, ql=a2-b0, q2 = bi, q3 = c0, q4 = a3-c0, qs = ct, q6 = c3,

then we have

X, = At (i = l , 2 , 3 , 4 ) ,

5, = B, (/=!, 2 ,3 ,4) ,

Ct = Ct (» = 1,2,...,5),

5, = D, (i=l, 2,..., J l ) ,

Dl3=D5+(p5+2a2c3)g1W3,

/=12, 15),

We may proceed as in Section 2. The method (5.2) is of order 5 if

(5.4) A, = ], A2 = ±, X4 = ±, B, = B2 = ^,

From (5.4) we have

93 = 60", + rf)«6 - (3r2 + 2r3), g4 = r - ?3 ,

- ' - 2
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where

35^-27
n = *o + < r i , r= 50/^37 •

The local truncation error for this method may be written as

T(Y,, ; h) = 61ftjkla

+ D8ftl' + 59/,M' + Di0ftP

where

1 l 6 ' * l 3

6, = 5,—f (/=17, 18), £, = .0,—1(/ = 4, 12, 15),

5, = 5,—J (i = 2, 3, 5, 13, 14), 57 = 57-y,

We set the error constant C as follows

5 ! C = S l A l -

We have looked for the value rt numerically which minimized C, being

restricted in the range — 5 rg rx 5s 5 .

The minimum bound on C is achieved if we set r^ = —0.4, —0.5.

In the case rl = —0.5 the formula (5.2) becomes

/ c r \ if J7/V J _ 1 1 O ^ i i R ^ _ i _ n 3 "7^/-if ^^J.JJ A. 2 ==-F v •* n — i ~r 1.1 ZJ/1A. j ~rU.J /J/7A.Q; ,

325 7n-59.948325 yf,_i—TJ«-('307.607625A'1

+ 135.547425̂ 0-186.0651̂

_ -25.65 M/ 3316.95 w/ 11115 M/ 3600
M/ •— _ I/I/ — I/I/ — I/I/ — .

0 18006.3 ' l 18006.3 ' 2 18006.3 ' 3 18006.3 '

and the bound for C is

C = 0.09.

We can prove the stability of the formula (5.2) in the same way as in the

proof in Section 3. The estimate formula of local truncation error is given
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by (4.5). We compare this method with other methods of order 4 and 5, and

present some numerical results in Table IV.

§ 6c Computational Results

In Tables I, II, III and IV, we present numerical results for the following

initial value problems :

I : J 7 / = J + .v(l)=log(2), v(*)

U:y'=-y-xy*9

W:y'=-2xy2,

=±9 y (x) = -y(sin (*) ~cos

V:
, z(x) =ex-e~x-

y=-z,

z'=-3y-2z, z(0)=2,

VII :

Computation are done in double precision arithmetic on the FACOM

M-190 of Kyushu University. In Table I, the values y1 necessary for the evalua-

tion using the formulas (2.8) is computed by the Runge-Kutta method of order

4, and in Tables II, III, IV, the value y1 necessary for the evaluations using the

formulas (2.6), (4.3) are computed by Nystrom's method of order 5.
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Table I.
Error for the solution to Problems I, II, III and IV. Comparison of errors

between the formula (2.8) and other methods of order 3. Mesh size h = l/24.

X

2

5

8

12

method
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D

stage
2
2
3
2

I
0.2688E-4
0.7238E-5

-0.9173E-5
-0.1995E-6

0.8136E-4
0.2299E-4

-0.2652E-4
-0.5563E-6

0.1314E-3
0.3726E-4

-0.4276E-4
-0.8928E-6

0.1976E-3
0.5606E-4

-0.6425E-4
-0.1339E-5

II
-0.1309E -4
-0.1013E -4
-0.6779E -5

0.1766E -6
-0.3829E -6
-0.3003E -6
-0.1823E -6

0.9685E -8
-0.1482E -7
-0.1187E -7
-0.7738E -8

0.3297E -9
-0.261 IE -9
-0.2100E -9
-0.1388E -9
-0.5640E-11

III
-0.7494E-5
-0.9158E-6
-0.3834E-5
-0.6116E-6
-0.1685E-5
-0.9175E-6
-0.3874E-6

0.5094E-8
-0.3502E-6
-0.1962E-6
-0.7746E-7

0.1707E-8
-0.7987E-7
-0.4521E-7
-0.1640E-7

0.4104E-9

IV
-0.3009E-4
-0.2343E-4
- 0.9241 E-7

0.3786E-6
0.1831E-4
0.1427E-4

-0.1713E-5
-0.3955E-7
-0.2034E-4
-0.1586E-4

0.6312E-6
0.201 1E-7
0.1165E-4
0.9064E-5

-0.4381E-5
-0.2844E-6

Table II.
Error for the solutions to the Problems I, II, III and IV. Comparison of errors

between the formula (2.4) with az =0.4 and other methods of order 4 and 5. Mesh
size h = 1/2*.

