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On Unbounded Derivations Commuting with
a Compact Group of *- Automorphisms

By

Akitaka KISHIMOTO* and Derek W. ROBINSON**

Abstract

Let 21 be a C*-algebra with identity, a a continuous action of a compact abelian group G
as *-automorphisms of 2t, 2^(7-) the spectral subspace of a corresponding to ? in the dual G
of G and ^"(^^"(O)) the fixed point algebra of a. Let 5 be a closed symmetric derivation
of 91 which commutes with a and generates a one-parameter group of *-automorphisms
of 9ta. We assume that the linear span of yia(f)*ty.a(?} is dense in Sla for each f^G and then
deduce that o is a generator on 5T. Some relevant material on covariant representations is
also given.

§1. Introduction

Let <5 be a closed (symmetric) derivation of C*-algebra 21 which commutes

with a continuous action a of a topological group G as *-automorphisms of 21.

Several authors [1] [2] [3] [4] [5] recently derived conditions on 21, G, and <5,

which ensure that 6 is a generator, i.e., the generator of a strongly continuous

one-parameter group of *-automorphisms of 21. For example, if G is compact

abelian, and 6 vanishes on the fixed point algebra 2Xa of a, then this result is

established in [4]. If, alternatively, d is an inner derivation of 2la it follows

from this result, and perturbation theory, that 6 is a generator. But bounded

derivations are generators of uniformly continuous groups and hence this can be

viewed as an extension result; if G is compact abelian, d commutes with a, and d

generates a uniformly continuous one-parameter group T° of inner automorphisms

of the fixed point algebra 2Ia then t° extends to a strongly continuous group

i, with generator d, on 21. Example 6.1 of [4] also establishes that this result

does not necessarily extend to the case that 6 generates a strongly continuous
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group of ^-automorphisms of 9Ia. Nevertheless in this note we demonstrate

that strong continuity of T° suffices if, in addition, 9fa = 9la(y)*9la('y) for each
y e G, where the bar denotes the closed linear span. (Here, and throughout the

sequel, we adopt the notation of [4]. In particular 9la(y) denotes the spectral

subspace of a corresponding to y in the dual group G). Thus we aim to establish

the following;

Theorem 1. Let 91 be a C*-algebra with identity, G a compact abelian

group, and a a continuous action of G as ^-automorphisms of 91. Furthermore

let 3 be a closed symmetric derivation satisfying;

1. 0^0(5 = (5oaff, #eG,
2. (50 = (51^* is a generator on 9Xa.

Finally assume that the closed linear span of 9la(y)*9la(y) equals 9la for each

ye&.

It follows that 6 is a generator.

In this theorem we do not know whether the assumption on 9la(y)*9la(y)

can be weakened, e.g., to the assumption that 9la(y)*9la(y), an ideal of 9la, is in-

variant under the automorphism group generated by <50, for each y e G, which

is apparently necessary for 6 to be a generator. (In the example in [4] we refered

to above, this weaker assumption is violated.) We want to point out two

typical cases where the assumption on 9la(y)*9la(y) is satisfied. One is the case

where each 9la(y) contains a unitary. For example, for a C*-algebra B with

identity with action ^ of a discrete abelian group T, let 91 be the crossed product

B x PF and a the dual action j8 of G = f. Then for the system (91, G, a), 9la(y)

contains a unitary. The other is the case where 9Ia is simple, e.g., the Cuntz

algebras On with the gauge action of T.

The general lines of proof of this theorem are very similar to those of [4].

There are two basic arguments. First one proves that 6 is a generator of a

group of bounded operators on each 9la(y) and second one argues that this is

sufficient for 6 to be a generator on 91. This second step is independent of the

assumption on 9ia(y)*9Xa(y) and is based upon the construction and exploitation

of appropriate covariant representations. Hence we begin with the discussion

of this latter lifting procedure in Section 2 and then return to the proof of

Theorem 1, and discussion of the action of 8 on the spectral subspaces 9la(y),

in Section 3. Relevant information about co variant representations is collected

in an appendix.
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§ 2, Generators and Spectral Subspaees

In this section we examine the generator problem under the assumption
that dy, the restriction of d to the spectral subspace 9Ca(y), is a generator for each
j e G. In fact we need information on S under slightly weaker assumptions on

the 6y but we will state this as a corollary of the proof of the following general

result.

Proposition 28 Let 91 be a C*-algebra, G a compact group, and a a con-

tinuous action of G as ^-automorphisms 0/91. Furthermore let d be a closed

symmetric derivation 0/91 satisfying,

I gi«(y) is the generator of a strongly continuous one-parameter

group of bounded operators on the Banach space 9la(y) for each y e G.
It follows that d is the generator of a strongly continuous one-parameter

group of ^-automorphisms 0/91.

