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Essential Self-Adjointness and Invariance

of the Essential Spectrum for Dirac Operators

By

Masaharu ARAI* and Osanobu YAMADA**

§ 1. Introduction

In the present paper we are concerned with the Dirac operator

where «_,- (j = 1, 2, 3) and a4 = /? are Hermitian symmetric, constant, 4x4 matrices

and satisfy the anti-commutation relations

(U) aLjQik + aikaij = 2djkI (/, k = l, 2, 3, 4)

(/ is the 4x4 unit matrix). Throughout this paper the potential Q(x) is assumed

to be an Hermitian symmetric 4x4 matrix-valued measurable function. The

Dirac operator is treated in the Hilbert space ^2 = [L2(U3)]4 associated with

the norm

I I / L ' = V \ .|/(*)|2</.v<oo

and the inner product

(/,<?)='
for/(x) = f(/1(x),/2(x),/3(x),/4(x)) and g(x) = t(gl(x)9 g2(x), g3(x), #4O)), where

I/WI2= i l//x)|2 and </(*), g(x»= Z //x)^).
7=1 7=1

Let H be the restriction of L to tf$ = [C?(l?3)]4 and H0 be H with Q = 0,

where Co(R3) is the totality of infinitely differentiate functions with compact

support in H3. It is obvious that H and HQ are symmetric in £?2 if \Q(x)\

eL2, loc- (For any matrix A, we denote by |,4| the squere root of the greatest
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eigenvalue of A* A.) It is well known that H0 is essentially self-adjoint. The

essential self-adjointness of H (especially, with a scalar potential) has been

studied extensively by many authors (see e.g. Kalf-Schmincke-Walter-Wust [6]

and its references). Let us sketch some known results in the case of the

Coulomb potential

(1.2) Q(x) = (e/r)I (e: real constant; r = y'x? + *i-f x§).

Kato [7; Chap. V, Theorem 2.10] shows that H is essentially self-adjoint if

|e|gl/2, and

(1.3) D(H) = D(IQ

if \e\ < 1/2. This is proved by Kato-Rellich-Wust perturbation theorem and the

well-known inequality

(1.4)
dxj

2
dx

= 4 du

for u e &Q, so that this can be extended immediately for H with a matrix-valued

potential Q(x) as follows : if

(1.5) 1*116001^1/2,

H is essentially self-adjoint, and if

(1.6) sup|x||e(x)|<l/2,
.X

(1.3) holds.

Let us return to the Coulomb potential (1.2). Rellich [9] and Weidmann

[12] show that H is essentially self-adjoint if and only if \e\ rg^/3/2. One may

expect that H with a matrix-valued potential Q(x) satisfying

(1.7) |x| 16001^73/2

is essentially self-adjoint. But this expectation is not correct. Indeed, Arai [1]

shows that for any e>0 there exists an Hermitian symmetric potential g£(x)

satisfying

for which the Dirac operator H is not essentially self-adjoint. (This result is

re-proved in Arai [14].)

Our aim in this note is to show a sufficient condition for the essential self-
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adjointness of the Dirac operator with matrix-valued potentials (Theorem

2.1 (1)), and one for (1.3) (Theorem 2.1 (2)). We shall also prove the invariance

of the essential spectrum (Theorem 2.2). When we apply Theorem 2.1 (2) to

the Coulomb potential (1.2), we have that H is essentially self-adjoint and (1.3)

holds if \e\<^/3/2 (see Example 6.1). We can also show that (1.3) holds even

if the equality holds in (1.5) under some additional condition (Example 6.2).

In Section 2, we shall state the assumptions and Theorems 2.1 and 2.2.

The former will be proved in Section 3 and the latter in Section 5. Section 4

is devoted to prove a lemma used in the proof of Theorem 2.1. In Section 6,

we shall give applications and a remark to Theorem 2.1.

§ 2e Assumptions and Results

The following condition on the potential Q(x) is assumed in this note:

(A.I) Q(x) can be decomposed as Q(x) = Q1(x) + Q2(x) such that Qi(x)

and Q2(x) are Hermitian symmetric 4x4 matrix-valued measurable functions

satisfying the following (A.II) and (A.III), respectively.

(A.II) There exist positive constants p and e<^/3/2 such that

in Bp9 and 2i(x) = 0 in Bc
p (the complement of Bp)9 where Bp = {xGR3\ \x\<p}

and ar= ]T -^-a/ (/4^B means that 5 —^4 is a positive semi-definite matrix).
j=i r

(A.III) For any e>0 and ^>0 there exists a positive constant C(e, ,R)

such that

du
\\QlU\\^2(BR^S £ dxj + C(s,R) \\u\\

for any u

Under the condition (A) we have

Theorem 2.1. (1) The Dirac operator H defined as

is essentially self-adjoint.

