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Projectivity of the Space of Divisors on
a Normal Compact Complex Space
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Introduction

For any complex space we shall denote by Dy the Douady space of compact
complex subspaces of X [1]. Let Zy< Dy x X be the universal subspace so that
for each d € Dy, the corresponding subspace of X is given by Zy ,:=Zy n ({d} x X)
c{d}x X=X. Recall that a Cartier divisor on X is a complex subspace of X
whose sheaf of ideals is generated locally by a single element which is not a
zero divisor. Let Div X ={d e Dy; Zy ,is a Cartier divisor on X}. Then Div X
is Zariski open in Dy, and in fact is a union of connected components of Dy
when X is nonsingular. Then the purpose of this paper is to prove the following:

Theorem 1. For any normal compact complex space X every connected
component of Div X is compact and projective.

When X is nonsingular, the proof actually gives a more precise structure
theorem of Div X (cf. Proposition in §1 below). The motivation for this theorem
comes from Fischer-Forster [2] where they proved that there exist only a finite
number of reduced divisors on any compact complex manifold X which are
mapped surjectively onto Y where f: X — Yis an algebraic reduction of X (cf. §1);
this implies that almost all the divisors on X are obtained as the pull-backs of
those on Y which is projective. Theorem 1 reveals a striking contrast to the case
of codimension> 1, where in order to obtain the compactness even of the ir-
reducible components of Dy in general, it is necessary to assume that X is
Kéhler or more generally that X is in & (cf. [9]). Indeed, the analogy of
[2] fails in codimension>1 as was shown by Campana [0].

Though we prove the compactness and projectivity at the same time in
Theorem 1, there is an easy alternative proof for the projectivity once the com-
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pactness is established. Namely we shall also show the following theorem,
stimulated by a result of Ohsawa ([8] Theorem 2) (cf. Remark 2).

Theorem 2. Let X be a connected normal compact complex space and A
an analytic subset of X. Then for any irreducible component D, of Div X
the subset D,(A):={deD,; Zy,N A#@} is a support of an ample divisor on
D, if D(A)#D,.

The projectivity is used in [3] to get a local projectivity of a model of a

relative algebraic reduction for a fiber space in €.

Convention. For any complex space B, B,.; denotes the underlying
reduced subspace. A complex variety is a reduced and irreducible complex
space. A morphism f: X—Y of complex varieties is called a fiber space if f
is proper and the general fiber of f is irreducible.

§1. Preliminary Reductions

Let f: X—Y be a morphism of complex varieties. Let Z< X be a Cartier
divisor on X. Then we call Z a relative divisor over Y if the following equiva-
lent conditions are satisfied: 1) Z is flat over Y. 2) Z contains no irreducible
component of the fibers of f (cf. [5], 21.15).

Conversely, if Z< X is a subspace which is flat over Y and if Z, is a Cartier
divisor on X, for every y € Y, then Z is a relative divisor over Y ([5]).

Thus if we set Z(X)=ZyN(DivX xX)cDivX x X, Z(X) is a relative
divisor over Div X, Zy being flat over Dy. Further Div X has the following
universal property. Let ZS Tx X be a relative divisor over T with respect
to the natural morphism p;: Z—T where T is any complex space. Then there
exists a unique morphism 7: T-Div X such that Z=(rxidy)"(Z(X)), and
hence, that p; is induced from the universal morphism p: Z(X)—-Div X. So
we shall call Z(X) the universal divisor associated to X.

Let X be a compact complex space. Let Pic X=H!(X, 0%) be the Picard
variety of X, which has the natural structure of a commutative complex Lie group
[6]. Let ¢;: H\(X, 0%)—>H*X, Z) be the first chern class map and NS(X)
=Imc,, the Nerson-Severi group of X. Forye NS(X) we set Pic, X =c7(y)
so that we have

PicX= ]J] Pic X.

veNS(X)
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In particular Pic ; X =Ker ¢, is the identity component of Pic X.

