
Publ. RIMS, Kyoto Univ.
18 (1982), 995-1008

Real Algebraic Realization of Characteristic Classes

By

Masahiro SHIOTA*

§ 1. Introduction

Throughout this paper X denotes a real non-singular affine algebraic variety

of dimension n. We will give a realization of the characteristic classes (the

Stiefel-Whitney classes, the Pontrjagin classes and the Euler classes) of real

affine algebraic vector bundles over X by algebraic subvarieties (Theorems 1, 2).

For the complex field, Grothendieck [4] showed that the Chern classes of an

algebraic vector bundle over a complex non-singular quasi-projective variety

are realized by algebraic cycles. Morimoto [6] considered the complex analytic

case. We prove Theorems 1, 2 by the method used there. If we work over

a real analytic vector bundle, Thorn's transversality theorem shows easily a

realization of the characteristic classes by analytic subsets (see Suzuki [10]).

Theorem 1 was partially proved in [2], [8], and two different applications

of them were given in [2], [9].

In Section 4, Theorems 3, 4 will show that the smoothing of algebraic sub-

varieties of X of codimension 1 for homological equivalence is always possible.

The proof uses an idea in [8].

Given two cohomology classes of X which are realized by algebraic sub-

varieties, it seems likely that their cup product is realized by an algebraic

subvariety. We prove this under some assumptions, applying Theorems 1, 2

(Theorem 5). We must remark that a realization of the cup product by an

analytic subset is always possible according to the transversality theorem.

Section 6 considers an affine algebraic structure of a topological vector

bundle over X. If the rank is 1, and if the Stiefel-Whitney class is realized by

an algebraic subvariety, then the bundle has an affine algebraic structure.
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§ 2. Preliminaries

Let V be an algebraic subvariety of X of dimension k. We say that an

element oc e Hn'k(X\ Z2) or Hn~k(X; Z) is realized by V if the Poincare dual of

a is the fundamental class [F] ePIk(X; Z2) or Hk(X; Z) respectively where we

use infinite chains if X is not compact. Here, if aef/"~ f c(X; Z) we require

X, V to be orientable. See Appendix in [5] and [3] for the definitions of the

Poincare dual and the fundamental class.

Let FcU"1, V c=jRm' be non-singular algebraic varieties. A C°° map / from

Vto V is called smooth rational if it is the restriction of a rational map from

Rm to JRm/. We call a vector bundle F-^-> F' an flj^z/te algebraic vector bundle

if the coordinate functions, the inverses and the coordinate transformations

are smooth rational. Here the general linear group is provided with the natural

algebraic structure, and the coordinate neighborhoods are Zariski open sets.

Let Gm>m' be the Grassmann manifold of m-linear subspaces in Rm+m' and

Vm tm, be the Stiefel manifold of orthogonal m-frames in Rm+m' , Then Vmjfn, is

clearly a locally closed non-singular algebraic subvariety of Rm+m' x ••• x JRm+m'.
m

We give Gmtm> an algebraic structure as follows [7]. Given TeGmX, let PT

denote the orthogonal projection of Rm+m' onto T. Thus T->PT is an injection

of Glllfm/ into the space of linear endomorphisms of Rm+m' . We see easily that

the image is a non-singular algebraic variety. We identify Gm>WI/ with the image.

Let p be the canonical map from Vmjn. to Gm>m. and £mtm,: Emtm.-±->Gmtn, be the

vector bundle defined by

£«.«- = {(T, x) e Gmtm. x «"•+•»' |x e T) .

Then p is obviously smooth rational and £mj,,r is an affine algebraic vector bundle.

Let (pmtm'm. Emttn.-+Rm+m' denote the projection onto the second factor.

Gm-m/ has a cellular subdivision by the Schubert varieties (see [15]). We

will be concerned with some of the varieties. Take an affine coordinate system

(x !,..., xm+m>) of Rm+m\ and denote by Rk the linear subspace defined by the

equations :

For each integers 1 ^ j ^ i ̂  m, let Fj c Gm?m' denote the set of all linear subspaces

T such that
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dim (Tn fim+m/"')^ m+j- i .

Then Fj- is an algebraic subvariety with the set of singularities Fj-+1. It is well-

known [15] that F( realizes the (w-/ + l)-th Stiefel- Whitney class of £mfIM,.

