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Monodromy Problem and the Boundary Condition
for Some Painleve Equations

By

Michio JIMBO*

Introduction

The Painleve transcendents and their generalizations have aroused much

interest among mathematicians and mathematical physicists in recent years

([l]-[8]). Yet their properties as special functions still remain almost unex-

plored. For example, the problem of determining their behavior at the fixed

critical singularities is left open, except for a few special cases ([3] [4]). In the

present paper we treat this problem for the following three kinds of Painleve

equations at the fixed critical point i = 0 :

d*y _/ 1 1 \(dy\*_ 1 dy (j-1)2

'dtr ~ \2y~ + J=\)\dT) T^T + t*

yy

(PVI) _ __ _( l ) ~ + - + ^ -

t y-l

dy

y(y-l)(y-f) n t t-l t(t-\)

As is well known ([9] [7]), the Painleve equations arise as monodromy

preserving deformation equations for a 2x2 system of linear differential

equations

(0.1) -^ =A(x, f)Y9 A(x, t): rational in x.

A particular Painleve transcendent is specified by the monodromy data for (0.1).
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Now let r(0 denote the associated T function ([10] [7]), say, for (PVI). At

t = Q it is shown to have the asymptotic expansion of the form

T(/)~const. /(ff2-0o-0t)/4

i 1 iQ2 QT.

16<72(l+<7)2

+ Z Z

where 0V (v = 0, 1, f, oo) are related to the coefficients a, /?, 7, (5 in (PVI), and cr, s

are the two integration constants. The main result of this paper is an explicit

formula which gives these integration constants in terms of the monodromy

data for (0.1). Similar formulas are derived also for (PHI) and (PV). In the

case of (PVI), the fixed critical points t = Q, 1 and oo play equivalent roles.

Hence the result above makes it possible to derive a connection formula for the

T function for (PVI).

This paper is planned as follows. In Section 1 we state the result for (PVI).

Its derivation is given in Section 2. The method employed here is to study the

linear differential equation (0.1) in the limit £-»0. We show that the determination

of the asymptotic expansion is reduced to a connection problem for the limiting

differential equations, which can be solved in the case of (PVI) in terms of

hypergeometric functions.

In Section 3 we give the results for (PHI) and (PV). As an application we
derive the short distance expansion of the T function which appears in the 2 point

correlation function of the Federbush model ([5] IV, Supplement to IV). In a

special case, this reproduces the result of McCoy-Tracy-Wu [3] (for v = 0).
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§ 1. The Sixth Painleve Equation

Following [7] II, we first recall the setting of the monodromy problem for

PVI. We consider a 2 x 2 system of linear differential equations

(1.,) SY^^A^ A^ AM\Y^
ox \ x x—l x — tj

y

'
-

dt x-t

Without loss of generality we may assume that

the eigenvalues of A v(t) = ± -y 0V (v = 0, 1 , f) ,

where 0V are constants. If we write the (1, 2)-th component of A(x, f) as

(A(x, f))12 = k(t)(x-y(t))/x(x-l)(x-t), then y = y(f) satisfies the sixth Painleve

equation (PVI) with the parameters

__ L 1\2 P— _L

By definition, the T function i(f) for PVI is given by

(1.2) -^lo

Setting

we have the differential equation

dt
d£

Xl dt
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In the sequel we assume

(Al)pvi 00, 01, 0,,

Let Y= Y(x, f) be the fundamental solution matrix of (1.1) normalized at x = oo.

Its local behavior at the singularities reads as follows.

(1.4) Y(x, t) = e

))x 2V ~6-J (x->oo).

Here G(v)(r), C (v) are invertible matrices. In particular, the connection

matrices C(v) are independent of t. The monodromy matrices M (v) =

C(v)-i (e*l°v
 e-niev}cw E SL(2, C) satisfy the relation

(1.5) M(

Figure. The choice of paths corresponding to

Put pv = tr M<v> = 2 cos n9v, pllv = irM^M^ = pvli. We have then the fol-

lowing one relation among them :

(1.6) Q

l + PtPoo)PQ 1 ~ (Pi Pt + PoPao)Pl t - (PtPo +PlPao)PtO

tP* - 4.

