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Introduction

For any complex space we shall denote by Dx the Douady space of compact

complex subspaces of X [1]. Let ZX^DX x X be the universal subspace so that

for each d e Dx, the corresponding subspace of X is given by Zx>d\=Zx n ({d} x X)

£={d}xX = X. Recall that a Cartier divisor on X is a complex subspace of X

whose sheaf of ideals is generated locally by a single element which is not a

zero divisor. Let Div X = {d e Dx; ZXjd is a Cartier divisor on X}. Then Div X

is Zariski open in Dx, and in fact is a union of connected components of Dx

when X is nonsingular. Then the purpose of this paper is to prove the following:

Theorem 1. For any normal compact complex space X every connected

component o/DivX is compact and projective.

When X is nonsingular, the proof actually gives a more precise structure

theorem of Div X (cf. Proposition in §1 below). The motivation for this theorem

comes from Fischer-Forster [2] where they proved that there exist only a finite

number of reduced divisors on any compact complex manifold X which are

mapped surjectively onto Y where/: X-*Yis an algebraic reduction of X (cf. §1);

this implies that almost all the divisors on X are obtained as the pull-backs of

those on Y which is projective. Theorem 1 reveals a striking contrast to the case

of codimension> I, where in order to obtain the compactness even of the ir-

reducible components of Dx in general, it is necessary to assume that X is

Kahler or more generally that X is in ^ (cf. [9]). Indeed, the analogy of

[2] fails in codimension > 1 as was shown by Campana [0].

Though we prove the compactness and projactivity at the same time in

Theorem 1, there is an easy alternative proof for the projectivity once the com-
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pactness is established. Namely we shall also show the following theorem,

stimulated by a result of Ohsawa ([8] Theorem 2) (cf. Remark 2).

Theorem 2. Let X be a connected normal compact complex space and A

an analytic subset of X. Then for any irreducible component Da of Div X

the subset Dx(A)\ = {d e Da; Z X t d f ] A ^ 0 } is a support of an ample divisor on

The projectivity is used in [3] to get a local projectivity of a model of a

relative algebraic reduction for a fiber space in *% .

Convention. For any complex space B, Bred denotes the underlying

reduced subspace. A complex variety is a reduced and irreducible complex

space. A morphism /: X-+ Y of complex varieties is called a fiber space if /

is proper and the general fiber of /is irreducible.

§1. Preliminary Reductions

Let/: X-+Y be a morphism of complex varieties. Let Z^=X be a Cartier

divisor on X. Then we call Z a relative divisor over 7 if the following equiva-

lent conditions are satisfied: 1) Z is flat over Y. 2) Z contains no irreducible

component of the fibers of/(cf. [5], 21.15).

Conversely, if Z ̂  X is a subspace which is flat over Y and if Zy is a Cartier

divisor on Xy for every y e Y, then Z is a relative divisor over Y ([5]).

Thus if we set Z(X) = Zx n (Div X x X) g Div X x X, Z(X) is a relative

divisor over Div X, Zx being flat over Dx. Further Div X has the following

universal property. Let Z^TxX be a relative divisor over T with respect

to the natural morphism pT: Z-+T where Tis any complex space. Then there

exists a unique morphism T: T-»Div^ such that Z = (T x idx)~
1(Z(X)), and

hence, that pT is induced from the universal morphism p: Z(X)-*Div X. So

we shall call Z(X) the universal divisor associated to X.

Let X be a compact complex space. Let PicX = H1(X9 0$) be the Picard

variety of X, which has the natural structure of a commutative complex Lie group

[6]. Let Cii #*(*, 0$)-»#2(Z, Z) be the first chern class map and NS(X)

= Imc l5 the Nerson-Severi group of X. For yeNS(X) we set Picy Z = c^1('y)

so that we have

yeNS(X)
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In particular Pic 0 X = Ker c± is the identity component of Pic X.

