On Unbounded Derivations Commuting with a Compact Group of *-Automorphisms

By

Akitaka KISHIMOTO* and Derek W. ROBINSON**

Abstract

Let \mathfrak{A} be a C^* -algebra with identity, α a continuous action of a compact abelian group Gas *-automorphisms of \mathfrak{A} , $\mathfrak{A}^{\alpha}(\gamma)$ the spectral subspace of α corresponding to γ in the dual \hat{G} of G and $\mathfrak{A}^{\alpha}(=\mathfrak{A}^{\alpha}(0))$ the fixed point algebra of α . Let \hat{o} be a closed symmetric derivation of \mathfrak{A} which commutes with α and generates a one-parameter group of *-automorphisms of \mathfrak{A}^{α} . We assume that the linear span of $\mathfrak{A}^{\alpha}(\gamma) \mathfrak{A}^{\alpha}(\gamma)$ is dense in \mathfrak{A}^{α} for each $\gamma \in \hat{G}$ and then deduce that \hat{o} is a generator on \mathfrak{A} . Some relevant material on covariant representations is also given.

§1. Introduction

Let δ be a closed (symmetric) derivation of C*-algebra \mathfrak{A} which commutes with a continuous action α of a topological group G as *-automorphisms of \mathfrak{A} . Several authors [1] [2] [3] [4] [5] recently derived conditions on \mathfrak{A} , G, and δ , which ensure that δ is a generator, i.e., the generator of a strongly continuous one-parameter group of *-automorphisms of \mathfrak{A} . For example, if G is compact abelian, and δ vanishes on the fixed point algebra \mathfrak{A}^{α} of α , then this result is established in [4]. If, alternatively, δ is an inner derivation of \mathfrak{A}^{α} it follows from this result, and perturbation theory, that δ is a generator. But bounded derivations are generators of uniformly continuous groups and hence this can be viewed as an extension result; if G is compact abelian, δ commutes with α , and δ generates a uniformly continuous one-parameter group τ^0 of inner automorphisms of the fixed point algebra \mathfrak{A}^{α} then τ^0 extends to a strongly continuous group τ , with generator δ , on \mathfrak{A} . Example 6.1 of [4] also establishes that this result does not necessarily extend to the case that δ generates a strongly continuous

Communicated by H. Araki, November 25, 1981.

^{*} Department of Mathematics, Yokohama City University, Yokohama, 236, Japan.

^{**} School of Mathematics, University of New South Wales, Kensington, N.S.W., 2033, Australia.

group of *-automorphisms of \mathfrak{A}^{α} . Nevertheless in this note we demonstrate that strong continuity of τ^0 suffices if, in addition, $\mathfrak{A}^{\alpha} = \overline{\mathfrak{A}^{\alpha}(\gamma)^* \mathfrak{A}^{\alpha}(\gamma)}$ for each $\gamma \in \hat{G}$, where the bar denotes the closed linear span. (Here, and throughout the sequel, we adopt the notation of [4]. In particular $\mathfrak{A}^{\alpha}(\gamma)$ denotes the spectral subspace of α corresponding to γ in the dual group \hat{G}). Thus we aim to establish the following;

Theorem 1. Let \mathfrak{A} be a C*-algebra with identity, G a compact abelian group, and α a continuous action of G as *-automorphisms of \mathfrak{A} . Furthermore let δ be a closed symmetric derivation satisfying;

1. $\alpha_q \circ \delta = \delta \circ \alpha_q, g \in G,$

2. $\delta_0 = \delta |_{\mathfrak{U}^{\alpha}}$ is a generator on \mathfrak{U}^{α} .

Finally assume that the closed linear span of $\mathfrak{A}^{\alpha}(\gamma)^*\mathfrak{A}^{\alpha}(\gamma)$ equals \mathfrak{A}^{α} for each $\gamma \in \widehat{G}$.

It follows that δ is a generator.

In this theorem we do not know whether the assumption on $\mathfrak{A}^{\alpha}(\gamma)^*\mathfrak{A}^{\alpha}(\gamma)$ can be weakened, e.g., to the assumption that $\overline{\mathfrak{A}^{\alpha}(\gamma)^*\mathfrak{A}^{\alpha}(\gamma)}$, an ideal of \mathfrak{A}^{α} , is invariant under the automorphism group generated by δ_0 , for each $\gamma \in \hat{G}$, which is apparently necessary for δ to be a generator. (In the example in [4] we refered to above, this weaker assumption is violated.) We want to point out two typical cases where the assumption on $\mathfrak{A}^{\alpha}(\gamma)^*\mathfrak{A}^{\alpha}(\gamma)$ is satisfied. One is the case where each $\mathfrak{A}^{\alpha}(\gamma)$ contains a unitary. For example, for a *C**-algebra *B* with identity with action β of a discrete abelian group Γ , let \mathfrak{A} be the crossed product $B \times_{\beta} \Gamma$ and α the dual action $\hat{\beta}$ of $G = \hat{\Gamma}$. Then for the system (\mathfrak{A}, G, α), $\mathfrak{A}^{\alpha}(\gamma)$ contains a unitary. The other is the case where \mathfrak{A}^{α} is simple, e.g., the Cuntz algebras O_n with the gauge action of T.

The general lines of proof of this theorem are very similar to those of [4]. There are two basic arguments. First one proves that δ is a generator of a group of bounded operators on each $\mathfrak{A}^{\alpha}(\gamma)$ and second one argues that this is sufficient for δ to be a generator on \mathfrak{A} . This second step is independent of the assumption on $\mathfrak{A}^{\alpha}(\gamma)^*\mathfrak{A}^{\alpha}(\gamma)$ and is based upon the construction and exploitation of appropriate covariant representations. Hence we begin with the discussion of this latter lifting procedure in Section 2 and then return to the proof of Theorem 1, and discussion of the action of δ on the spectral subspaces $\mathfrak{A}^{\alpha}(\gamma)$, in Section 3. Relevant information about covariant representations is collected in an appendix.

