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On the Instability of a Minimal Surface

in a 4-Manifold Whose Curvature Lies
in the Interval (1/4, 1]

By

Shigeo KAWAI*

Introduction

Let M be a compact manifold minimally immersed in a Riemannian mani-

fold. M is said to be unstable if the second variation 62(u) of the volume of

M for some normal vector field u is strictly negative.

The purpose of this paper is to prove a generalization of the following

result of Aminov [1].

Theorem (Aminov). Let M be a surface minimally immersed in an

orientable Riemannian manifold of dimension 4, whose curvature lies in the

interval (1/4, 1]. Suppose that M is homeomorphic to the 2-sphere S2. Then

M is unstable.

This theorem is related to the conjecture of Lawson and Simons [5], i.e.,

every minimal current in a complete simply connected Riemannian manifold

whose curvature lies in the interval (1/4, 1] is unstable.

The proof of this theorem can be roughly outlined as follows: First he

shows that if a non-trivial cross-section u of the normal bundle v of M satisfies

a certain differential equation ((*) in §1 in our terminology), then 62(u) + d2(Ju)

< 0, where J is the complex structure defined by the orientations of M and the

ambient manifold. Secondly he constructs a solution of (*) on M which is

homeomorphic to S2.

In this paper we investigate the dimension of the solution space H of

(*) for a general immersed surface and obtain the following lemma.

Lemma 2. Let /(v) and g(M) denote the Euler number of the normal
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bundle v of M and the genus of M respectively. Then

We note that all the above arguments work well for J and — J equally.

Hence we can assume that the Euler number #(v) is non-negative. For details,

see Remark below the proof of Proposition 3.

As a corollary we get the following generalization of the theorem of

Aminov [1].

Theorem. Let M be a compact orientable surface minimally immersed

in a orientable Riemannian manifold of dimension 4, whose curvature lies in

the interval (1/4, J]. Suppose that the Euler number of the normal bundle

is greater than or equal to the genus of M. Then M is unstable.

To prove Lemma 2, we give a structure of a holomorphic line bundle to

the normal bundle v of M whose holomorphic cross-sections u coincide with

the solutions of (*), and we apply the Riemann-Roch theorem.

The paper is divided into three sections. In the first section we represent

the first step of Aminov 's argument in our terminology and reduce the instability

problem to the differential equation (*). In Section 2, we investigate the

dimension of the solution space of (*), and prove Theorem. In Section 3,

we give examples.

Throughout this paper all manifolds and maps are to be differentiable of

class C°° unless otherwise stated.

The author wishes to thank Professor M. Adachi for continual encourage-

ment, and C. Matsuoka for many helpful conversations.

§ 1. The Second Variation and the Equation J°Fu = Pu°I

Let M be an oriented surface minimally immersed in an oriented Riemannian

manifold N of dimension 4. We can define a complex structure J of the normal

bundle v of M by the orientations of M and N. Let V denotes the covariant

differentiation of v associated to the induced metric.

Proposition 1. The complex structure J is parallel.

Proof. Let n be a unit cross-section of v around a point p of M. Then

{n, Jn} is an orthonormal frame of v around p which satisfies the following

equations :
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for every tangent vector X to M at p. Since

we have FXJ = 0. Thus the proposition is proved.

Let R be the curvature of v. For every cross-section u of v, let us define

a function S(u) on M as follows :

where e is a unit tangent vector to M at p, and I is the complex structure defined

by the orientation and the induced metric of TM.

Proposition 2. // a cross-section u of v is a solution of the differential

equation

(*) J°Pu = P u o I ,

then u satisfies the equation

where A=F*°F is the Laplacian in v.

Proof. Let e be a unit tangent vector to M at p, E be a local vector field

around p such that E(p) = e, (7E)(p) = Q. Then

R(e,ie)u=rerIEu-rIerEu

Thus the proposition is proved.

Let jR be the curvature of N. For every cross-section u of v, let us define a

function 5 on M as follows :

where e is a unit tangent vector to M at p.

As is well known, the second variation S2(u) of the volume of M in the direc-

tion of a normal vector field u is written as follows :
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where ||^"(p)|| is the norm of the second fundamental form of M in the direction

of u(p)9 and dVis the volume form of M (cf. [7] p. 73. Our A is - F2 in [7].).

Proposition 3. If the sectional curvature of N lies in the interval (1/4, 1],

and ifu^Qisa solution o/(*)} then

Hence either 62(u) or 62(Ju) is negative.