It is sometimes convenient to write pflv = 2cosna^v with cr/iV = a >
V M eC 5 0^

Re cr^l.

Our aim is to determine the asymptotic behavior of i(i) as t-^Q. Here

we assume further that
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(A.2)PV1 O^Reor t o <l ,

(A.3)PVI ^(90±9t±'at0), ±(900±9i±'at0)£Z.

Under these conditions, we can parametrize the monodromy matrices satisfying

(1.5) as follows. When a = at0^0, we have

(1.7) Af*1'

/ cos n<j — e~nie°° cos n9^

/s inTtflco ^ 2/--1*'"- sin -^-(9^-9, + a) sin^-

sin -5-(000 + 0!+ <7) sin 4

— COS 71(7 + e7"000 COS 710!

1 f
t -rriiT _.! 7t f f\ , f\ . \ •„ TCsn TT o- y 2 s - 1 e - « i ~ 0 t ~0

iff sin -^- (00 + 0f - a) sin ̂ - (00 - 9t + or)^

T cos 7i0f + cos 7i00 /

i eniff cosn90— cosn9t

ismnv -2,?-1
sin- (00-0t-(r) sin - (00 + 0, 4- cr)

— g"71^ cos 7i00 + cos n0t

where

sin - (0^-0,-

j-ismZ-Wv-Oi + a) sin-|(0^ + 0,-a) j

and r, s^O. In terms of the invariants 2cos7icr/iv = tr M(M)M(u)
3 the defini-

tion of the parameter s reads

(1.8)

xsin-~- (0^ + 0! + <7) sin yCfl.-
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= (± i sin TTGF cos nalt — cos ndt cos nO^ — cos n60 cosn91)e
±nia

+ i sin TC<T cos naQ1 + cos 7i0f cos nQl + cos 710^ cos 7i00.

When o- = o-f0 = 0, the parametrization for M(f), M(0) is obtained by setting

s = l + s1a and letting <7-»0. Namely we introduce st e C by

, _! / fi*'9* °(1.7) M^ = Ct | o ^_? r .0 t

x sin - (00 + 0r) sin ( - 00 + 0r) + TT sin ?r0t sin -

x sin -5- (00 +0,) sin 4- (-^o+ ^) +7r sin ;r0r sin -5- (00

sn - co-

(C(°))21 =/-i ^ sin -- ( - 00 + 0,) sin (^ - 0,)

= Sl sin i(- 00 + 0() sin-J (0^ + 0,)

Now we can state the main result for PVI.

Theorem 1.1. Under the assumptions (A.l)PVi— (A.3)PVI, we have the

following asymptotic expansion of the t function as f->0.

(1.9) t(0 ~ const. i("2-»§-e?)/4

16(J2(l+(7)2
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where a=£Q and s is related to s in (1.8) through

(1.10)

(1.9)' t(0 ~ const,

x l - i%-

wf^/7 O=l — SIL — log t, an^/ St is given by

(1.10)' s1 =

= -7- logT(x) denotes the diGamma function.

More precisely, for any (^»0, f/iere exists an 8>0 swc^i t/ia^ (1.7)-(1.7)'

holds as t-*Q in the sector (tEC\0<\t\<s, |argr|«p] .

Higher order expansion is determined from the equation (1.3).

The t function is uniquely specified by the exponents 9 v and the monodromy

matrices M(v). In order to signify the dependence on them, we employ the

notation r(f; 00> Ot, 9l9 0^; M^\ M«\ M^\ Actually it is invariant under

the joint similarity transformation M^-WPM^P"-1 (v = 0, f, 1) so that the
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M(v) dependence enters only through the invariants trM (^M (v).