§2. Generators and Spectral Subspaces

In this section we examine the generator problem under the assumption that δ_{γ} , the restriction of δ to the spectral subspace $\mathfrak{A}^{\alpha}(\gamma)$, is a generator for each $\gamma \in \hat{G}$. In fact we need information on δ under slightly weaker assumptions on the δ_{γ} but we will state this as a corollary of the proof of the following general result.

Proposition 2. Let \mathfrak{A} be a C*-algebra, G a compact group, and α a continuous action of G as *-automorphisms of \mathfrak{A} . Furthermore let δ be a closed symmetric derivation of \mathfrak{A} satisfying,

1. $\alpha_g \circ \delta = \delta \circ \alpha_g, \ g \in G$,

2. $\delta_{\gamma} = \delta|_{\mathfrak{A}^{\alpha}(\gamma)}$ is the generator of a strongly continuous one-parameter group of bounded operators on the Banach space $\mathfrak{A}^{\alpha}(\gamma)$ for each $\gamma \in \widehat{G}$.

It follows that δ is the generator of a strongly continuous one-parameter group of *-automorphisms of \mathfrak{A} .

Remarks. 1. This result is valid for non-abelian G too.

2. A weaker version of this proposition is given in [4] Lemma 4.2, where it is further assumed that $\mathfrak{A}^{\alpha} \subset D(\delta)$, but this domain requirement is in fact irrelevant. The following proof via covariant representations is an 'integrated' version of the 'infinitesimal' proof of Lemma 4.2 in [4]. It is the elimination of infinitesimal methods which avoids the domain requirements.

Proof. Let 0 denote the trivial representation of G. Since \mathfrak{A}^{α} (= $\mathfrak{A}^{\alpha}(0)$) is a C*-subalgebra it follows that δ_0 generates a *-automorphism group τ^0 . Next define a projection P from \mathfrak{A} onto the fixed point algebra \mathfrak{A}^{α} by

$$P(x) = \int_G dg \alpha_g(x) \, ,$$

where dg is the normalized Haar measure on G. Now for any state ω_0 of \mathfrak{A}^{α} define a state ω of \mathfrak{A} by

$$\omega(x) = \frac{1}{2} \int_{-\infty}^{\infty} dt e^{-|t|} \omega_0(\tau_t^0(P(x))) \, .$$

Thus for $x \in \mathfrak{A}^{\alpha}$

$$\omega(\tau_s^0(x^*x)) = \frac{1}{2} \int_{-\infty}^{\infty} dt e^{-|t-s|} \omega_0(\tau_t^0(x^*x))$$

and hence

$$\omega(\tau_s^0(x^*x)) \leq e^{|s|} \omega(x^*x) \, .$$

Consequently if $(\mathcal{H}, \pi, \Omega)$ denotes the cyclic representation associated with ω one can define a strongly continuous one-parameter group of bounded linear operators acting on the subspace $\mathcal{H}_0 = [\pi(\mathfrak{A}^{\alpha})\Omega]$ by

$$T_s \pi(x) \Omega = \pi(\tau_s^0(x)) \Omega \,,$$

and in fact one has $||T_s|| \le \exp\{|s|/2\}$. Moreover

$$T_s\pi(x)T_s^{-1} = \pi(\tau_s^0(x))$$

for all $x \in \mathfrak{A}^{\alpha}$. Next we argue that by multiplication with an element of $(\pi(\mathfrak{A}^{\alpha})|_{\mathscr{H}_0})'$ the group T may be arranged to be unitary without affecting this covariant implementation law.

Since τ^0 is a group of *-automorphisms

$$T_{-s}^*\pi(x)T_s^* = \pi(\tau_s^0(x))$$

for all $x \in \mathfrak{A}^{\alpha}$ and hence $T_s^*T_s \in (\pi(\mathfrak{A}^{\alpha})|_{\mathscr{X}_0})'$. Next let L_0 be the generator of T and remark that

$$|s|^{-1}(||T_s\psi||^2 - ||\psi||^2) \le |s|^{-1}(e^{|s|} - 1)||\psi||^2$$

for all $\psi \in \mathscr{H}_0$ by the above estimate on $\omega \circ \tau^0 \circ P$. Hence

$$|(L_0\psi,\psi)+(\psi,L_0\psi)| \le ||\psi||^2$$

for all $\psi \in D(L_0)$. It follows that

$$|(L_0\psi, \phi) + (\psi, L_0\phi)| \le ||\phi|| ||\psi||$$

for all $\phi, \psi \in D(L_0)$. Hence $D(L_0) \subseteq D(L_0^*)$ and

$$|(\psi, (L_0^* + L_0)\phi)| \le ||\phi|| ||\psi||.$$

Therefore $(L_0^* + L_0)/2$ has a bounded self-adjoint extension h_0 with $||h_0|| \le \frac{1}{2}$. But L_0 generates the strongly continuous one-parameter group T on \mathscr{H}_0 and hence by perturbation theory $iH_0 = L_0 - h_0$ generates a similar group. Since H_0 is symmetric on $D(L_0)$, it is automatically self-adjoint. Now if $U_s = \exp{\{iH_0s\}}$ the Trotter product formula implies that

$$U_s = \lim_{n \to \infty} \left(T_{s/n} e^{-h_0 s/n} \right)^n.$$

Finally since $T_s^*T_s \in (\pi(\mathfrak{A}^{\alpha})|_{\mathscr{H}_0})'$ it follows that $h_0 \in ((\pi(\mathfrak{A}^{\alpha})|_{\mathscr{H}_0})'$ and hence

$$U_{s}\pi(x)U_{s}^{*}=\pi(\tau_{s}^{0}(x))$$

for all $x \in \mathfrak{A}^{\alpha}$.

Thus τ^0 is covariantly implemented on \mathfrak{A}^{α} by either T or U and consequently δ is spatially implemented on \mathfrak{A}^{α} either by L_0 or iH_0 . Specifically

$$i[H_0, \pi(x)] = \pi(\delta(x))$$

for all $x \in \mathfrak{A}^{\alpha} \cap D(\delta)$. Our next aim is to derive a similar spatial implementation law for δ on \mathfrak{A} and for this we begin by extending h_0 and H_0 to \mathscr{H} .