Let rrtfe(m, i) denote the set of all linear maps from Rm to Rl of rank ^i — k

for 0^ / c^ /^m. Then m^m, /) is an algebraic subvariety of m0(m, i)=Rmi

with the set of singularities mfe+1(ra, i) for 1^/c. We remark that the strati-

fication {mfe — mfc+1}k=:o, ...i °f mo(m
5 0 satisfies the Whitney condition A [14],

namely, given k<kf, Aenv — m f c/+ 1 and y47-em f c — mk+1, 7 = 1, 2,... such that

^4j and the tangent vector space of mfc — m /c+1 at Aj tend to A and an element T

in Gu, respectively for some /, /', then T contains the tangent space of mk, — mr + t

at A (see [6] for a more detailed property).

Let rj: E—^M be a C°° vector bundle of rank m over a C°° manifold M.

Let f-.E-tR1, $: M->Gmjm,_,- be C°° maps such that the induced bundle

'-i) = */• We write the lift of <f> as <? : E-»Em<m,_;. Put

We regard M as a submanifold of E through the zero cross-section. Since the

restriction of Wf on each fibre of E is an imbedding, the image of the tangent

space of the fibre at a point of M under the derivative dWf is an m-linear sub-

space in Rm+m' . This defines a C°° map <Pf: M-»GmX.

A C°° map/: MxRm^Ri is called m general position (at a point aeM)

if the map /: M-»m0(m, z) defined by

is transversal (in a neighborhood of a) to all the strata mfc(m, z)"~mfc+i(mJ 0>
/c = 0,..., /. We can generalize naturally this definition to /: E-+R1 for a C°°

vector bundle E (see [6]). The following was proved in [6].

Lemma 1. With the same notation as above, f: E-*Rl is in general

position if and only if $f: M-+Gmtm, is transversal to the strata F[—F1
2,

Fi-*l,...,F{.

Lemma 2. If M is compact, and if we provide the set of all C°° maps from

E to Rl with the compact-open C2 topology, then the subset of maps in

general position is open and dense.

Assume that X is contained in Rn+n' , Then the normal bundle of X is
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equivalent to the induced bundle ft*£n'}W, where h is the canonical smooth rational

map from X to Gn%n defined by h(x)= the space of normal vectors of X at

xeX. The reason why h is smooth rational is as follows. Let /!,...,/„- be

polynomials on Rn+n' vanishing on X. We denote by U the subset of X of

points at which grad/l3..., grad/n, are independent, and by vl9..., vn, the orthog-

onalization of Schmidt of grad/]5..., grad/,/ on U9 namely,

i?!=grad/!, u2 = M2grad/2-(«>!, grad/2)i;l5....

Then the map v(x) = (vl9..., iv) from U to Vn.%n is smooth rational and satisfies

the equation pov = h on 17. As X is covered by such U for suitable /i,...,/^, ft

is smooth rational on X. This shows also that given V-^X an affine algebraic

vector bundle of rank m, there exists a smooth rational map g: X-*Gmjm» for

some m" such that g*£mtm" is rationally equivalent to F-^-»^T. Moreover it

follows that for any smooth rational map /:F-»H', gf: X-*Gm^m, is smooth

rational with m' = m" + i, and #/£m>m ' is also rationally equivalent to V~~^X.

Lastly we need the concept of stratified map. Let ft be a smooth rational

map from X to another non-singular affine algebraic variety Xf'. Then we can

stratify ft, that is, there exist non-singular semi-algebraic subvarieties 7l5..., Yk

of X' such that X' is the disjoint union of 7l3..., Yk9 that Zi = h~1(Yj) is non-

singular for each j, that the restriction of ft on Zj is a submersion to Yj for each

j, and that the stratification {Y7-}_/ satisfies the Whitney condition A. For the

proof, see [14].

A C°° function is called regular at a point if one of the first partial derivatives

takes a non-zero value at the point.

§ 3. Algebraic Realization of Characteristic Classes

Theorem 1. The Stlefel-Whitney classes of any affine algebraic vector

bundle over X are realized by algebraic subvarieties. We can choose a non-

singular algebraic subvariety of realization of the k-th class for fc=l, k^.

(n —1)/2 or k= rank of the bundle.

