Projectivity of the Space of Divisors on a Normal Compact Complex Space

By

Akira Fujiki*

Introduction

For any complex space we shall denote by D_X the Douady space of compact complex subspaces of X [1]. Let $Z_X \subseteq D_X \times X$ be the universal subspace so that for each $d \in D_X$, the corresponding subspace of X is given by $Z_{X,d} := Z_X \cap (\{d\} \times X) \subseteq \{d\} \times X = X$. Recall that a Cartier divisor on X is a complex subspace of X whose sheaf of ideals is generated locally by a single element which is not a zero divisor. Let Div $X = \{d \in D_X; Z_{X,d} \text{ is a Cartier divisor on } X\}$. Then Div X is Zariski open in D_X , and in fact is a union of connected components of D_X when X is nonsingular. Then the purpose of this paper is to prove the following:

Theorem 1. For any normal compact complex space X every connected component of Div X is compact and projective.

When X is nonsingular, the proof actually gives a more precise structure theorem of Div X (cf. Proposition in §1 below). The motivation for this theorem comes from Fischer-Forster [2] where they proved that there exist only a finite number of reduced divisors on any compact complex manifold X which are mapped surjectively onto Y where $f: X \rightarrow Y$ is an algebraic reduction of X (cf. §1); this implies that almost all the divisors on X are obtained as the pull-backs of those on Y which is projective. Theorem 1 reveals a striking contrast to the case of codimension>1, where in order to obtain the compactness even of the irreducible components of D_X in general, it is necessary to assume that X is Kähler or more generally that X is in \mathscr{C} (cf. [9]). Indeed, the analogy of [2] fails in codimension>1 as was shown by Campana [0].

Though we prove the compactness and projectivity at the same time in Theorem 1, there is an easy alternative proof for the projectivity once the com-

Communicated by S. Nakano, January 21, 1982.

^{*} Department of Mathematics, Yoshida College, Kyoto University, Kyoto 606, Japan.

pactness is established. Namely we shall also show the following theorem, stimulated by a result of Ohsawa ([8] Theorem 2) (cf. Remark 2).

Theorem 2. Let X be a connected normal compact complex space and A an analytic subset of X. Then for any irreducible component D_{α} of Div X the subset $D_{\alpha}(A) := \{d \in D_{\alpha}; Z_{X,d} \cap A \neq \emptyset\}$ is a support of an ample divisor on D_{α} if $D_{\alpha}(A) \neq D_{\alpha}$.

The projectivity is used in [3] to get a local projectivity of a model of a relative algebraic reduction for a fiber space in \mathscr{C} .

Convention. For any complex space B, B_{red} denotes the underlying reduced subspace. A complex variety is a reduced and irreducible complex space. A morphism $f: X \rightarrow Y$ of complex varieties is called a *fiber space* if f is proper and the general fiber of f is irreducible.

§ 1. Preliminary Reductions

Let $f: X \to Y$ be a morphism of complex varieties. Let $Z \subseteq X$ be a Cartier divisor on X. Then we call Z a *relative divisor* over Y if the following equivalent conditions are satisfied: 1) Z is flat over Y. 2) Z contains no irreducible component of the fibers of f (cf. [5], 21.15).

Conversely, if $Z \subseteq X$ is a subspace which is flat over Y and if Z_y is a Cartier divisor on X_y for every $y \in Y$, then Z is a relative divisor over Y([5]).

Thus if we set $Z(X) = Z_X \cap (\operatorname{Div} X \times X) \subseteq \operatorname{Div} X \times X$, Z(X) is a relative divisor over $\operatorname{Div} X$, Z_X being flat over D_X . Further $\operatorname{Div} X$ has the following universal property. Let $Z \subseteq T \times X$ be a relative divisor over T with respect to the natural morphism $\rho_T \colon Z \to T$ where T is any complex space. Then there exists a unique morphism $\tau \colon T \to \operatorname{Div} X$ such that $Z = (\tau \times id_X)^{-1}(Z(X))$, and hence, that ρ_T is induced from the universal morphism $\rho \colon Z(X) \to \operatorname{Div} X$. So we shall call Z(X) the *universal divisor* associated to X.

Let X be a compact complex space. Let $\operatorname{Pic} X = H^1(X, \mathcal{O}_X^*)$ be the Picard variety of X, which has the natural structure of a commutative complex Lie group [6]. Let $c_1 \colon H^1(X, \mathcal{O}_X^*) \to H^2(X, \mathbb{Z})$ be the first chern class map and $NS(X) = \operatorname{Im} c_1$, the Nerson-Severi group of X. For $\gamma \in NS(X)$ we set $\operatorname{Pic}_{\gamma} X = c_1^{-1}(\gamma)$ so that we have

$$\operatorname{Pic} X = \coprod_{\gamma \in NS(X)} \operatorname{Pic}_{\gamma} X.$$

In particular Pic $_0$ $X = \text{Ker } c_1$ is the identity component of Pic X.

Now Z(X) defines a line bundle [Z(X)] on $\text{Div } X \times X$ and then by the universality of Pic X we have the natural morphism μ_X : $\text{Div } X \to \text{Pic } X$, which eventually associates to each $d \in \text{Div } X$ the corresponding line bundle $[Z(X)_d]$ (cf. [3] and [4], exposé 234, §4). Further, we know that μ_X is projective and the fiber over $L \in \text{Pic } X$ is naturally identified with the projective space $P(\Gamma(X,L))$: $=(\Gamma(X,L)-\{0\})/C^*$, i.e., the linear system on X associated to L, if it is not empty (cf. [3], [4]). Thus if we set $(\text{Div } X)^- := \mu_X(\text{Div } X) \subseteq \text{Pic } X$, the following lemma holds.