Now Z(X) defines a line bundle [Z(X)] on Div X x X and then by the
universality of Pic X we have the natural morphism uy: Div X —Pic X, which
eventually associates to each d € Div X the corresponding line bundle [Z(X),]
(cf. [3] and [4], exposé 234, §4). Further, we know that uy is projective and the
fiber over L e Pic X is naturally identified with the projective space P(I'(X,L)):
=(I(X, L)—{0})/C*, i.e., the linear system on X associated to L, if it is
not empty (cf. [3], [4]). Thus if we set (Div X) :=puy(Div X)cPic X, the
following lemma holds.

Lemma 1. (Div X),.q={pePic X; dim I'(X, L,)>0}—{e} where e is the
identity of Pic X and L, is the line bundle on X corresponding to p.

Note that (Div X)~ is an analytic subspace of Pic X as uy is proper, though
this also follows from Lemma 1 easily. We set D,=ux'(Pic, X) and p,=pux|D :
D,—Pic,X. Let Z,=D,x X be the restriction of Z(X) over to D,. We have
of course DivX=[[D,. Let D,=u/(D,), so that (DivX)~=[]D,. Then by
virtue of the above éescription of Div X we see that our task is toyshow that every
connected component of D, is projective.

Let X be a compact connected complex manifold. Let
X* 2, x

(%) fl
Y

be a holomorphic model of algebraic reduction of X. Namely X* is a compact
complex manifold, ¢ is a bimeromorphic morphism, Y is a projective manifold
and f is a fiber space which induces an isomorphism f*: C(Y)=C(X*) of the
meromorphic function fields of X* and Y. Let f*: Pic, Y-Picy X* and ¢*:
Picy X —Picy X* be the natural homomorphisms. Then we know that ¢* is
isomorphic and f* is injective (since f,O0x.=0y). Thus we get an injective
homomorphism @*~1f*: Pic, Y>Picy, X. We omit the proof of the following
lemma, which is standard.

Lemma 2. The abelian (group) subvariety P* of Picy X, which is by de-
finition the image of Picy Y via @*~1f*, is independent of the choice of a holo-
morphic model of algebraic reduction of X as above and depends only on X.

Each Pic, X is naturally a principal homogeneous space under Pic, X.
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We denote by P2<Pic, X any orbit of the induced action of P4 Picy X on
Pic, X.

Lemma 3. Let ye NS(X). Let C be any complex subspace of Pic, X
such that C, 4 is contained in an orbit P4 of P* in Pic, X. Then C is projective.

Proof. Clearly we may assume that Pic, X=Pic, X and P3=P° Let
P2=(Pic, X)/P“ be the quotient Lie group and q: Pic, X — P, the natural homo-
morphism. Let é=gqg(e). Since g is a holomorphic fiber bundle with typical
fiber P there exists a neighborhood V of e such that g is projective (in fact
trivial) over V. In particular any infinitesimal neighborhood of P in Pic, X,
e.g., the space P¢, =(P%, Op;.,x/#""!) where # is the defining ideal of P? in
Picy X, is projective. Since Cg P§,, for some n>0 by our assumption, C also

is projective. qg.e.d.

By this lemma, if we prove the next proposition, Theorem would follow
in the case X is connected and nonsingular, in view of the projectivity of u,.

Proposition. Let X be a compact complex manifold. Let ye NS(X).
Then any connected component of D, .q: =D, ca) is contained in an orbit
P2 of P4 on Pic, X.

§2. Proof of Proposition

First we shall fix some notations. Let X be a complex space.

Let n: Div X —(Div X).eq be the normalization of (DivX),.4 and p:
Z(X)—»f)iv X be the pull-back of the universal family to Div X. Let T be any
normal complex space and Z< Tx X a relative divisor over T. Then by the
universal property of Div X and the normality of T we can find a morphism t:
T-Div X (not necessarily unique) such that py: Z— T is induced from § via .
We call any such morphism also a universal map associated to p;y. For any
irreducible component D, of (Div X),., we denote by D, the corresponding
irreducible component of Div X and by Z,—D,, Z,< D, x X, the pull-back of the
universal family to D,. Then n,:=n b, D,—~D, is the normalization of D,.