Since the regular singularities x = 0, 1, t, oo play equivalent roles, one can

exchange them by a fractional linear transformation. Correspondingly one has

the transformation law for the T function

t (1 -t; 90, Ot, 919 9^1

= const. t(r; 019 9t, 00, 0a;

=const.

where M<°)=M<°°), ^'^(M^JM^1^^^^00)^^^^1 and J(?(1>
xM(^)M^\M(^M(l)M^)-^ up to a common similarity factor (note the

convention for the choice of paths shown in Fig.). Combining this with

Theorem 1.1, one has thus the following connection formula.

Theorem 1.2. Suppose <*) = <*; 60, Ot, Ol9 0^; M<°^ M«>, M^1)) has the

behavior (1.9) at t = Q with some s and a = a0t. Let cr01 andaltbe defined

through (1.6), (1.8). We assume

ji,v = 0, 1, f)

•^(fl f l0±0i±'0, y(0i±^±

y^ool^ol^i^y^oo + ̂ +^oiXy^o + ̂ i

T/zen the following asymptotic expansions are valid at f = l , oo:

<0~ const. (l-0^-^-fl')/4.

t(/)~const. r<
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n1 — (701)

-Re^o] (/-> oo).

Here s l r, sfoo are obtained by making the following substitutions in (1.8) and

(1.10), respectively:

s - > S lf, s - > s l f, 00
 < — > 0i, ° - > ^it> o-n - " ^o* >

s - > sf>00, s - > sfoo, 0^ < — > 60, a - » or01, cr01 - > o-01

\V / f / l COS7T<70 1=tr M ( 0 )M ( 1>= — COS7l(J0r — 2COS7TO"01 COS 7Tt7 l t+2(cOS 7T00 COS 7lQt

§ 2. Derivation

In this section we show how to derive the formulas (1.9)-(1.9)'.

Let us consider a more general situation

on dY
(2A)

where 7, A^ Bv are w? x m matrices, and a^ bv are distinct nonzero constants.

The integrability of (2.1) leads to the restricted Schlesinger equation

(2.2) ^6- (*) = Z
wi v=1

m n2

We assume X A (t)+ Z 5 v(0 = -T(
0^= diagonal, constant, and that each of

H=l v=l ^

A^t), Bv(t) and T^)
oo) has eigenvalues distinct modulo integers. Let A%, B?

be constant matrices such that

and that the eigenvalues of ^4° (resp. 3°) coincide with those of A^t) (resp. Bv(f)).
"2 w-

We set A= Z ^?? and denote its eigenvalues by ^ l5...,^m. The following is
v=1

known :

Theorem ([5]II). We assume
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(2.3) |ReOxy-Aijk)|<l, j, fc=l,..., m.

(i) Choose a 15 K>Q satisfying max |ReGx/-/Jfc)|«71<l, \A°± \B°\<K.
l£j,k£m

For any cp, there exists an s>0 such that (2.2) admits a unique solution in the

sector SE(p = {t eC|0<|r |<e, |arg ?| «p} with the properties

(2.4) 14/0-^1

(ii) Let Y(x, f) be the corresponding solution of (2.1) normalized as

Y(x, t) = (

Then the limits Y(x) = lim Y(x, r), 7(x) = lim rA7(rx, 0 ex/sf and satisfy the
r-»0 f->0

differential equations

So ]f

:-b.

We shall study the relation between the monodromy data for (2.1) and those

for the limiting equations (2.5), (2.6). Let YQ(x) be the solution of (2.5) nor-

malized at x=oo. Taking into account the assumption (2.3), we see that its

local behavior reads as follows :

(2.7) y0(jf) = G

= (l+0(x))x*C (x-»0)
1))x-T<0°

0) (x-»oo).

Here G^}, C(^> and C are invertible, and T^} are diagonal. Likewise, let ?0(f)

be the solution of (2.6) such that

(2.8) Y0(x) = G

= (l+0(x~1J)xA

with some G(
0
V>, C(v) and f ^v>.