Remarks. 1. This result is valid for non-abelian G too.
2. A weaker version of this proposition is given in [4] Lemma 4.2, where

it is further assumed that 9Iac:D(<5), but this domain requirement is in fact ir-

relevant. The following proof via co variant representations is an 'integrated'

version of the 'infinitesimal' proof of Lemma 4.2 in [4]. It is the elimination of
infinitesimal methods which avoids the domain requirements.

Pr00/. Let 0 denote the trivial representation of G. Since 9la ( = 2la(0))
is a C*-subalgebra it follows that <50 generates a ^-automorphism group T°.
Next define a projection P from 91 onto the fixed point algebra 9la by

P(x)=(
J

where dg is the normalized Haar measure on G. Now for any state o)0 of 91*
define a state co of 91 by

Thus for x e 9la

co(Ts°(***)) =
Z J-o

and hence
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Consequently if (<%*, n, Q) denotes the cyclic representation associated with co

one can define a strongly continuous one-parameter group of bounded linear

operators acting on the subspace J^0 = [7u($Ia)O] by

and in fact one has || TJ <exp {|s|/2}. Moreover

for all xe5Ia. Next we argue that by multiplication with an element of

(7i($la) | ̂ 0)' the group T may be arranged to be unitary without affecting this

co variant implementation law.

Since T° is a group of ^-automorphisms

for all xe2Ia and hence T* Ts e (7i($la) | ̂ J. Next let L0 be the generator

of T and remark that

for all \l/ e 3F0 by the above estimate on o)°T°°P. Hence

\(L0^
for all \// e D(LQ). It follows that

|(Lo^0)

for all 0, i// 6 D(L0). Hence D(L0) c D(LJ) and

Therefore (Lg-fL0)/2 has a bounded self-adjoint extension /?0 with ]|/?0||<-y.

But L0 generates the strongly continuous one-parameter group T on Jf0 and

hence by perturbation theory iH0 = L0 — h0 generates a similar group. Since

H0 is symmetric on D(L0), it is automatically self-adjoint. Now if Us =

exp {iH0s} the Trotter product formula implies that

Finally since T5*Tse(7r(2la)| ̂ J it follows that /?0 e ((jr(2Ia) | ̂ 0)' and hence
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for all xe^l*.

Thus T° is covariantly implemented on 2Ia by either Tor U and consequently

6 is spatially implemented on Wa either by L0 or iH0. Specifically

for all x e 5la n D(6). Our next aim is to derive a similar spatial implementation

law for 6 on S2l and for this we begin by extending ft0 and H0 to ^f.

Define h on 7r(9I)0 by

ft7i(x)O = 7r(x)ft0<Q.

Since CD is a-invariant one has

Hence ft is well-defined and extends by continuity to a bounded operator with

| | f t | |< | | f to l <y- A number of properties of ft follow straightforwardly, e.g.,

where Ey = \n(

Next define H by

iHn(x)Q = n(5(x))Q - hn(x)Q

= n(S(x))Q-n(x)h0Q

for x e D((5). If 7i(x)O = 0 and y e D(c5) one calculates that

= a(d(y*xy)-a)(d(y*)x)

= co(d(y*x)).

But for z e D((5) one has

= (0, L07r(P(z))fl)
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where we have used L* = — L0 + 2h0 and LQQ = Q. Combining these two obser-
vations one concludes that

(n(y)Q, n(5

and hence H is well-defined. But for x, y e D(6)

)-(n(y)Q, hn(x)Q)

= a>(d(y*x)) - c

= (h0Q9n(y*x)Q)-a>(6(y*)x)

i.e., H is symmetric. Moreover

= iHn(xy)Q - n(x)iHn(y)Q

= n(S(xy))Q - n(xS(y))Q

i.e., <5 is implemented by iH. Next we prove that H is essentially self-adjoint.

It is at this point we use the assumption that 6y is the generator of a group of
bounded operators.

Set L = iH + h and note that if x e D(S) n $laO) then

for all real (1. This demonstrates that I + /3L leaves Ey^f invariant and since

5y generates a strongly continuous group of bounded operators on 3la(y) it also
establishes that there is a /?y such that R((I + pL)Ey) is dense in Eyjf for all

|0| < )8r Thus in this range of 0, (I + pL)~lEy is well defined. But

x)0|| >Re(7i(x)0,

and hence

Now define Hy as the restriction of H to £yjf. It follows from perturbation
theory that (I + iftH^'1 is defined as a bounded operator for all sufficiently

small p. But this establishes that Hy is essentially self-adjoint and hence

R(I + ifSHy) is dense for all real 0. Since this is true for all y E G it follows that
H is essentially self-adjoint on J^.