Define *h* on $\pi(\mathfrak{A})\Omega$ by

$$h\pi(x)\Omega = \pi(x)h_0\Omega$$

Since ω is α -invariant one has

$$\begin{split} \|\pi(x)h_0\Omega\|^2 &= (h_0\Omega, \ \pi(x^*x)h_0\Omega) \\ &= (h_0\Omega, \ \pi(P(x^*x))h_0\Omega) \\ &= (\pi(P(x^*x))^{\frac{1}{2}}\Omega, \ h_0^2\pi(P(x^*x))^{\frac{1}{2}}\Omega) \\ &\leq \|h_0\|^2(\Omega, \ P(x^*x)\Omega) \\ &= \|h_0\|^2\|\pi(x)\Omega\|^2 \,. \end{split}$$

Hence h is well-defined and extends by continuity to a bounded operator with $||h|| \le ||h_0|| \le \frac{1}{2}$. A number of properties of h follow straightforwardly, e.g.,

$$h = h^* \in \pi(\mathfrak{A})', \quad ||h|| = ||h_0||,$$

$$E_{\gamma}h = hE_{\gamma}, \quad hE_0 = h_0,$$

$$E_{\gamma} = [\pi(\mathfrak{A}^{\alpha}(\gamma))\Omega].$$

where

Next define H by

$$iH\pi(x)\Omega = \pi(\delta(x))\Omega - h\pi(x)\Omega$$
$$= \pi(\delta(x))\Omega - \pi(x)h_0\Omega$$

for $x \in D(\delta)$. If $\pi(x)\Omega = 0$ and $y \in D(\delta)$ one calculates that

$$(\pi(y)\Omega, \pi(\delta(x))\Omega) = \omega(y^*\delta(x))$$
$$= \omega(\delta(y^*x)) - \omega(\delta(y^*)x)$$
$$= \omega(\delta(y^*x)).$$

But for $z \in D(\delta)$ one has

$$\begin{split} \omega(\delta(z)) &= \omega(P(\delta(z))) \\ &= \omega(\delta(P(z))) \\ &= (\Omega, \ L_0 \pi(P(z))\Omega) \\ &= (L_0^*\Omega, \ \pi(P(z))\Omega) \\ &= 2(h_0\Omega, \ \pi(P(z))\Omega) \end{split}$$

where we have used $L_0^* = -L_0 + 2h_0$ and $L_0\Omega = 0$. Combining these two observations one concludes that

$$(\pi(y)\Omega, \pi(\delta(x))\Omega) = 2(h_0\Omega, \pi(y^*x)\Omega) = 0$$

and hence H is well-defined. But for $x, y \in D(\delta)$

$$\begin{aligned} (\pi(y)\Omega, \ iH\pi(x)\Omega) &= \omega(y^*\delta(x)) - (\pi(y)\Omega, \ h\pi(x)\Omega) \\ &= \omega(\delta(y^*x)) - \omega(\delta(y^*)x) - (h_0\Omega, \ \pi(y^*x)\Omega) \\ &= (h_0\Omega, \ \pi(y^*x)\Omega) - \omega(\delta(y^*)x) \\ &= -(iH\pi(y)\Omega, \ \pi(x)\Omega), \end{aligned}$$

i.e., H is symmetric. Moreover

$$i[H, \pi(x)]\pi(y)\Omega = iH\pi(xy)\Omega - \pi(x)iH\pi(y)\Omega$$
$$= \pi(\delta(xy))\Omega - \pi(x\delta(y))\Omega$$
$$= \pi(\delta(x))\pi(y)\Omega,$$

i.e., δ is implemented by *iH*. Next we prove that *H* is essentially self-adjoint. It is at this point we use the assumption that δ_{γ} is the generator of a group of bounded operators.

Set L = iH + h and note that if $x \in D(\delta) \cap \mathfrak{A}^{\alpha}(\gamma)$ then

$$(I + \beta L)\pi(x)\Omega = \pi((I + \beta \delta_{\gamma})(x))\Omega$$

for all real β . This demonstrates that $I + \beta L$ leaves $E_{\gamma} \mathscr{H}$ invariant and since δ_{γ} generates a strongly continuous group of bounded operators on $\mathfrak{A}^{\alpha}(\gamma)$ it also establishes that there is a β_{γ} such that $R((I + \beta L)E_{\gamma})$ is dense in $E_{\gamma} \mathscr{H}$ for all $|\beta| < \beta_{\gamma}$. Thus in this range of β , $(I + \beta L)^{-1}E_{\gamma}$ is well defined. But

$$\begin{split} \|(I+\beta L)\pi(x)\Omega\| &\geq \operatorname{Re}\left(\pi(x)\Omega, \ (1+\beta L)\pi(x)\Omega\right)/\|\pi(x)\Omega\| \\ &= (\pi(x)\Omega, \ (1+\beta h)\pi(x)\Omega)/\|\pi(x)\Omega\| \\ &\geq (1-|\beta| \|h\|) \|\pi(x)\Omega\| \end{split}$$

and hence

$$||(I+\beta L)^{-1}E_{\gamma}|| \leq (1-|\beta| ||h||)^{-1}.$$

Now define H_{γ} as the restriction of H to $E_{\gamma}\mathscr{H}$. It follows from perturbation theory that $(I + i\beta H_{\gamma})^{-1}$ is defined as a bounded operator for all sufficiently small β . But this establishes that H_{γ} is essentially self-adjoint and hence $R(I + i\beta H_{\gamma})$ is dense for all real β . Since this is true for all $\gamma \in \hat{G}$ it follows that H is essentially self-adjoint on \mathscr{H} .