Proposition 2.1. We have

(2.9) lim 7(jc, 0 = Y0(x), lim r A Y(tx, f) = Y0(x)C .
f-»0 f-*0

For ^0, the local behavior of Y(x, t) is given by
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(2.10) Y(x, l)^G^(t)(l+0(x-all))(x-all)T^C^ (x^aj
= <3<v>(0 (1 + 0(x - f &„)) (x - ?bv)JT >C<V>C (x^tbv) .

Here G^(t), G(v)(0 are invertible matrices, and C(lt), C (v), C are given in

(2.7), (2.8).

Proof. Let F(x, 0= - Z ^^ , and set
—

U(x, t) = 1 + £ dt, dt2- dtkF(x, ti)F(x, t2)-F(x, tk) .
fc = 1 JO Jo Jo

The integration is taken along the line segment joining Oand / in S£<r Thanks
to (2.4), this converges uniformly with respect to x on every compact subset of
{xe€| |x|>|f|fr}, fr = max |fev | . By using (2.1), it is easy to establish

This proves the first half of the assertions (2.9), (2.10). Setting ?(x, r) = rAY(tx, t)

and ro(x) = lim Y(x, t), we have likewise
r->0

Y(x, t)=V(x, 0?oW, IxKi iy f l ,

~ 1 "2

where a = min \av\9 and V(x, t)is a similar series with F(x, t)= — ^ (t~ABv(t)t
A

V * V=l

-^)+ Z 7-^ — r^Jr)^ in place of F(x, t). Proposition 2.1 is proved if
iJi=^lx~Jlii

we can show YQ(X)= Y0(x)C. Since YQ(X) solves (2.6), it is sufficient to know
its behavior at x = oo. For this purpose we compare ?(x, f) with Y0(x, t)

Set

X(x, 0= ?(x, 0?o(x, tTl = tAU(tx, t)rA.

For r^O, it is single-valued holomorphic in |x|>b with its value 1 at x = oo.
Moreover X0(x) = limX(x, t) exists uniformly on every compact subset of

?-»o
|x| > b. Hence X0(x) is also holomorphic at x = oo , and has the leading behavior

1 +0(x~1). On the other hand, (2.3) and (2.7) imply

lim ¥0(x, t) = limr
f-*0 t->0

= xAC.

This proves
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thereby completing the proof of Proposition 2.1.

We note that, given the connection matrices C(fl\ C(*°C, the Riemann

problem (2.10) has a solution Y(x, r) for small t and the coefficients A^(t)9

Bv(t) necessarily behave like (2.4), provided the Riemann problems (2.7), (2.8)

admit solutions with some C. This follows from the uniqueness of Y(x, 0-

Now we apply the results above to the present case of PVI, where both of

the Riemann problems (2.7), (2.8) can be solved in terms of hypergeometric

functions F(a, /?, j\ x).

Let us summarize the classical results. Consider the Riemann problem

(2.11) 7(x) =

the eigenvalues of L(0) = 1 — y, 0

the eigenvalues of L(1) = y — a — ft— 1, 0.

with the assumption

The monodromy matrices M(v) = e2niL(v) (v = 0, 1) satisfy the constraint M(1)M(0)

-2nia. \
~2iriR h which can be solved ase 2nipj>

eni(y-a-0) /COS 71J — e~ni(*~^ COS n(j — OC — /?) pM (i) = __—.
^s in7T(a —p) \ ^ — cos7cy + e7r '(a~^)cos71(7 —a —j9)

AT(o) = .. e~;iy (cos n(y -a ~ ̂ } - e"i(a~/!) ~«««-"/»
zsm7r(a —p) \ —e-m(z-P)q —coBn(y — a~^) + enl^~^cosny

pq=4 sin Tia sin n/3 sin 71(7 — a) sin n(y — f}).

In order that (2.11) has a solution, it is necessary and sufficient to have the

following conditions.