Lemma 1. (Div X) $_{\text{red}}^- = \{ p \in \text{Pic } X ; \dim \Gamma(X, L_p) > 0 \} - \{ e \}$ where e is the identity of Pic X and L_p is the line bundle on X corresponding to p.

Note that (Div X)⁻ is an analytic subspace of Pic X as μ_X is proper, though this also follows from Lemma 1 easily. We set $D_\gamma = \mu_X^{-1}(\operatorname{Pic}_\gamma X)$ and $\mu_\gamma = \mu_X | D_\gamma$: $D_\gamma \to \operatorname{Pic}_\gamma X$. Let $Z_\gamma \subseteq D_\gamma \times X$ be the restriction of Z(X) over to D_γ . We have of course Div $X = \coprod_\gamma D_\gamma$. Let $\overline{D}_\gamma = \mu_\gamma(D_\gamma)$, so that (Div X)⁻ = $\coprod_\gamma \overline{D}_\gamma$. Then by virtue of the above description of Div X we see that our task is to show that every connected component of \overline{D}_γ is projective.

Let X be a compact connected complex manifold. Let

$$X^* \xrightarrow{\varphi} X$$

$$f \downarrow \qquad \qquad Y$$

be a holomorphic model of algebraic reduction of X. Namely X^* is a compact complex manifold, φ is a bimeromorphic morphism, Y is a projective manifold and f is a fiber space which induces an isomorphism $f^*\colon \mathcal{C}(Y)\cong\mathcal{C}(X^*)$ of the meromorphic function fields of X^* and Y. Let $f^*\colon \operatorname{Pic}_0 Y\to \operatorname{Pic}_0 X^*$ and $\varphi^*\colon \operatorname{Pic}_0 X\to \operatorname{Pic}_0 X^*$ be the natural homomorphisms. Then we know that φ^* is isomorphic and f^* is injective (since $f_*\mathscr{O}_{X^*}\cong\mathscr{O}_Y$). Thus we get an injective homomorphism $\varphi^{*-1}f^*\colon \operatorname{Pic}_0 Y\to \operatorname{Pic}_0 X$. We omit the proof of the following lemma, which is standard.

Lemma 2. The abelian (group) subvariety P^a of $Pic_0 X$, which is by definition the image of $Pic_0 Y$ via $\varphi^{*-1}f^*$, is independent of the choice of a holomorphic model of algebraic reduction of X as above and depends only on X.

Each $Pic_{y}X$ is naturally a principal homogeneous space under $Pic_{0}X$.

We denote by $P^a_{\gamma} \subseteq \operatorname{Pic}_{\gamma} X$ any orbit of the induced action of $P^a \subseteq \operatorname{Pic}_0 X$ on $\operatorname{Pic}_{\gamma} X$.

Lemma 3. Let $\gamma \in NS(X)$. Let C be any complex subspace of $\operatorname{Pic}_{\gamma} X$ such that C_{red} is contained in an orbit P_{γ}^a of P^a in $\operatorname{Pic}_{\gamma} X$. Then C is projective.

Proof. Clearly we may assume that $\operatorname{Pic}_{\gamma}X = \operatorname{Pic}_{0}X$ and $P_{\gamma}^{a} = P^{a}$. Let $\overline{P}^{a} = (\operatorname{Pic}_{0}X)/P^{a}$ be the quotient Lie group and $q: \operatorname{Pic}_{0}X \to \overline{P}_{a}$ the natural homomorphism. Let $\overline{e} = q(e)$. Since q is a holomorphic fiber bundle with typical fiber P^{a} there exists a neighborhood V of \overline{e} such that q is projective (in fact trivial) over V. In particular any infinitesimal neighborhood of P^{a} in $\operatorname{Pic}_{0}X$, e.g., the space $P^{a}_{(n)} = (P^{a}, \mathcal{O}_{\operatorname{Pic}_{0}X}/\mathcal{I}^{n+1})$ where \mathcal{I} is the defining ideal of P^{a} in $\operatorname{Pic}_{0}X$, is projective. Since $C \subseteq P^{a}_{(n)}$ for some n > 0 by our assumption, C also is projective.

By this lemma, if we prove the next proposition, Theorem would follow in the case X is connected and nonsingular, in view of the projectivity of μ_{γ} .

Proposition. Let X be a compact complex manifold. Let $\gamma \in NS(X)$. Then any connected component of $\overline{D}_{\gamma, red} := \mu_{\gamma}(D_{\gamma, red})$ is contained in an orbit P^a_{γ} of P^a on $Pic_{\gamma} X$.

§ 2. Proof of Proposition

First we shall fix some notations. Let X be a complex space.

Let $n: \widetilde{\mathrm{Div}} X \to (\mathrm{Div} X)_{\mathrm{red}}$ be the normalization of $(\mathrm{Div} X)_{\mathrm{red}}$ and $\widetilde{\rho}: \widetilde{Z}(X) \to \widetilde{\mathrm{Div}} X$ be the pull-back of the universal family to $\widetilde{\mathrm{Div}} X$. Let T be any normal complex space and $Z \subseteq T \times X$ a relative divisor over T. Then by the universal property of $\mathrm{Div} X$ and the normality of T we can find a morphism $\tau: T \to \widetilde{\mathrm{Div}} X$ (not necessarily unique) such that $\rho_T: Z \to T$ is induced from $\widetilde{\rho}$ via τ . We call any such morphism also a *universal map associated to* ρ_T . For any irreducible component D_{α} of $(\mathrm{Div} X)_{\mathrm{red}}$ we denote by \widetilde{D}_{α} the corresponding irreducible component of $\widetilde{\mathrm{Div}} X$ and by $\widetilde{Z}_{\alpha} \to \widetilde{D}_{\alpha}, \widetilde{Z}_{\alpha} \subseteq \widetilde{D}_{\alpha} \times X$, the pull-back of the universal family to \widetilde{D}_{α} . Then $n_{\alpha}:=n\mid_{\widetilde{D}_{\alpha}}: \widetilde{D}_{\alpha} \to D_{\alpha}$ is the normalization of D_{α} .

