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On a Certain Class of *-Algebras of
Unbounded Operators

By

Huzihiro ARAKI* and Jean Paul JURZAK**

Abstract

A *-algebra SI of linear operators with a common invariant dense domain & in a Hilbert
space is studied relative to the order structure given by the cone Sl+ of positive elements of SI
(in the sense of positive sesquilinear form on &) and the p-topology defined as an inductive
limit of the order norm pA (of the subspace SIX with A as its order unit) with A eSl+. In par-
ticular, for those SI with a countable cofinal sequence A, in ST+ such that AT1 eSI, the ,0-topology
is proved to be order convex, any positive elements in the predual is shown to be a countable
sum of vector states, and the bicommutant within the set B(&, &) of continuous sesquilinear
forms on 3f is shown to be the ultraweak closure of SI. The structure of the commutant and
the bicommutant are explicitly given in terms of their bounded operator elements which are
von Neumann algebras and the commutant of each other.

§ 1. Introduction

Our aim in this paper is to develop a theory of a certain class of *-algebras

91 of linear operators with a common invariant dense domain 2 in a Hilbert

space 3? in parallel with theory of von Neumann algebras as a continuation of

[7]. (Also see [14].) The set B(&, <&) of all continuous sesquilinear forms on

@ (the continuity relative to the collection of norms @ 3 x»-> ||^4x|[, A e 91) plays

the role of the set L(j^) of all bounded linear operators on 3? in theory of von

Neumann algebras. For those 91 satisfying Condition I described below, we

can give the decomposition of continuous linear forms into positive components,

i.e. the strong normality of the positive cone 9l+, the description of positive

elements in the predual of 91 and the notion of commutant, for which the bicom-

mutant coincides with the ultraweak closure.

Under weaker Condition I0 or IQ, also described below, structure of the
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commutant and bicornmutant (both of which actually satisfy Condition I) can

be analyzed.

The cone B+(^, 2) of all positive forms ft in B(&, &) (i.e. j8(jc, x)^0 for

all x e &\ gives a natural order structure in B(S), ^). Any Te 21 can be viewed

as an element T(x, y) = (Tx, y) of B(&, &\ and this defines an order structure

in 21. For AE^+( = 91 n B+(@, ®)\ the set of all TeW satisfying |(7x, x)\

^}.(Ax, x) for some 1^0 and all x E @ is denoted by 2lx and the infimum of k

is denoted as pA(T) or \\T\\ A. The locally convex inductive limit topology

(Chapter II §6 [13]) for the system of normed spaces (21 ,̂ PA) *s the p-topology

of 21 introduced and studied in [10]. (Note that 21= W 21 .̂)
AeW

In the present paper, we consider only countably dominated 21, i.e. we

assume the existence of a sequence AnE$l+, An^l which is cofinal in 2l+, i.e.

we may choose a monotone increasing sequence Ane^l satisfying 21 = W 2lXn
n

except that the countability is not essential in the result on structure of 21' and

21". As already noticed in [10], all positive linear maps of 21 into another space

of the same type decreases the p-norms and hence is automatically continuous;

in particular, the p-norms are preserved under an isomorphism (preserving linear

and order structure) in analogy with C*-norms. We also note that (21, p) is a

separated, bornologic DF space*, for which the strong dual 5lp of (21, p) is a

Frechet space.

A further condition on 21 on which we focus our attention in this paper is

the following :

Condition I. There exists a cofinal sequence An in 2l+ such that An^.l and

Again, we may choose a monotone increasing sequence An without loss of

generality.

Condition I together with our definition of *~algebras imply An@ = @.

On the other hand if AnQ> = @ is satisfied, then the algebra 21 generated by 21

and all A~l (restricted to &) is a ^-algebra on Of satisfying Condition I. In

fact, our structure result will be formulated in terms of the following :

Condition J0. There exists a cofinal sequence An in 2l+ such that An*zl

and An& = &.

* 91 is separated because & x& which gives /o-continuous forms already separate SI; born-
ologic as an inductive limit of bornologic spaces by Corollary 1, Chapter 2, §8, [13]; DF as
an inductive limit of DF spaces by Proposition 5, Chapter 4, Part 3, §3 in [7].
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Actually our structure result holds under the following weaker condition:

Condition F0. There exists a cofmal sequence An in 2t+ such that An^l

and A* is essentially selfadjoint (on ^).

Condition I0 implies 1'0 (Lemma 4.5).

The ultraweak closure of 2( (and the bicommutant) contains, in general,

elements peB(&9 Q>} which cannot be expressed as /?(x, y) = (Bx, y) for oper-

ators B satisfying B&<^&. (Either there is no operator B or EQi is not

contained in ^). It is therefore convenient to consider a condition similar to

Condition I for a subset of B(&9 &}. It is formulated as follows:

Condition II. Let An be a cofinal sequence in B+(&, &) satisfying An^l

and AnQ) = @. 23 is a subspace (by which we always mean a linear subset) of

>) satisfying the following:

(1) 23 is symmetric, i.e. £e23 implies £*e23 where j8*(x, y) = P(y, x),
the bar denoting the complex conjugate.

(2) fie® implies AnpAne& and A^pA^eto where (CpD)(x, y) =

P(Dx, C*y).

(3) The set Sid of all bounded operators B in ©(i.e. /?(x, y) = (Bx, y) 6 93)

is an algebra containing 1.

In Section 2, we describe definitions of basic notion in our study. The

terminology is then used to describe main results in Section 3 in the form of

Theorems and Corollaries. Their proof will be given in subsequent sections.

§ 28 Basic Notation

In the present paper we shall be concerned with linear operators (not neces-

sarily bounded) A defined on a dense linear subset ^ of a Hilbert space jf.

The closure of A will be denoted by A, the adjoint of A by A* and, if Dom A]

(the domain of A^) contains ^, the restriction of A\ to @ by A*.

A set 21 of linear operators will be called a *-algebra on a domain & if

the following conditions are satisfied.

K 51 is symmetric, i.e. Dom A^ ID ^ and A* 6 21 for any A e 21.

2. <& is invariant, i.e. AS) c ^ for any A 6 21.

3. 21 is an algebra, i.e. A+Be^ ,45e2I, cXe2l for any A.Be^L and

any complex number c.
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4. 91 is unital, i.e. 1 e 91.

We shall assume below that 91 is countably dominated (see Section 1).
We shall always equip 2 with the topology given by the collection of semi-norms

x->||^4x||, ^4 e 91, where we may take a monotone increasing sequence of semi-
norms \\Anx\\ (Lemma 4.2).

The completion @ of Si is (Lemma 3.6, [12])

(2.1) 0 = n Dom^.
AeW

Semi-norms in & are given by ^ e x»-> \Ax\ for A E 91. Without loss of gener-

ality (Lemma 4.3) we may and do assume the completeness of ^ :

(2.2) & = &.

The set of all continuous sesquilinear forms on 2 will be denoted by
B(09 <&). For /?eJ3(^, ^), the continuity implies the existence of A e 91 such

that for some constant M and all x, y E &9

(2.3) \p(x,y)\^M\\Ax\\ \\Ay\\.

It is equivalent to the existence of some M'( ̂  M) satisfying

(2.4) \fi(x, x)\£M'(A*Ax, x)

for all x e Si. Therefore a confinal sequence in 9l+ is also cofinal in

We define

(2.5) pA(p) = mf {A^O; |j8(x, x)|^A(^x, x) for all xe^}

For a symmetric subspace © of B(@, &), ® = SR + /SR where 23R denotes
the set of all hermitian 0 (i.e. £*=#) in 93. Let $+ denote 23 n 5+(^, ^) and
A e 23+. The set of all D e SR with pA(D)<L 1 (i.e. -^^Dg^l) will be denoted

as \_-~A, A~] or \_-A, A]*.

A subset 5 is called order convex if x, y e S and x ̂  z :g j; implies zeS.

If a topology can be generated by order convex sets, the topology is called order
convex. This is equivalent in a topological vector space the so-called normality

of the positive cone 9I+. (For example, Chapter 5, §3, 3.1 [13].) This property
is shown in Theorem 1 for a *-algebra 91 satisfying Condition I, its ultraweak

closure and some other cases.

The linear form

(2.6) 0 ,̂08) = 0(x, y), 0
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for x, y e 2 is in the strong dual 9lp of (91, p) (and in the strong dual B(&9

of (B(@, ^), p)) and co extends to a continuous linear map from the projective
completion @®@- of @®$- into 91" (or B(@, $)(>) (Chapter 1, §1, Pro-
position 2, [6]). Here ^~ is the complex conjugate of <3> (i.e. multiplication of
a complex number z in @~ is that of z in ^).