(i) p = 0 if one of a, a —7 + 1, — /?, —(/? — 7+1) is a positive integer

(ii) g = 0 if one of —a, — (a — 7 + 1), /?, /? — 7 + 1 is a positive integer.

Set
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(2.12) Y(x;a, />, y)

a(g-
-j8)(a-0 + l) x

, thenT1 V1 7(x; a, /?, r)(1
/.) gives the solution for

some r^Q. If ajS(a — y + !)(/? — y + l)=0, then either of the following solves

°
For reference we give below the local behavior and the differential equation

for Y(x; a, & 7).

1))x~ (x->oo)

where

»-« \1

.-.,(.-y+1, _ i(,_
(0 )= r(y-j8)r(a) r(y-a)r()8)

"v

r(l-a)r(j8-
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dY _r i i / jS-y + i \(-«j8)
dx I x fi-a \ x-y +

Returning to the situation (1.4), we find that

11IH JL \Xy t) I I JL I ̂ V , - \^V oo \J 1 \J J , _

r-»o \ r

with some r ̂  0. Without loss of generality we may take the overall parameter

r to be 1. y0(x) = lim Y(x, t) satisfies
t->0

4fl

We have also

/*, 0

where G,=G^ (! _,)"\ C1 = (1 _s) C<« with «= -i- (fl. - ^ - a), 0 =

-^-(-floo-fli -ff),y = l-o-,andSisgivenin(1.8). Hence ?0(^)= limr^yffx, 0
^ t^o

satisfies

(2 . 14) =--+ - - Y 0dx \ x x— 1 /

From (2.4), (2.13) and (2.14), we obtain the following asymptotics of A^t):

(2.15) A^-A^,

A0(t)+ ±-eo-I2~tA(A$+ ±e0-I2)rA
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! + <r) (00-0,- f^r'

- 0§)(0oc -0,-<

The case ff = 0 can be incorporated if we set J = l + (rli and let <r-»0. From the

definition (1.2) of the r function and (2.15), using

(2.16) -^-(^-l)-^-logT(0)=0co(^(0)22-y0?

we obtain (1.9), (1.9)'.

Remark 1. The asymptotic expansion for the Painleve transcendent y(t)

itself can be obtained by (2.15).

Remark 2. From the argument above, we see that the assumption (A.3)PVI

can be relaxed to include the following case.

If one of — (On ± 0! ± 'a) is a positive (resp. negative) integer, then (M(1))12
— 1

= 0 (resp. (M(102i=0)- If one of — (90±9t±
f(r) is a positive (resp. negative)

integer, then (C<°>M( t>C(°>-1)12 = 0 (resp. (C^M^C^'l)21 =0).

§3. The Fifth and the Third Painleve Equations

By a similar reasoning as in the previous section, one can derive the short

distance expansions for the fifth and the third Painleve equations.

First consider the case of PV, whose linear problem is
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(3 n ^ = (Ao(t}
v ' ' dx \ x x-t

8T __ At(t) y
dt ~ x-t '

We set

the eigenvalues of Av(f)= + ~0V (v = 0, ()

diagonal of A0(f) + At(t) = -

Then XO = ( ^ ( 0 ) i 2 ( ^ o ( 0 ) u + ( ^ ( 0 ) u + ( ^ o ( 0 ) 1 2 satisfies (PV)
with the parameters

= l-eo-9t, &=-

The i function is defined by

(3.2) -A

and

satisfies

We assume

(Al)pV 00>

Let 7J-(x, r) be the solutions of (3.1) that have the normalized asymptotic behavior

as x-> oo in the sector «^.= {xeC | —^-(2/-l)<argx<-^(-2/ + 5)}, ; = 1, 2, 3.^ ^
Namely:
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They are related to each other by

(3.4) Y2(x,t) = Yl(x,

Y3(x, t)=Y,(xeM
9 t)e*~-e = Y2(x, t)

with some constants a, 6eC. At the regular singularities x = 0, t, Yj(x, t)

has the behavior

(3.5)