x \ method

2

5

8

12

A'
B'
C'
C
D'
A'
B'
C'
C
D'
A'
B'
C'
C
D'
A'
B'
C'
C
D'

stage
3
3
4
6
3

I
-0.5106E-6
-0.1338E-6

0.1544E-6
0.2481E-8
0.2021 E-8

-0.1408E-5
-0.3853E-6

0.4184E-6
0.631 1E-8
0.5135E-8

-0.2258E-5
-0.6188E-6

0.6708E-6
0.1005E-7
0.8181E-7

-0.3388E-5
-0.9287E-6

0.1006E-5
0.1504E-7
0.1224E-7

II
-0.5759E -6
-0.3895E -6
-0.1886E -6

0.4269E -8
0.2593E -8

-0.1388E -7
-0.9782E -8
-0.4308E -8

0.8901E-10
0.1606E -9

-0.4998E -8
-0.3718E -9
-0.1770E -9

0.3558E-11
0.5382E-11

-0.3710E-11
-0.6545E-11
-0.3168E-11

0.6338E-11
0.9176E-12

III
-0.3519E -6
-0.6998E -7
-0.9769E -7

0.1290E -8
-0.9944E -8
-0.4608E -6
-0.1748E -7
-0.6387E -8

0.7234E-10
-0.7636E-10
-0.8384E -8
-0.3243E -8
-0.1096E -9

0.1206E-10
-0.6224E-11
-0.1762E -8
-0.6856E -9
-0.2259E -9

0.2464E-11
-0.9405E-11

IV
-0.5017E -6
-0.3421E -6

0.2252E -7
0.3384E-10
0.3212E -8
0.3146E -6
0.2176E -6

-0.4555E -7
0.2512E -9

-0.2796E -9
-0.3490E -6
-0.2467E -7

0.3237E -7
-0.1412E -9

0.4344E ~9
0.1938E -6
0.1112E -6

-0.7033E -7
0.4505E -9

-0.2256E -8
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Remarks.

(1) Methods A and A' are Byrne's Processes of order 3 and 4 respectively.
(2) Methods B and B' are Costabile's Processes of order 3 and 4 respectively.

(3) Methods C and C are Runge-Kutta Processes of order 3 and 4 respectively.
(4) Method C is Nystrom's Process of order 5.

(5) Methods D' and D are the Processes of (2.4) with a2 = QA, which is due to
(2.6), and (2.8) respectively.

Table III.
Local Truncation Error Estimate of the Method (2.6). Mesh size /? = l/24.

X

Prob-
lem

I
II

III
IV

1.5 (;co = 1.5-2 ti)
actual formula
error (4.5)

0.1518E-9 -0.1475E-9
0.1824E-8 0.1938E-8

-0.8446E-9 -0.8540E-9
0.2784E-9 -0.2860E-9

2.0 (*„ -2.0-2 h)
actual formula
error (4.5)

0.3925E-10 0.3853E-10
0.9903E -9 0.1044E-10
0.4487E -9 0.465 IE -9
0.3582E -9 0.3682E -9

2.5 (XQ =2.5 -2 h)
actual formula
error (4.5)

0.1344E-10 0.1326E-10
0.4261E -9 0.4485E -9
0.2028E -9 0.2092E -9
0.3947E -9 0.4057E -9

Table IV.
Error for the solutions to the Problems V, VI and VII. Comparison of errors

between the formula (5.5) and other methods of order 4 and 5. Mesh size h = 1/24.

X

1

2

4

6

E!

E2

E!

E2

E!

E2

E!

E2

Method
C'
C
E
C'
C
E
C'
C
E
C'
C
E
C'
C
E
C'
C
E
C'
C
E
C'
C
E

Stage
8

12
6

V
-0.2705E-6
-0.7407E-8

0.3126E-8
-0.1263E-5

0.3521E-7
0.8603E-7
0.3027E-6

-0.2601E-7
0.2600E-7

-0.3100E-5
0.7239E-7
0.2999E-7
0.4921 E-5

-0.2338E-6
0.1949E-7

-0.2442E-4
0.551 8E-6
0.2375E-6
0.3666E-4

-0.1733E-3
0.1227E-6

-0.1807E-3
0.4082E-5
0.1770E-5

VI
-0.1474E-5

0.5988E-7
0.3579E-6

-0.5725E-5
0.1660E-6
0.9990E-6
0.1604E-5
0.241 7E-7
0.1465E-6

-0.2321E-5
-0.1684E-8
- 0.775 1E-8

0.2636E-4
0.2742E-6
0.1675E-5

-0.2636E-4
- 0.2741 E-6
-0.1674E-5

0.2921E-3
0.3039E-5
0.1865E-4

-0.2921E-3
-0.3039E-5
-0.1865E-^

VII
0.1210E-5
0.6784E-9
0.1307E-8

-0.1613E-8
0.1985E-8
0.1148E-8
0.6529E-5

-0.3802E-7
-0.1889E-7
-0.1178E-6

0.2224E-8
0.1303E-8
0.9505E-4

-0.1794E-5
-0.1039E-5
-0.3140E-7

0.1015E-8
0.6052E-9
0.1037E-2

-0.3356E-4
-0.1992E-4
-0.6278E-8

0.2901E-9
0.1763E-9
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Remarks.

(1) Method E is the Process using (5.5).

(2) E, = y(xn)-yn, E2= -z(xn)-zn.
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