Let '‘Div X (resp. "Div X) be the union of those irreducible components
D, of (Div X),.q (resp. D, of DivX) such that Z, (resp.Z,) is reduced and
irreducible. Then n induces n’: ‘Div X —'Div X which is the normalization
of 'Div X.

Let Z&Tx X and 7: T—Div X be as above with Z reduced and irreducible.
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If D, is the irreducible component containing (T), then D,=’DivX. In fact,
if Z, is either nonreduced or irreducible, then Z,x 5 T is either nonreduced
or irreducible.

We record the following useful result of C. P. Ramanujam.

Lemma 4. Let X be a complex manifold and S a normal complex space.
Let Z= S x X be a reduced analytic subspace of pure codimension 1. Suppose
that Z contains no subspace of the form {s} x X, seS. Then Z is a relative
divisor over S.

Proof. See [5], 21.14.1.

The next lemma reduces our problem to considering Div X.

Lemma 5. Let X be a compact complex manifold. Let D, be any ir-
reducible component of (Div X),.y. Then there exist irreducible components
D,,.-.s D, of (Div X),.q and an isomorphism ¢,: D, x---x D, —D, such that
1) Za,. are reduced and irreducible, i.e., ﬁaig’f)ivX and 2) if uy(D,) € Pic, X
and uy(D,)gPic,, X, then y=7y,+---+y, and f,@, =Y (f, x X f, ) where
fly= HxNys oy, = pxh,, and Y,: Pic, X x---x Pic, X—Pic, X is given by Y,(p;,...,
Pm)=D1+ -+ P, (addition in Pic X).

Proof. Let Z,;=D,xX,i=1,...,m, be the irreducible components of
Z,:eq and ¢, their ideal sheaves. Since Z, is a relative divisor over D, and D,
is normal, by Lemma 4 Z,,i are also relative divisors over D,. Moreover ¢
= gk1... gkm is the ideal sheaf of Z, for unique positive integers k; (cf. [5] IV,
21.6.9). Let 7;: D,~»DivX be a universal morphism associated to Z,,—D,.
Let D, be the irreducible component of Div X which contains t(D,). Let D,
=D, xxD,,. Let Z,:=D, x-+xZ,x-xD, (Z, on the i-th place)
naturally considered as a subspace of D, x X. Let ¢} be the ideal sheaf of Zai.
Let Z,= D, x X be the relative divisor defined by the ideal sheaf ¢’ = gik1... glkm
(cf. Lemma 4). Let ¢,: D,,—»ﬁivX be an associated universal morphism.
From our construction it then follows readily that ¢,(t; % --- X 7,) induces the
identity of D,. In particular D,< ¢ (D,). However, since D, is irreducible and
D, is an irreducible component of Div X it follows that D,=¢/D,). On the
other hand, again from our construction it is clear that for any distinct points
d=(d,...,d,), d'=(d},...,d,)eD,, #1# 4. Hence ¢, is injective. Since
both D, and D, are normal, this implies that ¢, is isomorphic. Moreover, since
Za,,. are reduced and irreducible, the same is true for Z, ; 1) follows. We show 2).
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Let d=(d,,...,d,)eD, Then from our construnction Vol fl, X =0+ X [, ) (d)
= cl([zal,dl:lkl) Ftey ([Zak,dk:lkm) = cl([zal,dl]kl ®:-® [Zozk,dk]km = cl([za,qn(d)])
= B0). a.c.d.

Lemma 6. Let f: X—Y be a fiber space of compact complex varieties.
Let T be a complex variety and Z< Tx X a relative divisor over T. Then the
following conditions are equivalent. 1) f(Z)=Y for all teT, and 2) f(Z,)
=Y for some teT.

Proof. Let Z=(idrxf)(Z)cTxY. By the upper semi-continuity of
dimensions of the fibers of Z— T we see that the set A={teT; Z,=f(Z)=Y}
is analytic in T where we identify {t} x X with X and {t} x Y with Y. Let r
=dim X —dim Y. Let B={(t, y)eZ; dim Z, ,=r} where Z, ,={t} xfz'(y). By
the same reason as above B is analytic in Z. Then for any t€ 4, B,:=Bn ({t}
xY)#Z,={t}xY;, otherwise dimZ,=dimY + r=dimX so that Z,=X.
Hence if A#@, by the upper semi-continuity dim Z, ,<r for general (¢, y)eZ
and then for general te T—A4, dimZ,<dimZ, + r<dim Y + r=dim X, i.e.,
dimZ, < dim X — 2. This is impossible. Thus either A=¢ or A=T. This

shows the equivalence of the lemma. g.e.d.