A general element u in &®@~, which is a Frechet space under our as-
sumption, is of the form

(2.7) n = i A f x f ® y f , Z W<oo
i=l i=l

where xt and j^ are sequences converging to 0 in ^ and ^~ (Chapter 1, §2,
Theorem 1, [6]). The above-mentioned extension of co is given by

(2-8) e^iAjO),,.,,.

The topology on 91 (and on B(@, @J) induced by a(B(^9 0), ^®^")
and &(B(@, &), @®@~) are called weak and ultraweak topology.

They are given by semi-norms /?e9l-»|/?(x, y)\ with x and y varying in ^
00

for the weak topology and by semi-norms /?et(->|</?, cou>| = | 2 hPfab Ji)l f°r

i=i
the ultraweak topology. The set of all ultraweakly continuous linear functional
on (91, p) is called the predual of 91 and denoted 3P. The predual of B(^y @)
is ^®^ and B(@9 0) is the dual space of ^®^~ (Chapter 1, §1, Proposition 2,
[6]. However the strong topology on B(@, &} induced by @®@ has been
shown to coincide with p so far only under the condition that @ is quasi-
normable. See Proposition 7 (1°) in [9].) The map co induces a topological
isomorphism of the predual of 91 onto the Frechet space ^®^~/9t° (Proposition
7.2) where 91° is the polar of 91 in the duality <^®^, B(@, &)).

For any selfadjoint ultraweakly closed subspace 93 of B(&9 &)9 a positive
linear form cp on 33 is called normal if

(2.9)

for any bounded increasing net Ta in 93+. We shall determine in Theorem 2
a form of such cp on the ultraweak closure of a *-algebra satisfying Condition I.
Together with Corollary la, it gives a concrete description of elements in the
predual.

The commutant 91' of a *-algebra 91 is the subspace of B(&9 @) consisting
of all $EB(@, &) satisfying fi(Ax, y) = P(x, A*y) for all A E 91 and x, ye@.
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If an 21 satisfies Condition I, then 81' is a * -algebra over Si in the sense that

any /Je2T can be written as /?(x, y) = (Bx, y) with B@c:& and ITs form a

*-algebra over ^ as defined eariler, except that 2 is not complete relative to

the topology induced by 2T. The same conclusion can be achieved under

Condition I0 or IQ. In either case 21 ' satisfies Condition I.

We shall define the bicommutant 21" as the commutant of 2T within

B(0, <&). We may consider the commutant (2T, D)' of 21' in the earlier sense,

namely within B(D, D) for the completion D of 2 relative to the topology on

& induced by 21'. It is smaller than 21" in general. We shall clarify in Theorem

3, the structure of 21', 21" and (21', D)'.

Another topology called the A-topology on a *-algebra 21 on @ has been

introduced in [10]. We define for Te 21 and O^A e 21,

;M(T) = sup {|| Tx\\l\\Ax\\ : x 6 #, || Tx|| + \\Ax\\ ^0}

where we define a/Q = 4- oo > b for any a >0 and real b, and WIA denotes the set

of all Te 21 with kA(T) < oo. Then the /l-topology is the inductive limit topology

of 21 = w {3JIA : 0 7^ A e 21} for the system of normed spaces (WIA, hA). In general,

the /Utopology is known to be different from the p-topology, a typical example

being the set L(^) of all operators A such that DomA = @, A@<^@9 Dom •

A^=>@ and ^4t^c^. The coincidence of the p and A topologies for 21 has a

significance because it is equivalent to the p-continuity of the product ST as

a map from 21 x 21 to 21. We shall prove the coincidence of the two topologies

for some 21 (Theorem 3 (1)).

§3. Main Results

We describe our main results as theorems in this section, their proof being

given in later sections. If 21 is countably dominated, B(@, @) satisfies Con-

dition I and hence all the following results hold for E(2, @).

This first group of results are about order-convexity of p-topology.

Theorem 1. Let 33 be a symmetric subspace of B(@, &) containing the

cofinal sequence An of B+(@, 0). The p-topology on 23R (or on 23) (defined as

the inductive limit topology of a system of normed spaces ((33R)^n, pAr) where

pAn(T) = mf {A^O; \(Tx, x)\^h(Anx, x) for all XE@}) is order convex if one of

the following conditions is satisfied.

( i ) 23 is a *-algebra over & satisfying Condition I.
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(ii) 93 is the completion (relative to the p-topology) of a *-algebra over

@ satisfying Condition I.

(iii) 33 is the ultraweak closure of a * -algebra over @ satisfying Con-

dition I.

(iv) Condition II is satisfied.

Remark, (ii) corresponds to C*-closure and (iii) corresponds to W*-

colsure in the case of *-algebras of bounded operators, (i), (ii) and (iii) are

actually special cases of (iv) and hence it suffices to prove theorem 1 under (iv).

The order-convexity of p-topology immediately implies the following.

(Chapter 5, 3.3, Corollary 1, [13].)

Corollary la. Any continuous linear form on (93, p) decomposes as a

linear combination of positive continuous linear forms if 91 satisfies one of

conditions of the preceding Theorem.

Corollary Ib. Let 93 be a symmetric subspace of B(&, @) containing a

cofinal sequence in B+(&, &). The positive cone 93+ is normal for p if and

only if ((£, p) induces the topology (23, p) for any symmetric subspace (£ of

B(&, &) containing 93.

This is the converse of Proposition 6 in [9].

The second group of results are about description of the predual.

Theorem 2. (1) Any ultraweakly continuous linear functional f on a

symmetric subspace of B(Qi , 0} is of the form f=fi — f2 4- i(/3 ~ /4.) where fj

(/=!,. ..,4) is an ultraweakly continuous positive linear functional.

(2) Any ultraweakly continuous positive linear functional on a symmtric

ultraweakly closed subspace of B(@, @} is normal.

(3) Any normal positive linear functional f on the ultraweak closure

23CT of 93 can be written as

(3.1) /(T)= Z T(x,, x;), re 23".
1=1

for a sequence x f e^ if 93 is a subspace of B(® , @) satisfying Condition II.

In particular, f is ultraweakly continous on 93(T. A *-algebra 51 on & satisfy-

ing Condition I is a special case of such 93.

(4) Any normal positive linear functional f on B(@, &} is of the form

(3.1) (without any condition on 91).
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The third group of results are about structure of 2T and 21".

Theorem 3. Let 21 be a *-algebra on a domain @ satisfying Condition J0.

(1) The commutant 2T is an ultraweakly closed *-algebra on @ satisfy-

ing Condition I and the topologies p and h coincide on 2T.

(2) The bicommutant 21" is ultraweakly closed and satisfies Condition II.

(3) The bicommutant 21" is the ultraweak closure of*-algebra 2t generated

by 21 and all A~l.

(4) Let 9JI be the von Neumann algebra generated by all bounded

operators in 2T and 3 be its center. The set of all bounded operators in 21'

is Wlr (the commutant of 9K in the sense of von Neumann algebras) and 21' is

algebraically generated by 901' and [A^\% (n = l, 2,...) where An, the closure

of An, is a self adjoint positive operator affiliated with 901 and [A^\% is the

greatest lower bound of An affiliated with 3 (i-e. the largest element of the

set of all selfadjoint positive operators C affiliated with 3 satisfying Dom

and (Anx, x)^.(Cx, x) for all xe@) which exists and satisfies [^4n]s^l,

e 3 c SB' c 91'. (See Appendix.)

(5) A closable operator defined on & is in 21' if and only if it is affiliated

with mr.

(6) All 56(21')+ is essentially selfadjoint on &, £ae(2I')+ for a>0 and,

(7) Let D be the completion of @ relative to the topology induced by a

countable set of norms ||[^J3x|| for xe @ and (21', D)' be the commutant of

21' in B(D, D). Then 21' is ultraweakly closed relative to D®D, (21', D)' is an

ultraweakly closed *-algebra on D satisfying Condition I, generated algebrai-

cally by $01 and C^4JS (« = 1, 2,...), and D is complete relative to (91', D)'.

(91', D)" = 2T.

Theorem 3'. Under Condition I'0for 21, the conclusion (1), (4), (6) and (7)

of Theorem 3 hold except Wl is the von Neumann algebra generated by bounded

operators in 2L4"1 for all n. In addition, (2) takes the following form: 21"

is ultraweakly closed and the set of all bounded operators in 21" is 90?.

The reason for failure of (3) and Condition II in (2) in Theorem 37 is

because A~i@ need not be contained in ^.
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§ 4. Preliminary Lemmas

Before plunging into proof of main results, we settle minor problems in

this section.

Lemma 4.1. // A e 91+ and A^l, then A2^A.