Theorem 2. Assume that X is orientable. Then the Pontrijagin classes

of an affine algebraic vector bundle over X are realized by orientable algebraic

subvarieties. If moreover the bundle is orientable, this statement holds for

the Euler class. The subvarieties of realizations of the Eular class and the

k-th Pontrjagin class can be non-singular, for k*t(n~-
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Proof of Theorem 1. Let m be the rank of the bundle, and I r g j f ^ m be

an integer. We want to realize the (m — i + l)-th Stiefel-Whitney class by an

algebraic subvariety. Through the argument in Section 2, we regard the

bundle as the induced bundle /?*cm,m'-/ for a smooth rational map h : X~»Gm .„,'_/.
Assume that there exists a smooth rational map /: h*Em <m, _ /-»jK* in general

position. Then, by Lemma 1 hf: X-+Gm>m' is transversal to the strata F\

-F2, Fj-Fi,... . Now F\ realizes the (m-/+l)- th Stiefel-Whitney class of

£„,,„,<. Hence hj1(F\) is an algebraic subvariety of realization. Thus it is suffi-

cient to show that at least one smooth rational map /: h^Em^m^i-^Ri is in

general position. This is immediately proved by Lemma 2 if X is compact.

By the remark at the end of Section 2, there exist non-singular semi-algebraic

subvarieties Y l s . . . , Y/ of G m m » with m" = m'~i such that Gmjm^ is the disjoint

union of YJ,..., Yh that Zj = Irl(Yj) is non-singular for each 7, that {Yj} satisfies
the Whitney condition A, that h\Zi is a submersion to Yj for each /, and that

dim Yj^dim Yr for j^j'. Let Q: Ej~^Yj denote the restriction of Cm<?,r on

Now we want to find a C°° map g : E^^-^R1 such that the restriction of g

on Ej is in general position for j = 1,..., /. Since Yl is compact, by Lemma 2

there exists a C°° map gl: E^R1 in general position. Let g\ be a C°° exten-

sion of g{ onEm,m».

The restriction g\ \ E2 is in general position on an open neighborhood

17 j of Yl in GOT>m». The reason is the following. As the problem is local, we

can assume Emtm» = Gmmm»xRm. Assume that there does not exist such I7j.

Then we have a sequence of points a1a2,..-, in Y2 such that

is not in general position at al9 «2,..., and that at, ^2,... tend to a point b of

Yj. We write briefly m/m, /) = mj-. Choosing a subsequence, we can assume

that Cj = g\(aj), 7=1, 2,... are all contained in one mfc —m / t + 1 for some k, and that

the tangent vector space Oy of Y2 at a7- and yy of ntfc —m k + 1 at c7,7 = 1* 2,... tend

to a e Gu> and y e G r > m i_ r respectively for some /, /', /". Then, by the Whitney

condition A on {Y}] and {m7-~m;.+ 1}, a and y contain the tangent vector spaces

/? of Yl at b and 5 of m f c-~~m/c'-j- j a* d~9'i(b} respectively where rfemfc' —mk ' + 1.
Since g\ \ Yl is transversal to mk' — m k ' + 1 at b, we have

d(g'i)b(P) + 0 = Td the tangent vector space of m0 at d.
Hence
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It follows that d(g'l)aj(<x,j) + yj=Taj for large j. This means that g\ \ Y2 is trans-

versal to m/v — mk+i at ajf This is a contradiction. Thus g\ £, is in general

position on some 17 j.
Let W^ be an open neighborhood of Y1 in Cm>m» whose closure is contained

in l/1? E'2 denote the restriction of E2 on Y2 — W1. By Lemma 2 we can approxi-

mate g(\ E'2 by a C°° map g2 in general position on E2. Let ^ be a C°° function
defined on Gm>m» such that

r 1 on ^
^ = J 1

^ 1 0 o n y2-l/!.

Write

0iOO = <A°4 000i 00 ~ C1 - </0°4 00 x 0200 , * e Ei U £2 •

Then, taking a closer approximation #2>
 we can assume that ^i lE^^i and

02 I £2
 are m genei"al position. Let g2 be a C°° extension of g'2 on £mjm». We

repeat this argument on g2, E3,... . Then we have a C°° map g: Emftn>.-*Ri

such that # | £j is in general position for j= 1,..., /.

Moreover the argument above implies that the set of such maps g is open

and dense in the set of C°° maps from Emtm» to Rl. Therefore there exists a

smooth rational map g:Emttn»~+Ri such that g \ E j is in general position for

7 = 1,..., /.
For each 7 = 1,..., /, consider /y the restriction of f=g°h on Zj=h~1(Ej)

where h : h*Emtm..-*Emtm» is the lift of /?. Then we see that/,- is in a general posi-

tion as follows. As the problem is local, we can assume

Ej = Yj x Rm, Zj = Zj x Rm, h(z, v) = (h(z), v) for (z, v) e Zj x Rm .

