
Publ RIMS, Kyoto Univ.
18 (1982), 1045-1051

Entropy of Automorphisms of AF Algebras

By

David E. EVANS*

Here we consider a notion of topological entropy for automorphisms of

AF algebras, based on a corresponding measure theoretic entropy of Connes

and St0rmer [6] for automorphisms of hyperfinite von Neumann algebras with

an invariant trace. We show how to compute the entropy of the shift on

certain AF algebras associated with topological Markov chains.

If jtf is a unital AF algebra, let T(jtf) denote the normalized traces on $/.

If 4> E T(jtf), and B is a finite dimensional C*-subalgebra of $#, let E% denote

the conditional expectation of stf onto B, relative to 4>. For simplicity, we will

always only consider finite dimensional subalgebras, with the same unit as stf.

If n e N9 let Sn denote the maps x from Z" into j^+ with finite support such that

£ x(al5..., an) = l. For l < Z < n , xESn, aeZ, put
a f e Z

x'(a) = a a E x^,...,(*,_!, a, ai+1,..., an).

Also, let rj(x)=— xlogx for x E [0, oo). Let Bl9...9Bn be finite dimensional

subalgebras of jtf. Then following [6], define:

H(Bl9...9 Bn)= sup sup {X J70x(at,..., an)
<^eT(v4) xeSn a i 6Z

n
V V ffwFV (*rl(rf\\\/ J / J u/rlJJjioAA, \c^J)j '
1=1 aeZ

The proofs of [6] carry over to give that H satisfies:

(A) H(Al9...,A,XH(Bl9...,BJifAjc:Bj9 j = !9...9n.

(C) Bl9...9 Bn^B=>H(Bly..., Bn9 Bn+l9..., Bn+m)<H(B, Bn+l9...9 5n+IM)

(D) For any family of minimal projections of B, (ea)ae/ such that X ea = ^ one

sup
ael

(E) If C%B15...,£„), the C*-algebra generated by Bl9...,Bn is generated by
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pairwise commuting C*-subalgebras Pj of BJ9 then H(B1,...S Bn) =

H(C*(Bl9...,Ba)).
If cr is an automorphism of jtf, and B a finite dimensional C*-subalgebra of

j*9 let H(B, a)= lim H(B, vB,..., akB)/k. Then define the (topologieal) entropy
fe^CXD

of cr to be H(G) = sup H(B, cr), where the supremum is taken over all finite

dimensional subalgebras B of j&. If ja^ is also commutative, i.e. jtf = C(X),

where X is a totally disconnected compact Hausdorff space, and if B is a finite

dimensional subalgebra with minimal projections (ex)aeT9 and X ex=l9 then by

D, H(B)= sup (X f7<Kea)}
 = l°g 1^1- It then becomes clear from E that if a is

4>eT(A) a
an automorphism induced by a homeomorphism c> of Z, then H(a) is the same

as the classical topologieal entropy of c>, [1]. Moreover, suppose a is an auto-
morphism of an AF algebra $£ with invariant trace (/>. Then let (TT, //, £) be the

GNS decomposition of 0, and let d be the induced automorphism of jtf=n(j&)"9

with invariant faithful vector trace $ ( • ) = < ( • ) £ » £ > • Then it follows from the
Kolmogorov-Sinai theorem of [6] that H(G}>H$(G), the latter being the

measure-theoretic entropy of a on jtf with respect to $.

Proposition I . // jtf = \jBn, with Bn^Bn+l finite dimensional C*-

subalgebras, and a an automorphism of A, then H(a)=1imH(Bn, cr).
n->oo

Proof. Define for B and C finite dimensional C*-subalgebras of s/ :

H(B\C) = sup sup (E (faEtxd) - <j>riEi(x(i))}) .
4>eT(A) JceSi i

Say that Be: C for (5>0, if for each b in B, there exists c in C such that \\b — c\\

<8\\b\\. Claim that if B is fixed and s > 0, there exists 5 > 0, such that if B d C,
then H(B\ C)<e. An examination of the proof of [6, Lemma 10] shows that

if B is fixed and e>0, then there exists s'>0, such that if v is a unitary in stf

with ||i?-l||<e', then H(B\ vBv*}<e. Now by [5, Theorem 6.4], given e'>0,
there exists 6 > 0 such that if J5 c C, then there exists a unitary v in jaf such that

yBy* c C and || v - 1 1| < e'. Thus for B c= C,

H(B | C) < H(B | vBv*) + H(vBv* \ C) from definitions
<H(B | vBv*) as H is increasing in first variable

<s.

Thus if B is any finite dimensional C*-subalgebra of j/, choose Bn such that
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H(B,,, aBa,..., ff^BJ+fiE H(aJ '(B)\a> \B „))
k K k K j=0

from definitions

The proposition follows.