Now if H denotes the self-adjoint closure of H then
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x e && I - > T;tx = etxe-t e

defines a cr-weakly continuous group of isometrics of £?(3? ) such that

- T/TtCx)) = Tt(n(d(x))) , xeD(S).

It follows from semigroup theory that

for all real j$ and all x e D(8). Since by varying co0 one can construct a faithful

family of covariant states CD one then concludes that

for all real /? and x e D(d). Finally since d, and hence dr is implemented by

the self-adjoint operator If the 5y must generate groups of isometrics. Therefore

and since this is true for all y E G

(**)

The two properties (*) and (#*) imply, however, that d is a generator.

In the above proof we have not used all the assumptions on d. The first

part of the proof relies upon the assumption that <50 is a generator but the

second part uses less information about the <5r

Corollary 3. Let ($1, G, a) be as in Proposition 2 and let 6 be a closed

symmetric derivation of^i satisfying

1. ctgod = S°aig9 geG,

2a. <50 is a generator on 9la,

b. For each non-zero yeG there is a /?y>0 such that R(I + ̂ dy) is dense

in*l*(y)forall\P\<Pr

It follows that d is the generator of a strongly continuous one-parameter

group of ^-automorphisms o

§ 30 Proof of Theorem 1

The proof of Theorem 1 is based upon verification of the assumptions of

Corollary 3. This relies upon algebraic arguments, similar to those employed

to prove Theorem 5.1 of [4], combined with perturbation theoretic techniques.
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An essential part of the perturbation argument is summarized in the next lemma.

Lemma 4. Let X be a Banach space and Xl9 X29...9 Xn closed subspaces

such that X = X1+X2-i ----- \~Xn- Furthermore let 6 be a closed operator and

Sl9 52, -., on bounded operators on X. Assume that for / = !, 2,..., n

and that d + dt is the generator of a semigroup of bounded operators on Xt.

It follows that R(I + ft§) is dense in X for all sufficiently small ft.

Proof. Let X = Xl@X2'~@Xn with the norm of x = (xl3 x2,..., xn) defined

by

11*11= i
Thus % is a Banach space. Next consider the linear map <£ from X to X with

the action

This map is continuous and since X = X1-\ ----- \-Xn its range is equal to X.

Thus the quotient space X/ker</>, with the quotient norm || • ||^, is canonically

isomorphic to X. Hence there is a c>0 such that

for all x e $. Thus for any x E X one may choose xt e Xt such that

n

X= Z *i

and
n

I

where M is a constant slightly larger than c.

Next for x e X choose xt e Xt with the foregoing properties. Then by

the assumption that d + d{ is a generator on Xt one may choose yieXir\D(S)

such that

for jS sufficiently small. Therefore by semigroup theory there are constants

ci9 dt>Q such that

\Zct\\yMI-\P\dd
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for |j8|d f<l. Thus setting

one has

-x\\ = \\ (y,
1 = 1

-,tl ct(I-\P\dt)

< \\x\\ max—l|j

<||x||/2

for all sufficiently small p. But if R(I + fld) is not dense in X then for any

e>0 there is an xf e X such that

for all y e D(6). Since this contradicts the previous estimate one concludes

that R(I + P8) is dense in X for all sufficiently small /?.

At this stage we are prepared to prove Theorem 1.

Corollary 3 establishes that it is sufficient to show that for each y 6 G there

is a £y>0 such that R(I + f$5y} is dense in 5la(y) for all |j?| <jSr

Fix 7 e G. Since Dy = D(5) fl 3Ia(y) is dense in 2Ia(y) the closed linear span

of D*Dy is dense in 5la. This follows from the final assumption of Theorem 1.