(2) Assume moreover that C(e, R) in the condition (A.III) can be chosen

independent of R>Q. Then (1.3) holds.

It is well known that the essential spectrum <7ess (H0) of H0 is equal to
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Theorem 2.2, Assume that

\— »0 as |x|— *oo

in addition to the condition (A). Then we have

vess(H) = asss(H0)=R\(-l, + 1).

Remark 2.3. The assumption (A. II) and

(2.1) a? = 7,

which is a direct consequence of the anti-commutation relation (1.1), imply that

there exists a positive constant C1 such that

(2.2) rlfii

Remark 2.4. The following potentials Q2(x)^ f°r example, satisfy the

condition (A.III). We can take C(e, R) in (A.III) as independent of R > 0, if

Q2(x) satisfies the following condition without underlined parts.

(III-l) Each component of Q2(x) is a locally L3-function (Gross [4]).

(III-2) The function of x E R3

is locally bounded for some 6 > 0 (Evans [3]).

(III-3) The function

f IfiOOl'^
J\x-y\Z5 \X-y\ *\ X - y \

is locally bounded and tends to zero as 6 J, 0 uniformly on every compact set

(Schechter [10]).

Remark 2.5. Let 0 <p'<p and %p>(x) be the characteristic function

of Bp.. Replace Q,(x) and Q2(x) by -Q^) = Ip^)Qi(^ and Q2(x) =

(l-Xp.(xy)Qi(x) + Q2(x). Then (1-^ W)6iW is bounded by virtue of (2.2),
so that Q2(x) satisfies (A.III) with Q2 replaced by Q2. It is obvious that Q^x)

satisfies (A.II) with Q^ and p replaced by gx and p'. Thus we may assume p

in (A.II) to be sufficiently small.

Remark 2.6. The number ^/3/2 in (A.II) is best possible, as will be shown

in Remark 6.3.
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§ 38 Proof of Theorem 2.1

Before the proof of Theorem 2.1 we will give some preparations. In

consequence of (1.1) we obtain

(3.1) (£ tj*j + P)2 = (\£\2 + l)I
7 = 1

for f eR\ It follows from (3.1) that D(H0) = 3fi and

(3.2) \\u\\x>i=\\HoU\\#2

for every UE3?1. Here the Sobolev space tf1 cosists of all the j§?2-functions

with the first derivatives in &2, normed by

7

From these considerations we have

Lemma 3.1. The inverse HQI exists and bounded.

The following Lemma will be an important tool in our proof.

Lemma 3JL Let T be a densely defined closable linear operator in a

Hilbert space X and A a linear operator such that D(T)cD(A). Suppose

that there exists a positive constant k<l such that

\\Au\\ ^k\\Tu\\

for every u eD(T) and that the closure T has a bounded inverse on X. Then

we have

(1) T+A is closable.

(2) D(T+A) = D(T).

(3) T+^4 has a bounded inverse on X.

(For the proof, see Kato [7; p. 190, p. 196].)

Lemma 33* Let Q(x) be an Hermitian symmetric potential whose com-

ponents are of the class L2
OC and %R(x) the characteristic function of BR.

Assume that HR = H0 + xRQ is essentially self-adjoint for any R>Q. Then

H = H0 + Q is essentially self-adjoint.

(For the proof, see Chernoff [2].)

Proof of Theorem 2.1. We shall first see the essentiall self-adjointness of
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H1=H0 + Q1. The idea of the proof, which is due to Schmincke [11] is to

decompose H1 to the sum

for 0<fc<l and apply Lemma 3.2 twice to T=H0, A=-ar and

It follows from (1.4), (2.1) and (3.2) that

£«-»
ikfor UE&Q. Therefore Lemma 3.2 is applicable to T=H0 and A = -^—ar for

every k such that 0</c<l in view of Lemma 3.1. Thus we obtain that

H0 + -~-ocr has the bounded inverse on &2 and

Under the assumption (A.II) we have

Lemma 3.48 If p>0 is sufficiently small, we can find a positive number

k<\ such that

(3.3)

for any u e ^Q.

The above Lemma 3.4 will be proven in Section 4.