Let A be an aperiodic n x n matrix with entries in {0, 1 } and let

£ = {1, 2,..., n}. Let 3?A be the associated two sided unital AF algebra with
dimension group lim (Z"2, A x Af) and dimension range

lim Fm, where rm = {x e Z"2 ; 0 < x < (A x A*)m(A)} ,
m-*oo

and Z"2 is given the simplicial ordering (see [10, 7, 9]). Thus let XA denote

the compact space {(xf)elz: A(xh xi + l)= I}, and ^ be the group of all uniformly
finite dimensional homeomorphisms of XA which change only finitely many

coordinates. Let $0 denote the C*-crossed product C*(XA, &) and let U denote
the canonical representation of ^ in $£ . If u is a uniformly finite dimensional

homeomorphism of a compact open subset B onto a compact open subset C of
XA, let w denote the corresponding partial isometry in $£ with initial projection

P(B\ the characteristic function of B in C(XA), and final projection P(C). Let
,/ denote the ideal generated by U(g}P(B}-U(h)P(B}, where B is a compact

open subset of XA and where g, IIE& agree on ^. Then let ^A = 3/l<f, The

shift a on XA, normalises ^ and induces an automorphism of 3FA also denoted

by a. The AF algebra 1FA can be described as follows :

Let ^ = {(i_PS. . . , / _ i , /o,..., Q: / f cer, X(/fc, f f c J . i ) = J, /_, = /, /s = j} for
/ , j e Z, r, 5 e N. Let ,<.s = \j ^^ , ^y = jtfV , ^ = ̂ ss. If /x e urji , let

i , J

Z([ii) = { x E X A : (x/)lr = ^}. If /^, veuf^', let M^V denote the u.f.d. homeomor-
phism of Z(v) onto Z(X) given by (M^^X^^X^ if ? '<— r, or />s, and put e^.

Then {^a,: /f, vE,,^7'] are matrix units and generate a finite

dimensional matrix algebra M|/. Then if M4=0 MJ-7", M sczM i + l s «^x

= W Ms, and the embedding of Ms in Ms+ ^ is given by A x ^4f . The gauge action

of T" on &A is defined as follows. If t = (ti)
n
i=i eC", and /z = (/_ s , . . . , /S)euf5 let

^ = f ._ s . . . / . s eC. Then let T" act on &A by t: e^-^t^e^ for ̂ , ve^fs, ̂ eT".
Let ^A denote the gauge invariant or observable algebra (Jr/4)r", and let <70

denote the restriction of a to &A. Then ^A is an AF algebra, which can be

described as follows [3, 4]: If (r£)JJ
=l eN", with £ r, = 2s + l, let Af/r !,..., r/f)

denote the set of I.L in ^f jj', such that k in Z occurs in fi exactly rk times,



1048 DAVID E. EVANS

Then let Ns
ij(r1,...) rn) denote the matrix algebra generated by {e^'.^ve

AlJ(r1,...,rn)},andputNs = © Nf/r l9..., O. Then Ns = (Msr\ NS^NS+1,

and VA = \jNs.
s

We first show the following which may be of independent interest. The

use of the theory of the chemical potential for the GICAR algebra was first

advocated by G. A. Elliott.

Proposition 2. // <f> is a a0 invariant, faithful extremal tracial state on

^A, then there exist pi9 uh vi9 9 in (0, oo) with ^prA(r, i)ur = 9ut, £ A(j, t)ptvt

= OVj such that

(F) (t)(eflv) = p^ivi/9-2sSflv, for /*, ve As
tj(rl9...9 rn) where p^= p'Sp^-pf.

Proof. It is easy to check that a is norm asymptotically abelian on tFA,

i.e. lim \\am(d)b — bam(d)\\ = 0, for all a, b in &A. Hence by [2], there exist

hl9...,hn in R such that if y(r) = (exp (//?/));= i e r"» for tE^> then 0 is tne

restriction of a state 0- on J^ which is KMS with respect to the gauge action

(y(f) : t e R} on !FA at inverse temperature + 1 . By uniqueness of KMS states on

full matrix algebras, there exist scalars as
tj>Q such htat

<Kv = Pp&ifinv* for /*, v G JfV

and where (pf) = (exp ( — ht)) e (0, oo)'J. Then by considering the embedding of

Ms in Ms+1,

The n2 x n2 matrix {^4(r, i)A(j, t)prpt: (/, /), (r, O^Z2} is irreducible, and so by

the theorem of Perron-Frobenius, it possesses a strictly positive eigenvector, say