Let 'Div X (resp. ' \tilde{D} iv X) be the union of those irreducible components D_{α} of (Div X)_{red} (resp. \tilde{D}_{α} of \tilde{D} iv X) such that Z_{α} (resp. \tilde{Z}_{α}) is reduced and irreducible. Then n induces n': ' \tilde{D} iv $X \rightarrow$ 'Div X which is the normalization of 'Div X.

Let $Z \subseteq T \times X$ and $\tau \colon T \rightarrow \tilde{D}$ iv X be as above with Z reduced and irreducible.

If \tilde{D}_{α} is the irreducible component containing $\tau(T)$, then $\tilde{D}_{\alpha} \subseteq \tilde{D}$ iv X. In fact, if \tilde{Z}_{α} is either nonreduced or irreducible, then $\tilde{Z}_{\alpha} \times_{\tilde{D}_{\alpha}} T$ is either nonreduced or irreducible.

We record the following useful result of C. P. Ramanujam.

Lemma 4. Let X be a complex manifold and S a normal complex space. Let $Z \subseteq S \times X$ be a reduced analytic subspace of pure codimension 1. Suppose that Z contains no subspace of the form $\{s\} \times X$, $s \in S$. Then Z is a relative divisor over S.

Proof. See [5], 21.14.1.

The next lemma reduces our problem to considering ' \tilde{D} iv X.

Lemma 5. Let X be a compact complex manifold. Let D_{α} be any irreducible component of $(\text{Div }X)_{\text{red}}$. Then there exist irreducible components $D_{\alpha_1}, \ldots, D_{\alpha_m}$ of $(\text{Div }X)_{\text{red}}$ and an isomorphism $\varphi_{\alpha} \colon \widetilde{D}_{\alpha_1} \times \cdots \times \widetilde{D}_{\alpha_m} \to \widetilde{D}_{\alpha}$ such that 1) \widetilde{Z}_{α_i} are reduced and irreducible, i.e., $\widetilde{D}_{\alpha_i} \subseteq '\widetilde{\text{Div }}X$ and 2) if $\mu_X(D_{\alpha}) \subseteq \text{Pic}_{\gamma}X$ and $\mu_X(D_{\alpha_i}) \subseteq \text{Pic}_{\gamma_i}X$, then $\gamma = \gamma_1 + \cdots + \gamma_m$ and $\widetilde{\mu}_{\alpha}\varphi_{\alpha} = \psi_{\alpha}(\widetilde{\mu}_{\alpha_1} \times \cdots \times \widetilde{\mu}_{\alpha_m})$ where $\widetilde{\mu}_{\alpha} = \mu_X n_{\alpha_i}$ and $\psi_{\alpha} \colon \text{Pic}_{\gamma_1}X \times \cdots \times \text{Pic}_{\gamma_m}X \to \text{Pic}_{\gamma}X$ is given by $\psi_{\alpha}(p_1, \ldots, p_m) = p_1 + \cdots + p_m$ (addition in Pic X).

Proof. Let $\tilde{Z}_{\sigma,i} \subseteq \tilde{D}_{\alpha} \times X$, i=1,...,m, be the irreducible components of $\tilde{Z}_{\alpha,\mathrm{red}}$ and \mathscr{J}_i their ideal sheaves. Since \tilde{Z}_{α} is a relative divisor over \tilde{D}_{α} and \tilde{D}_{α} is normal, by Lemma 4 $\tilde{Z}_{\alpha,i}$ are also relative divisors over \tilde{D}_{α} . Moreover \mathscr{J} $=\mathscr{J}_1^{k_1}\cdots\mathscr{J}_m^{k_m}$ is the ideal sheaf of \widetilde{Z}_{α} for unique positive integers k_i (cf. [5] IV, 21.6.9). Let $\tau_i : \tilde{D}_{\alpha} \to \tilde{D}$ iv X be a universal morphism associated to $\tilde{Z}_{\alpha,i} \to \tilde{D}_{\alpha}$. Let \tilde{D}_{α} , be the irreducible component of \tilde{D} iv X which contains $\tau_i(\tilde{D}_{\alpha})$. Let \hat{D}_{α} $=\tilde{D}_{\alpha_1}\times\cdots\times\tilde{D}_{\alpha_m}$. Let $\hat{Z}_{\alpha_i}:=\tilde{D}_{\alpha_1}\times\cdots\times\tilde{Z}_{\alpha_i}\times\cdots\times\tilde{D}_{\alpha_m}$ (\tilde{Z}_{α_i} on the *i*-th place) naturally considered as a subspace of $\hat{D}_{\alpha} \times X$. Let \mathscr{J}'_{i} be the ideal sheaf of $\hat{Z}_{\alpha, \cdot}$ Let $\hat{Z}_{\alpha} \subseteq \hat{D}_{\alpha} \times X$ be the relative divisor defined by the ideal sheaf $\mathscr{J}' = \mathscr{J}_1^{'k_1} \cdots \mathscr{J}_m^{'k_m}$ (cf. Lemma 4). Let $\varphi_{\alpha} : \widehat{D}_{\alpha} \to \widehat{D}iv X$ be an associated universal morphism. From our construction it then follows readily that $\varphi_{\alpha}(\tau_1 \times \cdots \times \tau_m)$ induces the identity of \tilde{D}_{α} . In particular $\tilde{D}_{\alpha} \subseteq \varphi_{\alpha}(\hat{D}_{\alpha})$. However, since \hat{D}_{α} is irreducible and \tilde{D}_{α} is an irreducible component of \tilde{D} iv X it follows that $\tilde{D}_{\alpha} = \varphi_{\alpha}(\hat{D}_{\alpha})$. On the other hand, again from our construction it is clear that for any distinct points $d = (d_1, ..., d_m), d' = (d'_1, ..., d'_m) \in \widehat{D}_{\alpha}, \mathcal{J}'_d \neq \mathcal{J}_{d'}.$ Hence φ_{α} is injective. Since both \tilde{D}_{α} and \hat{D}_{α} are normal, this implies that φ_{α} is isomorphic. Moreover, since $\tilde{Z}_{\alpha,i}$ are reduced and irreducible, the same is true for \tilde{Z}_{α_i} ; 1) follows. We show 2).

