
Publ. RIMS, Kyoto Univ.
18 (1982), 1111-1119

Quasi- Periodic Solutions of the Orthogonal
KP Equation

— Transformation Groups for Soliton Equations V —

By

Etsuro DATE*, Michio JIMBO?, Masaki KASHIWARAI

and Tetsuji MiWAf

§ 0. Introduction

In this note we study quasi-periodic solutions of the BKP hierarchy in-

troduced in [1]. Our main result is the Theorem in Section 2, which states

that quasi-periodic T-functions for the BKP hierarchy are the theta functions

on the Prym varieties of algebraic curves admitting involutions with two fixed

points.

The rational and soliton solutions of the BKP hierarchy were studied in

part IV [2] together with its operator formalism. We also showed that the

BKP hierarchy is the compatibility condition for the following system of linear

equations for w(x), x = (xl9 x3, .T5,...)^

(1) ^7=B'W' '='.3,5,.. .

where 5, is a linear ordinary differential operator with respect to XL without

constant term.

dl l~2 dm

One of the specific properties of the BKP hierarchy is the fact that squares of

T-functions for the BKP hierarchy are T-functions for the KP hierarchy with

x2j- = 0.

Now we explain why the Prym varieties and the theta functions on them ap-

pear in our present study.
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One derivation is given through the examination of the geometrical prop-

erties of the wave functions associated with soliton solutions. We regard these

functions as defined on rational curves with double points. The curves in this

case have involutions with two fixed points. The divisors of the wave functions

belong to the Prym varieties. This is an immediate consequence of the fact that

the wave functions for the BKP hierarchy admit time evolutions only with respect

to xodd. Further we find that the pole divisor of the wave function belongs to

a translation of the Prym variety which is tangent to the theta divisor in the

Jacobian variety. This is a reflection of the above mentioned fact

X2=X4=...=0.

On the other hand, by the result of Krichever [3], quasi-periodic T-functions

for the KP hierarchy are the theta functions on the Jacobian varieties of

arbitrary curves (Riemann's theta functions). Therefore the quasi-periodic

BKP T-function must be the square root of Riemann's theta function. Such a

function appears in connection with the Prym variety. If the relevant curve

has an involution with two fixed points, then Riemann's theta function is known

to reduce to the square of the theta function on the associated Prym variety when

its arguments are restricted to a translation of the Prym part (see, for example,

[4]). This fact agrees with our observation for the soliton case.

Prym varieties are mentioned by several authors [5] [6] in their study of

quasi-periodic solutions of soliton type equations. But the location of the

pole divisors in their work differs from what we have described above for the

BKP hierarchy. This seems to be the reason why in their work the theta func-

tions on the Prym varieties do not appear.

Section 1 is devoted to the study of wave functions associated with soliton

solutions. Here we rephrase the linear constraint (1) for the wave functions

in terms of their pole divisors. In Section 2, we construct quasi-periodic wave

functions for the BKP hierarchy by using the theory of abelian integrals. An

explicit formula is given in terms of the theta functions on the Prym varieties.

We thank Kenji Ueno for helpful conversations about Prym varieties.

§ 1. Construction on the Rational Curve

Before proceeding to the construction of quasi-periodic solution of the

BKP hierarchy, let us first examine the geometrical meaning of known soliton

solutions. In the notation of [2] the N soliton T function is
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a ...atrcti...tre<.l+-+t'r

(2) £, = |(* ;/,,) + !(*;?,), !(*;*) = Z

while the associated wave function reads

(3) w(x; fc) = r[k]

Here, by definition, T[fc](;x;)e~^(*'fe) is obtained from (2) by replacing the para-

meters QI by flf ^£ ^'-. For geometrical interpretation we prefer to
k+Pi k-rqi

modify (3) as

N 2N
v(x; k)=TKk + pd(k + q,)- n (/c-cJ-'Xx; fe),

i=l v=l

requiring

(4) itfx; pf) = i;fx; -^), y(x; g£) = t?(x; -^0, / = !,.. . ,N.