Now Z(X) defines a line bundle [ZPQ] on Div X x X and then by the

universality of PicX we have the natural morphism \JLX\ Div X-+PicX, which

eventually associates to each deDivX the corresponding line bundle [Z(JQd]

(cf. [3] and [4], expose 234, §4). Further, we know that \JLX is project] ve and the

fiber over LePicX is naturally identified with the projective space P(r(X,L)):

= (F(X, L) — {0})/€*, i.e., the linear system on X associated to L, if it is

not empty (cf. [3], [4]). Thus if we set (Div X)~ : = ̂ Y(Div X) g Pic X, the

following lemma holds.

Lemma 1. (DivJQ~d = {pePic X; dimT(X, Lp)>0}-{e} where e is the

identity of Pic X and Lp is the line bundle on X corresponding to p.

Note that (Div X)~ is an analytic subspace of Pic X as \JLX is proper, though

this also follows from Lemma 1 easily. We set Dy = ju^1(PicyX) and fj.y = fjLx\D :

Dy-+Picy X. Let Zy^Dy x X be the restriction of Z(X) over to Dr We have

of course Div X = U Dr Let D., = jny(Dy), so that (Div X)- = U Dr Then by
y y

virtue of the above description of Div X we see that our task is to show that every

connected component of Dy is projective.

Let X be a compact connected complex manifold. Let

(*)

be a holomorphic model of algebraic reduction of X. Namely X* is a compact

complex manifold, cp is a bimeromorphic morphism, 7 is a projective manifold

and /is a fiber space which induces an isomorphism /*: C(Y)^C(X*) of the

meromorphic function fields of X* and Y. Let /*: Pic0 Y-»Pic0X* and cp*\

Pic0 X-»Pie0 X* be the natural homomorphisms. Then we know that <p* is

isomorphic and/* is injective (since f*&x* = @v\ Thus we get an injective

homomorphism cp*"1/*: Pic0 Y-+Pic0X. We omit the proof of the following

lemma, which is standard.

Lemma 2e The abelian (group) subvariety Pa ofPic0X, which is by de-

finition the image ofPic0Yvia cp*"1/*, is independent of the choice of a holo-

morphic model of algebraic reduction of X as above and depends only on X.

Each PicyX is naturally a principal homogeneous space under Pic0X.
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We denote by Pa
y g Pic y X any orbit of the induced action of Pa g Pic 0 X on

PicyX.

Lemma 3. Let yeNS(X). Let C be any complex subspace of PicyX

such that Cred is contained in an orbit Py of Pa in Picy X. Then C is projective.

Proof. Clearly we may assume that PicyX = Pic0X and Pa
y = Pa. Let

Pa = (Pic0 X)IPa be the quotient Lie group and q: Pic0 X-*Pa the natural homo-

morphism. Let e = q(e). Since q is a holomorphic fiber bundle with typical

fiber Pa there exists a neighborhood V of e such that q is projective (in fact

trivial) over V. In particular any infinitesimal neighborhood of Pa in Pic0 X,

e.g., the space P f n ) = ( P a , 0P{CQXlJn+l) where «/ is the defining ideal of Pa in

Pico^f, is projective. Since CgPfn ) for some n>0 by our assumption, C also

is projective. q. e. d.

By this lemma, if we prove the next proposition, Theorem would follow

in the case X is connected and nonsingular, in view of the projectivity of fj.r

Proposition. Let X be a compact complex manifold. Let yeNS(X).

Then any connected component of Dy>red: = i,iy(Dy}Ted) is contained in an orbit

Pa
y of Pa on Picy X.

§ 2. Proof of Proposition

First we shall fix some notations. Let X be a complex space.

Let n: DivX-*(DivZ)red be the normalization of (DivJT)red and p:

Zp0-»Div X be the pull-back of the universal family to Div^. Let Tbe any

normal complex space and Z^TxX a relative divisor over T. Then by the

universal property of Div X and the normality of T we can find a morphism T :

T-»DivX (not necessarily unique) such that pT: Z->Tis induced from p via T.

We call any such morphism also a universal map associated to pT. For any

irreducible component £>a of (DivJQred we denote by 5a the corresponding

irreducible component of Div X and by Za->/5a, Za g Dx x X, the pull-back of the

universal family to Da. Then nK: = n\Bx: 5a-»Da is the normalization of Da.

Let 'Div X (resp. 'Div X) be the union of those irreducible components

Da of (DivX)red (resp. 5a of Div X) such that Za (resp. Za) is reduced and

irreducible. Then n induces nf: 'DivX-»'DivX which is the normalization

of'Div X.