Now if \overline{H} denotes the self-adjoint closure of H then

UNBOUNDED DERIVATIONS

$$x \in \mathscr{L}(\mathscr{H}) \longmapsto \tau_t(x) = e^{itH} x e^{-itH} \in \mathscr{L}(\mathscr{H})$$

defines a σ -weakly continuous group of isometries of $\mathscr{L}(\mathscr{H})$ such that

$$\frac{d}{dt}\tau_t(\pi(x)) = \tau_t(\pi(\delta(x))), \quad x \in D(\delta) .$$

It follows from semigroup theory that

$$\|\pi((I+\beta\delta)(x))\| \ge \|\pi(x)\|$$

for all real β and all $x \in D(\delta)$. Since by varying ω_0 one can construct a faithful family of covariant states ω one then concludes that

$$(*) \qquad \qquad \|(I+\beta\delta)(x)\| \ge \|x\|$$

for all real β and $x \in D(\delta)$. Finally since δ , and hence δ_{γ} , is implemented by the self-adjoint operator \overline{H} the δ_{γ} must generate groups of isometries. Therefore

$$R(I+\beta\delta_{\gamma}) = \mathfrak{A}^{\alpha}(\gamma)$$

and since this is true for all $\gamma \in \hat{G}$

(**)
$$R(I+\beta\delta) = \mathfrak{A}$$

The two properties (*) and (**) imply, however, that δ is a generator.

In the above proof we have not used all the assumptions on δ . The first part of the proof relies upon the assumption that δ_0 is a generator but the second part uses less information about the δ_{γ} .

Corollary 3. Let $(\mathfrak{A}, G, \alpha)$ be as in Proposition 2 and let δ be a closed symmetric derivation of \mathfrak{A} satisfying

- 1. $\alpha_{g} \circ \delta = \delta \circ \alpha_{g}, g \in G$,
- 2a. δ_0 is a generator on \mathfrak{A}^{α} ,
- b. For each non-zero $\gamma \in \hat{G}$ there is a $\beta_{\gamma} > 0$ such that $R(I + \beta \delta_{\gamma})$ is dense in $\mathfrak{U}^{\alpha}(\gamma)$ for all $|\beta| < \beta_{\gamma}$.

It follows that δ is the generator of a strongly continuous one-parameter group of *-automorphisms of \mathfrak{A} .

§3. Proof of Theorem 1

The proof of Theorem 1 is based upon verification of the assumptions of Corollary 3. This relies upon algebraic arguments, similar to those employed to prove Theorem 5.1 of [4], combined with perturbation theoretic techniques.

An essential part of the perturbation argument is summarized in the next lemma.

Lemma 4. Let X be a Banach space and $X_1, X_2,..., X_n$ closed subspaces such that $X = X_1 + X_2 + \cdots + X_n$. Furthermore let δ be a closed operator and $\delta_1, \delta_2, ..., \delta_n$ bounded operators on X. Assume that for i = 1, 2,..., n

$$(\delta + \delta_i)(X_i \cap D(\delta)) \subseteq X_i$$

and that $\delta + \delta_i$ is the generator of a semigroup of bounded operators on X_i . It follows that $R(I + \beta \delta)$ is dense in X for all sufficiently small β .

Proof. Let $\hat{X} = X_1 \oplus X_2 \cdots \oplus X_n$ with the norm of $\hat{x} = (x_1, x_2, \dots, x_n)$ defined by

$$\|\hat{x}\| = \sum_{i=1}^{n} \|x_i\|.$$

Thus \hat{X} is a Banach space. Next consider the linear map ϕ from \hat{X} to X with the action

$$\phi(\hat{x}) = \sum_{i=1}^n x_i \, .$$

This map is continuous and since $X = X_1 + \dots + X_n$ its range is equal to X. Thus the quotient space $\hat{X}/\ker\phi$, with the quotient norm $\|\cdot\|_{\phi}$, is canonically isomorphic to X. Hence there is a c > 0 such that

$$\|\hat{x}\|_{\phi} \leq c \|\phi(\hat{x})\|$$

for all $\hat{x} \in \hat{X}$. Thus for any $x \in X$ one may choose $x_i \in X_i$ such that

$$x = \sum_{i=1}^{n} x_i$$

and

$$\sum_{i=1}^{n} \|x_i\| < M \|x\|$$

where M is a constant slightly larger than c.

Next for $x \in X$ choose $x_i \in X_i$ with the foregoing properties. Then by the assumption that $\delta + \delta_i$ is a generator on X_i one may choose $y_i \in X_i \cap D(\delta)$ such that

$$y_i + \beta(\delta + \delta_i)(y_i) = x_i$$

for β sufficiently small. Therefore by semigroup theory there are constants $c_i, d_i > 0$ such that

$$||x_i|| \ge c_i ||y_i|| (I - |\beta| d_i)$$

for $|\beta|d_i < 1$. Thus setting

$$y = \sum_{i=1}^{n} y_i$$

one has

$$\|y + \beta \delta(y) - x\| = \|\sum_{i=1}^{n} (y_i + \beta(\delta + \delta_i)(y_i) - x_i) - \sum_{i=1}^{n} \beta \delta_i(y_i)\|$$

$$\leq |\beta| \sum_{i=1}^{n} \|\delta_i\| \|y_i\|$$

$$\leq \sum_{i=1}^{n} \frac{|\beta| \|\delta\|}{c_i(I - |\beta|d_i)} \|x_i\|$$

$$\leq \|x\| \max_{1 \le i \le n} \frac{|\beta| \|\delta_i\| M}{c_i(I - |\beta|d_i)}$$

$$< \|x\|/2$$

for all sufficiently small β . But if $R(I+\beta\delta)$ is not dense in X then for any $\varepsilon > 0$ there is an $x' \in X$ such that

$$\|y + \beta \delta(y) - x'\| > \|x'\| (1 - \varepsilon)$$

for all $y \in D(\delta)$. Since this contradicts the previous estimate one concludes that $R(I + \beta \delta)$ is dense in X for all sufficiently small β .

At this stage we are prepared to prove Theorem 1.