The "Stokes multipliers" a, b and the connection matrices C(0)
3 C(r) con-

stitute the monodromy data in the sense of [7]. They satisfy

(3.6)
\a l+ab

Af(v ) = C (v) - l I6*' " C(v) (V=0, /).
\ e-«»ev

In order to parametrize them we set

In the sequel we assume

(A2)

(A3)PV -y (0

Then the following parametrization is possible :

(3.7)

— v~l
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sin |- (9t + 00 + ff) - se~™ sin 2- (9, + 60 - a)

V sin - (9t -60 + ff) sin (9, - 00 - a)

(3.7)' D^C('>D

n—(0 ( + 00) (^sin —

x sin - ( d t — 90)— nsmn6t x s i n - ( 0 ( — 90)— T t s i n T r ^ t S i n -

s1+ni s1s'm~900-ncos-000

Here D(t\ D(0) and D are invertible diagonal matrices.

Theorem 3.1. Under the parametrization (3.7)-(3.7)', we have, for

(3.8) T(*)~const. /(ff

A _
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// o- = 0, then

(3.9) r(0 -const, r«->4 "l + - 0f

= l-S1-logf, and

These formulas are derived in the same manner as in Section 2. We need

also the confluent hypergeometric functions. Set

(3.10) Y,(x;K,a)
2

± « * i - K 2 _1+K)/2f a / 2

where FFKj//x) denotes the Whittaker function [11]. Then

K, a ~ ( + x - ) e x^oo n

5 , Y3(x; K, a)=Yl(x; K, a)
V f l ™ 1 / \U

with Y3(x; K, a)=Yl(xe2ni; K, ff)e"i^ -«/, and

:iic 1

2 j \ 2 j v 2 ; v 2
-r(-g)—_ _ __ ̂  , ,. —_

ff- ie) -1 '_
c —

5 ^^KO-

y(* + K)
2
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The differential equation for Y/x ; K, a) reads

Y
'dx \x 2 \a + K K \ O

We have then the following result.

l i m f 1 \Y1(x,t)(l

t-»o \ r I 2 \ r

, l-00)Ci,

where

1 ^-1

iim r-( )Y,(fJc, 0't->o \ r

where /I = j-( -0
fl«

 ff~9^)andG1 = Gel _< B^ + a } , C1=( _«9«, + (7 )
Z \ W " r i / o D i^oo / \ J - ^ - / \ A ^ /

x C0ooff. For 0- = 0, one can take the limit er-»0 by setting 5 = 1 + 0-^. The rest of

the argument is the same, except that we use — r-(f -i- logr J =(A/0)ii m

CLl \ ttl /

place of (2.15). As a result we obtain

from which the behavior of the fifth Painleve transcendent y(t) follows.

Now we proceed to PHI. Consider the linear differential equation

(3.H) *I
V ^
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Let B(f) = G(t)-1B(f)G(t)9 and set

(3.12) diagonal of 2

diagonal of 5(r)= -y I °
^ \ ~~^o

Then y(f)= — B(t)l2l^/tA(f)12 satisfies (PHI) withrespect to the variable ?=v/f,

where

Define the T function by

Setting

we have

- - -
dt2 dt\dt JV dt

The monodromy data for (3.9) are introduced in the following way. At

= oo, there exist unique solutions Y/x, 0 O' = l, 2, 3) such that

(3.14) Yj(x, 0 ~ ( l + 0 ( x - 1 ) ) x ~ - 9 - 0 x->oo in

1 O1

Y2(x,t)=Y1(x,

Y3(x, OsY^xe2"', t^C'-oJ =Y2(x, .,, n j

where «$*y = {x e C | - -5- (2/ -1) < arg x < - ~ (2j - 5)}. Likewise, at x=0,

there are solutions Y7-(x, t) (j = l, 2, 3) with the properties

(3.15) Y/x, 0~G(0(l+0(x))xT(e°-JeCo)l, x_»o in ^/t)
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73(x, t) = Y,(xe-™, t)e«'(e°-eo) = Y2(X, /)( ̂  \

where &ffy = {xeC\ -^(2j-l)<arg(±-}< - ?-(2j-5)}. We fix a path y
2* \ X / JL

joining oo and 0 so that xe^'1 (resp. xe ^2(0) as *-»oo (resp. x-»0) along
7, and define the connection matrix C by

(3.16) Yl(x9t)=Y2(x9t)C.