Let Z^TxX and i\ T-»DivX be as above with Z reduced and irreducible.
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If 5a is the irreducible component containing r(T)9 then 5ag'Div X. In fact,

if Za is either nonreduced or irreducible, then Z a x 5 a Tis either nonreduced

or irreducible.

We record the following useful result of C. P. Ramanujam.

Lemma 4. Let X be a complex manifold and S a normal complex space.

Let Z^S x X be a reduced analytic subspace of pure codimension 1. Suppose

that Z contains no subspace of the form {s} x X, seS. Then Z is a relative

divisor over S.

Proof. See [5], 21.14.1.

The next lemma reduces our problem to considering 'Div X.

Lemma 5e Let X be a compact complex manifold. Let Da be any ir-

reducible component o/(Div JQred. Then there exist irreducible components

Dai,..., Dam of(DivX\ed and an isomorphism (px: Dai x ••• x£)aw-»5a such that

1) Za. are reduced and irreducible, i.e., 5a.g'Div X and 2) if jux(Da) gPicy X

and /^(Da.)gPic7iZ, then y = y1 + — +ym and &<?« = ^a(/2ai x ••• x /JaJ where

£a = fe"a> /2ai = fewa. and \l/a: Pic7l Xx ••• xPicymX->Picy Xis given by ^a(plv..,

Pm) = P\ + '~+Pm (addition in PicX).

Proof. Let Zaji^Da x X, / = !,..., m, be the irreducible components of

2a,red an^ ^"i their ideal sheaves. Since Za is a relative divisor over 5a and 5a

is normal, by Lemma 4 Za f are also relative divisors over Da. Moreover /

= /\i--'/nm is the ideal sheaf of Za for unique positive integers k{ (cf. [5] IV,

21.6.9). Let rf: 5a->Div^T be a universal morphism associated to Zajf->Sa.

Let 5a[ be the irreducible component of Div Z which contains rf(5a). Let Da

= DXix-"X5am. Let Za.: = 5ai x • • • xZ a .x • • • x5am (Za. on the i-th place)

naturally considered as a subspace of ,Da x X. Let ^J be the ideal sheaf of Za..

Let Za e .Da x X be the relative divisor defined by the ideal sheaf /' = /'^ • - •/'£m

(cf. Lemma 4). Let <px: l5a-»DivX be an associated universal morphism.

From our construction it then follows readily that cpj^i x ••• XTW) induces the

identity of Dx. In particular D^cpJ^D^). However, since Dx is irreducible and

5a is an irreducible component of Div X it follows that DK = cpx(D(X). On the

other hand, again from our construction it is clear that for any distinct points

d = (dl9...,dm), df = ( d ' l ) . . . ) d ' m ) E D i X , /'dl-/d>. Hence <px is injective. Since

both Dx and Dx are normal, this implies that cpa is isomorphic. Moreover, since

ZKjf are reduced and irreducible, the same is true for Za.; 1) follows. We show 2).
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Let d = (dl9..., dtn)EDx. Then from our construnction i^a(/*ai x • • • x /Jam) (d)

= /2«<pa(d). q.e.d.

Lemma 6. Let /: J£-»Y foe a /zfrer space of compact complex varieties.

Let The a complex variety and Z^TxX a relative divisor over T. Then the

following conditions are equivalent. 1) f(Zt)=Yfor all teT9 and 2) f(Zt)

= Yfor some teT.

Proof. Let Z = (idTxf)(Z)^=Tx Y. By the upper semi-continuity of

dimensions of the fibers of Z-»T we see that the set A = {tG T; Zt=f(Zt)=Y}

is analytic in T where we identify {t} x X with X and {t} x 7 with Y. Let r

= dim Z - dim 7. Let B = {(t, y)eZ; dim Z?j3, ̂  r} where ZttV = {t} x f ̂ (j). By

the same reason as above B is analytic in Z. Then for any t eA, Bt: = B n ({0

x Y) ̂  Z, = {f} x Y; otherwise dim Z, = dim Y + r = dim Z so that Zt = X.