Corollary 3 establishes that it is sufficient to show that for each $\gamma \in \hat{G}$ there is a $\beta_{\gamma} > 0$ such that $R(I + \beta \delta_{\gamma})$ is dense in $\mathfrak{A}^{\alpha}(\gamma)$ for all $|\beta| < \beta_{\gamma}$.

Fix $\gamma \in \hat{G}$. Since $D_{\gamma} = D(\delta) \cap \mathfrak{A}^{\alpha}(\gamma)$ is dense in $\mathfrak{A}^{\alpha}(\gamma)$ the closed linear span of $D_{\gamma}^* D_{\gamma}$ is dense in \mathfrak{A}^{α} . This follows from the final assumption of Theorem 1. Moreover \mathfrak{A}^{α} contains the identity 1. Hence there exists a finite number *m* of $x_i, y_i \in D_{\gamma}$ such that

$$\|\sum_{i=1}^{m} x_i^* y_i - 1\| < \frac{1}{2}$$

and consequently

$$\sum_{i=1}^{m} (x_i^* x_i + y_i^* y_i) \ge \sum_{i=1}^{m} (x_i^* y_i + y_i^* x_i) \ge 1.$$

Thus we may suppose that there are n(=2m) elements $y_i \in D_y$ with the property

$$\sum_{i=1}^n y_i^* y_i \ge \mathbb{1} .$$

Similarly there are a finite number n' of $z_j \in D_{\gamma}$ such that

$$\sum_{j=1}^{n'} z_j z_j^* \ge \mathbb{1}$$

because $D_{\gamma}D_{\gamma}^{*}$ is dense in \mathfrak{A}^{α} . Now define

$$a = \sum_{i=1}^{n} y_i y_i^* + \sum_{i=1}^{n'} z_i z_i^*$$

and set $x_i = a^{-\frac{1}{2}}y_i$ and $x_{n+i} = a^{-\frac{1}{2}}z_i$. It follows that $a^{-\frac{1}{2}} \in \mathfrak{A}^{\alpha} \cap D(\delta)$, $x_i \in D_{\gamma}$, and

$$\sum_{i=1}^{N} x_i x_i^* = \mathbf{1}$$

where N = n + n'. Furthermore

$$\sum_{i=1}^{N} x_{i}^{*} x_{i} \geq \sum_{i=1}^{n} y_{i}^{*} a^{-1} y_{i} \geq ||a||^{-1} \sum_{i=1}^{n} y_{i}^{*} y_{i} \geq ||a||^{-1} \mathbf{1}.$$

Next consider the system $(\mathfrak{A}_N = \mathfrak{A} \otimes M_N, G, \overline{\alpha})$ where M_N is the $N \times N$ matrix algebra and $\overline{\alpha}_g = \alpha_g \otimes \iota$. Here ι denotes the trivial action. Further let $\overline{\delta} = \delta \otimes \iota$ with $D(\overline{\delta}) = D(\delta) \otimes M_N$. Thus $\overline{\alpha}$ and $\overline{\delta}$ satisfy the same properties as α and δ . Now define

$$v = \begin{pmatrix} x_1, x_2, \dots, x_N \\ 0 \end{pmatrix} \in \mathfrak{A}_N^{\bar{a}}(\gamma) \cap D(\bar{\delta}) .$$

It follows from the above construction that $vv^* = e_{11}$, where e_{11} is the matrix unit with $(e_{11})_{ij} = \delta_{i1}\delta_{j1}\mathbf{1}$, and $\bar{\delta}(vv^*) = 0$. Now for $b \in \mathfrak{A}_N^{\bar{x}}(\gamma)v^*v \cap D(\bar{\delta})$ one has

$$\bar{\delta}(b) = \bar{\delta}(bv^*v)$$
$$= \bar{\delta}_0(bv^*)v + bv^*\bar{\delta}(v)$$

where $\bar{\delta}_0 = \delta_0 \otimes \iota$ with $D(\bar{\delta}_0) = D(\delta_0) \otimes M_N$. Therefore

$$\begin{aligned} (\bar{\delta} + \delta_{v^*\bar{\delta}(v)})(b) &= \bar{\delta}_0(bv^*)v + v^*\bar{\delta}(v)b \\ &= \{\bar{\delta}_0(bv^*) + v^*\bar{\delta}(v)bv^*\}v \end{aligned}$$

where δ_u denotes the derivation with action $\delta_u(b) = ub - bu$.

Now the map from $b \in \mathfrak{A}_{N}^{\overline{\alpha}}(\gamma)v^{*}v$ to $bv^{*} \in \mathfrak{A}_{N}^{\overline{\alpha}}vv^{*}$ is an isomorphism from the Banach space $\mathfrak{A}_{N}^{\overline{\alpha}}(\gamma)v^{*}v$ onto the Banach space $\mathfrak{A}_{N}^{\overline{\alpha}}vv^{*}$. But since $\overline{\delta}_{0}(vv^{*})=0$ the restriction of $\overline{\delta}_{0}$ to $\mathfrak{A}_{N}^{\overline{\alpha}}vv^{*}$ is also a generator. Moreover the operator of left multiplication by $v^{*}\overline{\delta}(v)$ is bounded and leaves $\mathfrak{A}_{N}^{\overline{\alpha}}vv^{*}$ invariant. Therefore $\overline{\delta}_{0} + v^{*}\overline{\delta}(v)$ is the generator of a group of bounded operators on $\mathfrak{A}_{N}^{\alpha}vv^{*}$. Hence $\overline{\delta} + \delta_{v^{*}\overline{\delta}(v)}$ is a generator on $\mathfrak{A}_{N}^{\overline{\alpha}}(\gamma)v^{*}v$.