Let $d = (d_1, ..., d_m) \in \widehat{D}_{\alpha}$. Then from our construction $\psi_{\alpha}(\widetilde{\mu}_{\alpha_1} \times \cdots \times \widetilde{\mu}_{\alpha_m})(d)$ $= c_1([\widetilde{Z}_{\alpha_1, d_1}]^{k_1}) + \cdots + c_1([\widetilde{Z}_{\alpha_k, d_k}]^{k_m}) = c_1([\widetilde{Z}_{\alpha_1, d_1}]^{k_1} \otimes \cdots \otimes [\widetilde{Z}_{\alpha_k, d_k}]^{k_m} = c_1([\widetilde{Z}_{\alpha, \varphi_{\alpha}(d)}])$ $= \widetilde{\mu}_{\alpha} \varphi_{\alpha}(d).$ q. e. d.

Lemma 6. Let $f: X \to Y$ be a fiber space of compact complex varieties. Let T be a complex variety and $Z \subseteq T \times X$ a relative divisor over T. Then the following conditions are equivalent. 1) $f(Z_t) = Y$ for all $t \in T$, and 2) $f(Z_t) = Y$ for some $t \in T$.

Proof. Let $\overline{Z} = (id_T \times f)(Z) \subseteq T \times Y$. By the upper semi-continuity of dimensions of the fibers of $\overline{Z} \to T$ we see that the set $A = \{t \in T; \ \overline{Z}_t = f(Z_t) = Y\}$ is analytic in T where we identify $\{t\} \times X$ with X and $\{t\} \times Y$ with Y. Let $r = \dim X - \dim Y$. Let $B = \{(t, y) \in \overline{Z}; \dim Z_{t,y} \ge r\}$ where $Z_{t,y} = \{t\} \times f_{\overline{Z}}^{-1}(y)$. By the same reason as above B is analytic in \overline{Z} . Then for any $t \in A$, $B_t := B \cap (\{t\} \times Y) \ne \overline{Z}_t = \{t\} \times Y$; otherwise $\dim Z_t = \dim Y + r = \dim X$ so that $Z_t = X$. Hence if $A \ne \emptyset$, by the upper semi-continuity $\dim Z_{t,y} < r$ for general $(t, y) \in \overline{Z}$ and then for general $t \in T - A$, $\dim Z_t < \dim \overline{Z}_t + r < \dim Y + r = \dim X$, i.e., $\dim Z_t \le \dim X - 2$. This is impossible. Thus either $A = \emptyset$ or A = T. This shows the equivalence of the lemma.

Definition. Let $f: X \to Y$ be as in the above lemma. Let \widetilde{D}_{α} be any irreducible component of $\widetilde{\mathrm{Div}} X$. i) \widetilde{D}_{α} is called *transversal* to f if $f(\widetilde{Z}_{\alpha,d}) = Y$ for some $d \in \widetilde{D}_{\alpha}$ (and hence for all $d \in \widetilde{D}_{\alpha}$ by the above lemma). ii) \widetilde{D}_{α} is called *isolated* if \widetilde{D}_{α} consists of a single point.

Remark 1. \widetilde{D}_{α} is isolated if and only if there exists a proper analytic subset $A \subseteq X$ such that the supports of $\widetilde{Z}_{\alpha,d}$ are contained in A for all $d \in \widetilde{D}_{\alpha}$. In fact, since there exist at most countably many divisors whose supports are contained in A, $\widetilde{Z}_{\alpha} \to \widetilde{D}_{\alpha}$ is a trivial family in the sense that $\widetilde{Z}_{\alpha,d} = \widetilde{Z}_{\alpha,d'}$ for all d, $d' \in D_{\alpha}$. More generally if $Z \subseteq T \times X$ is a relative divisor over T where T is any connected complex space, and if $Z_t \subseteq A$ for any $t \in T$ with A as above then $Z \to T$ is a trivial family in the sense that $Z_t = Z_{t'}$ for any t, $t' \in T$. (The proof is the same.)