Proof. We express the integrand as follows :

<An, n> + <AC/w), Juy-S(u)-S(Ju)-\\A«\\2-\\AJ"\\2

=[<AW, M>+S(M)+<A(JW), Juy+s(Ju)~]
+ l-S(u)-S(Ju)-S(u)-S(Ju)-\\A«\\2-\\AJ«n.

Since the first parenthesis vanishes by Proposition 2, it suffices to show

that the second parenthesis is strictly negative when u(p)^Q. Let e be a unit

tangent vector to M at p. By the equation of Ricci, we have

*, Ie)u(p\

Hence the second parenthesis at p is

e5 Ie)u(p), Ju(p)y - S(u) (p) - S(Ju}

The first parenthesis of the above is not positive. The inequality of Berger [2]

implies that if the sectional curvature of N lies in the interval [a, 1] for some

positive a, then

2|<JJ(e, Ie)u(p),

(**)

Thus the proposition is proved.

Remark. If we consider — J instead of J, S(w) and S(Jw) should be re-

placed by — S(u) and —S(Ju) respectively in Proposition 2 and Proposition 3.

But the inequality (**) remains valid even though J is replaced by — J. Hence

Proposition 3 is true for J and — J equally.
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§ 2. The Solution Space of J° Vu = FM°I

In this section we investigate the solution space of the equation (*).

Lemma 1. The normal bundle v has a structure of a holomorphic line

bundle whose holomorphic cross-sections coincide with the solutions of the

equation (*).

Proof. First of all we assert that for every point p of M there exists a non-

vanishing C°° solution np of (*) around p. Let (x, y} be the local coordinate
obtained from the complex one z = x + iy. Then (*) is equivalent to the equation

(***) /F a u= V 8 u .
Bx dy

We seek two C°° functions /, g such that up=fn + gJn is a non-vanishing

solution of (*), where {n, Jn] is a local orthonormal frame of v. For this

purpose we write (***) as follows:

= - r - / < F « L « , Jri> ,

.
dy

Denoting < V_$_n, Jn) and — <F_a_n5 Jn) by a and ft respectively, the
dy dx

above equations are equivalent to the following:

The complex function theory enables us to solve the equation

locally (for example cf. Morrow and Kodaira [6] Lemma 6.2.). So, taking
f+ig = expF, we get a non-vanishing solution up=fn + gJn of (*) around p,

and the assertion is proved.

Since {up, Jup] defines a frame of v around p, we can define a bundle chart

<pp: UpxC->n"1(Up) of v by setting

<pp(z, a + ife) = flWp(z) + bJup(z),

where L/^ is the domain of up, and 7r is the projection of v.

If Up n Uq^0, p, q eM, we can write uq = mup-\-nJup, where ?n and n are
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U-valued C°° functions. Since uq satisfies (*), for every tangent vector X to

M at z e Up n Uq, we have

rixuq - J Fxuq = m( Fixup - J Fxup) + nJ( Fixup - J Fxup)

+ 1(1 X)m + Xn~\up + 1(1 X)n - Xm~]Jup

= 0.

Since up also satisfies (*), we have

These equations show that the C- valued function m + in is holomorphic on

upnur
Since the transition function gqp: Up n Uq-+GL(l, C) is written as follows:

the bundle charts defined above give a structure of a holomorphic line bundle

to the normal bundle v.

The fact that holomorphic cross-sections of this structure coincide with

the solutions of (*) is a straight consequence of the definition of the bundle

charts. Thus the lemma is proved.

Let %(v) and g(M) denote the Euler number of the normal bundle v and

the genus of M respectively. Then by the Riemann-Roch theorem we have

dim H°(M, v) - dim H\M, v) = x(v) + 1 - g(M) .

Hence by Lemma 1, we get the following lemma.

Lemma 2. Let H denote the solution space of the equation (*). Then we

have

Now the proof of Theorem is clear by Proposition 3 and Lemma 2.

As remarked in the introduction and Section 1, we can choose the orienta-

tion of the normal bundle v so that %(v) is not negative. Hence we get the

following corollary which is one of the main result of Aminov [1].

Corollary 1. // M is homeomorphic to the 2-sphere S2, then M is

unstable.

Taking g(M) = 1 in Theorem, we get the following corollary.
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Corollary 2. // M is homeomorphic to the torus T2, and if the normal

bundle is non-trivial, then M is unstable.