Proof. By Schwarz inequality and the assumption ^4^1,

(4.1) \\Ax\\ \\x\\^(Ax, x)^||x||2.

Therefore || Ax || ̂  || x || , which implies

(4.2) (A2x, x)=\\Ax\\*^\\Ax\\ \\x\\*(Ax, x).

Lemma 4.2. If AnE$l (n = \, 2,...) is cofinal in 9l+, then for any

there exists an integer n and A>0 such that A.\\Anx\\ ̂ . \\Ax\\ for all XE &.

Proof. For given A e 91, A*Ae 9I+ and hence there exists (n, A) such that

and /U^l. By Lemma 4.1, &2A2
n^Mn^A*A and hence tf\\Anx\\2

*x, x)^(A*Ax9 x)= \\Ax\\2 for all xe@.

Lemma 4.3. Let @ be the completion of & given by (2.1). // /? e B(&, 2\

then there is a unique extension pEB(&, S>} of ($. For any given Ae^t and

A>0, |jg(x, x)|^A(Ax, x) for all xe® if and only if |B(x, x)\^l(Ax, x) for

all

Proof. The existence of the extension and its unqiueness is straightforward
y\

because j8eB(^, ££) is continuous in <% x <&. For XE@, there exists a net

xae^ such that (A(xa-x), xa-x)->0 for all AE^+. Since |j?(xa, xJ|^(Xxa,

xa) for some A E 9l+, j&(xa, xa) has a limit which must be /?(x, x). Hence the first

inequality implies the second. The second inequality implies the first as its

restriction.

Lemma 4.4. If An^l is a cofinal sequence in 9I+, then A2 is also a cofinal

sequence in 9l+. Furthermore, there is a subsequence n(ni)9 m = l, 2,... and

a monotone increasing sequence AOT^1, Am-»oo such that both Bm = lmAn(m)

and B2^ are monotone increasing and cofinal in 9l+, and Bm+l^.B2
n.

Proof. For xe^, An^l implies (Anx, x)^ ||y4nx||2 = (^42x, x) by Lemma

4.1. Because An is cofinal, there exists N(n) and g(n)^.l such that

(4.3)
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which implies g(n)AN(n} ^ Ak and, due to Lemma 4.3 for AN(n)^l9 g(n)A%(n)

^.g(n)AN^n^A2. Starting with «(!) = ! and Bi=A1, we choose inductively

n(ni) = N(I) for / = max(n(m- 1), m) and Aw = (/lm_1)2^(/). Then the desired

properties are satisfied.

Lemma 4.5. If A and B are linear operators with a common dense domain

& satisfying A@<^@, B@ a&, A^l (as a form) and AB = BA = 1 on &,

then the closures of A and B are positive self-adjoint operators, B = A~l^1L

and A2 is the closure of A2.

Proof. We have A3>t=.Q} on one hand and B& c & implies A^

2 on the other hand. Therefore A@ = &. Similarly B@ = @. For

(4.4) (Bx, x) = (Bx, ABx) = (ABx, Bx) ( ̂  0)

= (x,

and hence BE 914". Further, Schwarz inequality and ^4^1 imply

(4.5) ||Bx|| ||x|| *(Bx, x) = (ABx, Bx)^(Bx, Bx)=\\Bx\\2

for all xe^ and hence ||5||^1. Namely B is a positive bounded self-adjoint

operator. For the selfadjoint operator B~l, EQi for any dense set 9> is a core

due to || B || < oo and hence &=B@ is the core of B~l in the present case.

Furthermore, for xe ^, B~lx = B~*BAx = Ax and hence A = B~l. Since

A2E$l, B2£9I, A2^l and A2B2 = B2A2 = l, we have A2 = (B2r1=B-2 = A2.

In the following, we shall denote B = A~l in the above situation.

Lemma 4.6. // a closable operator T defined on <£ has its range in

@, then T is continuous as a map from the Frechet space Qt into itself, where

the countable domination and completeness & = & are assumed. For any

PEB(&< @) and such operators T, and T2, T^ftT1(x9y) = ft(Tlx, T2y) is again

in

Proof. Since T is closable on tf , it is closed on the Frechet space Q> .

(Note that xae^ and xa-»0 in 2 implies x^-^0 in Jf .) By closed graph theorem,

Tis continuous.

§ 5. A Representation of 91^ by Bounded Linear Operators

In this section we work with subspaces 93 in B(&, @). A *-algebra 51 over @

can be viewed as 93 and, if 91 satisfies Condition I, then it satisfies Condition II.
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Proposition 5.1. Let 93 be a symmetric subspace of

A^.1. Then (^BA, pA) is canonically isometrically isomorphic to a subspace

of (L(^\ pj) where 23^ = 23 n £(^, &)A, p^A) is the infimum of A^O satis-

fying \(Ax, x)|_A||x||2 for all xe^if and coincides with \\A\\ for any normal

A.

Proof. For A e 5+(^, ^), there exists (for example, see [9]) a unique

positive selfadjoint opertor AA such that ^ is the core of A]l2 (hence A1J2^ is

dense in 3?} and

because ^4 is closable. Since A^l, /4^_1 and in particular the kernel of AA

isO.

Let £ e B(@, 9\ A^O and |j8(x, x)| ̂  A^4(x? x) for all x 6 2.

(5.1) f$(x, y) = Tp(A}l^ A^y}

defines a hermitian sesquilinear form on A\/2& which satisfies |T^(x, x)| ̂  A||x||2.

This implies the existence of unique T^ e L(jf ) satisfying

(5.2) /J(jc,y) = (W2x,/lV2j;).

The map P^>Tpis obviously linear. Since pi(T^) is the infimum of A ̂  0 satisfying

|(T^x, x)| ̂ A||x||2, which is equivalent to |/?(x, x)|^A(^4x, x) for all xe^, it is

pA(/3). Hence the map is isometric.

Remark 5.2. If A@ = @ in Proposition 5.1, then AA2 = A2 by Lemma

4.5 and hence (zl^)1/2 = A

Proposition 5.3. Lef SB be a symmetric subspace of B(&, &) containing a

cofinal seqeunce of operators An in B+(&, &) such that An^.l, An@ = &, fte^B

implies AnfiAnE%> and A~l^A~l E^B. Then %> = \j*BBnfor Bn = A2,, and »BB
n

are isometrically isomorphic to Sid (the set of all bounded operators in 93),

where 93^ = 83 n B(&, @)Afor A = Bn or A=id.

Proof. By Lemma 4.4, 93 = W 93Bn. By Remark 5.2, A]J2 = An. For j?e
n

93, we have

(5.3) ^^^.H^ y) = j8(>l^x, ^130 = (^")x, v)

where T (M) is Tfor ^4 = ^n in Proposition 5.1. Thus T^}l) (as a sesquilinear form

on ^) is in 93id. Conversely if a bounded linear operator B1 is in Sid, then
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jBEEE^jB^eS and TB = B1. Namely T(n) is an isometric isomorphism of

onto 93id.

The following is an immediate consequence of the definition.

Lemma 5.4. The map T(n) is bi continuous from %lAn with

onto Nn with a(Nn, @n®&^ where Nn=T^n^An and @n =

Proposition 5.5. Let 93 = \J ^BA be a symmetric subspace of
n=l

containing a cofinal sequence An of B+(<&, @) satisfying An^.l and let T(w) be

the map f}eSBAn-+TftEL(3F) defined in Proposition 5.1 for A = An. Then SB

is ultraweakly closed if and only if the image Nn of T(M) is ultraweakly closed

in L(^)for all n.

Proof. Obviously 93 is ultraweakly closed if and only if 93 R is. The

circled closed convex hull of {k~\Anx, x)"1 (x®x); x e @} forms a fundamental

system of neighbourhood of 0 in S)®@ when A varies over positive reals and

n varies over natural numbers. (Chapter 1, §1, Proposition 2(2), [6]. The

circled closed convex hull is actually circled cr-convex hull, Exercise 2, §13,

Chapter 2, [6].) Its polar in B(®9 &) is the set of peB(&, &) satisfying

|/?(x, x)|^A(y4Mx, x). Therefore, by the Banach-Dieudonne theorem (Chapter

4, §6, Theorem 6.4, [13]), 23R is ultraweakly closed if and only if [ — An, A^

is ultraweakly compact for all w, and by the Ascoli theorem which asserts equiv-

alence of simple convergence on &&<£ and simple convergence on its dense

subset ^®^ for the equicontinuous set \_ — Aw An~]% (Theorem 4, Chapter 0

in [7]), if and only if [ — An, An~]% is t7(93^n, @®@) compact for all n. By

isomorphism T(n), this is the same as the cr(flw, &n®@^ compactness of [ — id,

id]^n where %ln is the image of $BAn by T("> and &n = A^*&9 which is dense in

3%* . By the Ascoli theorem, this is equivalent to the 0(9ln, 3? ®3F ) compactness

of [ — id, id]^ and, by the Banach-Dieudonne theorem, to the condition that

(SRn)R and hence %ln is ultraweakly closed in L(*e) for all n. (Note that T™

preserves the adjoint.)

