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Invariant States for Strongly Positive
Operators on C*-Algebras

By

C. J. K. BATTY*

Abstract

A linear operator a on a C*-algebra A induces a contraction 6$ on the Hilbert space
<*% associated with a ^-invariant state <j> provided a satisfies the Schwarz inequality: 0(a*a)
>ff(a)*0(a). If (f> is invariant under a class sr of such operators, the following four proper-
ties are closely connected:

(i) abelianness of the reduction of ~6(A) to the ^-invariant part of %"$,
(ii) asymptotic abelianness of 0,
(iii) abelianness of ^^(A)' H .$%,
(iv) uniqueness of decompositions of 9 into extremal ^-invariant states.

If sr consists of 2-positive operators, almost all the same relationships between these properties
hold as for the case of automorphism groups which has already been thoroughly investigated.

§ 1. Introduction

Much attention has been given to those states of a C*-algebra A which are

invariant under a group of *-automorphisms. A detailed account of the resulting

theory is given in [4, Chapter 4]. The subject is particularly relevant to the

algebraic model of statistical mechanics, where the automorphisms represent

symmetries of the system. For example, the time-evolution of a reversible

system corresponds to a strongly continuous one-parameter group of auto-

morphisms. However, in an irreversible system, the time-evolution is re-

presented by a one-parameter semigroup of positive operators at on A, which

are not necessarily multiplicative. In all the familiar examples, at is completely

positive, and it can be argued that there are good physical reasons for this (see

for example the comments in [8, p. 136]). Completely positive semigroups can

also be constructed by defining
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7t(a)=\ oi
JG

where a is an action of a locally compact group G on A by automorphisms, and

{jur: r>0} is a convolution semigroup of probability measures on C.

This paper is concerned with semigroups &* of linear operators a on A which

are strongly positive in the sense that they satisfy the Schwarz inequality:

cr(a*a) > a(a)*<7(a) .

Any 2-positive operator is strongly positive, but the converse fails [5]. If A is

commutative, any positive operator is strongly positive, so the strongly positive

one-parameter semigroups on A are precisely the diffusion (or Markov) semi-

groups on the spectrum of A [10]. The class of strongly positive semigroups
A

is convenient since there is an associated semigroup ^ of contractions on the

Hilbert space Jf^ obtained from an 5^-in variant state 0 by GNS-construction.

If y is a group of automorphisms, then ^ is the unitary group co variant with the

action of £f in the representation n^ of A on ^. Thus it is natural to try to

establish connections between :

( i ) abelianness of the reduction of n^A) to the ^-invariant part Jf^

(ii) asymptotic abelianness of 0,
XN

(iii) abelianness of n^(A)' n £%,

(iv) uniqueness of decompositions of <j) into ^-ergodic (extremal Sf-

in variant) states.

These properties are known to be very closely related for automorphism groups

[4], and a study of them for strictly positive one-parameter semigroups has been

initiated by Majewski and Robinson [15; 16]. Assuming that 0 is a faithful

on n^(A)"9 the equivalence of the four properties was shown in [16, Theorem 2].

The argument depended on two technical facts :

(a) 7^04)" n £; = n+(Ay n
* >

where p^ is the orthogonal projection of ̂  onto Jf^, and (71^(^4)")^ is the fixed

point subspace of n^A)" under &*.

In the non-faithful case, (a) can be replaced by a similar property :

(ay
£*> is ^-invariant} .
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In the theory relating to automorphism groups, (a)' plays an important role which

is sometimes obscured by the ease with which it is derived. The properties

(a)' and (b) are established in Propositions 2.1 and 4.2 respectively below, in the

first case for any strongly positive semigroup, in the second for semigroups of

operators a which are (strongly) 2-positive, in the sense that

r: (au)

is (strongly) positive on the C*-algebra M2(A) = M2(C)®A of 2x2 matrices

over A. These two technical results play crucial roles in the subsequent argu-

ments. For example it is immediately possible to link properties (iii) and (iv)

(Theorem 3.1), and properties (i) and (ii) (Proposition 5.1).

When considering the global versions of some of the four properties, a new

question is raised — is it sufficient that the property holds for the ^-ergodic

states? For an automorphism group ^, suitable global versions of the four

properties are equivalent [7; 4, Corollary 4.3.11], and it is sufficient that (i),

(ii) or (iv) holds for ^-ergodic states [6; 3]. The corresponding result for

(strongly) 2-positive semigroups is given in Theorem 6.1. Versions of the

Kovacs-Sziics ergodic theorem and "quasi-largeness9' of & are also obtained

(Theorem 6.2).