§ 3o Examples

In this section we give examples other than S2 which satisfy the assumption

of Theorem.

Proposition 4. Let M be a minimal submanifold of (IV, g), g* = p2g be a

new metric for some positive C°° function p on N. Then M is minimal with

respect to g* if and only if the restriction of the vector field grad(logp) to M

is tangent to M.

Proof. Let F* and V denote the covariant differentiation with respect to

g* and g respectively. Then we have

r$Y= rxY+(dlogp)(X)Y+(dlogp)(Y)X-g(X9 F)grad(logp)

for all vector fields X and Y (cf. Chen [3] p. 23, (5.1)). By this formula the

proposition can be proved by the straightforward calculation.

Let us consider a compact complex submanifold M of the n-dimensional

complex projective space CPn with the Fubini-Study metric gQ of holomorphic

sectional curvature 1. M is minimal because a complex submanifold of a

Kaehler manifold is minimal.

We shall show that we can change the metric gQ conformally around M,

so that the sectional curvature lies in the interval (6/4, <5] for some 6 > 0, and M

is minimal with respect to the new metric.

Making use of the identification of the tubular neighborhood U of M with

the total space of v, consider a C°° function pE on U defined by p£(x) = l—e\\x\\2,

x e 17, for sufficiently small e>0.

If we define a new metric ge on U by gE = (pE)2g0, M is minimal with respect
to ge by Proposition 4.

Propositions. For sufficiently small e>0, the sectional curvature of gE

at every point of M lies in the interval (1/4-He, l+4e].

Proof. Let X and Y be orthonormal tangent vectors of CPn at peM.

Let KE(X A Y) and KQ(X A 7) denote the sectional curvatures of g& and gQ re-

spectively, for the plane section X A Y spaned by X and Y. Then we have

(cf. Chen [3] p. 24 (5.5))
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Ke(XA Y) = K0(XA Y)-g0(s(Y, Y)X, X) + g0(s(X, 7)7, X)

-g0(Y, Y)g0(SX, X) + g0(X, Y)g0(SY, X),

where

s(X, Y) = (FxdlogpE)(Y)-(XpE)(YpE) + \\gTadpE\\2g0(Xy 7),

Since (d log p£) (p) = 0, we have

= K0(X A 7) - lX(XpE) +

where X (resp. 7) is any vector field with X(p) = X (resp. 7(j?)=7). Let us

decompose X to the tangent component XT and the normal component XN.

Let i* and P be vector fields around p with X^(p) = XT and X«(p) = XN

such that XT is tangent to the hypersurface pE = constant, and the integral
'"N^

curve c(f) of XN with c(0) = p is a geodesic of (CPn, gf 0). Then we have

Applying the same process to 7, we get the identity

Clearly the maximum value of KE(X A 7) for all plane sections at p is 1 4- 4e.

When X and 7 span the real subspace of Tp(CPn), K0(X A 7) takes the minimum

value 1/4, and U-Y^p + HI™!!2 is equal to 1. Hence the minimum value of

KE(X A 7) is greater than 1/4 + e for sufficiently small e > 0. Thus the proposition

is proved.

Since M is compact, it follows that for sufficiently small £>0, there exists

a neighborhood V of M in CPn such that the sectional curvature lies in the

interval (6/4, 6] for some positive d > 0.

Now consider the nonsingular algebraic curve M defined by

zg + z? + *! = 0,

where z0, zls and z2 are the homogeneous coordinates of CP2. The genus of

M is 1 (cf. Morrow and Kodaira [6]), and M is homeomorphic to the torus

T2. Suppose that the normal bundle v of M=T2 is trivial. Then T(T2)©v

= i~1(T(CP2)) is trivial, where i~ i(T(CP2J) is the bundle induced by the inclusion

i: T2-+CP2. Hence the Chern class
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is equal to zero. This contradicts the facts that c^(T(CP2))^Q and i* : H2(CP2;

Z)-»H2(T2i Z) is injective. Hence v is not trivial.

By the preceding argument and Theorem, we can conclude that the minimal

surface T2 of (K g£) is unstable for sufficiently small g>0.

Remark. In fact the genus of the nonsingular algebraic curve M defined

by the homogeneous equation zg + zf + z| = 0 is — d(d — 3)H-1, and we can show

that the Euler number of the normal bundle of M is d2. Since d2 is greater than

-y d(d — 3) + 1 for every positive integer d, we get many more examples.
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