Corollary 5.69 Assume that An^.\ is a cofinal sequence of

and An@ = @. Let 23 a symmetric subspace of B(&, @) such that

1° ide93,
2° A^An and A~lpA~l are in 93 if ft is in 93. Then 93 is ultraweakly

closed if and only if [id, id]s is compact relative to the a-weak topology of

bounded operators, equivalently if and only if the set of all bounded operators
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in 23 is a-weakly closed.

Proof. The two conditions imply that 23 contains the cofinal seqeunce

A2
n of B(&, ^). By the proof of Proposition 5.5, 23 is ultraweakly closed if

and only if [ — A*, A%\^ is a(23, 2®2} compact for all n. By Lemma 5.4, this

is the case if and only if T (n>[ — A*, A%]% is a( - , ^B®^n) compact, where A^/2 =

An for Bn = A2 by Remark 5.2 and hence @n = An& = @.

We shall prove

(5.4) r<»>[-4SMS]« = [-id,id]a.

If this is shown, then this set is bounded in the set B(J^) of all bounded operators,

it is ff(-, @n®@n) compact if and only if it is er(- , Jtf&Jtf') compact (i.e. cr-

weakly compact), by the Ascoli theorem for example, and this is the case if and

only if 23id is (7-weakly closed (Chapter 1, §3, Theorem 1, (iv) [3]), proving

Corollary.

To show (5.4), the definition (5.3) of T(n) and our assumption 2° imply

(5.5) T<->[-X5,>ig8ci[-id,id]B.

On the other hand, for any Te [ — id, id]s,

(5.6) j8(x, y) = (TAnx, Any} (x, y E @}

belongs to 23 by our assumption 2°, is in [_ — A*»A%\ and satisfies T^n) = T.

Therefore we (5.6).

Proposition 507. Let 23 be a subspace of B(@9 &) satisfying Condition II.

The ultraweak closure 23CT of $$ in B(^9 &) also satisfies Condition II with

the same cofinal sequence An^l and (23<0id is the von Neumann algebra gen-

erated by ffiid.

Proof. Since the multiplication of An and A~l is continuous on Of by

Lemma 4.6, /2-»v4w/L4n and /?-»^4~1/L4~1 is weakly and ultraweakly continuous.

Therefore the first half is immediate except for (3) of Condition II. By

Corollary 5.6 ($ICT)id contains the ultraweak closure SR of 2Iid which is a von

Neumann algebra. Thus it remains to show that (2lff)id = 9W.

Let BeW. Since An is selfadjoint (Lemma 4.5) and A~2e(1B)id9 A'1

is in 9M and commutes with B. This implies B Dom An c Dom An and hence

B&ZLQI, namely x®y-+Bx®y and x®y-+x®By induces a continuous linear

map on ^®^.

By Proposition 5.3, any Ae$B can be written as A=AnTAn with Te23id.
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Therefore A commutes with B on ^, i.e.

holds for ft E SB and hence /? e 8K This implies

(»<0ldc:(aK')' = aR.

Therefore (fflff),d = aR = (S,d)*.

§ 6. Normality of the Positive Cone

Lemma 6.1. Let ft be a *-algebra of bounded linear operators on a

Hilbert space H,Be&, B^® and 0<a<l. 1/Teft and

(6.1) |(r*,x)|£((£ + al)x, *)

for all XEJf, there exists T^ and T2 in & such that T= Tj + T2,

(6.2)

(6.3) \(T2x9 x)\£

for allxEJe where G(f) = 2(l + 01/2 + l.

Proof. On the interval J=[0, ||J3||], consider a real function

(6.4) /(0 = min{[<r + a)]-1/2-e, l + a'1}

where e>0 is sufficiently small. (For example 4~1a1/2[l + ||£||]~3/2>e.) Let

g(t) be a polynomial satisfying |/(t) - g(t)\ ^ £ for all t e I. Let h(t) = g(f)t. We

have

(6.5)

(6.6)

For Te^ satisfying (6.1), let

(6.7) T! = h(B) Th(B)9 T2 = T~T1.

Then

(6.8) \(TlX9 x)\ = \(Th(B)x9 h(B)x)\

where the last inequality is due to (6.5). Furthermore (6.1) implies ||T"||^

for T' = (5 + al)"1/2T(5 + al)-1/2 and hence
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(6.9) . \\T2\\ fg \\(l-h(B))Th(B)\\ + ||T(l-/i(B))||

Lemma 6.2. Let 23 be a subspace ofB(&9 @) containing a cofinal sequence

An^l in B+(&, &) and satisfying Condition II. For any given 5^0 in

23Bn/or Bn = A*, there exists a number G depending only on pBn(B) such that

for any 0<oc<l and any fie$B satisfying \f}(x9 x}\^((B + aBn)x, x), there

exists /?! and /32 in 23 satisfying

(6.10) /* = /*!+&, ^(x, x)|g(Bx, x), |j82(x, xJIgGa'/'CB.x, x),

/or all x e &.

Proof. By Proposition 5.3, there is an order preserving isometric isomor-

phism of 23Bii onto the *-algebra 23id of bounded operators where Bn is mapped

to the identity operator. The decomposition of Lemma 6.1 in 93id then yields

the desired decomposition in 33Bn.

Lemma 6.3. Let 23 be a symmetric subspace of B(@, &) containing a

cofinal monotone sequence Bn (n = l,2,...) in B+(@, 2) and 95 be a neigh-

bourhood of 0 in (23, p). Let ln (n = l, 2,...) be a seqeunce of real numbers
00

satisfying 0<A M <1 for all n and fl A,,>0. The following 3 conditions are
n=i

equivalent.

1° 33 contains an absolutely convex and order convex neighbourhood of

0 m (SB, p).
2° T/iere exis£ an>0 (n = l, 2,...) swc/i

3° There exist aM>0 (n = l, 2,...) swc/z that

(6.12) Cn= "E (S Ay)aA + aA
fc=i j=/c

satisfies (for all n) [ — Cn, CJ^czSJ.

Proof. l°->2°: Let 2B be an absolutely convex and order convex neigh-

bourhood of 0 in 33 and U be an absolutely convex open set in SB. If C e U n S+,

[-C, C]^ is in 9B. For E7-65+ and CeHnS + , there exists /l>0 such that

is in U, for which [-(C + /LB,-), C + lB^caB. By repetition, 2° holds.

2°->3°: Due to Cn^ g a^,
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3°-»l°: Let A= fl ^->0. Then A<A 1 A 2 - - -A B and hence

(6.13) C'n = l±XjBj
7 = 1

satisfies (for all n) C'n^C;j+1 and [-C'n, C'JcS. Since 95C'n = 95Cn,
 the set

(6.14) w[-c;, ej
H=i

is absolutely convex, order convex and is a neighbourhood of 0 in (23, p) con-

tained in 33.

Proof of Theorem 1 (i)-(iii). In all cases (i)-(iii), 23 satisfies Condition II

and hence these cases follow from (iv).

Proof of Theorem 1 (iv). The condition 1° of Lemma 6.3 for arbitrary

neighbourhood 33 of 0 in (23, p) is the order convexity of the topology p by

definition. We shall apply Lemma 6.2 to find an and show 3° in Lemma 6.3.

Let S3 be a neighbourhood of 0 in (23, p) and Al5 A2,..., An,... be as in Lemma

6.3. By Lemma 4.4, we may assume that Bn = A^^.\ is monotone increasing.

Set »„ = » n 235n. Then 23 j c 23 2 c - - • . By induction on n, we shall find an > 0

satisfying

(6.15) [-an+1Bn + 1-AnCn,an+1Bn+1+^CJ8 = [-Cn+1, Cn+1]acz5Bn+1

with Cn defined by (6.12). Since S3 x is a neighbourhood of 0 in the normed

space (33^, pBl), there is ax such that [-C1? CJczSBj for C1=a1J51. Suppose

we have already found Cn with [ — Cn, CJ c 23M. Choose an+ x such that

(6.16) [

where G is given by Lemma 6.2 for B = Cn. Note that Cne23BBc=SBll+1. Let

(6.17) TeE-A^-^-M^i^nQ + ̂ .i^+i^-

By Lemma 6.2, there exists T\ and T2 in 95 satisfying

(6.18) T, e [-AnCn) AnCJc:ln93nClnas,I+1

and

(6.19) r2E[~Gai/.2A+1, Ga^n+1]c:(l-^)^+1.