Definition. Let f: X — Y be as in the above lemma. Let D, be any irreduci-
ble component of Div X. i) D, is called transversal to fif f (ZM)= Y for some
d e D, (and hence for all d € D, by the above lemma). ii) D, is called isolated
if D, consists of a single point.

Remark 1. D, is isolated if and only if there exists a proper analytic subset
A< X such that the supports of Z,,d are contained in 4 for all deD,. In fact,
since there exist at most countably many divisors whose supports are contained
in 4, Z,~ D, is a trivial family in the sense that Z, ;=Z, , forall d, d'e D,. More
generally if Z&Tx X is a relative divisor over T where T is any connected
complex space, and if Z,= A for any te T with A as above then Z— T'is a trivial
family in the sense that Z,=Z, for any ¢, t'€ T. (The proof is the same.)

Lemma 7. Let f: X—Y be a fiber space of compact complex manifolds.
Then there exists a natural bijective correspondence between the set €4 of non-
isolated and non-transversal irreducible components of 'DivX and the set
€, of non-isolated irreducible components of 'DivY in such a way that if
D,e €y and Dy e €y correspond to each other, then there exist an isomorphism
@p: Dy—D, and a point deDivX such that if d=u(d)ePicX, then [P,
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=d*f*fi;, as a morphism 5ﬂ—>PicmX where [i,=uxn,, fig=pyng, f*:PicY
—Pic X and d* is the translation by d.

Proof. Let UZ Y be a Zariski open subset over which f is smooth. First
we specify the correspondence. Let D, be any non-isolated irreducible com-
ponent of 'Div Y. LetFy:=idp, xf: Dyx X—Dyx Y. LetEy:=F§Z,cD,xX
be the pull-back of Z, to D, x X as a divisor. Since Z, is reduced and irreduci-
ble and F;| 5, xx,=idp, xfu: Dyx Xy=Dyx U is a smooth fiber space, E,
N(Dyx Xy)=F;(Z;n(Dyx U)) also is reduced and irreducible. Hence there
exists a unique irreducible component Ez; of E; .4 such that Fy(Ez)=Z,.
(Note that since D, is mnon-isolated E;; n(Dy;x Xy)#¢ by Remark 1.)
Since f is surjective, Em contains no subspace of the form {d}x X, de 5,,.
Hence E,, is a relative divisor over Dy by Lemma 4. Let 7,: Dy—»Div X be
an associated universal morphism. Let D, be the irreducible component of
Div X which contains 1:,,(5,,). As we have already remarked, actually we have
D,='DivX. Moreover, D, is non-isolated since E,, , moves as well as Z;,
when d moves in Dy, and it is non-transversal to f since for any d e D,. Z
=Ey 4and f(Ey )=2Z,,#Y. Weset a(D;)=D,.

Conversely, let D, be any irreducible component of 'Div X which is non-
isolated and non-transversal to f. Let F,:=(idp_ xf): D,xX—-D,xY. We
set Z,:=F(Z)<D,x Y. Then by Lemma 4, Z, is a relative divisor over Y since

D, is not transversal to f. Let t,: D,—Div Y be an associated universal mor-

«,75(d)

phism. Let 5,3 be the irreducible component which contains 7,(D,). Then
by the same argument as above 5,,g’i)iv Y and it is non-isolated (cf. Remark
1). Then we set b(D,)=D,.