{b(i, j): (i, j)el2} which is unique up to scalar multiplication. If p denotes

the diagonal matrix [pj<5 ,-_/], let 9 denote the spectral radius of pA which is also

the spectral radius of Ap, as o(pA) U {0} = cr(^4p)U {0}. Then let (ut) and (v{)

be the (essentially) unique strictly positive eigenvectors satisfying ]T prA(r, i)ur

= 011,., E A(j9 t)ptvt = 9Vj. Then 2 A(r, i)A(j, t)prpturvt = 92u{Vj. Thus by uni-
r,t

queness, and rescaling if necessary, b(i,j) = UiVj. Then by [9, Theorem 6.1],

extended to the case of irreducible matrices, with not necessarily integral entries,

it follows that af 7- = b(i, j)/9~2s, after rescaling b if necessary. Thus \l/(e^v)

= p^luivjl9-2sd^ for /i,

Theorem, ff (<TO) = log A, w/iere /I is r/?^ spectral radius of A.
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Proof. Let B = C*(e^ : *M Ve VA, ^ v eur£+k, (U)e£2) for s, fceN.

Then o-j(Ns)cB for i = 0, 1, 2,..., fe. Then

<r0(N,)9...,rt(N,))£H(B) by C

= sup {Z*70(O: Me^fs>s+J by D

Hence //(JV5, a)<lim 4rlog(Z^2s+k"l"10'»7)) = log^ bY a computation [8,
fc->00 /£

p. 128] of the classical entropy of cr on XA. Taking the partition of unity given

by

we have

tf(ATs, <70(Ns),...,4(Ag)> sup
4>er(c^

= sup
^eT(C^) M

Let <p0 be the (normalised) trace on ^A given by F, with pt=\ln, iel, and

where ui9 vt>Q satisfy Z A(r, i)ur = lut, ^A(j, i)vt = A.uj9 and where A is the

spectral radius of A. Then again by considering the entropy of a on XA9 with

respect to the invariant measure 00U(x^) [8, P- 69, 129] it is seen that

H(NS9 t7)>lim4r(Z^0o(^)) (summation over fj.e^s+k) =
k K n

The result follows from Proposition 1.

Remark 1. The theorem shows that the entropy of CTO is the same as the

classical entropy of its restriction to XA [11]. Similarly, H(cr) = logA.

Remark 2. Consider the case of the full n-shift, where A ( i 9 j ) = \. Then

every extremal trace corresponds to A = {(Pi)"= \ = p\ > 0, Z Pi — 1 and all are invar-

iant under er0. If (pt) e A9 the corresponding trace is given by e/tv->p^v. This

is essentially a classical HausdorfT moment problem. Given {aflmmml.n>Q: 5 = 1,2,
n n

..., r f eN, Z ri = s} sucn tnat flf?1...rn
= Z ^.U+i...^^ there exists a finite

measure 0 on A such that a^...rn=\ p\i'"pr
n
nd9(pl9...9 pn). This can be proved

J j
by classical methods (see e.g. [13, Theorems 1.5, 1.6] for the cases n = 2, 3) or

alternatively by looking at K0(<gA). Now K0(^
A) can be identified with the

ring Z[£l5..., *„_!] of polynomials in indeterminates f l 9 . . . , t n _j with integer

coefficients, such that a non-zero p in Z[f j , . . . , ^_J lies in the positive cone if
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n-l
and only if p(pl,..., p n _ ] )>0 whenever (pl5..., p B _i , 1— Z p/) lies in the interior

i=l
of A, [12]. Then if 0 is the trace on ^ corresponding to (p l9..., pn)e J, it

n
follows as in the above theorem that H$(GQ) = — Z P* log P*» (cf- the Bernoulli

shift defined by { p { , . . . , pn} in the sense of [6, Definition 2]). Thus

<H(ff0), unless pt=\ln9 or </> = 00. Thus by convexity, H$(&0)<H(G0), for

any trace 0 on &A distinct from </>0. Hence 00 is the unique trace with maximal

entropy. Jn the more general situation of the main theorem, it can be shown

that H$(dQ)<H(a0) if 0 is any trace satisfying the conditions of Proposition 2,

unless </> = 00? the canonical trace used to compute the topological entropy.

Remark 3. Let A(12) = C*(a(h) : h e 72) be the CAR algebra generated by a

representation a of the canonical anti-commutation relations of the complex

Hilbert space /2. Let u denote the two-sided shift on /2 and 9 be the associated

Bogoliubov automorphism of A(12)9 and 60 its restriction to the current algebra.

Then as in the proof of the Theorem, H(9) = log2 = H(9o), but it is unclear
00

whether 9, (respectively 90) is conjugate to the shift on ® M2 (respectively the
— 00

00

restriction of the shift to (<g) M2)
T2, with T2 acting by the usual product action).
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