Moreover sl(a contains the identity 1. Hence there exists a finite number m of

xi9 y{ E Dy such that

| |Z^f-l||<-yi=i 2
and consequently

Thus we may suppose that there are n( = 2m) elements v,-eDy with the property

Similarly there are a finite number ri of Zj e Dy such that
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because DyD* is dense in $la. Now define

and set xi = a~^zyi and x,1+j = a~Tz,-. It follows that 0~Te3la n D(d\ xt eDy,

and

where N = n + ri. Furthermore

N n n

y i> \\a\\-1 T.yfyt> I

Next consider the system (5lAr = 5l®M]V, G, a) where MN is the NxN

matrix algebra and otg = ag(g)C. Here ^ denotes the trivial action. Further let

6 = 6®c with D($) = D(6)®MN. Thus a and 5 satisfy the same properties as a

and 6. Now define

It follows from the above construction that vv* = elly where ell is the matrix

unit with (e11)ij = SnSjll, and 5(ff*) = 0. Now for ft e 9I^(y)i;*i; n D(5) one has

= $(bv*v)

where 50 = ̂ 0®^ with D(50) = D(^o)®^/v- Therefore

(y)) (6) = 50(6

= {5Q(bv*) + v*$(v)bv*}v

where du denotes the derivation with action du(b) = ub — bu.

Now the map from b e $lf (y)v*u to Z?i;* 6 Sljjiw* is an isomorphism from

the Banach space $l|(y)t;*t; onto the Banach space 9l^yt?*. But since 50(yt;*) = 0

the restriction of 60 to Ul^fy* is also a generator. Moreover the operator of

left multiplication by v *d(v) is bounded and leaves %l%vv* invariant. Therefore

30 + v*d(v) is the generator of a group of bounded operators on ytftvv*. Hence

<* + dv*d(v) is a generator on $lf(y)t;**;.

Next we repeat this argument with matrices vt(a) whose elements are zero

except in the i-th row which is given by
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where the cr(jf') take values + i. Then ut(ff) 6 2I|(y) n D(S) and

By the above reasoning S + 6Vi(ffrs(Vi(ff)} is a generator on 2lft(y)0f(<7)*z;/(<7). But

' .* v-/^ o

o e°-^
and

where 1N is the identity of MN. Therefore

{=1 a-

and we can apply Lemma 4 to the family

and the bounded operators <SM(T)^(y.((T)) and conclude that (/ + /?5) (^(y) fl D(d))

is dense in 5I^(y) for sufficiently small /?. Since 5lKy) = 5laCy)®MN this implies

that (/ + ^)(5Ia(y) n D(S)) is dense in ^Ia(y) for small j8 and hence 6 is a gen-

erator by Corollary 3.

Appendix

Covariant Representations

Throughout this appendix (21, T, co) denotes a C*-algebra 21, a strongly

continuous one-parameter group of ^-automorphisms T of 21, and a state CD

over 21. Furthermore («^,, n^, Q^} denotes the cyclic representation of 21

associated with co. It follows from the proof of Proposition 2 that the state

a)= —

generates a co variant representation, i.e., there exists a strongly continuous one-

parameter group of unitary operators Ume on J^y
(0e which implements the auto-

morphisms T,
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The purpose of this appendix is to further analyze this phenomenon by proving

the following.

Theorem Al. Let f be an almost everywhere positive integrable function

over R with total integral one.

It follows that the state

generates a covariant representation.

Remark. If the Fourier transform f of f has compact support this result

is a corollary of a spectral theorem of Arveson (Theorem 5.3. of [6]).

The proof of Theorem Al will be divided into two pieces each of which have

a separate interest. The first piece of information extends a construction used

by Tomita in the decomposition theory of states (see [7] Chapter 4, in particular

Lemma 4.1.21). In the following E^ will denote the state space of 51 equipped

with the weak*-topology.

Proposition A2. Let ^ be a regular probability measure on £9t with

barycentre co and let f be a non-negative jn-integrable function over E%. Define

the positive sesquilinear form sf over ^ by D(sf) = nco(%l)Q(0 and

r
s/^O)Ro> nm(y)Qm) = \ d]u(cof)f(a}r)a)f(x*y).

It follows that sf is closable and the positive self-adjoint operator Sf

associated with the closure sf of sf is affiliated with the commutant 7rw(s2l)' of
n(o(^)- Moreover if f is positive ^-almost everywhere then Sf is invertible.

Proof. Define/,, by fn(x) = min(/(x), n). Thus the/n form an increasing

family of positive functions which converges pointwise to /. Next let

e 7 (̂51)' denote the bounded operators defined by

(see [7] Lemma 4.1.21). Now introduce the increasing family of bounded

quadratic forms

and their monotone limit
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where D(t) is the family of ^ e Jj?co for which the supremum is finite. It follows

from [8] Lemma 5.2.13 that t is closed. But

t(nm(x)QJ=( diJti(a>')f(Q>r)co'(x*x)

for all x e $1. Thus t is a closed extension of sf, i.e., Sj is closable.