We now show that the above correspondences a and b are in fact bijective,
inverse to each other, and have the property of the proposition. First, we note
that from our construction it follows readily that 7, is generically injective and
moreover that each fiber of 7, is discrete; for any d € 1,(D,), the support of Za,,,,
is contained in f~Y(Z,,) for each d’et;'(d) and hence by Remark 1 dim 7;(d)
=0. We further show that Z, , is reduced if Z, , is reduced and if Z, ,n Xy is
densein Z,,. 1In fact, since fy is a smooth fiber space, we have F;(Z, n (D, x U))
=Z,n(D,x Xy), both sides being reduced. Hence f~4(Z,,nU)=Z,,n Xy,
so that Z, ,n U is reduced if so is Za,,,. If further, Z, ;N Xy is dense in Z,,
then Z, ,n U also is dense in Z, 4 and hence Z, 4 also is reduced.

Now we fix D,<='DivX. We consider the corresponding D,=a(D,), 14



1170 AKIRA Fuikr

D,~D, and t,: D,~'DivY. Suppose that we have shown that t,- 7,=idp, s
that in particular t,(0,) 2 D,. Then, since D, and Dj are normal and irreducible,
(D) =D, and, in view of the generic injectivity of 7, and the fact that dim t;'(d)
=0, this would imply that 7, and 1, give isomorphisms of D, and D, and that ba
=identity. So we show that 7,-7;=idp,. Let Ve 5ﬂ be a Zariski open subset
such that ZM are reduced and ZM n U is dense in ZM for all de V. Then we
have only to show that 7,(t;|,)=idy. This follows if we show that Z,,),,:ZM,
for any d € V, with d’'=1,(d), as a subspace of Y. By our construction it is clear
that Zﬂ,d=(zx,d,)red, while by what we have proved above Z,, is reduced since
Z,4=Ej, 4is reduced and (E;; 4N Xy) is dense in E;; ;. Hence the assertion
is proved.

Next we fix D,. We consider the corresponding D,=b(D,), t,: D,~D,,
and 7,: D~B—>I~Jiv X. Then just as above we show that 7, - 7,=idp_ and then that
ab=identity. We set @4, =1,: D,=D,.

It remains to show the existence of deDivX satisfying fi,0,,=d*f*[i,.
Write E=E,, U E;, for a unique relative divisor E;, over D, with E; EE,,.
Then by our definition of £, we have Ej n(Dyx Xy)=E;xXy. Hence if
A:=X—Xy, then E;;cDy;xA. Hence by Remark 1 E;,—~D, is a constant
family, so that the image of an associated universal morphism 7,: 5/,—>l~)iv X
is a unique point. Then it suffices to take this point as d. (When E,,2=¢,
we set d=0.) g.e.d.

Proof of Porposition. Let D,=D,, be any irreducible component of
D, cq and D,=pu/(D,)SPic, X. Then it suffices to show that D, is contained
in some orbit P2=Pa(a). In fact, if D} is any connected component of D, ,.q
and Di= agl,- D,, then M P (a) also is connected and hence P, (a)=P,(a’) for
any o, o’ € U, since the orbits are mutually disjoint. Hence D! < P4 for a unique
orbit P4, Now we show that D,cP¢ for some P2 First, by Lemma 5
we infer that we may assume that D,<'Div X. If D, is isolated, then the as-
sertion is clearly true. So we may assume that D, is not isolated. We take a
holomorphic model (*) of algebraic reduction of X. Then by Lemma 7 applied
to ¢, we can replace X by X* so that we may assume from the beginning that
X =X* and f is defined on X. Now by Fischer-Forster [2] if D, is transversal
to f, then D, is isolated (cf. Remark 1). Hence we may further assume that
D, is not transversal. Then applying Lemma 7 this time to f, Proposition follows
immediately.
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§3. Proof of the Thecrems

Let X be a normal compact complex space. Let r: X—X be a resolution.
Since X is normal so that r,0g=0,, the natural morphism r*: Pic X—»Pic X
is injective.

Lemma 8. For each ye NS(X), r*(Pic, X) is a closed submanifold in
Pic X. In particular r* is a closed embedding.