Since we may assume p>0 to be sufficiently small (Remark 2.5), we are

permitted to make use of Lemma 3.4 for our potential Q^x). Then Lemma

3.2 implies that A = 0 belongs to the resolvent set of H± and D(Hl) = D(HQ),

As the resolvent set of H1 is open, the deficiency index of H1 is (0, 0) and,

consequently, Ht is self-adjoint, which yields the essential self-adjointness of Hlf

Since Holf^1 is bounded on j£f2 from the closed graph theorem, the

condition (A.III) gives us that

(3.4)

for every e> 0, R > 0 and u e tff. If we take e>0 so small that ellJ^Hr11| < 1,

we have from (3.4) that

2 (R>p)
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is essentially self-adjoint by virtue of Kato [7; p. 288]. Therefore Lemma 3.2

assures the essential self-adjointness of H = H0 + Q. Thus we complete the

proof of (1).

Let us prove (2) of Theorem 2.1. By virtue of (3.4), we have

(3.5)

for every s>05 R >0 and u e ^J, where we may assume that C(e) is independent

of R > 0 from our assumption on (2). Taking the limit as R-+ oo in (3.5)5 we have

(3.7) l ieiwIl^^ellHiUll^ + CCe)!!!*!!^,

for every s>0 and UE&Q, which gives by means of Kato [7; p. 288] that

§ 4. Proof of Lemma 3 A

Definition 4.1. We shall use the same notations as given in Schmincke [11] :

»
__/ x2 d _ x3 d x3 d __ x1 d x1 8 __ x2 8 \
\ i dx3 i dx2

 3 z dxi i dx3 * i dx2 i dx1/
9

= (°i, o-2> 0*3)= -KWs*

S ' Li = G^LI + (?2L2 + o"3-L3 .

The following Lemma plays an important part in the present section.

Lemma 4.2. (1) ITze following identity holds :

(£ a,
7=1

(2) Le£ S2 = {coeU3| |co| = l} and /(co) fee an arbitrary C2-function on

S2. Then we have

The first assertion (1), which follows from direct calculations, is a generali-

zation of Wiist [133 Lemma 2], The latter one (2) is due to Schmincke [11,
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Lemma 4]. It is well-known in many books of quantum mechanics that the

total angular momentum

which and 0j = I(j = l, 2, 3) imply

(4.1)

Proof of Lemma 3.4. Let 0</e<l and we^g 3 . Then Lemma 4.2 shows

k 3

where we have used L2^0 and |arj8| ^/.

The condition (A.II) and (2.2) give

(4-2) L 2
rfjC

Here (4.1) and (4.2) are combined to obtain

(4.3) k

1 L I

In order to see the non-negativity of (4.3) we have only to show

(4-4) ±k*

(4.5) -f*z
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The inequality (4.4) holds for every r > 0, since the discriminant of the quadratic

function is k4 — 3k3 = k3(k — 3)<0. The later inequality (4.5) follows from

e2 < — in the condition (A.TI) and letting k approach to 1 and p to 0. Q. E. D.

§5. Proof of Theorem 2.2

In this section we shall prove cress (H) = cress (H0) under the condition (A) and

(5.1) |e2(x)|—*0 as |x| , 0 0 .

Recall that A e cress (S) for a self-adjoint operator S if and only if there exists an

orthonormal sequence {un}aD(S) such that (S — A)MW->0 strongly as n->oo

(cf., e.g., Kato [7]). Let y(i) be a C°°-function denned on R such that Q^y(t)

:gl in U, 7(0 = 1 for ^0 and 7(0 = 0 for t^.1. We put yR(x) = y(\x\—R)

(R>Q). Then we have

'yR(x) = l for |x|<£,

/£ ^\ 7R\x) ̂ U lor \x\ ̂  ix ~r~ 1,p.zj

i l^f-^w ^C2
7 = 1 I ^^7

with some constant C2 not depending on i^>0. Note here that (1.4) holds for

ueD(H0) = JFl. (A.III) and (5.1) imply

for any ueD(H0) with some positive constant C3.

Let u e 3P!. Then it follows from (1.4), (2.2), (3.2) and (5.2) that

i _
— JRU + II HQ(yRu) || 3,2 + C31| 7^^ || ̂ 2 + ( sup
r &i \x\^R

+ (sup
\*\*R

for any complex number z and positive number R>p.

Now let A be in cress (H0) and {wj be an orthonormal sequence in J^2 such

that (H0 — A)wn-»0 as H-+OO. Since {wn} are bounded in ^f1, it follows from

Rellich's theorem that there exists a subsequence {unk}ci{un} such that {unk}

tends to 0 locally in c£?2. Substitute u = u11k and z = A into (5.4) and use (5.2)

to obtain
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(5.5) IS IISM^ sup \Q2(x)\,
fc->oo \x\^R

which and the assumption (5.1) imply that Qunk-+Q. Thus we have

(H - AKk = (H0 - A)wnk + Qunk - > 0 ,

which shows A 6 cress (H).