Hence if A ̂  0, by the upper semi-continuity dim Zt jy < r for general (t , y)eZ

and then for general t e T— A, dim Zf < dim Zt + r < dim Y + r = dim .Z, i.e.,

dim Zt ^ dim Z — 2. This is impossible. Thus either A = 0 or A = T. This

shows the equivalence of the lemma. q. e. d.

Definition. Let/: X-* Ybe as in the above lemma. Let DK be any irreduci-

ble component of Div X. i) Da is called transversal to / if f(ZXid) = Y for some

d e Da (and hence for all d e Dx by the above lemma), ii) Sa is called isolated

if 5a consists of a single point.

Remark 1. 5a is isolated if and only if there exists a proper analytic subset

^4 g X such that the supports of ZM are contained in A for all d e 5a. In fact,

since there exist at most countably many divisors whose supports are contained

in A, Za->5a is a trivial family in the sense that Za>d = Z^d, for all d, d' e Da. More

generally if Z g Tx X is a relative divisor over T where T is any connected

complex space, and if Zt £=A for any t e T with A as above then Z-»Tis a trivial

family in the sense that Zt = Zt, for any t, t' e T. (The proof is the same.)

Lemma 7e Let f: X-+Y be a fiber space of compact complex manifolds.

Then there exists a natural bijective correspondence between the set &x of non-

isolated and non-transversal irreducible components of 'Div X and the set

(£Y of non-isolated irreducible components of 'Div Y in such a way that if

DXE^X and Dpe^Y correspond to each other, then there exist an isomorphism

Vpa'- Dp-*Da ana a point deDivX such that if U = u(d)EPicX9 then fi^^
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3*f*flp as a morphism D^PicyX where fi(X = ̂ xn^ p,p = f.iYn^ f^: Pic Y

and d* is the translation by d.

Proof. Let U ̂  Y be a Zariski open subset over which / is smooth. First

we specify the correspondence. Let Dp be any non-isolated irreducible com-

ponent of 'Div Y. Let Fp : = idDf} x/: Dp x X->DP x Y. Let Ep : = FfZp ^DpxX

be the pull-back of Zp to Dp x X as a divisor. Since Zp is reduced and irreduci-

ble and Fp\ BpXXu = id5/3xfu: DpxXu-^DpxU is a smooth fiber space, Ep

D (Dp x Xu) = F^1(Zp fl (Dp x [/)) also is reduced and irreducible. Hence there

exists a unique irreducible component Epl of £^ jred such that Fp(Eftl) = Zp.

(Note that since Dp is non-isolated E f t l f ] ( D f t x X u ) ^ 0 by Remark 1.)

Since / is surjective, Eftl contains no subspace of the form { d } x X , deDp.

Hence Eftl is a relative divisor over Dp by Lemma 4. Let T^: 5^->Div X be

an associated universal morphism. Let 5a be the irreducible component of

Div X which contains tp(Dp). As we have already remarked, actually we have

J5ag'DivX. Moreover, 5a is non-isolated since Epltd moves as well as ZM

when d moves in Dp, and it is non-transversal to /since for any deDp* ZajT;j(rf)

= Epltd andf(Eplid) = Zpid^ Y. We set a(Dp) = Da.

Conversely, let jDa be any irreducible component of 'Div X which is non-

isolated and non-transversal to/. Let Fx: = (idB(x x/): DKxX-^Dxx Y. We

set Za : = Fa(Za) g Dx x Y. Then by Lemma 4, Za is a relative divisor over Y since

5a is not transversal to /. Let ra: Z)a-»Div Y be an associated universal mor-

phism. Let Dp be the irreducible component which contains ta(5a). Then

by the same argument as above 5^ g 'Div Y and it is non-isolated (cf. Remark

1). Then we set b(Dx) = Dp.