Proof. It suffices to show that r*(Pic, X) is closed in Pic,X. Consider
the following commutative diagram of exact sequences

0 — HY X, Z) — H' (X, 0x) —> Pic,X — 0

0 — HY(X, Z) — HY(X, 05) — Pic,X — 0

where the vertical maps are injective and the horizontal sequences come from
the exponential sequences on X and X. Then it is enough to show that the
subgroup in H'(X, 05) generated by HYX.Z) and HL(X, 0x) is closed.
Fisrt, recall that we have the natural inclusions H!(X, B)—»>H(X, 0x) and
HY(X, R)»HY(X, 0g) of real vector spaces (cf. [6] IX, Prop.3.2). Then,
clearly the subgroup in H(X, R) generated by HX, R) and H(X, Z) is
closed. Since H!(X, 0y) is a vector subspace of H(X, 0g), from this the
lemma follows immediately. g.e.d.

Proof of Theorem 1. Clearly we may assume that X is connected.
Suppose that X is nonsingular. Then, as we have already noted, Theorem
follows immediately from Lemma 3 and Proposition. So suppose that X is
not nonsingular. Let y e NS(X) be arbitrary. Then we have only to show that
any connecled component D, , of D, is projective (cf. §1). Let r: X—X be a
resolution of X. Then there exists a unique 7 € NS(X) such that r¥(Pic, X)
¢ Pic, X. Then by Lemma 1 and the definition of r* we have r*(D, rea)
=Dj ca Nr*(Pic, X). On the other hand, every connected component of
Dy eq is contained in some orbit P4 of Pe=Pa(X) in Pic; X by Proposition.
Hence by Lemma 8, r*(D, , ,.q) is a closed analytic subspace of P4. Therefore
noting that r* is an embedding, by Lemma 3, D, , is projective as was desired.

Proof of Theorem 2. Since D, (A)=p(Z(X)n(D,x A)), D(A) is analytic.
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On the other hand, we have D (4)= U D,(x) where D(x)=D,({x}). Now

D(x)=Z(X)n(D,x {x})ED,is regarded naturally as a divisor on D, (not neces-
sarily reduced). It then follows that there exist a finite number of points x;,...,
X, €X such that D, (A4)= U D,(x;) as a set. (Recall that D, is compact by
Theorem 1.) Thus it sufﬁces to show that D,(x;) is ample for any i. Wefirst
note that under our assumption there exists a Zariski open subset U of X con-
taining x, such that D,(x) is a divisor on D, for any xe U. Further since the
divisors D (x), xe U, are all mutually algebraically equivalent, it suffices to
show that D,(x,) is ample for some fixed x, € U.

Claim. For any nowhere discrete reduced analytic subspace B of D, we can
find x e U such that 1) D,(x) intersect each irreducible component of B and 2)
B n D,(x) is nowhere dense in B.

In fact, let B, i=1,..., r, be the irreducible components of B. Fix a point b;
€B;—\U B; for eachi. Let Z, £ X be the corresponding divisor and then take
any xJ; lU U Z,. Then obviously b;&D,(x). Hence 2) is satisfied. More-
over since the natural map Zgz,—X is surjective by our assumption that dim B;
>0, D,(x)3 b} for some b;e B;, Hence 1) also is true. The claim is proved.

Now using this claim inductively we see that for any p=0 and any complex
subvariety C of dimension p of D,, we can always find x,,..., x, € U such that
Dy(x;) N -- N Dy(x,) N C is a nonempty finite set of points. This implies that
the intersection number D,(xq)? - C=D,(x;) - D(x3):----D,(x,) - C>0(cf. [7]).
Hence by Nakai crieterion (cf. [7]) D (x,) is ample. q.e.d.

Remark 2. The above proof shows in fact the following: For any com-
plex variety X and any compact subspace B of DivX, B(A)={deB; Zy,nA
#@} is a support of an ample divisor if it is a divisor on B at all. (Note that
B(A)= u B(x) and B(x) has the natural structure of a locally principal analytic
subspace of B.) See Banica, C., and Ueno, K., J. Math. Kyoto Univ., 20 (1980),
381-389, for the intersection theory on a general compact complex space gener-
alizing that of [7]. Further B-B(A) is affine if B(A4) contains no irreducible
component of B,.4. The result of Ohsawa [8] mentioned in the introduction
implies that B—B(A4) is Stein.
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