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Entropy of Automorphisms of AF Algebras
By

David E. Evans*

Here we consider a notion of topological entropy for automorphisms of
AF algebras, based on a corresponding measure theoretic entropy of Connes
and Stgrmer [6] for automorphisms of hyperfinite von Neumann algebras with
an invariant trace. We show how to compute the entropy of the shift on
certain AF algebras associated with topological Markov chains.

If o is a unital AF algebra, let T(.«7) denote the normalized traces on 7.
If ¢ € T(#), and B is a finite dimensional C*-subalgebra of 7, let E§ denote
the conditional expectation of .o onto B, relative to ¢. For simplicity, we will
always only consider finite dimensional subalgebras, with the same unit as ..
If ne N, let S, denote the maps x from Z” into o7, with finite support such that
> x(dty,...,0)=1. Forl1<i<n,xeS,, a€Z, put

aie

xWo)= > X(0geensy O 1 Oy O 15eeny Oy) -

Of gueey @ ey EL+15ees0n
Also, let n(x)=—xlogx for xe[0, o). Let By,..., B, be finite dimensional
subalgebras of .o#. Then following [6], define:

H(Bl"" n)_ sup sup {Z 'I¢x(°‘1s *y )

¢eT(A) xeSy aieZ
-3 3 ¢nEL (@)}

The proofs of [6] carry over to give that H satisfies:

(A) H(Ay,..., A)<H(B,,...,B,)if A;,=B;, j=1,.,n

(B) H(Bi,-..s Bpy Byy15eees Bpym) <H(By,..., B)+H(By, 15+ Byim)-

(©) By,...,B,=B=H(B;,..., B, B, 15 Bys ) <H(B, By115--s Byim)

(D) For any family of minimal projections of B, (e,),e; such that 3" e,=1, one
has H(B) =, 30 (. (2 né(e) -

(E) If C*(By,..., By, the C*-algebra generated by Bji,..., B, is generated by
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pairwise commuting C*-subalgebras P;

H(C*(By,..., B,).

If o is an automorphism of .7, and B a finite dimensional C*-subalgebra of
o, let H(B, o-)=klir£13 H(B, 0B,..., *B)/k. Then define the (topological) entropy

of o to be H(o)=sup H(B, o), where the supremum is taken over all finite

of B, then H(B,...., B)=

dimensional subaigebras B of o/, If o is also commutative, i.e. .« =C(X),
where X is a totally disconnected compact Hausdorff space, and if B is a finite
dimensional subalgebra with minimal projections (e,),., and > e,=1, then by
D, H(B)= sup {X nd(e,)}=log|I|. It then becomes clear from E that if o is
an automod’reprl;fs)m ai!nduced by a homeomorphism & of X, then H(o) is the same
as the classical topological entropy of &, [1]. Moreover, suppose ¢ is an auto-
morphism of an AF algebra o with invariant trace ¢. Then let (%, H, £) be the
GNS decomposition of ¢, and let & be the induced automorphism of .« =n(2/)",
with invariant faithful vector trace ¢(-)= <(-)& E>. Then it follows from the
Kolmogorov-Sinai theorem of [6] that H(o)>H (&), the latter being the
measure-theoretic entropy of & on &7 with respect to @.

Proposition 1. If ' =\UB,, with B,=B,., finite dimensional C*-
subalgebras, and o an automorphism of A, then H(c)=lim H(B,, o).

Proof. Define for B and C finite dimensional C*-subalgebras of o:
H(BIC)= sup sup (3 {$nEtx()~nE5(x())}).

eT(A4) xeSy

Say that B& C for 6>0. if for each b in B, there exists ¢ in C such that ||b—c|
<d||b]]. Claim that if B is fixed and &£>0, there exists 6 >0, such that if BE C,
then H(B|C)<e. An examination of the proof of [6, Lemma 10] shows that
if B is fixed and &>0, then there exists & >0, such that if v is a unitary in o/
with |[v—1| <¢’, then H(B|vBv*)<e. Now by [5, Theorem 6.4], given &' >0,
there exists >0 such that if BéC, then there exists a unitary v in ./ such that
vBv*< C and |v—1| <¢’. Thus for BéC,

H(B|C)<H(B|vBv¥*)+ H(vBv*|C) from definitions
< H(B|vBv*) as H is increasing in first variable
<s.

Thus if B is any finite dimensional C*-subalgebra of «/, choose B, such that
B&B,, H(B|B,)<e, and

H(B, 0)=lim H(B, 0B...., 6*B)
k
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- k . .
<lim L H(B,, 0B,,..., 0*B,) +lim 3 H(s'(B)|c’(B,))
k k k k Jj=0

from definitions
<H(B,, 0)+e.

The proposition follows.