Reversely, let A e cress (H) and [un] be an orthonormal sequence in JS?2 such

that (Jf-A)MB-»0. Since D(H0) = D(H) by virtue of Theorem 2.1(2), we have

wf?eD(J70) and that HQ(H — A + z)"1 is bounded so that the boundedness of

HMJI^2+||HwJ^2 implies the boundedness of ||tiB||jg*+ \\HQun\\&2. Thus we
can choose a subsequence {MnJ (={«„} such that wnfc->0 locally in JS?2 as above.

The boundedness of (H0-z)(H-z)~1 for z = A + i, and the estimate (5.2) and

(5.4) yield

(5.6)

sup
\x\>R

sup i
|x| >R

where we put

Put u = unk in (5.6). Then we have again (5.5). Thus we have

(H0-Z)unk = (H-Vunk-Qunk — 0,

which implies A e <7ess (H) and completes the proof.

§ 6. Examples

Example 6.1, Let P(x) be an Hermitian symmetric 4x4 matrix- valued

measurable function satisfying

and commutes with a,.. Then Q(x) = r~1P(x) satisfies the assumptions of

Theorem 2.1(2). In particular, if Q(x) is a scalar potential Q(x) = r"~1p(x) I

with |p(x)|^e<v/3/2, then Q(x) satisfies this assumption. The latter example

includes results of Gustafson and Rejto [5; Theorem 2.1] and Landgren and

Rejto [8; Theorem 2.1 and its Corollaries].
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Example 6.2. Let Q(x) be an Hermitian symmetric matrix-valued
measurable function satisfying one of the following conditions :

(1) There exists a constant e such that

(2) The function rQ(x) is continuous in Bp for some p>0,

(6.1) r|6(x)|^l/2,

and 1/2 is not an eigenvalue of imrQ(x) for any x in Bp.

Then Q(x) satisfies the assumptions of Theorem 2.1(2).

Proof. The proof under the assumption (1) will be easily seen by mimicking
the inequality (6.2) below. So, we only prove this Lemma under the assumption

(2). Let x be fixed in Bp. For any £ e C4, we have

(6.2) r2Q(*)2 + KG (*) - 6

^£l2 + yl«l2 = jl«l2,

where we used the Schwarz inequality

(6.3) - Im <rQ(*){, a,C> ^ I <rfi(x)c, a,C>l

^|r<2(x)£||o^l

and the assumption (6.1). We claim that the equality sign does not hold in the
inequality sign S<T in (6.2) for any non-trivial <;. Indeed, if the equality sign

holds for some non-trivial vector <!;. Then

(6.4) l/-e(*XI=(l/2)|£|

and the both inequality signs '^' in (6.3) must be equality signs for this £. The
latter equality implies

(6.5) re(*)£ = carc

with some constant c. Then the former equality implies — Imc = |c| so that
c= — id, d^O, which with (6.4) implies d=l/2. Thus (6.5) becomes imrQ(x)£

= (1/2K, which contradict our assumption. Thus we have

If f_. /-*/,.\ /~H/-.\.. ^ \K Z\ ^ f) IA\\ KM. r-j.

Since the left hand side of this inequality is a continuous function of (x, ^) on the
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compact set Bp x {the unit sphere in C4}, we have (2.1) with e2<3/4, which com-

pletes the proof.

Remark 6.3. As in usual textbooks on the quantum mechanics, we put

0 1 \ _/ 0 -/ \ _/ 1 0
1 0 / ' 2 \ i 0 / ' (7a \ 0 -1

£ *jxjlr,

R i1 °^U -/
The counter example of the first author [1] mentioned in Section 1 is as follow:

Let a and b be real numbers such that

(6.6)

Then the operator H with 0 defined by

1 / al ibar

is not essentially self-adjoint.

In this case, we have

V=r2Q(x)2 + (i>/2)(ar£?(jc) -Q(x)ar)

a2 + b2 2iabar \ f H —ib aar \ I ib aar

— 2iabar a2 + b2 I 2 |_\ acrr ib / \ aar —ib

where we used a2 = I and put K =( -. -^r\-2iacr r —i/
Since Ff = (1 +4a2)/ and Ft is not a scalar (times the unit matrix), the eigenvalues

of V1 are ±^/l+4a2 so that

Under the assumption (6.6),

= 2b(b -1) + 2| 6(6 -1)| + 3/4 ̂  3/4

so that the condition (2.1) does not hold. Let ft = 1/2 and 0<a<l/2. Then

(6.6) is satisfied and \V\ tends to 3/4 from above as a\0. Thus the number

x/3/2 in the Assumption (A.II) is best posible.
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