Broadly speaking, this paper shows that results about invariant states for

automorphism groups extend to strongly 2-positive semigroups, in particular to

completely positive semigroups.

\ am very grateful to D. W. Robinson for explaining the extent of his own

work on this subject.

§ 2. The Induced Contraction Semigroups

Throughout the paper, A will be a C*-algebra with identity 1, and &> will

be a semigroup of strongly positive linear operators a on A satisfying 0-(l) = l.

If $ is an ^-invariant state of A with associated cyclic representation (^5

7^, £0), then

Hence there is an induced semigroup ^ = {0^: cre^j of linear contractions on

Jf^ given by
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Let Jf^ be the set of all ^-invariant vectors in e^, and Jf^ be the set of all

vectors rj in ̂  satisfying

Let PQ and p^ be the orthogonal projections of jf^ onto the closed linear sub-

spaces JT0 and Jf^ respectively. The Alaoglu-Birkhoff mean ergodic theorem

[4, Proposition 4.3.4] shows that p^ belongs to the strongly closed convex hull

of ^. It will be seen later that JT^ and ̂  usually coincide.

Let 0$ be the order-isomorphism of n^A)' into A* defined by

The range of 0$ is the linear span of the face of the state space S(A) of A

generated by 0.

Proposition 2.1. For x in n^A)', the following are equivalent:

(i) xfy = fyx Oe^),

(ii) xp^p+x,
(iii) 00(X) is ̂  -invariant,
(iv) xp^p+x.

Proof. The implication (i)=>(ii) is immediate from the Alaoglu-Birkhoff

mean ergodic theorem.

If x commutes with any projection p < p^ with p^ = ̂ , then

Thus 6>0(jc) is ^-invariant. This proves that (ii)=>(iii) and (iv)=^>(iii).

To prove (iii)^^)., it suffices to assume that x>0 and <x^5 ^) = 13 so that

\l/ = 0^(x) is an ^-invariant state. The implication then follows in a similar

manner to the argument used to prove 1=>2 in [16, Proposition 1], since the

Alaoglu-Birkhoff theorem ensures that operators a in the convex hull of &* may be

found so that 0$ and o^ approximate p^ and p^ respectively in the strong*

topology.

Now let x be a projection in the von Neumann algebra 7^04)' n {p^}'-

Then for a in ^,

\\n£^^^ x^>
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Hence

(10 is the identity operator on Jf^), so x#0(10 — x) = 0. Replacing x by 1^ — x,

it follows that xff(j> = xa(f)x = G(t)x. Since n^(A)r n {p^}' is generated by its pro-

jections, this completes the proof that (ii)=>(i).

Finally it is clear from the definition that p^ belongs to the von Neumann

algebra generated by n^A) and <$ ,̂. Since (i) and (ii) are equivalent, this algebra

is generated by n^A) and p^. This gives the implication (ii)=s>(iv).

In the following, the von Neumann algebra generated by n^(A) and p^ will

be denoted by 910. Proposition 2.1 shows that 210 = 7^04)' n &'$, so ^c^.
/\

Since &*$ is not self-adjoint in general, Proposition 2.1 is needed even to show that
/^

Uj(Ay n &"$ is a von Neumann algebra. A simple calculation now shows that

JT0 contains 91̂ .

An extreme point of the compact convex set S^(A) of all & -invariant states

will be called an ^-ergodic state.

Corollary 2.2. An ^-invariant state $ is ^-ergodic if and only if n^A)

U {p^\ is irreducible.

Proof. This follows from Proposition 2.1 which shows that the positive

^-invariant functionals majorised by <j) are those of the form O^(x) where

Corollary 2.2 was proved by Robinson [16, Theorem 3] in the case when

A is a von Neumann algebra, and 0 is faithful and normal, and it is implicitly

there in general. If ^ is separating for n^A)", then ^ induces a semigroup on

7T0G4)", and it follows from [16, Theorem 1] that n^A)" n {p^}' = n(f)(A)" n ^.

This is closely related to Proposition 2.1 since JT^ is invariant under the modular

conjugation J, so that

*+(AY n {p^'=J(^(Ay n
^(A)" n &'t=J(nt(Ay n

Proposition 2.1 may also be compared with [11, Proposition 2.3] in this setting.