Next we repeat this argument with matrices $v_i(\sigma)$ whose elements are zero except in the *i*-th row which is given by

$$\sigma(i)x_i, \sigma(i+1)x_{i+1}, \dots, \sigma(N)x_N, \sigma(1)x_1, \dots, \sigma(i-1)x_{i-1}$$

where the $\sigma(j)$ take values ± 1 . Then $v_i(\sigma) \in \mathfrak{A}_N^{\overline{\alpha}}(\gamma) \cap D(\overline{\delta})$ and

$$v_i(\sigma)v_i(\sigma)^* = e_{ii}.$$

By the above reasoning $\bar{\delta} + \delta_{v_1(\sigma)^*\bar{\delta}(v_1(\sigma))}$ is a generator on $\mathfrak{A}_N^{\bar{\alpha}}(\gamma)v_i(\sigma)^*v_i(\sigma)$. But

$$2^{-N} \sum_{\sigma} v_i(\sigma)^* v_i(\sigma) = \begin{pmatrix} x_i^* x_i & 0 \\ & x_{i+1}^* x_{i+1} \\ 0 & \ddots \\ & & x_{i-1}^* x_{i-1} \end{pmatrix}$$

and

$$2^{-N} \sum_{i=1}^{N} \sum_{\sigma} v_i(\sigma)^* v_i(\sigma) = \sum_{i=1}^{N} x_i^* x_i \mathbb{1}_N \ge ||a||^{-1} \mathbb{1}$$

where $\mathbf{1}_N$ is the identity of M_N . Therefore

$$\mathfrak{A}_{N}^{\bar{a}}(\gamma) = \sum_{i=1}^{N} \sum_{\sigma} \mathfrak{A}_{N}^{\bar{a}}(\gamma) v_{i}(\sigma)^{*} v_{i}(\sigma)$$

and we can apply Lemma 4 to the family

$$X = \mathfrak{A}_{N}^{\overline{a}}(\gamma), \quad X_{i} = \mathfrak{A}_{N}^{\overline{a}}(\gamma)v_{i}(\sigma)^{*}v_{i}(\sigma),$$

and the bounded operators $\delta_{v_i(\sigma)^*\bar{\delta}(v_i(\sigma))}$ and conclude that $(I + \beta\bar{\delta})(\mathfrak{A}_N^{\bar{\alpha}}(\gamma) \cap D(\bar{\delta}))$ is dense in $\mathfrak{A}_N^{\bar{\alpha}}(\gamma)$ for sufficiently small β . Since $\mathfrak{A}_N^{\bar{\alpha}}(\gamma) = \mathfrak{A}^{\alpha}(\gamma) \otimes M_N$ this implies that $(I + \beta\delta)(\mathfrak{A}^{\alpha}(\gamma) \cap D(\delta))$ is dense in $\mathfrak{A}^{\alpha}(\gamma)$ for small β and hence δ is a generator by Corollary 3.

Appendix

Covariant Representations

Throughout this appendix $(\mathfrak{A}, \tau, \omega)$ denotes a C*-algebra \mathfrak{A} , a strongly continuous one-parameter group of *-automorphisms τ of \mathfrak{A} , and a state ω over \mathfrak{A} . Furthermore $(\mathscr{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ denotes the cyclic representation of \mathfrak{A} associated with ω . It follows from the proof of Proposition 2 that the state

$$\omega_e = \frac{1}{2} \int_{-\infty}^{\infty} dt e^{-|t|} \omega \circ \tau_t$$

generates a covariant representation, i.e., there exists a strongly continuous oneparameter group of unitary operators U_{ω_e} on \mathscr{H}_{ω_e} which implements the automorphisms τ ,

$$\pi_{\omega_e}(\tau_t(A)) = U_{\omega_e}(t)\pi_{\omega_e}(A)U_{\omega_e}(t)^{-1}$$

The purpose of this appendix is to further analyze this phenomenon by proving the following.

Theorem A1. Let f be an almost everywhere positive integrable function over \mathbf{R} with total integral one.

It follows that the state

$$\omega_f = \int dt f(t) \omega \circ \tau_t$$

generates a covariant representation.

Remark. If the Fourier transform \hat{f} of f has compact support this result is a corollary of a spectral theorem of Arveson (Theorem 5.3. of [6]).

The proof of Theorem A1 will be divided into two pieces each of which have a separate interest. The first piece of information extends a construction used by Tomita in the decomposition theory of states (see [7] Chapter 4, in particular Lemma 4.1.21). In the following $E_{\mathfrak{A}}$ will denote the state space of \mathfrak{A} equipped with the weak*-topology.

Proposition A2. Let μ be a regular probability measure on $E_{\mathfrak{A}}$ with barycentre ω and let f be a non-negative μ -integrable function over $E_{\mathfrak{A}}$. Define the positive sesquilinear form s_f over \mathscr{H}_{ω} by $D(s_f) = \pi_{\omega}(\mathfrak{A})\Omega_{\omega}$ and

$$s_f(\pi_\omega(x)\Omega_\omega, \pi_\omega(y)\Omega_\omega) = \int_{E_{\mathfrak{N}}} d\mu(\omega')f(\omega')\omega'(x^*y).$$

It follows that s_f is closable and the positive self-adjoint operator S_f associated with the closure \bar{s}_f of s_f is affiliated with the commutant $\pi_{\omega}(\mathfrak{A})'$ of $\pi_{\omega}(\mathfrak{A})$. Moreover if f is positive μ -almost everywhere then S_f is invertible.

Proof. Define f_n by $f_n(x) = \min(f(x), n)$. Thus the f_n form an increasing family of positive functions which converges pointwise to f. Next let $\kappa_{\mu}(f_n) \in \pi_{\omega}(\mathfrak{A})'$ denote the bounded operators defined by

$$(\Omega_{\omega}, \kappa_{\mu}(f_n)\pi_{\omega}(x)\Omega_{\omega}) = \int d\mu(\omega')f(\omega')\omega'(x)$$

(see [7] Lemma 4.1.21). Now introduce the increasing family of bounded quadratic forms

$$t_n(\psi) = (\psi, \kappa_\mu(f_n)\psi), \quad \psi \in \mathscr{H}_\omega$$

and their monotone limit

$$t(\psi) = \sup_{n} t_{n}(\psi) = \lim_{n \to \infty} t_{n}(\psi)$$

where D(t) is the family of $\psi \in \mathscr{H}_{\omega}$ for which the supremum is finite. It follows from [8] Lemma 5.2.13 that t is closed. But

$$t(\pi_{\omega}(x)\Omega_{\omega}) = \int d\mu(\omega')f(\omega')\omega'(x^*x)$$
$$= s_f(\pi_{\omega}(x)\Omega_{\omega})$$

for all $x \in \mathfrak{A}$. Thus t is a closed extension of s_f , i.e., s_f is closable.