Then we have

We saw already that h \ Zj. is a submersion to Yj and that g \Yj'- Yj-^m0 is trans-

versal to all strata ml— m2, m2 —tn3 , . . . . Hence /;- is transversal to i n j — m 2 ,

..., namely/7- is in general position. Furthermore it follows that/ is in general

position at any point of ZJ9 hence globally. Thus we have constructed an

algebraic realization of the Stiefel-Whitney classes.

As the codimension of F2 (the set of singular points of F{) in Gm>w- is

2(m — i + 2), hj1(Fi
2) is of dimension at most n~-2(m — i + 2). Hence the above
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algebraic subvariety of realization of the k-th Stiefel-Whitney class is non-

singular for k^(n —1)/2. Since F\ is non-singular, the realization of ra-th

Stiefel-Whitney class is non-singular.
A smoothing of the algebraic realization of the first Stiefel-Whitney class

follows from Theorem 3 below, because the subvariety is of codimension 1.

Thus the theorem is proved.

Proof of Theorem 2. We prove this in the same way as above. For the

Pontrjagin classes, we only have to choose m" so that m + m' is even. Then it

is well-known [15] that Gm>m, and F%~2i+2 are orientable, and that F™~2i+2

realizes the f-th Pontrjagin class of Cm,m'- Hence /ij1(F3I~2'~r2) is an algebraic

realization of the f-th Pontrjagin class of /?*£m>m'. Furthermore hj1(p2~2i+2)

is non-singular for i^(n — 2)/6, because the set of singular points of F™~2i+2 is
pm-2t+2^ ancj t^ codimension of F™~2i+2 is 6z + 3.

For the Euler class, choose m" so that m + m' is odd. Let Gm>m, denote the

oriented Grassmann manifold, and p: GmjW!'-»Gmjm, denote the natural pro-

jection. Then p is a 2-fold covering. Since the bundle in problem is orientable,

there exists a C00 map hf: X-*Gmiin> such that p°iif = hf. We know (see [15])

that the Euler class of £*£,„,„,' is realized by p~1(F\). Here we must remark

that Gm>m' and F\ are orientable. Hence hji(F\) realizes the Euler class of £m,m'.

This subvariety is non-singular, because F\ is non-singular. Thus we have

proved the theorem.

Remark 1. Consider the case of tangent bundle in Theorem 1. Let

1^/c^n be an odd integer or equal to n. The k-th Stiefel-Whitney class of the

bundle is an element of Hk(X', Z) where we use twisted coefficients. The

Poincare dual of this class is a homology class Wk of X with coefficients in Z.

Here we use infinite chain if X is not compact. The algebraic subvariety of

realization of the k-th Stiefel-Whitney class which was constructed in the proof

of Theorem 1 is orientable and has the oriented fundamental class Wk.

Remark 2. Even if a cohomology class of X is realized by a C°° manifold,

it is not necessarily realized by an algebraic subvariety. See an example in

[I]-

§ 4. Smoothing of Algebraic Subvarieties

Given algebraic subvarieties 7, V of X, we call them Z2-homo1ogically
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equivalent if their fundamental classes are identical. If the fundamental classes

have the coefficients in Z, then F and V are called Z-homologically equivalent.

Moreover, "Z-(or Z2-) smoothing F" means that we can find a non-singular V.

Theorem 3. The Z2-smoothing of any algebraic subvariety V of X

of codimension 1 is possible. Assume moreover that X is compact. Let M be

a C™ submanifold of X Z2-homologically equivalent to V. Then we can

Z2-smooth V so that the smoothed subvariety is the image of M under a C°°

diffeomorphism of X arbitrarily close to the identity.

Theorem 4. Assume that X is compact. Let F, M be an orientable

algebraic subvariety and an orientable C°° submanifold respectively which

are Z-homologically equivalent. Then we can Z-smooth V so that the smoothed

subvariety is the image of M under a C°° diffeomorphism of X arbitrarily

close to the identity. Especially, if X is compact and orientable, the Z-

smoothing of any orientable algebraic subvariety of co dimension 1 ?s possible.