A typical state \j/ in the face F^ of 5^04) generated by some y -invariant state

(/) is of the form i// = 6^(x) for some x in 91^ with x > 0 and <x^, ^> = 1 . Now

7i^ may be identified with the restriction of n^ to the subspace «^ = [7fyC4)x£0],

and ^ = XT^. Since ^ is ̂ -invariant, the orthogonal projection e of ^
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onto jff satisfies a^e = ea^e, and therefore p({>e = ep4)e by the Alaoglu-Birkhoif
>v

theorem. Thus by Proposition 2.1, ^ is ̂ -reducing, and calculation shows

that a^ = a^e and pl]/ = P<t>e>

Corollary 2.3. Let E be any subset of SJA), and (n, &, p) = ®(n^
* £

y& Pt)' Then ^ is contained in (n(A) U {/?})".

Proof. It suffices to assume that E has finite cardinality n. Let if/ = n~l £ $>
/•s. ^ E

and (J^Q, 7C0, y0, PO) be the direct sum of n copies of (^, n^, ^, p^). By

Proposition 2.1, ^0c:(7z;0(X) U {p0}Y, and by the above discussion, (n,&>,p)
XV

may be identified with the restriction of (n0, &*0, pQ) to some reducing subspace

of je0.
00

Corollary 2A Lef (f)= ^ Af0,- foe a (7-cont;gx combination of ^-invariant
i=l

^, TC, , 0= © (J f̂, TC^,
i=l

-N «N

may be identified with the restriction of(jf, n, &*, £) to the (n(A) U ̂ -reducing

subspace

Proof. It is clear that (^^ n^ &*^ <^) may be identified with the restric-
**. *.

tion of (jf7, TT, &>, Q to the 7i(^4)-reducing, ^-invariant subspace [n(A)£\. It

follows from Corollary 2.3 that this space is ^-reducing.

Two ^-invariant states 0 and \j/ will be said to be ^-equivalent if there is a

unitary mapping 17" of 3?^ onto Jf7^,, taking Jf^ onto JT^ and intertwining n^

with 7i^, so that

Suppose 0 is ^-ergodic, and f/ is a unit vector in Jf^ linearly independent

of £0. Clearly the vector state il/ = co^ (\l/(a) = <^(a)^, ?/» is ^-invariant.

Furthermore, for «!,..., 0,I+1 in ^4 and (Tj,..., crn in .9 ,̂ let

Then

It follows from the irreducibility of n^A) U {^} (Corollary 2.2) and the Kadison

transitivity theorem that ^®rf is cyclic for (n^®n^)(A) on ^©^. In partic-

ular, (^, TC^, ^) may be identified with (c ,̂ TT^, 77), an(i then
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so 0^ = 00. Thus 21^ = 910, so ij/ is an ^-ergodic state distinct from, but &>-

equivalent to, 0. The following result gives more precise information, and is

an extension of [2, Corollary 4.3].

Proposition 2.5, Let (p and \l/ be distinct ^-ergodic states, and

-— The following are equivalent:

( i ) 0 and ij/ are ^-equivalent,

(ii) \l/ = a)lfor some Y\ in 3T^

(iii) yif
p is a factor,

(iv) the line-segment between 4> and \l/ is not a face of S#(A).

In this case, 91^ is a type I2 factor, and the smallest face F^ of S^(A) con-

taining $ and if/ is affinely homeomorphic to a ^-dimensional Euclidean ball.

-Proof. Let (tf>9 n, , p, £) = (

2~i^), so that (jfp, np, &p, pp) identifies with the restriction of (•#*, n, &, p)

to [n(A)£] (Corollary 2.4). Note that F^ = Fp.

(i)=>(ii). There is a unitary U of ^ onto «#^ intertwining n^ with n^ and p^
^ . ^

with p^. It follows from Corollary 2.3 that U intertwines ^ with ^. Hence

the vector ri = U*^ lies in ^ and satisfies \l/ = co^.

(ii)=>(iii). By the above remarks, <%y
p = 3f and 91̂ , consists of those operators

on 3? = «#0©«?f^ whose matrix representations are of the form (x^-)/J=1 2 where

(iii)=>(iv). Since %lp is not two-dimensional, F^ = 0p{xe Wp: x>0, <x^p,

^P> = 1} is not one-dimensional.