Now 7uf0(9l)Ow is automatically a core for 5). Moreover

= \\Y\\2\\S2v (V\Q II2

Ci}\J' J 03 II "= \\x\\2 \\S}n

follows that nm(W)D(SJ)c

identity

j, J_
Thus it follows that nm(^[)D(S})^D(S}). Moreover one concludes from the

J = dfji(a>')f(a>')a)'(y*x*z)

by a double approximation procedure that

J_

for all 0, \l/eD(Sf)^D(S}). But the left hand side is continuous in 0 and the

right hand side is continuous in ij/. Hence one deduces that nOJ

and

Thus Sf is affiliated with

Next suppose / is positive /^-almost everywhere. The approximants /„

introduced above then have this property. Moreover since />/„>() it follows

that

where the operator ordering is in the sense of quadratic forms. Thus to prove

that Sf is invertible it suffices to prove that K^(fn) is invertible and this effectively
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reduces the problem to the examination of bounded/. Therefore we now assume

/ is bounded.
Next define

w. y j \— ' H

and consider the bounded sesquilinear forms tn over j^m x j^m with the property

Since nf(cof) > 1 on 9n

= n\\n(0(x)S}QJ2.

Hence there is a sequence of positive bounded operators Sn on the range 3^n of

£B = [7cw(ai)stoj such that

and Sn is in the commutant 71 (̂21)' restricted to ^n. But £„ 6 71 (̂21)' and hence

Sn = SnEn = EnSnEn may be regarded as an operator in 7 (̂91)' acting on 3?^

Moreover the family of forms associated with tn is monotone increasing and

JL 1.
lim tn(nm(x)Qm9 nm(x)Q J = lim (nm(x)Qm9 S}SnS}nco(x)Q(0)
- -

Thus S}SnS$ converges weakly, hence strongly, to the identity.

Finally suppose Sf(/) = Q. Then

But this contradicts the previous convergence result unless </> = 0, i.e., Sf is inver-

tible.

Next we compare the representations generated by the states obtained from

two probability measures on the state space Em.

Proposition A3, Let JLLI and fj,2 be two regular probability measures on

Em with barycentres co1 and co2 respectively.

If Hi is absolutely continuous with respect to jLL2 then n0)i is unitarily
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equivalent to a subrepresentation of TT^, and if J,LI and ju2 are mutually

absolutely continuous then nOJi and ni02 are unitarily equivalent.

Proof. If /*! is absolutely continuous with respect to ju2 there is a non-

negative /e Ll(u2} such that du1 =fd^2. Now define 5y on JfW2 by the construc-

tion of Proposition A2. Thus

(SJOW2, nW2

and Sf is affiliated to 7rto,(^)'- Next define an operator from ^Wl to R(Sj), the

closure of the range of S}, such that

Note that

||l/7cflll(jc)fi£91||2=||7ra,2(x)SjOfl,2||2

= o)1(x*x)=\\n(0l(x)Q(0l\\
2.

Hence 17 extends to a well defined isometry. But then one readily calculates that

i.e., 7^(21) is unitarily equivalent to the subrepresentation of 7 (̂21) acting

on R(SJ).

Finally if ^ and fi2 are mutually absolutely continuous then / is positive
x

fi2-almost everywhere and Sf is invertible by Proposition A2. Thus R(Sf)

= ̂ 2 and (Jfmi9 nmi) and (^^ nc02) are unitarily equivalent.

Now we are in a position to prove Theorem Al.

Proof of Theorem Al. Let E be an arbitrary Borel set in E^. Since T is

strongly continuous one can define a unique regular Borel measure nf such that

dtf(f).
Tte£

But / has total integral one and hence uf is a probability measure. Moreover

Similarly for e\ e(r) = exp { — |t|}/2 one can introduce a measure \JLB and a state

coe. But since / and e are almost everywhere positive the measures jjif and jue



1136 AKITAKA KISHIMOTO AND DEREK W. ROBINSON

are mutually absolutely continuous and cof and coe generate unitarily equivalent

representations by Proposition A3. But the representation associated with a*e

is covariant, by the proof of Proposition 2, and hence the representation as-

sociated with cof is also covariant.

Finally we remark that the observation that coe generates a covariant re-

presentation can be used to reestablish a result of Borchers [9] ; the representation

(e ,̂, n^) extends to a covariant representation if, and only if, t-*(D°i;t is norm

continuous. The necessity of the continuity condition is straightforward.

The sufficiency follows by noting that co is the norm limit of the sequence of states

and hence n^ is quasi-contained in the direct sum of the covariant representations

7i£0n. In fact Borchers obtains his result for general locally compact groups of

automorphisms.
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