Proofs. The first half of Theorem 4 follows trivially from the latter half of

Theorem 3. The latter half of Theorem 4 is an immediate consequence of the

first half of Theorem 4 and the fact that any first Z-cohomology class of a com-

pact orientable manifold is realized by a C°° submanifold (see [11]). Hence

we need only to prove Theorem 3.

Let X' be the desingularization of Hironaka of the algebraic closure of X

in Pn'(R) where XaR11'. Let V be the algebraic closure of F in X'. If we can

smooth F', the intersection of the smoothed subvariety and X is non-singular

and Z2-homologically equivalent to F. Hence, from the beginning we can

assume that X is compact. Then the first half of Theorem 3 follows from the

latter half and the fact that any first Z2-cohomology class of a compact manifold

is realized by a C00 submanifold [11]. Thus it is sufficient to prove the latter

half of Theorem 3. Obviously we can assume that M is analytic.

If an irreducible component of Fis of codimension>l, we can remove it,

because the removing does not affect the fundamental class of F. Hence we

assume that all irreducible components of F are of codimension 1. Moving

M if necessary, we can assume also that the germs of M and of F at each point of

M U F are not identical. Let F, 0 denote the rings of smooth rational functions,

analytic functions on X respectively. Let ac:F, bed? be the ideals of functions

vanishing on F, M respectively.

Now we will prove in the same way as Lemma 1 in [8] that c = a0 n b is a
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principal ideal. Let K be a triangulation of X, K' be a subcomplex such that

\K'\ = V\J M and that each (n — 2)-simplex of Kf is faces of even-numbered (n — 1)-

simplexes of K. Put

rx=(flg\f,ger,g(x)*0} for xeX,
Ox = the ring of analytic function germs at x E X .

We write

a, = ar,, bx = b0, and cx = c0x.

By the assumption on the irreducible components of V, a is the intersection of

prime ideals of height 1, hence so is ax for any x e X. Clearly b and bx, x e X,

have the same property. Since X is non-singular, Fx and (9X are unique factori-

zation rings for any xeX. Therefore ax, bx and hence cx, xeX, are principal

ideals, and we have

Here we remark that bx is the set of analytic function germs vanishing on M

(Cartan Theorem A on Stein manifold).

Let A !,..., A i be all the n-simplexes of K. We can suppose the existence of

/!,...,/, in c such that for each /, /• is a generator of cx if x is a point of the star

of At. Let Sj, . . . , sr be all the (n— l)-simplexes of K'. Then the chain Sj H —

+ sr is a cycle. By the hypotheses, this is the boundary of a chain, say, Al-\ —

+ AV9 I' <L We choose/f so that/f is positive in the interior of Ai if i^/ ' , and

negative if i> I'. Then, for each At and each Aj in St(J ,-).,/; and// take the same

sign in AJ9 and /,-//• is positive and smooth there, because, if sk is the common

face of A i and AJ9 sk contains non-singular points of V, hence the sign of values of

fi changes through sk.

Let ph 7 = 1,..., / be elements of F such that 0^p f-, and p/^1 on At and ^e

outside of St(zS£) where & is a small positive number. We choose e so small that

for each At and each ^gtSt^), p_/./}//J is close to the zero function on J£. Then

the sum/ of p$f, / = !,..., /, generates c,, for all x of X. Hence /is a generator

of c, namely, c is a principal ideal.

Let / be a generator of c, and giy..., gk be a system of generators of a.

Then we have analytic functions cp^..., cpk defined on X such that

Let \l/l9...,(l/k be approximations of (pl9...,<pk by smooth rational functions.

Put
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M' = the closure offf'\0)- V.

Then M' is a non-singular algebraic subvariety and can be translated to M by

a C°° diffeomorphism of X close to the identity. The reason is the following.

Since ax is a principal ideal for each xeX, there exists a closed neighborhood 17

of x where one of gl9...9 gk9 say gl9 is a generator. Hence we have rational

functions fc2,...5 tok on X smooth on U such that g~htgl9 i = 29...,k. Put

It follows that/=(P[;^1 on U. By (*), 3^ is a generator of bx- for any x' 6 U.

This means that the set of zero points of $v is U n M and that ^ is regular

at 17 n M. Clearly

----- H^ f cftk on 17

is an approximation of ^ by a smooth rational function, and we have

<f>-i(0)=[/nM'.

Choose a close approximation, and cover X by such t/'s. Then we can

assume that

UnM = <£ or T:(L7, l /nM)^> ([0, lp,0x[0, I]"-1).