Let C (resp. C) denote the rational curve with the coordinate k (resp. /c2),

obtained by identifying the points k = pt with k= — qt and k = qt with fe= — pf

(resp. /c2 = pf with &2 = g2), i = l,...,N. We have a double covering map

TC: CB fcf->/c2eC and the involution of sheet change c(k)= —k. Condition (4)

says that f(x; /c) is defined on the curve C. The Jacobian varieties for these

singular curves (with the multiplicative group law) are J = GL(l)2N and

J = GL(\)N, respectively. The Abel map is defined to be

(5) st: C - > J9 k i - > (ai(fc),..., aN(fc), /JiCfc), . . . , j

The natural extension of (5) to the r-th symmetric product SrC->J, (k^,..., fcr)

~(ri a,(fe¥),-, FT «K(fcv), ri 0i(*,),-, El ^N(^V)) will also be denoted by j/.
v= 1 v= 1 v= 1 v= 1

The involution c carries over to J as c(al9...9 OLN, f } l 9 . . . , ^jv) = (^1,...,

j^iv1? a r 1 ? - - - ? o^iv1)- The "even" and "odd" parts of J under c are the Jacobian

J of C and the "Prym variety" P respectively:
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2N (lr—r (TT\\Setting v(x; k)= Jl ,. <-v\*)) e$(x.,k) and wrjtjng (4) ̂ own we see immediately
v=i \K — cv)

(6) ff _«*(cv(*)) .= ^ &(g;(*)) = g-g(x;Po-l(*;gt) (i = l,..., #).
v=i oc f(cv) v=i Pi(ev)

Here we have used £(x, — k ) = — <J(x, /c). This (6) shows that the divisor

(ci(X))H ----- Kc2Jv(X)) — (ci) ----- (C2iv) of y(x; A-) belongs to, and moves linearly

within, the Prym variety P. Moreover if we rewrite (4) by using (3) and elim-

inating 0f.'s, we obtain the following relations among the poles c l 9 . . . , c2N of

v(x; k).

2N 2N n2 ( n2 _ n2 \( n2 _ a2\(?) n« , ( c , )=K,n . ( c v ) , ^=A- n _2 _!

In other words the image jtf(d) of the pole divisor 6 = (c1)-{ ----- h(c2]V) belongs to

the translation of the Prym variety

The numbers Kt are related to the canonical divisor Kc of C as

-£»LK^}. We have also jaf((0).(oo)) =
Pi Qi PN

i-, --^i-,..., — ̂ L, — ̂ _Y Hence (7) is alternatively stated as a rela-
i Pi QN PN /

tion of divisors

(8)

Example (N=l). The configurations of J, P and P' for 7V=1 are shown

in Figure 1 . The theta divisor © = j?/(&N~1C) is given by © = {(a, /?) e J | (p — q)

(a/?+l) + 2<?a-2p/? = 0}. One can see explicitly that 0 is tangent to both P

and P'. Correspondingly the zeros of the associated i function T:KP(X) in the

sense of the KP hierarchy are all double when restricted on x2 = x4= •••=().

This comes from the fact that iKP(xl9 0, x3, 0,...) = iBKP(x1x3,...)
2, where

) is tne T function in the sense of the BKP hierarchy (IV [2]).
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Figure 1.

On can also show directly from (8) that v(x\ k) satisfies the defining con-

straint (30) [2] for the BKP hierarchy. Set

2N

CO =

ft (V-
i—i

Then (7) implies Resfc2==/72 co = — Resfc2=^2co. In other words there exists a

1-form co on C, or rather TT*CO on C, with zeros at fe= +cv and simple poles at

fc = 0, oo (This is what (8) means). Since v(x\ k)v(x\ —k)co is holomorphic

everywhere except at the poles /c = 0, co, the residue theorem yields

0 = Z Resft y(x ; /c)u(x ; - k)co = (t^x ; O)2 - 1) x const.,
fc=0,co

that is

v(x; 0)=±1 .

This shows that the constant function + 1 solves the linear equations

( "3 -- Bn(xi 8) )y = 0 ( 3 = -^ — ), and hence the zeroth order term of Bn(x\ d)
\ Gxn / \ OX1 /
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should be absent ([2]). The same argument will be employed in the construc-

tion of quasi-periodic solutions discussed in Section 2.

§ 2. Quasi-Periodic Solutions

In the KP hierarchy case, the construction of quasi-periodic solutions is

done through the construction of wave functions (the Baker-Akhiezer func-

tions) (cf. [3]). Here we proceed in the same manner. The point is to translate

the condition (30) [2] on the BKP wave function to constraints on its pole

divisor (9) below.

Let C be a non-singular algebraic curve of genus g admitting an involution

c with two fixed points q0, q^ (which correspond to 0, oo in the preceding

section). Take a local coordinate k~l around q^ such that k°c=—k. Let 6

be a positive divisor of degree g on C such that

(9) cS + d = Kc + q0 + qao

where Kc is the canonical divisor on C.

By standard arguments it can be shown that there exists a unique function

w(x, p), x = (xl5 x3,...), peC (a Baker-Akhiezer function) with the following

properties :

i) w is meromorphic on C — {qQO} and its pole divisor is <5,

ii) around qx, w behaves like

)) exp (
j>0,odd

Let CD be a differential of the third kind on C with the pole divisor (co)

= d + cd — qQ — qao- Then w(x, p)w(x, cp)co is a meromorphic differential on

C with poles only at q0, q^. By using the residue theorem and noting that

w(x, jp)w(x, cp) \p=qoo = 1, we have

w(x, q0)=±\.