Let A be an aperiodic nxn matrix with entries in {0, 1} and let
X={l,2,...,n}]. Let &4 be the associated two sided unital AF algebra with
dimension group lim (Z"*, A x A*) and dimension range

lim I',,, where I',,={x e Z"*; 0<x <(A4 x AY"(A)},

m-— o

and Z" is given the simplicial ordering (see [10, 7, 9]). Thus let X, denote
the compact space {(x;)e2%: A(x;, x;,)=1}, and ¢ be the group of all uniformly
finite dimensional homeomorphisms of X, which change only finitely many
coordinates. Let o denote the C*-crossed product C*(X ,, ¢) and let U denote
the canonical representation of ¢ in . If u is a uniformly finite dimensional
homeomorphism of a compact open subset B onto a compact open subset C of
X 4, let i denote the corresponding partial isometry in o with initial projection
P(B), the characteristic function of B in C(X,), and final projection P(C). Let
# denote the ideal generated by U(g)P(B)-U(h)P(B), where B is a compact
open subset of X, and where g, h€ % agree on #. Then let F4=/f. The
shift ¢ on X ,, normalises ¢ and induces an automorphism of &4 also denoted
by 6. The AF algebra #4 can be described as follows:

Let A ={(i_pyeees i1y igperes ig): iy €5, Aliyy i1)=1, i_,=1, iy=j} for
i,jeX, r,seN. Let ,//,S—U.//” M= MY, M=M. If pedl, let
Z(w={xe X ;: (x)s,=u;. If ,u, ve.#i, let u,, denote the u.f.d. homeomor-
phism of Z(v) onto Z(u) given by (u,,(x));=x; 1f i<—r, or i>s, and put e
=i,,e,=e,. Then {e,:u, ve.#} are matrix units and generate a finite
dimensional matrix algebra M1/, Then if M= (~B My, MM, ., F

ny

=\U M, and the embedding of M, in M, , is given by A X A’. The gauge action
of T" on #4 is defined as follows. If t=(t)i, €C", and u=(i_,..., i) €4, let
t,=t;_,...t;,eC. Then let T" act on F4 by t: ¢, ——>t,, veuvs fOT U, ve M, teTn.
Let ¥4 denote the gauge invariant or observable algebra (#4)T", and let g
denote the restriction of ¢ to ¥4. Then ¥4 is an AF algebra, which can be
described as follows [3, 4]: If (r;)i-, e N*, with Z r=2s+1, let A§;(ry...., 1)
denote the set of p in .#% such that k in X occurs in p exactly r, times.
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Then let N§;(ry,...,r,) denote the matrix algebra generated by {e,,:pu, ve
A3(ri,-.s 1)} and put No= @ Niji(ry,..., r,). Then Ny=(M)™, NS Ny, ,
iJ

and ¥4=U N;.

We ﬁr;t show the following which may be of independent interest. The
use of the theory of the chemical potential for the GICAR algebra was first
advocated by G. A. Elliott.

Proposition 2. If ¢ is a o, invariant, faithful extremal tracial state on
%4, then there exist p;, u;, v;, 0 in (0, o) with X p, A(r, Du,=0u;, > A(j, t)p,v,
=0v; such that
(F) o(e,)=p,up;/072%5,,, for u, ve Aj;(ry,..., r,) where p,= pip5---pin.

Proof. It is easy to check that ¢ is norm asymptotically abelian on &4,
i.e. lim ||e™(a)b— be™(a)||=0, for all a, b in #£4. Hence by [2], there exist
hl,.".’:ml)z,, in R such that if y(¢)=(exp (ih;t))}-, € T", for teR, then ¢ is the
restriction of a state ¥ on &4 which is KMS with respect to the gauge action
{y(t): te R} on F4 atinverse temperature+1. By uniqueness of KMS states on
full matrix algebras, there exist scalars a§; >0 such htat

l//euv = puas' 0 for M, VE 'ﬂij

ijYuvs

and where (p;)=(exp (—h;)) €(0, o0)*. Then by considering the embedding of
Ms in Ms+ 1>

Z, A(r, DA, Dp.pasi =as;.

The n2 x n? matrix {A(r, )A(j, D)p,p.: (i, j), (r,t) € 22} is irreducible, and so by
the theorem of Perron-Frobenius, it possesses a strictly positive eigenvector, say
{b(i, j): (i, j)€ 2?} which is unique up to scalar multiplication. If p denotes
the diagonal matrix [p;6;;], let 6 denote the spectral radius of pA4 which is also
the spectral radius of Ap, as a(pA)U {0} =a(A4p) U {0}. Then let (u;) and (v;)
be the (essentially) unique strictly positive eigenvectors satisfying > p,A(r, )u,
=0u;, 3. A(j, )p,v,=0v;. Then Y. A(r, )A(j, )p,pu,0,=0?uw;. Thus by uni-
queness, and rescaling if necessarf;, b(i, j)=u;p;. Then by [9, Theorem 6.1],
extended to the case of irreducible matrices, with not necessarily integral entries,
it follows that a§;=b(i, j)/0~2, after rescaling b if necessary. Thus ¥(e,,)
=puv;[072%,,, for p, ve #i.