Therefore Te93n+1, which shows [— Cn+l9 Cn+1]^ci^Bn+i.

Proof of Corollary Ib. If 23+ is normal, then the topology induced by the
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restriction of (C, p) to 93 is the p-topology of © by Proposition 6 (1°) of [9].

Conversely, if ((£, p) induces the p-topology of 23 for any (£=323, then take
(£ = B(^, ^). We know by Theorem 1 that the p-topology for B(&9 @) is

order-convex. The restriction of an order-convex topology to a subspace is

again order-convex and hence the p-topology of 93 must be order-convex.

§ 7. Predual

Proposition 7.1. Let 23 be a symmetric ultraweakly closed subset of

B(&, &) with a monotone increasing cofinal sequence Aj>.\ in B+(&, &).

For a linear functional (p on 23, cp is ultraweakly continuous if and only if the

restriction of<p to [ — An, An~]% is ultraweakly continuous for all n. Further,

this is the case if and only if the restriction of cp to [ — An9 A^ is weakly con-

tinuous for all n.

Proof. Since weak and ultraweak topology coincide on an equicontinuous

set \_ — An, An~]%9 the last two conditions are equivalent. The second condition

follows from the first condition by restriction. Thus we have only to show

that the last condition implies the first.

Let cp be a linear functional on 93, with its restriction [ — An, An~]% being

weakly continuous for all n. Let K = ker (p. The set 5^ n [ — An, An~]% is weakly

closed and hence, by Banach-Diendonne theorem, 5^ is ultraweakly closed, which

is the ultraweak continuity of <p.

Proposition 7.2. Let 23 be as in Proposition 6.1. Let 23P be the strong

dual of (93, p), which is a Frechet space. In 23P, the closure of the set of all

weakly continuous linear functional^ is exactly the predual & 0/23, i.e. the set

of all ultraweakly continuous linear functional. The map oj from the Frechet

space &®& into 5IP given by (2.8) induces a topological homomorphism onto

the Frechet space &.

Proof. By the Banach theorem on the dual B(&, &) of the Frechet space,

any ultraweakly bounded set is simply bounded on @®@ and, by Corollary 2,

Section 5, Chapter 3, [13], it is equicontinuous and hence is in the polar of a

neighbourhoods of 0. Hence [ — /L4n, A^J^, /l>0 and n = l, 2,..., as polars

of a fundamental system of neighbourhoods of 0 in @®Q), is a fundamental

system of bounded sets of 93 in ultraweak topology. Thus the strong topology

on the predual & of 51 is the topology induced on & by 9IP. By a theorem of
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Grothendieck (Chapter 4, 6.2, Corollary 1, [13]), the completion of & is the

set of all linear funetionals / on 21, whose restriction to each \_ — An, At1] is

ultraweakly continuous. By Proposition 7. 1 , / must be ultraweakly contin-

uous and hence & is closed in 2lp.

Since bounded sets of 21 relative to weak topology is the same as above,

the same argument shows that the completion of the set of all weakly continuous

linear funetionals on 31 is the set of all linear funetionals / on 21, whose restric-

tion to each \_ — An, A^\ is weakly continuous. The coincidence of weak and

ultra-weak topology on the equicontinuous set \_ — An, An"] of 21 then proves the

first part of Proposition.

B(&, &) is the dual of @®Qi ([6]) as a vector space and 95 is its ultra-

weakly closed subspace. Hence 23 is, as a vector space, the dual of (^0^/93°)

by the bipolar theorem where 23° is the polar of 95 in Qs®2. By the above

proof, &> is a Frechet space as a closed subset of the Frechet space (95, p)p (the

dual of (95, p) and (23, p) is a DF-space as an inductive limit of normed spaces

by Proposition 5, Chapter 4, Part 3, §3 in [7]). By Hahn-Banach extension

theorem, CD is surjective and hence co induces an isomorphism from a Frechet

space &®@/%$° onto another Frechet space ^. Furthermore 00 as a homo-

morphism from 3> ®@ into (23, p)p is separately continuous by the proof of

Proposition 8 in [9] and hence is continuous. Therefore co induces a topological

isomorphism of ^®^/23° onto 0> .

Lemma 73. Let 21 be a *-algebra satisfying Condition I and n be an

amplification re2l-»^(T)e2l®l acting on the Hilbert space

(7.1) jP = 3r®l2(N)=Z®3f.

CO 00

Let the set of all x = £ ®x{such thatxtG^ and X \\Anxt\\
2<co for all n (called

i=l i=l
cr-convergent in [10]) be denoted by J?. Then

(7.2) $=r\ Dom(^An)}.
n = l

Proof. By Lemma 4.4, we may assume that An is monotone increasing,
00

An^l, A"1 e2l and A* is also monotone increasing. Since ||Xnx||2= X (A*xh
co i=l

xt)< oo, 3t is included in the right hand side. Let x= X ®*,- be in Dom (n(An})
»=i

for all n. Since the projection P on i-th space tf commutes with n(An), Px e

Dom (n(Af)) and hence xt e r\ D(An).
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By Lemma 4.5, Of is the core of the selfadjoint operator An for all n. There-

fore there exists xin e & such that

(7.3) \\An(xlH-xt)\\<n-i.

Since A* is monotone increasing, we have

(7-4) \\Ak(xlH-xim)\\£n~i + m-i

for all /7, m ̂  k including AQ = 1, xin converges to x/ relative to the topology given

by seminorms ||>4Mx|| (w = l, 2,...). Since ^ is assumed to be complete, we have

From x e Dom (n(A^\ it follows that ) ||^4f.x£||2= ||7c(XB)x||2< oo. There-
? K i=1
fore x eJ^.

Pro0/ o/ Theorem 2 ( 1 ) . By Proposition 7.2, any ultraweakly continuous

functional / can be written as

(7.5)

where X l^yl = U Hm (^x^-, xj-) = 0 and lim (Any^ yj) = 0 for all n. By a change

of x/5 we may assume A/>0. Then/==00 — 02 +
 7'(0i'~03) where

(7.6)

is positive and ultraweakly continuous.

Proof of Theorem 2 (2). Let Tx be a monotone increasing net in 23 bounded

by some jBeJB(^, ^).

Let T(x, x) = sup Ta(x, x). Then T(x, x)<oo and hence T(x, x) = lim-
a

Ta(x, x). Therefore T satisfies the parallelogram law and hence is uniquely
extended to a sesquilinear form which we write T again. Since /?(x, x)^ T(x, x)

^0, TeB(@, 2) and T(x, >;) = lim Ta(x, )')• Since Ta and Tare in a bounded

set [0, ]8], where weak and ultra weak topologies coincide, T is the ultraweak

limit of Ta and hence is in 93. Since ^ Ta implies p^T, T=sup Ta. If / is
a

ultra-weakly continuous, we have /=lim/(Ta).
a

Proof of Theorem 2 (3). As in Proposition 5.3, consider the order preserving

isometric isomorphisms T (n) from (23^2 to (SCT)id which is a von Neumann

algebra by Corollary 5.7. Let / be a normal positive linear functional on 93

and ?F;I=/-(T("))~1. Then Wn is a normal positive linear functional on the

von Neumann algebra (23ff)id==9[R. Hence there exists a sequence of vectors
CO

such that Wn= ]£ coXjtXj. Since j^ is dense in 3?, we can find v / e^
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N

approximating xj9 so that Wn = £ <*>y ,y satisfiesj=i Ji J

(7-7) \\^n~ ^fn\\Wl<S-

N
Setting zj = A~1yje& andfn= S v*ZjtZ^ we nave

(7.8) sup J/(T) -/XOHsu^

and hence / is ultraweakly continuous by Proposition 7.2.

On the amplified space ePf defined by (7.1), we define amplification n(/3)

of f$E B(@, @) as a continuous sesquilinear form on 3? (see (7.2)) by

(7.9)

(7-10)

where we equip ^ with a countable system of norms ||7c(AB)x||. An ultraweakly
00

continuous linear functional / can be written as /(/?)= Z j8(xf, J^») with (7-
oo i=l

convergent sequence xt and yt. (If/(j8)= ^ ^jj8(xj, jj) with A^O, xj-»0 and
i=l

3^J->0 in ^, then set x^ = AJ /2x'£, j;f = ^K2J;'r) Setting x = ^ ® x ^ and y=]

both x and y are ̂  and

(7.11)

Since any /?e33ff can be written as AnTAn for some n and Te(93ff)id = 9Jl

and since T can be decomposed as a linear combination of positive operators in

the von Neumann algebra 2R, /? is a linear combination of positive elements

in 23CT. Since / is positive, we have/(/?*)=/(/?). This implies

(7.12)

for all /?e23 f f. Therefore g(f$) = f}(u9 u) for i/ = x + j satisfies

(7.13) ^(/0 = />(^ *) + /»0>, y) + 2f(p)^2f(p).