Therefore by the same reasoning as in Section 1 , w(x, p) is a wave function

for the BKP hierarchy.

Next we express the Baker-Akhiezer function \v(x, p) in terms of Abelian

integrals and the theta function on the Prym variety. For this purpose we need

some general facts from the theory of Abelian integrals and theta functions.

For details we refer to Fay [4].

By the Riemann-Hurwitz relation, the genus g of C is even, g = 2g. We
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can take a canonical homology basis aj5 /?,-, l ^ j fgg , of C with the property

caj + (Xg+j = cflj + Pg+j = Q, l-^j^g. Let a>j, l^j^g, be the corresponding

normalized basis of holomorphic 1 -forms on C: \ cQi = dij9 l^i,j^g. Then

Put T y =\ a),, l^ij^g, njm=\ (oj + Og+i), l^l,m^g, then T=(T,V)
J0j J0m

and n = (nlm) are symmetric matrices with positive definite imaginary parts.

The Jacobian variety J(C) of C is defined to be the complex torus J(C) =

C9/(Ig, T) where Jg denotes the identity matrix of order g. The Abel map s£\

C-^J(C) is defined by ^(p) = (^(p\..., ^g(p)\ PE€, ^/p) = T o>7. We
Jqo

extend this map to the divisor group by linearity. The induced map c : J(C)

-> J(C) is given by

The Prym variety associated with c is defined to be the set Pt = {u e J(C) | c(u)

= —u} = {ueC9\u = ( u l ^ . . , U g , u l , . . . , U g ) } / ( I g , T ) . It is known that Pt is a

principally polarized Abelian variety of dimension g isomorphic to the complex

torus P = C0/(Ig,n). The isomorphism er: P-»Pt is given by a(vly...,Vg)

= (vl9..., Vg, v^...,Vg). We define the map ^: C->P by 0>(p) = (0>l(p\...,
Cp

&g(p)\ p 6 C, &j(p)=\ (cOj + atg^j). The theta function BP(v) on P is defined
J qo

by

The following property of $P is basic for our purpose. For ce€d, if

BP(^(p) — c) does not vanish identically, then the zero divisor C of &P(0>(p) — c}

on C is of degree g and satisfies the relation

(10) a(c) = ̂ (Q-2-^(q^-2-^(Kc) in J(C) .

Now we give an explicit formula for the wave function w(x, p) constructed

at the beginning of this section. Let co(j) be the normalized differential of the

second kind with its only pole at q^, where it has the form dkj 4- (holomorphic

part), and put i/<.-/> = -— i== f Q>U\ Since c*co(-/W- IVcoU) and ^fi,=
2n^J — I jpl

-Pg + t, we have

We put l/(-/) = ([/(
1-

/),..., l/^P))- The zero divisor S(x) of w(x, p) is of degree

and satisfies the relation
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(12) jf(6(x)-8)+ Z Xj(U<J\ [/">) = 0 in J(C).
j>0,odd

On the other hand, by using (9), we have

t(st(8) -2-^(qx)-2-^(Kc)) = -(^(d)-2-^(qx)-2-^(Kc)} in J(C) .

Namely jtf(6)-2-lj/(qx)-2-1jtf(Kc) ePL. We put

K5 = <r-'(^(<5) - 2-1^(<ZJ - 2-^(Kc)) .

Comparing (10) and (12), we see that w(x, p) is expressed as

, , _ &P
M*' p) - Kt)

where the constant Cj is chosen so that \
JqQ

holds.
The remaining task is to find the T-function corresponding to w(x, p).

Expanding ^(p)=^(p) + ̂  + i(p) around q^ in a Taylor series in k~l, using
the relation

0-1)! dzJ

which is derived from Riemann's bilinear relation, and (11)9 we easily see that

holds. Hence in view of the transformation w(x; k) = e^x'k)

((7) [2] cf . (3)) which transforms a T-function T(X) to a wave function w(x ; k),

we have

r(x) = exp (quadratic function in ^)-^P(

Theorem. The theta functions on the Prym varieties of algebraic curves

admitting involutions with two fixed points are -c-f unctions for the BKP hier-

archy up to exponential of quadratic functions of x.

Finally we note that the relation

9P(v)2 = const. 8j(a(v) + a), a = (al9..., ag),

qo
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holds [4] where $j is the theta function on J(C). This relation agrees with the

relation between IKP and IBKP (8) [2].
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