Lemma 7. Let $f\colon X\to Y$ be a fiber space of compact complex manifolds. Then there exists a natural bijective correspondence between the set \mathfrak{E}_X of non-isolated and non-transversal irreducible components of 'Div X and the set \mathfrak{E}_Y of non-isolated irreducible components of 'Div Y in such a way that if $\widetilde{D}_\alpha\in\mathfrak{E}_X$ and $\widetilde{D}_\beta\in\mathfrak{E}_Y$ correspond to each other, then there exist an isomorphism $\varphi_{\beta\alpha}\colon\widetilde{D}_\beta\to\widetilde{D}_\alpha$ and a point $d\in\mathrm{Div}\,X$ such that if $\overline{d}=\mu(d)\in\mathrm{Pic}\,X$, then $\widetilde{\mu}_\alpha\varphi_{\alpha\beta}$

 $= \bar{d}^* f^* \tilde{\mu}_{\beta} \quad as \quad a \quad morphism \quad \tilde{D}_{\beta} \to \operatorname{Pic}_{\alpha} X \quad where \quad \tilde{\mu}_{\alpha} = \mu_{X} n_{\alpha}, \quad \tilde{\mu}_{\beta} = \mu_{Y} n_{\beta}, \quad f^* \colon \operatorname{Pic} Y \to \operatorname{Pic} X \quad and \quad \bar{d}^* \quad is \quad the \quad translation \quad by \quad \bar{d}.$

Proof. Let $U \subseteq Y$ be a Zariski open subset over which f is smooth. First we specify the correspondence. Let \widetilde{D}_{β} be any non-isolated irreducible component of ' \widetilde{D} iv Y. Let $F_{\beta} := id_{\widetilde{D}_{\beta}} \times f : \widetilde{D}_{\beta} \times X \to \widetilde{D}_{\beta} \times Y$. Let $\widetilde{E}_{\beta} := F_{\beta}^* \widetilde{Z}_{\beta} \subseteq \widetilde{D}_{\beta} \times X$ be the pull-back of \widetilde{Z}_{β} to $\widetilde{D}_{\beta} \times X$ as a divisor. Since \widetilde{Z}_{β} is reduced and irreducible and $F_{\beta}|_{\widetilde{D}_{\beta} \times X_{U}} = id_{\widetilde{D}_{\beta}} \times f_{U} : \widetilde{D}_{\beta} \times X_{U} \to \widetilde{D}_{\beta} \times U$ is a smooth fiber space, $\widetilde{E}_{\beta} \cap (\widetilde{D}_{\beta} \times X_{U}) = F_{\beta}^{-1}(\widetilde{Z}_{\beta} \cap (\widetilde{D}_{\beta} \times U))$ also is reduced and irreducible. Hence there exists a unique irreducible component $\widetilde{E}_{\beta 1}$ of $\widetilde{E}_{\beta, red}$ such that $F_{\beta}(\widetilde{E}_{\beta 1}) = \widetilde{Z}_{\beta}$. (Note that since \widetilde{D}_{β} is non-isolated $\widetilde{E}_{\beta 1} \cap (\widetilde{D}_{\beta} \times X_{U}) \neq \emptyset$ by Remark 1.) Since f is surjective, $\widetilde{E}_{\beta 1}$ contains no subspace of the form $\{d\} \times X$, $d \in \widetilde{D}_{\beta}$. Hence $\widetilde{E}_{\beta 1}$ is a relative divisor over \widetilde{D}_{β} by Lemma 4. Let $\tau_{\beta} : \widetilde{D}_{\beta} \to \widetilde{D}$ iv X be an associated universal morphism. Let \widetilde{D}_{α} be the irreducible component of \widetilde{D} iv X which contains $\tau_{\beta}(\widetilde{D}_{\beta})$. As we have already remarked, actually we have $\widetilde{D}_{\alpha} \subseteq \widetilde{D}$ is non-isolated since $\widetilde{E}_{\beta 1,d}$ moves as well as $\widetilde{Z}_{\beta,d}$ when d moves in \widetilde{D}_{β} , and it is non-transversal to f since for any $d \in \widetilde{D}_{\beta}$. $\widetilde{Z}_{\alpha,\tau_{\beta}(d)} = \widetilde{E}_{\beta 1,d}$ and $f(\widetilde{E}_{\beta 1,d}) = \widetilde{Z}_{\beta,d} \neq Y$. We set $a(\widetilde{D}_{\beta}) = \widetilde{D}_{\alpha}$.

Conversely, let \widetilde{D}_{α} be any irreducible component of ' $\widetilde{\mathrm{Div}}\ X$ which is non-isolated and non-transversal to f. Let $F_{\alpha} := (id_{\widetilde{D}_{\alpha}} \times f) \colon \widetilde{D}_{\alpha} \times X \to \widetilde{D}_{\alpha} \times Y$. We set $\overline{Z}_{\alpha} := F_{\alpha}(\widetilde{Z}_{\alpha}) \subseteq \widetilde{D}_{\alpha} \times Y$. Then by Lemma 4, \overline{Z}_{α} is a relative divisor over Y since \widetilde{D}_{α} is not transversal to f. Let $\tau_{\alpha} \colon \widetilde{D}_{\alpha} \to \widetilde{\mathrm{Div}}\ Y$ be an associated universal morphism. Let \widetilde{D}_{β} be the irreducible component which contains $\tau_{\alpha}(\widetilde{D}_{\alpha})$. Then by the same argument as above $\widetilde{D}_{\beta} \subseteq \widetilde{\mathrm{Div}}\ Y$ and it is non-isolated (cf. Remark 1). Then we set $b(\widetilde{D}_{\alpha}) = \widetilde{D}_{\beta}$.