If U n M = 0, we have U n M7 = <fr. In the second case, we can assume moreover

that the union W of l/'s such that 17 n M^0 is a tubular neighborhood of M,

that the projection n of W onto M corresponds to

nf: [0, I]"3(z l 5 . . . ,zn) - >(0, z2 , . . . ,zn)eOx[0, I]"-1,

and that <Pv°t~l = Z j . Then ^^OT-I is an approximation of zx. Hence IPi/oT"1

is a regular function, and r(C7 n M') ( = the set of zero points) is translated to

0 x [0, I]""1 by TC'. Thus n \ M, is a diffeomorphism from M' to M. Obviously

it is possible to extend n \ M, onto X. It is easy to see that the closer the ap-

proximation of q>l9. . ., <pk is, the more the extension of n \ M. is chosen close to the

identity. The argument above shows also that M' is a non-singular algebraic

subvariety; hence the theorem is proved.

Let V9 V be non-singular algebraic subvarieties of X, and a, a' denote

the cohomology classes realized by V9 V. If V and V intersect transversally,

the cup product of a and a' is realized by Ffl V. Hence we can generalize

Theorems 3, 4 as follows.
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Theorems'. Let a cohomology class aeHk(Xi Z2), &=!,..., n, be the

cup k-product of the first cohomology classes Pi,..., fik. If Pi,..., fik are realized

by algebraic subvarieties, then a is realized by a non-singular algebraic sub-

variety.

Theorem 4'. Assume that X is or lent able and compact. The above

statement holds for It-coefficients.

Example. From Theorems I and 3', it follows that if X is homeomorphic

to P"(R), n even, any Z2-cohomology class of X is realized by a non-singular

algebraic subvariety.

§ 5, Cup Product of Realizable Cohomology Classes

Let V, V be algebraic subvarieties of X of codimension k, k'. Let a, a'

be the cohomology classes realized by V, V respectively, and {Y{}, {Y'j} be re-

spective stratifications of V, V. If each Yt and each Y'j intersect transversally,

then the cup product a U a' is realized by the intersection V f t V . In this section

we will weaken these conditions. The coefficient ring may be Z2 or Z. For

Z, we must remember the arrangement at the beginning of Section 2.

Put V"=Vr\V. Let Vs, V's and V"s denote the respective sets of singular

points of V, V and V". Let T- denote the tangent vector space.

Theorem 5. Let an algebraic subvariety S satisfy the following properties

(i) s=>v"n(vsv F;U F;'),
(ii) codim5>/c + /c',

(iii) TR=T(V-Vs)\RnT(V'-V's)\Rwith R=V"-S.

Then alia' is realized by an algebraic subvariety, and the set of singular points

of the subvariety can be contained in S.

Proof. At first we suppose S = 0. Then any point of V" is a non-singular

point of V and V. Since V" is non-singular, any irreducible component is a

union of connected components. Hence, by the argument below we can assume

that V" is a manifold of dimension n'. Put m = n + ri — k — k'. Let £: Y-^-> V"

be the subbundle of TX\R of vectors orthogonal to TV\V,,@TV'\V». We saw in

Section 2 that the normal bundle of X is an affine algebraic bundle. By the same

method it follows that c is an affine algebraic bundle. Let /be a C°° cross-section

of £ such that f(V") and V" intersect transversally. Here we identify V" with

its image under the zero cross-section of £. We write the intersection as Z.
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Using /, we can construct a C™ diffeomorphism 6 of X arbitrarily close to the

identity in the Cx Whitney topology such that 9(x) = x for any singular point

x of Fand V, that V and 9(Vf) intersect transversally and that Vn6(V') = Z.

Hence the C°° manifold Z realizes a U a'. On the other hand, by Lemma 3

below, Z realizes the m-th Stiefel-Whitney class of £. Apply Theorem 1 to £.

Then it follows that a U a' is realized by a non-singular algebraic subvariety.

If the coefficient ring is Z, it is sufficient to treat the Euler class of £ instead of the

Stiefel-Whitney class.

The case S^0. Apply the result above to X-S, V-S and V'-S. We

remark that the algebraic varieties are affine. Let ZciX-S be an algebraic

subvariety of realization of (a U a')lx-s5 Z' be the algebraic closure of Z in X.

Then Z' is an algebraic subvariety of realization of a U a' because of dim (Z' n S)

<dim Z'. Hence we proved the theorem.