Now $\pi_{\omega}(\mathfrak{A})\Omega_{\omega}$ is automatically a core for $S_{f}^{\frac{1}{2}}$. Moreover

$$\|S_f^{\frac{1}{2}}\pi_{\omega}(x)\pi_{\omega}(y)\Omega_{\omega}\|^2 = \int d\mu(\omega')f(\omega')\omega'(y^*x^*xy)$$
$$\leq \|x\|^2 \int d\mu(\omega')f(\omega')\omega'(y^*y)$$
$$= \|x\|^2 \|S_f^{\frac{1}{2}}\pi_{\omega}(y)\Omega_{\omega}\|^2.$$

Thus it follows that $\pi_{\omega}(\mathfrak{A})D(S_{f}^{\frac{1}{2}}) \subseteq D(S_{f}^{\frac{1}{2}})$. Moreover one concludes from the identity

$$\begin{split} (S_f^{\frac{1}{2}}\pi_{\omega}(xy)\Omega_{\omega}, S_f^{\frac{1}{2}}\pi_{\omega}(z)\Omega_{\omega}) &= \int d\mu(\omega')f(\omega')\omega'(y^*x^*z) \\ &= (S_f^{\frac{1}{2}}\pi_{\omega}(y)\Omega_{\omega}, S_f^{\frac{1}{2}}\pi_{\omega}(x^*z)\Omega_{\omega}) \end{split}$$

by a double approximation procedure that

$$(S_{f}^{\frac{1}{2}}\pi_{\omega}(x)\phi, S_{f}^{\frac{1}{2}}\psi) = (S_{f}^{\frac{1}{2}}\phi, S_{f}^{\frac{1}{2}}\pi_{\omega}(x^{*})\psi)$$

for all $\phi, \psi \in D(S_f) \subseteq D(S_f^{\frac{1}{2}})$. But the left hand side is continuous in ϕ and the right hand side is continuous in ψ . Hence one deduces that $\pi_{\omega}(\mathfrak{A})D(S_f) \subseteq D(S_f)$ and

$$(S_f \pi_\omega(x)\phi, \psi) = (S_f \phi, \pi_\omega(x^*)\psi)$$
$$= (\pi_\omega(x)S_f \phi, \psi).$$

Thus S_f is affiliated with $\pi_{\omega}(\mathfrak{A})'$.

Next suppose f is positive μ -almost everywhere. The approximants f_n introduced above then have this property. Moreover since $f \ge f_n > 0$ it follows that

$$S_f \ge \kappa_{\mu}(f_n) \ge 0$$

where the operator ordering is in the sense of quadratic forms. Thus to prove that S_f is invertible it suffices to prove that $\kappa_u(f_n)$ is invertible and this effectively

reduces the problem to the examination of bounded f. Therefore we now assume f is bounded.

Next define

$$\theta_n = \left\{ \omega' \in E_{\mathfrak{A}}; f(\omega') \ge \frac{1}{n} \right\}$$

and consider the bounded sesquilinear forms t_n over $\mathscr{H}_{\omega} \times \mathscr{H}_{\omega}$ with the property

$$t_n(\pi_{\omega}(x)\Omega_{\omega}, \pi_{\omega}(y)\Omega_{\omega}) = \int_{\theta_n} d\mu(\omega')\omega'(x^*y) d\mu(\omega') d\mu(\omega$$

Since $nf(\omega') \ge 1$ on θ_n

$$t_n(\pi_{\omega}(x)\Omega_{\omega}, \pi_{\omega}(x)\Omega_{\omega}) \le n \int d\mu(\omega')f(\omega')\omega'(x^*y)$$
$$= n \|\pi_{\omega}(x)S_f^{\frac{1}{2}}\Omega_{\omega}\|^2.$$

Hence there is a sequence of positive bounded operators S_n on the range \mathscr{H}_n of $E_n = [\pi_{\omega}(\mathfrak{A})S_f^{\frac{1}{2}}\Omega_{\omega}]$ such that

$$t_n(\pi_{\omega}(x)\Omega_{\omega}, \pi_{\omega}(y)\Omega_{\omega}) = (\pi_{\omega}(x)S_f^{\frac{1}{2}}\Omega_{\omega}, S_n\pi_{\omega}(y)S_f^{\frac{1}{2}}\Omega_{\omega})$$

and S_n is in the commutant $\pi_{\omega}(\mathfrak{A})'$ restricted to \mathscr{H}_n . But $E_n \in \pi_{\omega}(\mathfrak{A})'$ and hence $S_n = S_n E_n = E_n S_n E_n$ may be regarded as an operator in $\pi_{\omega}(\mathfrak{A})'$ acting on \mathscr{H}_{ω} . Moreover the family of forms associated with t_n is monotone increasing and

$$\lim_{n \to \infty} t_n(\pi_{\omega}(x)\Omega_{\omega}, \pi_{\omega}(x)\Omega_{\omega}) = \lim_{n \to \infty} (\pi_{\omega}(x)\Omega_{\omega}, S_f^{\frac{1}{2}}S_nS_f^{\frac{1}{2}}\pi_{\omega}(x)\Omega_{\omega})$$
$$= (\pi_{\omega}(x)\Omega_{\omega}, \pi_{\omega}(x)\Omega_{\omega}).$$

Thus $S_f^{\frac{1}{2}} S_n S_f^{\frac{1}{2}}$ converges weakly, hence strongly, to the identity.