We now show that the above correspondences a and b are in fact bijective, inverse to each other, and have the property of the proposition. First, we note that from our construction it follows readily that τ_{β} is generically injective and moreover that each fiber of τ_{α} is discrete; for any $d \in \tau_{\alpha}(\tilde{D}_{\alpha})$, the support of $\tilde{Z}_{\alpha,d'}$ is contained in $f^{-1}(\bar{Z}_{\alpha,d})$ for each $d' \in \tau_{\alpha}^{-1}(d)$ and hence by Remark 1 dim $\tau_{\alpha}^{-1}(d)$ = 0. We further show that $\bar{Z}_{\alpha,d}$ is reduced if $\tilde{Z}_{\alpha,d}$ is reduced and if $\tilde{Z}_{\alpha,d} \cap X_U$ is dense in $\tilde{Z}_{\alpha,d}$. In fact, since f_U is a smooth fiber space, we have $\tilde{F}_{\alpha}^{-1}(\bar{Z}_{\alpha} \cap (\tilde{D}_{\alpha} \times U))$ = $\tilde{Z}_{\alpha} \cap (\tilde{D}_{\alpha} \times X_U)$, both sides being reduced. Hence $f^{-1}(\bar{Z}_{\alpha,d} \cap U) = \tilde{Z}_{\alpha,d} \cap X_U$, so that $\bar{Z}_{\alpha,d} \cap U$ is reduced if so is $\tilde{Z}_{\alpha,d}$. If further, $Z_{\alpha,d} \cap X_U$ is dense in $Z_{\alpha,d}$ and hence $\bar{Z}_{\alpha,d}$ also is reduced.

Now we fix $\tilde{D}_{\beta} \subseteq \tilde{D}$ iv X. We consider the corresponding $\tilde{D}_{\alpha} = a(\tilde{D}_{\beta}), \tau_{\beta}$:

 $ilde{D}_{eta}
ightarrow ilde{D}_{\alpha} = \tilde{D}_{\alpha}
ightarrow ' ilde{D}$ iv Y. Suppose that we have shown that $\tau_{\alpha} \cdot \tau_{\beta} = id_{\bar{D}_{\beta}}$ so that in particular $\tau_{\alpha}(\tilde{D}_{\alpha}) \supseteq D_{\beta}$. Then, since \tilde{D}_{α} and \tilde{D}_{β} are normal and irreducible, $\tau_{\alpha}(\tilde{D}_{\alpha}) = \tilde{D}_{\beta}$ and, in view of the generic injectivity of τ_{β} and the fact that dim $\tau_{\alpha}^{-1}(d) = 0$, this would imply that τ_{α} and τ_{β} give isomorphisms of \tilde{D}_{α} and \tilde{D}_{β} and that ba = identity. So we show that $\tau_{\alpha} \cdot \tau_{\beta} = id_{\bar{D}_{\beta}}$. Let $V \subset \tilde{D}_{\beta}$ be a Zariski open subset such that $\tilde{Z}_{\beta,d}$ are reduced and $\tilde{Z}_{\beta,d} \cap U$ is dense in $\tilde{Z}_{\beta,d}$ for all $d \in V$. Then we have only to show that $\tau_{\alpha}(\tau_{\beta}|_{V}) = id_{V}$. This follows if we show that $\tilde{Z}_{\beta,d} = \bar{Z}_{\alpha,d'}$ for any $d \in V$, with $d' = \tau_{\beta}(d)$, as a subspace of Y. By our construction it is clear that $\tilde{Z}_{\beta,d} = (\bar{Z}_{\alpha,d'})_{\text{red}}$, while by what we have proved above $\bar{Z}_{\alpha,d'}$ is reduced since $\tilde{Z}_{\alpha,d'} = \tilde{E}_{\beta 1,d}$ is reduced and $(\tilde{E}_{\beta 1,d} \cap X_U)$ is dense in $\tilde{E}_{\beta 1,d}$. Hence the assertion is proved.

Next we fix \tilde{D}_{α} . We consider the corresponding $\tilde{D}_{\beta} = b(\tilde{D}_{\alpha})$, $\tau_{\alpha} : \tilde{D}_{\alpha} \to \tilde{D}_{\beta}$, and $\tau_{\beta} : \tilde{D}_{\beta} \to \tilde{D}$ iv X. Then just as above we show that $\tau_{\beta} \cdot \tau_{\alpha} = id_{\tilde{D}_{\alpha}}$ and then that ab = identity. We set $\varphi_{\beta\alpha} = \tau_{\beta} : \tilde{D}_{\beta} \cong \tilde{D}_{\alpha}$.

It remains to show the existence of $d \in \text{Div } X$ satisfying $\tilde{\mu}_{\alpha} \varphi_{\alpha\beta} = \overline{d}^* f^* \tilde{\mu}_{\beta}$. Write $\tilde{E} = \tilde{E}_{\beta 1} \cup \tilde{E}_{\beta 2}$ for a unique relative divisor $\tilde{E}_{\beta 2}$ over \tilde{D}_{β} with $\tilde{E}_{\beta 1} \not\equiv \tilde{E}_{\beta 2}$. Then by our definition of $\tilde{E}_{\beta 1}$ we have $\tilde{E}_{\beta 1} \cap (\tilde{D}_{\beta} \times X_U) = \tilde{E}_{\beta} \times X_U$. Hence if $A := X - X_U$, then $\tilde{E}_{\beta 2} \subseteq \tilde{D}_{\beta} \times A$. Hence by Remark 1 $\tilde{E}_{\beta 2} \to \tilde{D}_{\beta}$ is a constant family, so that the image of an associated universal morphism $\tau_{\beta 2} : \tilde{D}_{\beta} \to \tilde{\text{Div }} X$ is a unique point. Then it suffices to take this point as d. (When $\tilde{E}_{\beta 2} = \emptyset$, we set d = 0.)