First we restrict our attention to j5e(®ff) id = 9JL Then f(n(T))=f(T)9

Te9Ji, is a positive linear functional on Ti(SOl) majorized by (n(T)u, u). Hence

there exists a (unique) positive operator T0 e W such that its range is the closure

of 7i(9Jl)w and

(7.14) /(S*T) = (T07<7>, n(S)u) = (n(S*T)T^u, r$/*ii)

for all S1 and Tin 93?. Since (1) and leS3 id in (3) of Condition II imply

A~2 eSidc:aR, TJ/2 commutes with spectral projections of n(An) = n(An) for all
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n, which implies TJ/2 Dom n(An) c Dom n(An) and hence Tj/2J?ciJ?. There-

fore x = T^2u e $ and, for x = Ze xi9

(7.15)
i=l

holds for /?e(23ff) id. Since both ends of (7.15) are ultraweakly continuous
(positive) linear functionals, (7.15) holds for all ft e 93°" by the following Lemma.

(33 ff is an ultraweakly closed symmetric subspace of B(&, @) satisfying Condi-
tion II.)

Lemma 7 A Let 93 be an ultraweakly closed symmetric subspace

satisfying Condition II. Any ultraweakly continuous linear functional f on SB

is positive if it is positive on 33id. Any two ultraweakly continuous linear

functionals fl and f2 coincide on 93 if they coincide on 93id.

Proof. The second assertion is obtained by applying the first assertion to

/i~~/2 and —(/ i— A)- To prove the first assertion, we note that (An)~
2e^)l

= 93id and hence g(AJ for any bounded measurable function g is in 901. If

f(P)= E P(xt, yd and 7^0 is in 93id, then
i=l

(7.16) I.(Tg(AJxt,g(AJyfeQ.
i

Taking a monotone increasing sequence of bounded positive gk(x) converging
to x, on [0, oo), we have the estimate

(7.17) E \(Tg(Xm)xt, g(An)yj)\^ Z \\gk(An)Xi\\ \\gk(An)yi\\ \\T\\
i>N i>N

^ \\T\\{ Z (9k(An)
2

Xi)V/2{ E (9k(An)
2
yi, y,)}1'2

i>N i>N

£\\T\\{ E

which can be made smaller than any given e>0 for some N due to

< oo and S (A$yh yt)< oo. Then

M M
(7. 1 8) E (W..X,, Ajd = i™ E (^(AOx,, 0^,,)^) ̂  - e ,

i=l fc i=l

for M^N. Taking the limit of M-»oo and then e->0, we obtain

(7.19)
1=1

Any positive ft in 93Bn for Bn=A* is of the form /?(*, y)=(r^, ̂ inj;) with

and hence (7.19) implies /(j8)^0 for such j8. Since 5ri is cofinal in B+(

we have/(j8)^0 for all ]8 e »+,
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Proof of Theorem 2 (4). Let {At} be a monotone increasing confinal

sequence in B+(@, @) with A1 = l and Bt = Al monotone increasing. 93 f

= B+(@, &)Bl* ®i is the von Neumann algebra L(^) of all bounded linear

operators. Proposition 5.3 implies that TE%$i-+AllTAjl e®t is a bijective

isometric isomorphism (isometry relative to ||T||B. in 93 £).

If /is a normal positive linear form on B(&, ̂ ), then fi(S)=f(AiSAi) for

Se®! is a normal positive linear form on L(jf) and hence ft(S) = Tr Spt for a

unique positive trace class operator pt. Since fi(A^*SAfl)=f(S), we have

Tr(SXr1p^r1) = Tr5rp1 for all SeL(jf) and hence A^lpiA^l=pl. This

implies that ple*f crangeA^^Dom^ for all /'. Hence ptjf c=^ and in

particular, all eigenvectors of pl (with non-zero eignevalues) are in &. This

implies

(7.20)

for x f e^ for all TeL(^f). By normality of/, we have (7.20) for all TE

B+(St, &) and, by linearity, for all T E

§ 8. Commutants and Bicommutants

In this section, the *-algebra 51 on 2 is assumed to have a cofinal sequence

An in B+(@, &) satisfying An^l and An& = ®. (Condition I0) By Lemma

4.4, we may and do assume that An and Bn = A* are both monotone increasing.

Lemma 8.1. The set of all bounded operators in the commutant W is the

commutant (in the sense of von Neumann algebras) of all bounded operators

in the *-algebra $ generated by 51 and A~l.

Proof. Let TE L(je) be in 2T. By definition,

(8.1) (Tx, Any) = (Anx, T*y)

for all x, yE&. By taking limit, the same equation holds for An and for all

x, y in the domain of An. Since An@ = @ implies the existence of B for A = An

in Lemma 4.5 (BAnx = x for x E @) and hence An is a selfadjoint positive operator

with H^"1!!^! (duetoXB^l). Substituting x = Anx
f andy = Any' with arbitrary

xf and y1 in 3tf , we obtain the commutativity of T with A~l. It now follows

that T commutes with all bounded elements of S because Tis in 51'.

Conversely, TeL(jf) be in the commutant of all bounded elements in

S. Obviously T(x, y) = (Tx, y)E&(®, 2} due to T(x9 x)^ \\T\\ \\x\\2. Fur-
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thermore, for v4e% there eixsts an n such that A2^Al, which implies that

AA~l is bounded and hence

(8.2) T(x, Ay) = (Tx, (AA^)Aay) = (A?A*x, T*Any)

= (A~lA*x, AnT*y) = (A*x, T*y)=T(A*x, y) .

Lemma 8.2 91' is an ultraweakly closed * -algebra on @.

Proof. Let /?e9l'. By definition, ft is continuous, i.e. there exists an n

such that

(8.3) \P(x, y)\^\\AnX\\\\A,,y\\.

Therefore, there exists a bounded operator Bm for every m^n such that

(8.4) p ( x ) y ) = (BmAax,Amy).

By /?e2r, we have P(Ax, y) = fi(x, A*y) for all Ae$t. For A = Am, we have

(8-5) (BmA*mx, A,,,y) = (Bm,4mx, ^J >•) .

Setting x = y4~1.x', j = y4~1j / with arbitrary x' and j' in ^, we have

(8.6) (BnXinx',/) = (BIIIx'MIII/).

Therefore Bm^ aDom(AJ and >4m5m = jB,MXIM on 2. Let B = Bm^?. Then

Dom (^4m) due to A^Zfi c ^ and Bm^ c Dorn ^4m. Furthermore

(8.7) )S(x, 3;) = (^mB,,,/l,,,x, y) = ((Bm^m)A,,,x, y) = (Bx, y)

for all x, j> e ^. Therefore jB is actually independent of m. Hence

(8.8) B^c: n Dom(^J= n Dom CO
m~^.n m ̂  1

= n Dom (A) = ® .
Ae^l

We also note that /? e 2T implies

(8.9) J&4 = ̂ B on S for any A e 91 .

Let fteSl' and ^(x, y) = (Ptx9 y) (/ = 1,2). Then it is immediate that

j81+j82es2l', jSf e9l' and c^eW for a complex number c. For sufficiently

large n, A^JV^1 is bounded by I and hence ^-2B1B2^.~2 = (yl;1B1^-1)

(^.~1B2^« *) is bounded and

(8-10) \(BiB2x,y)\^\\Alx\ \\A*y\\

for x, 3; e ̂ , which shows that /?i/?2(X ^) = (-Bi^2^ ^) is iri 5(^» ^)- Further-
more
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(8.11) P1P2(Ax9 y) = (B,B2Ax9 y) = (B,B2x, A*y) = W2(x, A*y)

due to the commutativity of A with Bt. Hence j81j82 e 2T and 21' is a *-algebra
over &.

The relation p(Ax, y) = ft(x, A*y) for Ae2I is stable under ultraweak limit

(of /?) and hence 21' is ultraweakly closed.

For any self adjoint operator A affiliated with a von Neumann algebra 9K,

there exists a unique operator [A]% affiliated with 3- (See Appendix.) If A = A*

and B = B* are affiliated with 9)1 and 501', then ^^5 (in the sence of (Ax, x)

^(Bx, x) for all x in (Dom ^4) fl (Dom F)) if and only if [A]g ^£. In particular,

if ^4 ^a, then [A]% ^a for a real number a. (Similarly we can define the lowest

upper bound \_A\% of A affiliated with 3- Then A^.B is equivalent to [4] 3

in the above situation. We also have [^4"1]3=([^4]s)~1 for positive A.)