(iv)=>(i). For an operator x = (xtj) in n(A)r n {p}', x2i intertwines n^ with n^

and p^, with p^9 so x|1x2i 69I^ = C1 ,̂ x2ixJ1e9I^ = Cl^. If 0 and ^ are not

^-equivalent, then there is no unitary intertwining operator, so x21=0. Thus

n(A)f n {p}' =

Hence ^p = ̂ f, and

If 0 and \l/ are ^-equivalent, the proof of (ii)=>(iii) shows that Wp is a type

72 factor, and F^ is affinely homeomorphic to the set of 2 x 2 density matrices.

These form a 3-dimensional Euclidean ball (see [1, p. 103]).

Part of Proposition 2.5 may be extended to show that the convex and a-
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convex hulls of any set of mutually ̂ -inequivalent cS^-ergodic states are faces of

(see [2, Corollary 4.3]).

§ 3. Local Decomposition Theory

Proposition 2.1 permits several aspects of the decomposition theory of

individual states under a group of automorphisms (see [4, Section 4.3; 12]) to

be extended to the case of strongly positive semigroups. Parts (i) and (in) of

Theorem 3.1 are proved in [16, Proposition 1].

Theorem 3.1. Let 4> be an ^-invariant state of A, 23 be an abelian von

Neumann subalgebra of $1 ,̂ and ^ be the orthogonal measure on S(A) as-

sociated with 23.

( i ) jUjB is supported by S^(A).

(ii) jU$8 is a maximal measure on S#,(A) if and only if 23 is a maximal

abelian subalgebra 0/21^.

(iii) There is a unique maximal measure \i on Sy(A) representing 4> tf

and only if^l'^ is abelian. In this case, \JL is the W^-measure.

Proof. In view of Proposition 2.J, the proofs of similar results in [4,

Section 4.3] and [12, p. 106] can all be extended without significant modification.

There are however possible difficulties concerning the global decomposition

theory. If & is a group of automorphisms, it is known [3; 4; 6; 7] that S#,(A)

is a Choquet simplex if and only if p^n^(A}p^ is abelian for each 0 in S<?(A), or,

equivalently, ^ is one-dimensional for each y-ergodie 0. Furthermore

abelianness of p^n^AJp^ is characterised by ^-abelianness :

inf {\col(a'b-ba')\ : a'EC^(a)}=Q (a, be A; rj eJf^

where Cy(d) is the convex hull of y(d) = {a(d): ere<$•*}. The proofs of these

facts depended heavily on the fact that Jf^ = JT0, which is very easily established

for groups of automorphisms. In the next section of this paper it will be shown

that Jf^ = JT0 provided that & is strongly 2-positive, and the results mentioned

above will be extended to such semigroups in the subsequent sections.

The method used in [3] involved passing to a projection in the weak closure

of the crossed product of the C*-dynamical system. This device is no longer

available, but it is at least possible to use some of the earlier techniques of

decomposition theory in separable cases [2; 6].
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The semigroup £f of operators on A will be said to be separable if each of

its orbits y(d) is separable. Clearly £f is separable if A is separable or if &> is

a strongly continuous one-parameter semigroup.

The next two lemmas present some of the technical measure-theoretic details

needed. Here /* is a Baire measure on Sy(A) representing <£, and Y\ is an arbitrary

vector in ^. If (an)n^l is a sequence in A chosen so that X II^(^«)^ — *?ll < °o5

it was shown in [2, Lemma 2.4] that r\^ = lim n$(a^^ exists ^ — a.e.(^), and jfy

is a.e. independent of the choice of («„). For r\' in ̂  and ̂  in ̂  obtained

from 17' in this way,

Lemma 3.2. Suppose £f Is separable, and v\^^C^. Then rj^EJT^ \JL — a.e.

/s separable and Y\E^^ then rj^eJ^^ \JL — a.e.

Proof. For fixed <j in y7,

Z KOKO)£,->/ll = Z lld^Mfl^
Hence, for /i-almost all i^,

?7^ = lim 7i^(cr(aw))^ - lim 6^(a^

By considering a countable subset ^0 of tf such that ^0(
an) ^s dense in

for each «, it follows that Y\^O^Y\^ for all cr in ^, so rj^EJf^ /x —a.e.

A similar argument establishes the second statement.