Proof of Porposition. Let $D_{\alpha} = D_{\gamma,\alpha}$ be any irreducible component of $D_{\gamma,\text{red}}$ and $\overline{D}_{\alpha} = \mu_{\gamma}(D_{\alpha}) \subseteq \text{Pic}_{\gamma} X$. Then it suffices to show that \overline{D}_{α} is contained in some orbit $P_{\gamma}^{a} = P_{\gamma}^{a}(\alpha)$. In fact, if $\overline{D}_{\gamma}^{i}$ is any connected component of $\overline{D}_{\gamma,\text{red}}$ and $\overline{D}_{\gamma}^{i} = \bigcup_{\alpha \in \mathbb{N}_{i}} \overline{D}_{\alpha}$, then $\bigcup_{\alpha \in \mathbb{N}_{i}} P_{\gamma}(\alpha)$ also is connected and hence $P_{\gamma}(\alpha) = P_{\gamma}(\alpha')$ for any α , $\alpha' \in \mathfrak{N}_{i}$ since the orbits are mutually disjoint. Hence $\overline{D}_{\gamma}^{i} \subseteq P_{\gamma}^{a}$ for a unique orbit P_{γ}^{a} . Now we show that $\overline{D}_{\alpha} \subseteq P_{\gamma}^{a}$ for some P_{γ}^{a} . First, by Lemma 5 we infer that we may assume that $\widetilde{D}_{\alpha} \subseteq P_{\gamma}^{a}$ for some P_{γ}^{a} . First, by Lemma 5 holomorphic model (*) of algebraic reduction of X. If \widetilde{D}_{α} is isolated. We take a holomorphic model (*) of algebraic reduction of X. Then by Lemma 7 applied to φ , we can replace X by X^{*} so that we may assume from the beginning that $X = X^{*}$ and f is defined on X. Now by Fischer-Forster [2] if \widetilde{D}_{α} is transversal to f, then D_{α} is isolated (cf. Remark 1). Hence we may further assume that \widetilde{D}_{α} is not transversal. Then applying Lemma 7 this time to f, Proposition follows immediately.

§ 3. Proof of the Theorems

Let X be a normal compact complex space. Let $r \colon \widetilde{X} \to X$ be a resolution. Since X is normal so that $r_* \mathcal{O}_{\widetilde{X}} \cong \mathcal{O}_X$, the natural morphism $r^* \colon \operatorname{Pic} X \to \operatorname{Pic} \widetilde{X}$ is injective.

Lemma 8. For each $\gamma \in NS(X)$, $r^*(\operatorname{Pic}_{\gamma} X)$ is a closed submanifold in Pic X. In particular r^* is a closed embedding.

Proof. It suffices to show that $r^*(\operatorname{Pic}_0 X)$ is closed in $\operatorname{Pic}_0 \tilde{X}$. Consider the following commutative diagram of exact sequences

$$0 \longrightarrow H^{1}(X, \mathbb{Z}) \longrightarrow H^{1}(X, \mathcal{O}_{X}) \longrightarrow \operatorname{Pic}_{0}X \longrightarrow 0$$

$$\downarrow^{r^{*}} \qquad \qquad \downarrow^{r^{*}} \qquad \qquad \downarrow^{r^{*}}$$

$$0 \longrightarrow H^{1}(\widetilde{X}, \mathbb{Z}) \longrightarrow H^{1}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}) \longrightarrow \operatorname{Pic}_{0}\widetilde{X} \longrightarrow 0$$

where the vertical maps are injective and the horizontal sequences come from the exponential sequences on X and \widetilde{X} . Then it is enough to show that the subgroup in $H^1(\widetilde{X}, \mathcal{O}_{\widetilde{X}})$ generated by $H^1(\widetilde{X}, \mathbb{Z})$ and $H^1(X, \mathcal{O}_X)$ is closed. First, recall that we have the natural inclusions $H^1(X, \mathbb{R}) \to H^1(X, \mathcal{O}_X)$ and $H^1(\widetilde{X}, \mathbb{R}) \to H^1(\widetilde{X}, \mathcal{O}_{\widetilde{X}})$ of real vector spaces (cf. [6] IX, Prop. 3.2). Then, clearly the subgroup in $H^1(\widetilde{X}, \mathbb{R})$ generated by $H^1(X, \mathbb{R})$ and $H^1(\widetilde{X}, \mathbb{Z})$ is closed. Since $H^1(X, \mathcal{O}_X)$ is a vector subspace of $H^1(\widetilde{X}, \mathcal{O}_{\widetilde{X}})$, from this the lemma follows immediately.

Proof of Theorem 1. Clearly we may assume that X is connected. Suppose that X is nonsingular. Then, as we have already noted, Theorem follows immediately from Lemma 3 and Proposition. So suppose that X is not nonsingular. Let $\gamma \in NS(X)$ be arbitrary. Then we have only to show that any connected component $\overline{D}_{\gamma,\alpha}$ of \overline{D}_{γ} is projective (cf. §1). Let $r\colon \widetilde{X} \to X$ be a resolution of X. Then there exists a unique $\widetilde{\gamma} \in NS(\widetilde{X})$ such that $r^*(\operatorname{Pic}_{\gamma}X)$ $\subseteq \operatorname{Pic}_{\widetilde{\gamma}}\widetilde{X}$. Then by Lemma 1 and the definition of r^* we have $r^*(\overline{D}_{\gamma,\mathrm{red}}) = \overline{D}_{\widetilde{\gamma},\mathrm{red}} \cap r^*(\operatorname{Pic}_{\gamma}X)$. On the other hand, every connected component of $\overline{D}_{\widetilde{\gamma},\mathrm{red}}$ is contained in some orbit $P^a_{\widetilde{\gamma}}$ of $P^a = P^a(\widetilde{X})$ in $\operatorname{Pic}_{\widetilde{\gamma}}\widetilde{X}$ by Proposition. Hence by Lemma 8, $r^*(\overline{D}_{\gamma,\alpha,\mathrm{red}})$ is a closed analytic subspace of $P^a_{\widetilde{\gamma}}$. Therefore noting that r^* is an embedding, by Lemma 3, $\overline{D}_{\gamma,\alpha}$ is projective as was desired.