We now show that the above correspondences a and b are in fact bijective,

inverse to each other, and have the property of the proposition. First, we note

that from our construction it follows readily that ip is generically injective and

moreover that each fiber of Ta is discrete; for any d e Ta(/5a), the support of ZM,

is contained in/~1(Za>d) for each d' E t ~ l ( d ) and hence by Remark 1 dimi"1^)

= 0. We further show thatZM is reduced if ZM is reduced and if ZM n Xv is

dense in ZM. In fact, since fv is a smooth fiber space, we have F~1(Z(X n (5a x I/))

= Za n (5a x Z^;), both sides being reduced. Hence f~l(ZX)d n C7) = ZM n Zy,

so that Za<d n C7 is reduced if so is ZM. If further, ZM n Xv is dense in Zajd

then Zx>d n 17 also is dense in Za>d and hence ZM also is reduced.

Now we fix Dp^'I)ivX. We consider the corresponding D0i = a(Dp), Tpi
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Dp-*Da and ra: J5a-VDiv Y. Suppose that we have shown that ra • Tp = idBfi so

that in particular Ta(5a) 3 Dft. Then, since 5a and 5^ are normal and irreducible,

Ta(5a) = Dp and, in view of the generic injectivity of T^ and the fact that dim T~1(d)

= 0, this would imply that ra and T^ give isomorphisms of Da and Dp and that ba

=identity. So we show that ra- tp = idBf3. Let Fez j)^ be a Zarisld open subset

such that Z0>d are reduced and Zpjd n £/ is dense in Zp>d for all d e F. Then we

have only to show that Ta(r^ \v) = idv. This follows if we show that Zpid = ZaLid>

for any d e F, with d' = rp(d), as a subspace of 7. By our construction it is clear

that Z0jd = (Zajd,)red, while by what we have proved above Za>d> is reduced since

Zxj, = Epi}d is reduced and (Ep1}d fl Xv) is dense in Eftljd. Hence the assertion

is proved.

Next we fix Dx. We consider the corresponding 5^ = Z?(5a), Ta: Dx-*Dp>

and T^ : D^-»Div X. Then just as above we show that T^ • ra= W5ot and then that

06 = identity. We set (p^ = T^ : Dft ^ 5a.

It remains to show the existence of deUivX satisfying jlx(pxp = d*f*flp.

Write E = Ep1 U £^2 for a unique relative divisor £^2
 over ®p with Epi^=£02-

Then by our definition of E^ we have E^ r\(DpxXu) = EftxXu. Hence if

A: = X — XU9 then £ j32g5^x^4. Hence by Remark 1 Ep2-*Dp is a constant

family, so that the image of an associated universal morphism r^2 • 50-»Div X

is a unique point. Then it suffices to take this point as d. (When Ep2 = 0,

we set d = Q.) q. e.d.

Proof of Porposition. Let Dx = Dya be any irreducible component of

Dyjred and DOL = jjy(Dx)^PicyX. Then it suffices to show that Da is contained

in some orbit P^ = P^(a). In fact, if Dl
y is any connected component of D7tTed

and D\= \J 15a, then VJ Py(o) also is connected and hence P/a) = Py(a') for
aeSIf aeSIi

any a, a' e % since the orbits are mutually disjoint. Hence Dl
y g P£ for a unique

orbit Pj. Now we show that 5agP^ for some P*. First, by Lemma 5

we infer that we may assume that 5ag'DivZ. If J5a is isolated, then the as-

sertion is clearly true. So we may assume that 5a is not isolated. We take a

holomorphic model (*) of algebraic reduction of X. Then by Lemma 7 applied

to 9, we can replace X by X* so that we may assume from the beginning that

X = X* and / is defined on X. Now by Fischer-Forster [2] if Dx is transversal

to /, then Da is isolated (cf. Remark 1). Hence we may further assume that

Da is not transversal. Then applying Lemma 7 this time to/, Proposition follows

immediately.
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§ 3. Proof of the Theorems

Let X be a normal compact complex space. Let r: X-+X be a resolution.

Since X is normal so that r*0x = 0x, the natural morphism r*: PicX-+ Pic JT

is injective.

Lemma 8. For eac/i y e NS(X), r*(Picy X) is a closed submanifold in

Pic X. In particular r* is a closed embedding.

Proof. It suffices to show that r*(Pic0X) is closed in PicQX. Consider

the following commutative diagram of exact sequences

, Z) > Hl(X, Ox) > Pic0X > 0

0 > &(X, Z) > ̂ (Z, 0*) > PiCo^ > 0

where the vertical maps are injective and the horizontal sequences come from

the exponential sequences on X and X. Then it is enough to show that the

subgroup in Hl(X, Ox) generated by H^X. Z) and H\X, Ox) is closed.