Lemma 33. For any Y\, rf in tf^ and a in £f,

Proof.

Z ll^Wfl,))^-^!! = Z ll^(^-*?)ll < oo .

Hence v\ J = lim n^(p(a^)^ = o^ \i - a.e. Thus

§ 4. The Invariant Hilbert Space

If & is a group of *-automorphisms, then ^ is a group of unitaries on

satisfying the covariance relation
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It is then immediate that ^Tt^(a)fj = 11^(0(0)}^ (rj e JT^), so the spaces Jf^ and Jf^

coincide. Although it is not clear whether these spaces always coincide if 3* is a

strongly positive semigroup, it is possible to show that they do if y is 2-positive.

A simple argument follows for the case when & is strongly 2-positive (including

the case of 4-positivity).

Lemma 4.1. Let a be a strongly n-positive linear operator on A, and <£

be a ff-invariant state of A. Then for a and b{ in A and rjt in ^ (1 <i<n),

2< IMP . i <n

Proof. Define x = (xtj) and y in Mn(A) by :

The strong positivity of an = \n®a gives:

Applying this inequality to the vector functional defined by © r\{ in the re-
n i = l

presentation © n^ gives the result.
i=l

Proposition 4.2. Suppose ^ is a strongly 2-positive semigroup, and 4>

is an ^-invariant state. Then Jf^ = Jf^,.

Proof. Take a in A, a in ^, r\ in Jf^, and let (br)r^i be a sequence in A such

that \\n^(br)^-ri\\-^0. Apply Lemma 4.1 with w = 2, bl = br, b2 = l, ri1=^9

ni^—n- This gives

->0 as r-»oo .

Thus ff<t>n(],(a)ri = n(f>(a(ay)ri, as required.

If /4 is abelian, all positive operators are completely positive, so Proposition

4.2 covers diffusion processes [10].

There are various other circumstances in which one can establish the
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equality of Jif^ and tf$ without assuming strong 2-positivity. These include

the following cases:

(a) ^ is separating for n^A)" (see [16]).

(b) The class of all normal states ^ of n^A)" which are ^-subinvariant
(^o7r^oo-<^o7r^) is faithful for n^A)" (see [13]).

(c) (f) is ^-ergodic, and coj is ^-invariant for each r\ in Jf^,.

(d) & is separable, and JT(// = ^I// for every ^-ergodic state \j/ of A (see

Lemma 3.2).

A short calculation similar to those in Lemma 4.1 and Proposition 4.2 shows that

if £? is a 2-positive semigroup, then coj is ^-invariant for each Y\ in Jf^. Com-

bining this with (c), (d), and a reduction to a separable case, it follows that

Proposition 4.2 is true for all 2-positive semigroups. However this proof is

long and unnatural, so it has been omitted.

§ 5. Asymptotic Abelianness and Cluster Properties

Among the earliest results in the study of states invariant under an auto-

morphism group were the equivalence of abelianness of p<i>^(i>(A)p(f) with weak

asymptotic abelianness of the vector states coj (^e Jf^) [14], and the equivalence

of one-dimensionality of Jf^ with weak clustering of 0 [9]. For strongly

positive semigroups, the first of these equivalences is related to the possible

equality of 3C$ and J ,̂, but the second is always valid.

A state 4> of A is weakly y-abelian if

inf{\(l>(a'b-baf)\: a'eC^(«)} = 0 (a, b e A);

0 is weakly ^-clustering if

'mf{\<l>(a'b)-<l>(a)<l>(b)\: a ' eCV(f l ) ]=0 (a, b E A).

Proposition 5.1. Let (j) be an ^-invariant state.

(i) The following are equivalent:

(a) P^04)P0 is abelian,
(b) Jf^ = Jf"0, and a)$ is weakly <9*-abelian, for each YI in JF$.

(ii) The following are equivalent:

(a) cf) is £f-ergodic and p^7i^(^4)p^ is abelian,
(b) Jf*0 is one-dimensional,

(c) <jfr is weakly ^-clustering.
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Proof. If p(()n(f)(A)p(l) is abelian, then it is immediate from [4, Theorem

4.1.25] that

^, = [«*£*] <^c-*V

Once this is established, both parts of the proposition may be proved exactly as

for automorphism groups [4, Proposition 4.3.7, Theorem 4.3.22].