Proof of Theorem 2. Since $D_{\alpha}(A) = \rho(Z(X) \cap (D_{\alpha} \times A))$, $D_{\alpha}(A)$ is analytic.

On the other hand, we have $D_{\alpha}(A) = \bigcup_{x \in A} D_{\alpha}(x)$ where $D_{\alpha}(x) = D_{\alpha}(\{x\})$. Now $D_{\alpha}(x) = Z(X) \cap (D_{\alpha} \times \{x\}) \subseteq D_{\alpha}$ is regarded naturally as a divisor on D_{α} (not necessarily reduced). It then follows that there exist a finite number of points $x_1, \ldots, x_m \in X$ such that $D_{\alpha}(A) = \bigcup_{i=1}^m D_{\alpha}(x_i)$ as a set. (Recall that D_{α} is compact by Theorem 1.) Thus it suffices to show that $D_{\alpha}(x_i)$ is ample for any i. We first note that under our assumption there exists a Zariski open subset U of X containing x_i such that $D_{\alpha}(x)$ is a divisor on D_{α} for any $x \in U$. Further since the divisors $D_{\alpha}(x)$, $x \in U$, are all mutually algebraically equivalent, it suffices to show that $D_{\alpha}(x_0)$ is ample for some fixed $x_0 \in U$.

Claim. For any nowhere discrete reduced analytic subspace B of D_{α} we can find $x \in U$ such that 1) $D_{\alpha}(x)$ intersect each irreducible component of B and 2) $B \cap D_{\alpha}(x)$ is nowhere dense in B.

In fact, let B_i , i=1,...,r, be the irreducible components of B. Fix a point $b_i \in B_i - \bigcup_{j \neq i} B_j$ for each i. Let $Z_{b_i} \subseteq X$ be the corresponding divisor and then take any $x \in U - \bigcup_{i=1}^r Z_{b_i}$. Then obviously $b_i \notin D_{\alpha}(x)$. Hence 2) is satisfied. Moreover since the natural map $Z_{B_i} \to X$ is surjective by our assumption that dim $B_i > 0$, $D_{\alpha}(x) \ni b_i'$ for some $b_i' \in B_i$. Hence 1) also is true. The claim is proved.

Now using this claim inductively we see that for any $p \ge 0$ and any complex subvariety C of dimension p of D_{α} , we can always find $x_1, \ldots, x_p \in U$ such that $D_{\alpha}(x_1) \cap \cdots \cap D_{\alpha}(x_p) \cap C$ is a nonempty finite set of points. This implies that the intersection number $D_{\alpha}(x_0)^p \cdot C = D_{\alpha}(x_1) \cdot D_{\alpha}(x_2) \cdot \cdots \cdot D_{\alpha}(x_p) \cdot C > 0$ (cf. [7]). Hence by Nakai crieterion (cf. [7]) $D_{\alpha}(x_0)$ is ample.

Remark 2. The above proof shows in fact the following: For any complex variety X and any compact subspace B of Div X, $B(A) = \{d \in B; Z_{X,d} \cap A \neq \emptyset\}$ is a support of an ample divisor if it is a divisor on B at all. (Note that $B(A) = \bigcup_{\substack{x \in A \\ x \in A}} B(x)$ and B(x) has the natural structure of a locally principal analytic subspace of B.) See Banica, C., and Ueno, K., J. Math. Kyoto Univ., 20 (1980), 381–389, for the intersection theory on a general compact complex space generalizing that of [7]. Further B - B(A) is affine if B(A) contains no irreducible component of B_{red} . The result of Ohsawa [8] mentioned in the introduction implies that B - B(A) is Stein.

References

- [0] Campana, F., Sur les sous espaces maximaux d'un espace analytique compact, preprint.
- [1] Douady, A., Le problème de modules pour les sous-espaces analytiques complexes d'un espace analytique donné, *Ann. Inst. Fourier, Grenoble*, 16 (1966), 1–95.
- [2] Fischer, W. and Forster, O., Ein Endlichkeitssatz für Hyperflächen auf kompakten komplexen Räumen, J. Reine Angew. Math., 306 (1979), 88-93.
- [3] Fujiki, A., Relative algebraic reduction and relative Albanese map for a fiber space in *C*, *Publ. RIMS*, *Kyoto Univ.*, **19** (1983), in press.
- [4] Grothendeick, A., Fondements de la géométrie algébrique (Extraits du Seminaire Bourbaki 1957–1962), Paris, 1962.
- [5] ——, Elements de géométrie algébrique IV, Publ. Math. I. H. E. S., 32 (1967).
- [6] ———, Technique de construction en géométrie analytique, 13ème année, Seminaire H. Cartan, 1960/61.
- [7] Kleiman, S., Toward a numerical criterion of ampleness, Ann. of Math., 84 (1966), 293-344.
- [8] Ohsawa, T., Completeness of noncompact analytic spaces, preprint.
- [9] Fujiki, A., Closedness of the Douady spaces of compact Kähler spaces, Publ. RIMS, Kyoto Univ., 14 (1978), 1-52.