Lemma 8.3 2T is algebraically generated by its bounded part and

. In particular [>4J3 is a central cofinal sequence m(2T)+. 21' satisfies

Condition I.

Proof. Let B e 21'. By the proof of Lemma 7.2,

(8.12) AfeB*B

for some n and hence ||^[nx||2^ \\Bx\\2 for all x in DomAn. Therefore

(8.13) B*Bg[^]3 = [In]2

where 3 is the center of von Neumann algebra generated by the bounded part

of 2(. Because [^3m] is affiliated with 3,

(8.14) (IX]!*, Ay) = (A*x, \A^\y)

for A e 21 and x, y e ^. Furthermore ,4^ ̂  [AB]|. Therefore B'n(x, y) =

([lj|x, 3;) belongs to 91' and the same holds for [^Jg1. (Note that ^n^l

implies [^4n]3^l and hence [yJjg1 is bounded.) Then

(8.15) B' = B\AJ?

is bounded due to (8.12), and is in 21'. Thus

(8.16) B = (BIA^) [_An\

where [^4n]3 (restricted to @ or considered as a sesquilinear form on @ x ^)

is in 2T. This also shows that [Xw]| is a cofinal sequence in (2T)+. Since An+1

^A2 implies [^4n+i]3^[^n]|, [^«]g is also a cofinal sequence. Since [^fjg1

e 91', 21' satisfies Condition I.
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Lemma 8.4 The p and A topologies coincide on 9T.

Proof. The p topology is given as an iductive limit of the norm topology on

$lA'n given by pA'n(-), where A'n = [_A^\%, for example.

If Xe9T, there exists n such that A*A^B'n. Then \\Ax\\2^ KAnJ^x\\2.

Thus the A-topology is given as an inductive limit of the norm topology on 9Tn

given by

(8.17) MIL»

where 9IJ7 is the set of A e 9T such that the above supremum is finite.

To compare the two, we first note that for x e ^ and A e 91',

(8.18) \(Ax, x)\£\\Ax\\ \\x\\£\\A\U\lAn-]sx\\ Wl

^ \A\\,n(\_An-\lx, x)^M||An([ln+1]3x, x)

due to [ytm]|^l and [^4w+i]3^[^4n]| by our convention. Therefore

(8.19) \\A\\^PA'n-{A)-

On the other hand, pB'n(A) = k< oo for B'n = [£„]% implies

(8.20) p

where 2RzA = A + A* and 2ilmA = A — A*. For selfadjoint A, pB
r
n(A) =

implies H^'^LOl = M-B^'H ^fe and hence

(8.21) M

where the last inequality is due to A'*^Af
n+{ for selfadjoint operators A'n and

^ + 1 associated with an abelian von Neumann algebra 3- Therefore

(8-22)

Lemma 8.5 The bicommutant 91" satisfies Condition II, it is the ultra-

weak closure of §t in B(@, &) and the set of bounded operators in 91" is the

von Neumann algebra generated by bounded operators in 91.

Proof. By definition, An is cofinal in (9T)+c:5+(^? ^). By Lemma 8.1

and 8.3, A~l is in 91". By assumption, A~l@ a@ and S is a *-algebra over Si.

Any TG 9l is a closed map from the F-space <& into ^ and hence is continuous,

i.e. ||T||Xn<oo for some n. Thus ®c=5(^, ^) and hence Sc=9(".

From Lemma 8.1 and 8.3, it also follows that bounded elements of 91"

is the von Neumann algebra 9K generated by all bounded elements of S and hence

is the ultraweak closure of 91. If A e 91", then there exists n such that A~lAA~l
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is bounded. Therefore there exists a net C aeft such that lim Ca = A~1AA~l in

the ultraweak topology of the von Neumann algebra 9JI. Then

(8.23) ( A x 9 y ) = 1&m(CuAttx9Any)
a

for all x, y E@. Namely A is in the ultraweak closure of ®. The fact that

51" is ultraweakly closed is immediate.

Since 5t is a *-algebra over & (contained in B(@, &)) and An, A~l E$l

c=5r, 51" clearly satisfies the Condition II.

By Lemma 8.1, any bounded operator in 51" must be in the double corn-

mutant (in the sense of von Neumann algebras) of the set of all bounded operator

in 51, (which is a *-algebra by definition). On the other hand, the preceeding

proof shows the opposite inclusion and hence equality. (Note that the ultraweak

closure in the sense of bounded operators is included in the ultraweak closure in

B(99 &).)

Proof of Theorem 3 (1) and (4). By Lemmas 8.1, 8.2, 8.3 and 8.4.

Proof of Theorem 3 (2) and (3). By Lemma 8.5.

Proof of Theorem 3 (5). Let Tbe a closable operator defined on ^. Then

it is a closable map from the F-space @ into the Hilbert space Jtf* and hence

\\Tx\\2^c\\Anx\\2 = (cA*Anx, x) for some c>0. Hence T(x, y) = (Tx, y) is in

B(®9 &). As we have seen in (3), 9K is in 51" and hence, if Te 51', then T(x, S*y)

= T(Sx, y) for all x, ye& and Se$?, which implies STcTS. Therefore T

is affiliated with 2R'. Conversely, if T is affiliated with 9H', then STcTS for

any S e 9M. Taking S = A~1, we obtain AnTA~l c T. If we restrict this equation

on An&, we obtain AnT=TAn on ^. For any Se5l, there exists n such that

A~lS*SA~l is bounded, i.e. B = SA~l eWt. Then S = BAn\®, S* = AnB* \ & and

(8.24) T(Sx, y) = (TBAnx, y) = (BTAnx, y) = (AnTx, B*y)

= (Tx,S*y)=T(x,S*y).

Therefore Te5r.

Proof of Theorem 3 (6). For any given 5e(5T)+, there exists an n and c>0

such that B^cAn. Let Ek be the spectral projection of [;4JS for the interval

[0, /c]. Then Eke3, jf= © 3fk9 j^k = (Ek-Ek_l}je and B is reduced by this
k=i

decomposition (because £/ce3 leaves @ invariant and commutes with B on ^).

Furthermore B on each J>^k is bounded (by c/c). Therefore B is essentially

selfadjoint.
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Proof of Theorem 3 (7). Since 21' satisfies Condition 1 by (1) and the set of all

bounded operators in 21' is a von Neumann algebra 9JT, 2T is ultraweakly closed

in B(D, D) due to the last half of Corollary 5.6. If we use (21', D) for (2i, ^) and

D4J.3 for An and apply (1) and (4), then we see that (21', D)' is an ultraweakly

closed *-algebra on D satisfying Condition I and generated argebraically by 9W

= (SOT)' and [<4fl]3 = |£4ll]i3]ig. Repeated appications of this argument yield the

last assertion.

§ 9. Proof of Theorem 3'

Lemma 9.1 Let A be defined on a dense domain @, A3> c^ and (Ax, x)

^ \\x\\2 for all xe@. If A2 is essentially selfadjoint on @, then A is also

essentially selfadjoint, (A)2 = A2 and A& is a core for A.

Proof. By Lemma 4.1, \\A2x\ 2 ^ (A2x, x) ^ (Ax, x) ^ \\x\\2 for

Therefore Dom A2 c Dom A, A2 c (A)2 (because A2xn-»y implies xn and Axn

converging), the relation holds for x e Dom A2 and A2Q> is the whole Hilbert

space «#". Since ^4^c^ implies A2&c:A& and since A2& is dense because

@ is a core of the strictly positive selfadjoint operator A2, A& is also dense.

Hence (Ax, x)g: \\x\\2 for x e ^ implies that any y e^f is a limit of Axn with xn

also converging and hence A(DomA) = t%
y . Furthermore (^4x3 x)^ \\x\\2 and

hence H^xp^^x, x)^||x||2 for all xeDomA This means that A~l is defined

on tf with Hi'1 1^1 and (A-1Ax,Ax) = (x,Ax)^Q for all x e Dom A. Hence

^"^0. Hence A=(A~l}~1 is positive selfadjoint. Since (A)2 is selfadjoint,

A2a(A)2 above implies A2 = (A)2. For any xeDom>42
? there exists xnE&

satisfying xn-*x and A2xn-»A2x, which implies Axn-+Ax. Therefore the

restriction of A to AQi has the closure with a domain containing A Dom A2,

which is Dom A and hence A& is a core of A.