Theorem. H(o,)=log A, where A is the spectral radius of A.
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Proof. Let B=C*(e,: e, €€, u,ves ., (i,j)eZ?) for s, keN.
Then 6f(N,)<=B for i=0,1,2,..., k. Then

H(N,, 6o(N,),..., cf(N)<H(B) by C

= sup {Xné(e): pe#sy by D
deT(%4)

< log i‘/ﬂs,s+k| =10g (Z A2s+k+1(i’ ])) .
t,J

Hence H(N,, o)< lim —}C—log(ZAZ“"”(i, ))=logi, by a computation [8,
k=00

p- 128] of the classical entropy of ¢ on X ,. Taking the partition of unity given

by

Hos Uyseees Up— euoa()(e,ul)' . 'Ul(c)(euk)ﬁ W € '/%s >

we have
H(Ns’ O'O(Ns)a [RRE] GI(S(NS)) 24):7‘:1(12‘4) {uz r’(;b(euoaO(ey;)' : -a’é(e”k))}

= Sup {2 nd)(eu): l‘l'e"ﬂs,s+k} .
¢eT(CA) pu

Let ¢, be the (normalised) trace on ¥4 given by F, with p,=1/n, i€ X, and
where u;, v;>0 satisfy > A(r, i)u,=2u;, 2. A(j, t)v,=Av;, and where A is the
spectral radius of A. Then again by considering the entropy of ¢ on X ,, with
respect to the invariant measure ¢glg(x,, [8, p. 69, 129] it is seen that

H(N,, 6)>1im 7];(2’1050(9“)) (summation over p € 4 . ;)=1logA.
k n

The result follows from Proposition 1.

Remark 1. The theorem shows that the entropy of ¢, is the same as the
classical entropy of its restriction to X , [11]. Similarly, H(c)=Ilog 1.

Remark 2. Consider the case of the full n-shift, where A(i, j))=1. Then
every extremal trace corresponds to 4 ={(p,)’=; =p; >0, 3 p;,=1 and all are invar-
This
is essentially a classical Hausdorff moment problem. Given {a$_, >0:s5=1,2,

n n
v €N, Y r;=s} such that a§_, = > as’l. ., ,, there exists a finite
i=1 i=1 ‘

iant under ,. If (p,) € 4, the corresponding trace is given by e,,—p,0

v

measure 6 on 4 such that ailm,.n=gA pit---p»d0(py,..., p,). This can be proved
by classical methods (see e.g. [13, Theorems 1.5, 1.6] for the cases n=2, 3) or
alternatively by looking at K,(%4). Now Ky(#4) can be identified with the
ring Z[t,,...,t,_;] of polynomials in indeterminates t,,...,t,_, with integer
coefficients, such that a non-zero p in Z[t,,..., t,_,] lies in the positive cone if
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and only if p(p,..., pn—1)>0 whenever (p,,..., p,_1, | — "2—: p;) lies in the interior
of 4, [12]. Then if ¢ is the trace on ¥4 correspondmg to (04,---» py) €4, it
follows as in the above theorem that H4(6,)= — Z p,log p;, (cf. the Bernoulli
shift defined by {p,..., p,} in the sense of [6, Deﬁnmon 2]). Thus Hg(dy)
<H(oy), unless p;=1/n, or ¢=¢,. Thus by convexity, Hy4(G,)<H(a,), for
any trace ¢ on ¥4 distinct from ¢,. Hence ¢, is the unique trace with maximal
entropy. In the more general situation of the main theorem, it can be shown
that Hg(G,) <H(a,) if ¢ is any trace satisfying the conditions of Proposition 2,
unless ¢ =¢,, the canonical trace used to compute the topological entropy.

Remark 3. Let A(l,)=C*(a(h): hel,) be the CAR algebra generated by a
representation a of the canonical anti-commutation relations of the complex
Hilbert space [,. Let u denote the two-sided shift on /, and 0 be the associated
Bogoliubov automorphism of A(l,), and 6, its restriction to the current algebra.
Then as in the proof of the Theorem, H(8)=log2=H(0,), but it is unclear
whether 0, (respectively 6,) is conjugate to the shift on (%o M, (respectively the

restriction of the shift to (53) M ,)T*, with T2 acting by the usual product action).
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