Finally suppose $S_f \phi = 0$. Then

$$(\phi, S_f^{\frac{1}{2}}S_nS_f^{\frac{1}{2}}\phi)=0.$$

But this contradicts the previous convergence result unless $\phi = 0$, i.e., S_f is invertible.

Next we compare the representations generated by the states obtained from two probability measures on the state space E_{st} .

Proposition A3. Let μ_1 and μ_2 be two regular probability measures on $E_{\mathfrak{A}}$ with barycentres ω_1 and ω_2 respectively.

If μ_1 is absolutely continuous with respect to μ_2 then π_{ω_1} is unitarily

equivalent to a subrepresentation of π_{ω_2} , and if μ_1 and μ_2 are mutually absolutely continuous then π_{ω_1} and π_{ω_2} are unitarily equivalent.

Proof. If μ_1 is absolutely continuous with respect to μ_2 there is a nonnegative $f \in L^1(\mu_2)$ such that $d\mu_1 = fd\mu_2$. Now define S_f on \mathscr{H}_{ω_2} by the construction of Proposition A2. Thus

$$(S_f^{\frac{1}{2}}\Omega_{\omega_2}, \pi_{\omega_2}(x)S_f^{\frac{1}{2}}\Omega_{\omega_2}) = \int d\mu_2(\omega')f(\omega')\omega'(x)$$
$$= \int d\mu_1(\omega')\omega'(x) = \omega_1(x)$$

and S_f is affiliated to $\pi_{\omega_2}(\mathfrak{A})'$. Next define an operator from \mathscr{H}_{ω_1} to $R(S_f^{\frac{1}{2}})$, the closure of the range of $S_f^{\frac{1}{2}}$, such that

$$U\pi_{\omega_1}(x)\Omega_{\omega_1}=\pi_{\omega_2}(x)S_f^{\frac{1}{2}}\Omega_{\omega_2}.$$

Note that

$$\|U\pi_{\omega_{1}}(x)\Omega_{\omega_{1}}\|^{2} = \|\pi_{\omega_{2}}(x)S_{f}^{\frac{1}{2}}\Omega_{\omega_{2}}\|^{2}$$
$$= \omega_{1}(x^{*}x) = \|\pi_{\omega_{1}}(x)\Omega_{\omega_{1}}\|^{2}$$

Hence U extends to a well defined isometry. But then one readily calculates that

$$U\pi_{\omega_1}(x)U^* = \pi_{\omega_2}(x) |_{R(S^{\frac{1}{2}}_{f})}$$

i.e., $\pi_{\omega_1}(\mathfrak{A})$ is unitarily equivalent to the subrepresentation of $\pi_{\omega_2}(\mathfrak{A})$ acting on $R(S_f^{\frac{1}{2}})$.

Finally if μ_1 and μ_2 are mutually absolutely continuous then f is positive μ_2 -almost everywhere and S_f is invertible by Proposition A2. Thus $R(S_f^{\frac{1}{2}}) = \mathscr{H}_{\omega_2}$ and $(\mathscr{H}_{\omega_1}, \pi_{\omega_2})$ and $(\mathscr{H}_{\omega_2}, \pi_{\omega_2})$ are unitarily equivalent.

Now we are in a position to prove Theorem A1.

Proof of Theorem A1. Let E be an arbitrary Borel set in $E_{\mathfrak{A}}$. Since τ is strongly continuous one can define a unique regular Borel measure μ_f such that

$$\mu_f(E) = \int_{\omega \circ \tau_t \in E} dt f(t) \, dt$$

But f has total integral one and hence μ_f is a probability measure. Moreover

$$\int d\mu_f(\omega')\omega' = \int dt f(t)\omega \circ \tau_t = \omega_f.$$

Similarly for e; $e(t) = \exp \{-|t|\}/2$ one can introduce a measure μ_e and a state ω_e . But since f and e are almost everywhere positive the measures μ_f and μ_e

are mutually absolutely continuous and ω_f and ω_e generate unitarily equivalent representations by Proposition A3. But the representation associated with ω_e is covariant, by the proof of Proposition 2, and hence the representation associated with ω_f is also covariant.

Finally we remark that the observation that ω_e generates a covariant representation can be used to reestablish a result of Borchers [9]; the representation $(\mathscr{H}_{\omega}, \pi_{\omega})$ extends to a covariant representation if, and only if, $t \rightarrow \omega \circ \tau_t$ is norm continuous. The necessity of the continuity condition is straightforward. The sufficiency follows by noting that ω is the norm limit of the sequence of states

$$\omega_n = \frac{1}{2} \int dt e^{-|t|} \omega \circ \tau_{t/n}$$

and hence π_{ω} is quasi-contained in the direct sum of the covariant representations π_{ω_n} . In fact Borchers obtains his result for general locally compact groups of automorphisms.

References

- [1] Goodman, F., Translation invariant closed *-derivations, to appear in Pac. J. Math.
- [2] Nakazato, H., Closed *-derivations on compact groups, J. Math. Soc. Japan, 34 (1982), 83-93.
- [3] Goodman, F. and Jørgensen P. E. T., Unbounded derivations commuting with compact group actions, to appear in *Commun. Math. Phys.*
- [4] Bratteli, O. and Jørgensen P. E. T., Unbounded derivations tangential to compact groups of automorphisms, *Aarhus, preprint*-1981.
- [5] Ikunishi, A., Derivations in a C*-algebra commuting with an action of a compact group Tokyo Institute of Technology, *preprint*.
- [6] Arveson, W., On groups of automorphisms of operator algebras, J. Funct. Anal., 15 (1974), 217–243.
- [7] Bratteli, O. and Robinson, D. W., Operator algebras and quantum statistical mechanics I, Springer-Verlag, Heidelberg-New York 1979.
- [8] —, Operator algebras and quantum statistical mechanics II, Springer-Verlag, Heidelberg-New York 1980.
- [9] Borchers, H. J., On the implementability of automorphism groups, Commun. Math. Phys., 14 (1969), 305–314.