Here both sides signify their branches on y. The monodromy data for (3.9)

are a, b, a, b and C. They are related through

(3.17) (' \W'--.J=<-( l
v \a l + f l 6 / \ -a

Let us introduce cr e C by

(3.18) eKiB-ab + 2 cos 710^ = enifloaB + 2 cos 7C00 = 2 cos TKJ

the first equality being a consequence of (3.17). Again we assume

(A.l)pm 0<;Re(7<l

5 - 0

Then we can parametrize C as follows :

1
(3.19)

2is I

l

where /c, 5 are nonzero constants,
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(T=0 C = k _ 6e^

(3. 19)' 2/

Theorem 3.2. Under the assumptions (A.l)PII1-(A.2)pln and the para-

metrlzation (3.19)-(3.19)', the following asymptotic expansions are valid.

(7^0 T(0- COllSt. t^-^

4(72(1-(T)2

a-t

o = 0 r(0 ~ const. rs*/

(3.20)'

where 0 = 1 — ̂  —log f,

Example. As an application of the formulas above, let us consider the

special case of PHI where the connection matrix C is 1. In view of (3.19)-

(3.19)', this happens if and only if s = l (or s t=0) and 00 + 8Ke2Z. Here

we discuss the case

The general case of 90 + 9-X)e2Z can be achieved by the Schlesinger transfor-

mation ([7] II).

It is known ([5] IV) that both the matrix Y(x, i) and the T function allow

convergent series expressions as follows.
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V V .

n=o o Jo j=i n

fl - - - 1 - - - xQ'2ex+tx-1

1=1 xt + xl+LJ x2n-x

21

ex: f oo foo 2n+li - iZA^ ... n
n=0 JO Jo 7 = 1

/ v v v \0 / 2n 1 \ 1
/ XlX3-"X2n-\ \ f -j-r ___L__ \___L___ Y- 0/2

Xl r y ...r -
 X2n+l ) 111 , - ) y ,r *

\ ^2^4 %2« / \Z = 1 Xl~T~Xl+l / X2n+l ^X

OC fOO 2/10 /1 x - v - -V -V . . .V

!(*, /))22= Z ̂  - n - - g " ( ' J + " 7 ) ""'
»=0 Jo Jo 7 = '"

(3.21) e'r(0
oo ; 2/i foo foo 2n / ^^ \ / >• -v . . -r- z — \ - n(4^g" ( jc j+fx" ))( ' 3 2"-1

n=i n Jo Joj=i\2n /\ JC2^4-"^2n

In particular, (3.21) is related to the two point correlation function of the Feder-

bush model ([5] Supplement to IV).

Let

(xe"", 0)21

73(x, f)=Yl(xe2ni
9 t)e-*ie(

Then we have the relations (3.14) with

The parametrization (3.18) reads

(3.22) A2 - -

Hence (3.20)-(3.20)' yield the following result.

Proposition 3.3* Let i(t) be defined by the series (3.21). Assume that

-yA2 — cos 7i0 is not a real number ^1, and let a be defined by (3.22), 0:g

Recr<l. Then the short distance behavior f->0 of t(f) is given by



const.
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(if
4<72(l-cr)2

^const. r02/4( 1+ •^-rt(Q
2 + 2Q + 3)+'~) (if cr=0)

where

-log?.

The particular case 0 = 0 agrees with the result of McCoy-Tracy-Wu [3]

(for v = 0).
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