§ 6. Global Decomposition Theory

The local properties established above are sufficient to make it straight-

forward to extend [2, Corollary 4.4] to strongly 2-positive semigroups. Recall

that a convex set K has the \-ball property if the line segment joining any two

extreme points is a face of K.

Theorem 6.1. Let ^ be a separable (strongly) 2-positive semigroup on

A. The following are equivalent:

( i ) P^^(A)P^> ^ abelian for each $ in S<?(A),

( ii ) Each ^-invariant state is weakly ^-abelian,

( iii) 210 is abelian for each $ in S^(A),

(iv ) S<r(A) is a Choquet simplex,

( v ) Any ^-invariant state 0 for which 21^ is a factor is ^-ergodic,

( vi ) No two distinct ^-ergodic states are &*-equivalent,

(vii) Sy(A) has the 1-ball property,

(viii) JT0 is one-dimensional for each Zf-ergodic state 4>,

( ix ) Each ^-ergodic state is weakly &'-clustering.

Proof. Note first that ctT^tf^ for each ^-invariant state 0 (Proposition

4.2). (This is the only way in which strong 2-positivity is used in the proof.)

(i)<=>(ii), (viii)^>(ix). Proposition 5.1.

(i)=>(iii). [4, Theorem 4.1.25].

(iii)<=>(iv). Proposition 3.1 (iii).

(iv)=>(v). Corollary 2.2.

(v)=>(vi)o(vii)o(viii). Proposition 2.5 and the remarks preceding it.

(viii)=>(i). The argument is similar to that in [2, Theorem 2.5].

Thus for ri in Jf^, and self-adjoint a and b in A, let f = ̂ ^(0)17, C /==IVty(fr)*/-

Let fi be any maximal measure on Sy(A) representing 0. In the notation of

Section 3, Lemma 3.2 shows that r\^ ̂  and ̂  belong to ^ for ̂ -almost all if/.

Hence if JT^ is one-dimensional, all three vectors are scalar multiples of ^.
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Using the Alaoglu-Birkhoff theorem, explicit approximations can be found to

show that

Hence, according to (viii), there is a Baire set E carrying f.i such that any &*-

ergodic state in E satisfies the identity <£,/,, C^> = <C^, C^>- Since f.t is pseudo-

carried by the y-ergodic states, this identity is valid \JL — a.e., so by Lemma 3.3,

= <C' ,C>.

This establishes that p$ 71$ (AJp^ is abelian.

Without assuming that ^ = JQ, but instead assuming that A is separable,

one can still establish the equivalence of properties (iii)-(vii) of Theorem 6.1

with each of the following properties:

( i )~ PQ n$ (A)p^ is abelian for each y-invariant state 0,

(viii)" ^ is one-dimensional for each ^-ergodic state 0.

Now let (j) be an ^-invariant state for which JT ,̂ = Jf^. Then there is a

version of the Kovacs-Sziics ergodic theorem [4, Proposition 4.3.8]. Thus if

2* = l>*G4)'/fy] and 3J^ = ̂ ^W^ anci $R* = 9W*n{jfy}', there is a faithful
normal projection M of norm one of 9ffL onto 91^ such that

Furthermore there is an affine bijection between

(a) normal states p of 91 ,̂

(b) y-invariant states if/ of A which induce normal states $r of n^ (A)"

with {j/on(t) = \l/, \j/(qt)=\.

This correspondence is given by

i//(a) = p(M(q^ n^ (d)q£) p(x) = $(x) .

A consequence of this is that if S^(A) is a simplex, then p^TfyG^)/^ is abelian

(see [4, Theorem 4.3.9]), so conditions (i)-(iv) of Theorem 6.1 are equivalent

even for non-separable (strongly) 2-positive semigroups.

Still assuming that Jf1^ = Jf^, it is also possible to establish the equivalence

of the following (see [4, 4.3.12, 4.3.14; 16, Section 5]):

( i ) w\ is weakly ^-abelian for each r\ in

(iii) Each state i// in the class (b) is represented by a unique maximal
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measure /^ on S^(A), and u^ is a subcentral measure on S(A).

From this the following is obtained immediately:

Theorem 6.2. Let & be a (strongly) 2-positive semigroup on A. The fol-

lowing are equivalent:

(i) Each state of A dominated by an ^-invariant state is weakly Sf-

abelian,

(ii) S#(A) is a Choquet simplex, the maximal measures on which are

subcentral measures on S(A).
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