Example. Assume that F, V are non-singular. If FID F', the conditions

in Theorem 5 are satisfied.

Let r\\ E-Z-+M be a C°° vector bundle of rank m over a C°° manifold M.

Let/be a C°° cross-section of 77. Then we have

Lemma 3. Assume that the image f(M) and M intersect transversally.

Then the intersection realizes the m-th Stiefel-Whitney class of Y\. Further-

more it realizes the Euler class if M and rj are orientable.

Proof. We use the notation in Section 2. First, consider the case Y\
= £,„,,„'• Then F\ realizes the m-th Stiefel-Whitney class of £mtm>. Hence it

is sufficient to find a C°° cross-section / of £m>m, such that f(Gm>m) intersects

transversally with GmjW at F\. Put

/(T) = PT((0,...,0, 1)) for TeGm,m,.

Then, obviously/(GW j mOnGW j m=F}. We see easily also that /(GmX) and

Gmjm. intersect transversally, according to the formulas of local coordinate system

ofGmX[15].

The general case for the Stiefel-Whitney class. Let h: M->GIIIiWI/ be a C°°

classifying of map rj. Modifying h if necessary, we can assume that h is trans-

versal to F{. Then h~1(F\) realizes the m-th Stiefel-Whitney class of r\. Put

ff=h~iofoh, where h is the lift of h. Then it follows immediately that f'(M)

intersects transversally with M at h~~l(F{).

For the Euler class, we need only to use Gm^ the oriented Grassmann
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manifold like we did in Proof of Theorem 2. We omit the details.

We can prove the following in the same way as Theorems 3', 4'.

Theorem 6* //codim F/ = J, then a U a' is realized by an algebraic sub-

variety, and the set of singular points of the subvariety is contained in that of

F. Here, if the coefficient ring isZ, we assume moreover the compactness ofX.

§ 6, Affine Algebraic Structure of Vector Bundles

Let ?;: E—^-*X be a topological vector bundle of rank m. We say that Y\

has an affine algebraic structure if // is equivalent to an affine algebraic vector

bundle. It is proved in [1] that if X&S", rj has an affine algebraic structure.

Conjectureo Assume that all Stiefel-Whitney classes of r\ are realized by

algebraic subvarieties. Then Y\ has an affine algebraic structure.

Theorem ?„ // in = 1, Conjecture is correct.

Proof. Let VcX be an algebraic subvariety which realizes the Stiefel-

Whitney class of rj. By Theorem 3, we can assume the smoothness of F.

Let X' be the desingularization of Hironaka of the algebraic closure of X in

Ptt'(R) where XaRn'9 and V be the algebraic closure of V in Xf. Then there

exists a line bundle Y\' over X' whose Stiefel-Whitney class is realized by F'.

Since line bundles over X are determined by their Stiefel-Whitney classes, we

can regard r\ as the restriction of r\' on X. Hence it is sufficient to find an affine

algebraic structure of rj. Therefore, from the beginning we assume that X is

compact.

Let F0 = F, Fl5..., Vn be distinct C°° submanifolds of X such that each Vt

is the image of F under a C°° diffeomorphism close to the identity. Using the

transversality theorem, we reduct Vhi = l,...,n to satisfy n V{ = (/). Apply
i=0

Theorem 3 to Fl3..., Vn. Then we can assume also that Vl are non-singular

algebraic subvarieties. Let V{j denote the domain sandwiched in between

Vj and Vj for each /, j. Put Ui = X—V;,i = Q,..,,n. Then {L//} is an open

algebraic covering of X. If we have smooth rational functions i/f f / on Utj

= Uj 0 Uj for each i, j such that

> 0 on Utj — Vtj

<0 on Vij9
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then there exists an algebraic line bundle over X which is equivalent to Y\. More-

over, if the bundle has a complexification, it is affine (see, e.g., [13]).

For each i = l,..., n, we can construct a smooth rational function ft on X

in the same way as in Proofs of Theorems 3, 4 such that

(i) /ri(0) = F 0 UF; ,

(ii) /,<0in Fo f ,
(iii) & is regular at (F0 - Vt) U (7, - F0), and

(iv) for any x e F0 n Ff, the germ of ft at x is the product of two regular function

germs.

Put i^ij=filfj- Then \l/tj satisfy the conditions above and have complexifications.

Hence Theorem is proved.
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