Fisrt, recall that we have the natural inclusions Hl(X, H)-^Hl(X^ Ox) and

H\X9 R)-*H\X, Ox) of real vector spaces (cf. [6] IX, Prop. 3.2). Then,

clearly the subgroup in Hl(X, R) generated by Hl(X, M) and H\X9 Z) is

closed. Since H1(X, Ox) is a vector subspace of Hi(X, Ox), from this the

lemma follows immediately. q. e. d.

Proof of Theorem 1. Clearly we may assume that X is connected.

Suppose that X is nonsingular. Then, as we have already noted, Theorem

follows immediately from Lemma 3 and Proposition. So suppose that X is

not nonsingular. Let y e NS(X) be arbitrary. Then we have only to show that

any connected component DytX of Dy is projective (cf. §1). Let r: X-*X be a

resolution of X. Then there exists a unique y e NS(X) such that r*(Picy X)

gPic^Jf. Then by Lemma 1 and the definition of r* we have r*(l)y>red)

= ^y,red H r*(PicyJT). On the other hand, every connected component of

Z)y,red is contained in some orbit P| of Pa = Pa(X) in Pic? X by Proposition.

Hence by Lemma 8, r*(/5Vfa>red) is a closed analytic subspace of P|. Therefore

noting that r* is an embedding, by Lemma 3, Dy^ is projective as was desired.

Proof of Theorem 2. Since DJtA) = p(Z(X) fl (DxxA)), Da(A) is analytic.
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On the other hand, we have DX(A)= \J £>a(x) where Da(x) = Da({x}). Now
xeA

Da(x) = Z(X) fl (Dxx {x})gDa is regarded naturally as a divisor on Da (not neces-

sarily reduced). It then follows that there exist a finite number of points Xj , . . . ,
m

xm e X such that Da(A) = \J Dx(xt) as a set. (Recall that Da is compact by
i=l

Theorem 1.) Thus it suffices to show that Da(xf) is ample for any /. We first

note that under our assumption there exists a Zariski open subset U of X con-

taining xt such that Dx(x) is a divisor on Da for any x e U. Further since the

divisors Da(x), x e U, are all mutually algebraically equivalent, it suffices to

show that Da(x0) is ample for some fixed x0 e U.

Claim. For any nowhere discrete reduced analytic subspace B of Da we can

find xeU such that 1) Da(x) intersect each irreducible component of B and 2)

B n AxW is nowhere dense in B.

In fact, let Bh i = 1,..., r, be the irreducible components of B. Fix a point &,-

eUf — W B/ for each z. Let Zb.£=X be the corresponding divisor and then take
j*i r

any xeU— \J Zb. Then obviously b^DJx). Hence 2) is satisfied. Here-
in '

over since the natural map ZB.-*X is surjective by our assumption that dimB,-

>03 Da(x)Bb'i for some fcJejB,-. Hence 1) also is true. The claim is proved.

Now using this claim inductively we see that for any p^O and any complex

subvariety C of dimension p of Da, we can always find x j v . . , xpe I/such that

Da(xj) n ••• fl D^Xp) n C is a nonempty finite set of points. This implies that

the intersection number DK(XQ)P - C = DJtxJ • D(X(x2) Dx(xp) • C > 0 (cf. [7]).

Hence by Nakai crieterion (cf. [7]) Da(x0) is ample. q. e. d.

Remark 2. The above proof shows in fact the following: For any com-

plex variety X and any compact subspace B of Div X, B(A) = {deB; ZXfd n A

7^0} is a support of an ample divisor if it is a divisor on B at all. (Note that

B(A) = \j B(x) and B(x) has the natural structure of a locally principal analytic

subspace of B.) See Banica, C., and Ueno, K., /. Math. Kyoto Univ., 20 (1980),

381-389, for the intersection theory on a general compact complex space gener-

alizing that of [7]. Further B-B(A) is affine if B(A) contains no irreducible

component of Bred. The result of Ohsawa [8] mentioned in the introduction

implies that B-B(A) is Stein.
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