Proof of (1) and (4). Since ytn is essentially selfadjoint on 2 by Condition

lo and Lemma 9.1, Lemma 8.1 holds. Note that 2L4;;1 is defined on An@ and

for any BE 21, there exists an n such that cA2^B*B, i.e. IL4"1 is bounded.

In the proof of Lemma 8.2, we any take x' and yf in Am& which is a core for

Am and hence (8.6) holds for all x' and y' in the domain of Am when Am is replaced

by Am. Therefore Bm(Dom Am) cz Dom ̂ w and 5mXm = AmBm on Dom 4?r This

implies that BmA*n = AmBmA*l on Dom Afn =3 Dom ^4,3n=3^ and hence, in particular

. Setting B = BmA^\^9 we obtain (8.7) and hence B is inde-
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pendent of m. Furthermore ESi c r\ Dom (Am) = &. The rest of the proof of
m

Lemma 8.2 holds as it is and hence 2T is again an ultra weakly closed *-algebra

on Si.

The proof of Lemma 8.3 and 8.4 is unchanged.

Proof of modified (2), (6) and (7). The same as proof of Theorem 3.

§ 10. Abelian Case

We shall discuss the Gelfand transform for abelian case.

Lemma 10.1 Let 21 be an abelian *-algebra over 2 with the a cofinal

sequence An in 2l+ satisfying Condition I. Let s£ be the C*-algebra which

is the norm closure of the * algebra 2lid of bounded operators in 21. Let X

be the space of all characters of s# with the weak * topology. Then

(1) Any character %£X such that ^(/I'^/O/or all n has a unique exten-

sion of its restriction on 21 1 to a character (again denoted by x) of 91.

(2) For any non-zero T in 21, there exists a character %£X such that

Proof, (1) Let % be a character on stf '. For any A e 91, there exists an n

and c>0 such that A*A<.cA2
n. Then AA'1 e Slj. We define

Suppose AA~l s Sli and AA^1 e Utj with n> m. Then

which shows the independence of the definition. The linear dependence on A

is then immediate. If ^4vl~1e9l1 and BA^e'H^ there exists a k such that

j and hence AA^1, BA^1, ABA^1 are all in Sl^. Then
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(2) Let Te 91 and n be such that T^;1 e 9lle The norm closure 3^ of 91 1

is a commutative C*-algebra. Hence the set of character / on 31 x which is non-

zero on any specific elements of 9^ is a dense open set in the set of all characters

of 31! . In particular the set of characters % on 31! such that /( TA~l) ^ 0 for an n

and %(A~j l) ^0 for all / is a G5 and hence non-empty. Such a character induces a

character 91 such that

Proposition 10.2. Let 91 be an ablian *-algebra on & satisfying Condition

I. Let $£ and X be as in Lemma 10.1. Let S be the set of all %eX such

that x(A.~1)¥:Ofor all n^O. Let <P be the Gelfand transform from 91 to C(S)

defined by <P(T)(/) = x(T). Then $ is a positive isomorphism of 91 into C(S).

Proof. By Lemma 10.1, $ is an isomorphism. If Te9l, T^O and

TA~l £91^ then A~1TA~1^Q as an element of j/ and hence

because % is a character on a C*-algebra jjf .

Remark. Since (P preserves order, it preserves p-norms defined by order.

Appendix

Proposition Al. Let A be an essentially selfadjoint operator affiliated

with a von Neumann algebra 501 and satisfying

(A.I)

for all xeDomyl. Then there exists the largest lower bound [yl]g of A

among positive selfadjoint operators affiliated with the center 3 0/

Proof. Let & be the family of all positive selfadjoint operators B af-

filiated with 3 •> with Dom A included in Dom B and staisfying

(A.2) (Ax, x)^(Bx, x) (^0)

for all xeDomA Since leJ^", IF is non-empty. By taking closure, DomJf

ciDom J5 for all BE ^ and (A.2) holds with A replaced by its closure A for all

x e Dom A.

Let B1 and B2 be in J5". Since 3 is a commutative von Neumann algebra,

there exists a projection £ e 3 satisfying

(A.3)
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Setting B=B1E + B2(1-E), it immediately follows that B^Bl3 B^B2 and

Be^. Thus ^ with the ordering as sesquilinear forms on Dom A is a net.

(All B 6 & is essentially selfadjoint on Dom A, which is 3-invariant.)

Let E(L) be the spectral projection of A for (—00, L). Then BE(L) for

all L are bounded operators in $E(L) and have the supremum

(A.4) B(L) = sup {BE( L)',

If L^L2, then B(L1)E(L2) = B(L2) and (^£(L))2^£(L)2. (For a pure state

(p of £(L)2RE(L), which is a character for its center 3E(L), <p((,4£(L))2)

^(p(AEK(L))2^(p(B(L))2 = cp(B(L)2) and hence the same holds for any state cp

by convex combination and weak limit.) Therefore B(ri) is a monotone in-

creasing sequence as a sesquilinear form on Dom A with ||B(w)x||2 monotone

increasing and bounded by ||v4x||2 for all xeDomA Hence there is a limit

B = limB(n) defined on Dom A On each E(L)DomA, it coincides with the

bounded positive selfadjoint operator B(L). Therefore its closure is positive

selfadjoint. Since B(L) commutes with W and E(L)%RE(L) (both having Dom A

invariant), 3 commutes with both W and E(L)WIE(L) for all L. Therefore it is

affiliated with 3- Furthermore A^B and B is the largest element of ^.

Proposition A2. Let A be as in Proposition Al. Let B be a positive

operator on Dom A such that the closure B is affiliated with 9W' and (A.2) is

satisfied for all x e Dom A. Then

(A.5) (M8JC,x)^(Bx,x)

for all xeDom A

Proof. Without loss of generality, we may assume that A = A, because

(A.2) implies the same for A and xeDomA, and [^^[AJa. We assume

the existence of x e Dom A satisfing | x|| = 1 and

(A.6) es(Bx,x)-([4]8x,x)>0,

and derive a contradiction.

Let EL be the spectral projection of A for (— co, L). Then EL leaves Dom A

invariant, commutes with B and \_A\%(EL e 9M),

(A.7) (B(l - EL)x9 x) - (D4]3(l - EL)x, x)

is monotone decreasing tending to 0 as L-»oo and hence there exists an L such

that xL=ELx/\\ELx\\ satisfies
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(A.8) (BxL3 XL) - (M3xL, XL) ̂  3e/4 .

Since AEL is bounded (by L),

(A.9)

(A. 10)

implies that A, [^4]3, and B restricted to ELH are bounded and belong to 501 ,̂

the center $EL of ^EL
 an<^ C^O^^C^s^'' respectively. Thus we are reduced

to the case where A and B are bounded, which we shall now assume and again

start from (A. 6).

Let E be the spectral projection of A — [A]% (^0) for (—00, e/2). By de-

finition of [X]^, the central support s$(E) must be 1. (Otherwise [^4]^ +

(e/2)(l — s$(E)) will be a lower bounded of A in 3 larger than [yl]^.) It is then

possible to find a partition of the unity 1 by projections Ex of 501 such that each

£a is equivalent to subprojection of E in 93i Since

(A.ll)

there exists a such that Eax^0 and xa = £ax/||£ax|| satisfies

Let u be a partial isometry in 501 such that u*u = Ex and uu*^E. Let

Then

(A. 13) II J> II2 = ("*«» Mxa) = (u*nxa, xa) = (xa, xa) = l .

(A.14) (By, y) = (u*Buxa, xJ = (Bu*ux., xa) = (Bx., xa),

(A.15) (lA]sy9 y) = (tt*M8i«c., x.) = (M8xas xa) .

Hence, (A.12), (A.14) and (A.15) imply

Since ||(y4-[A]s)£|| ^e/2 by definition of £ and Eu = u, (A. 13) implies

(A.17)

This implies

which contradicts

Lemma A38 ///(•) is a polynomial with positive coefficients, then
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Proof. The von Neumann algebra $1 generated by spectral projections of

A and 3 is commutative. Since A and [_A]% can be viewed as continuous

functions on the spectrum of 91, A ^ [_A]Q implies

(A.20)

Let B = [/04)]s. Then B^f([A]8) by (A.20). If 5^/([A]s), there exists

(5>0 such that the spectral projection F on B— /([v4]3) for (oo, <5) is non-zero.

There also exists a spectral projection Fx of D4]3F such that F1 ^F, F1^Q and

[_A]3F1 is bounded. There exists e>0 such that /(x + e)^/(x) + (S/2) for

xe[0, HMgFJI]. We then have /(A^B^fdA^ + sFJ and by monotoni-

city of /on [0, oo], we obtain A^.[A\%+sFi with Fl e3 which is a contradic-

tion.
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