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On a Certain Class of *-Algebras of
Unbounded Operators

By

Huzihiro ArRAKI* and Jean Paul JURZAK**

Abstract

A *-algebra U of linear operators with a common invariant dense domain < in a Hilbert
space is studied relative to the order structure given by the cone U+ of positive elements of U
(in the sense of positive sesquilinear form on Z) and the p-topology defined as an inductive
limit of the order norm p, (of the subspace U, with A4 as its order unit) with A€¥U*. In par-
ticular, for those % with a countable cofinal sequence 4; in U+ such that 471 €%, the p-topology
is proved to be order convex, any positive elements in the predual is shown to be a countable
sum of vector states, and the bicommutant within the set B(Z, 2) of continuous sesquilinear
forms on 2 is shown to be the ultraweak closure of 2. The structure of the commutant and
the bicommutant are explicitly given in terms of their bounded operator elements which are
von Neumann algebras and the commutant of each other.

§1. Introduction

Our aim in this paper is to develop a theory of a certain class of *-algebras
A of linear operators with a common invariant dense domain 2 in a Hilbert
space 5 in parallel with theory of von Neumann algebras as a continuation of
[7]. (Also see [14].) The set B(2, 2) of all continuous sesquilinear forms on
9 (the continuity relative to the collection of norms 2 3 x— || Ax|, 4 € A) plays
the réle of the set L(s#) of all bounded linear operators on & in theory of von
Neumann algebras. For those U satisfying Condition I described below, we
can give the decomposition of continuous linear forms into positive components,
i.e. the strong normality of the positive cone U*, the description of positive
elements in the predual of 2 and the notion of commutant, for which the bicom-
mutant coincides with the ultraweak closure.

Under weaker Condition I, or Ij, also described below, structure of the
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commutant and bicommutant (both of which actually satisfy Condition I) can
be analyzed.

The cone B*(2, 2) of all positive forms § in B(2, 2) (i.e. f(x, x)=0 for
all x € ), gives a natural order structure in B(2, 2). Any Te U can be viewed
as an element T(x, y)=(Tx, y) of B(2, 2), and this defines an order structure
in A. For AeUAN(=AN BT (2, 2)), the set of all Te N satisfying |(Tx, x)|
< X(Ax, x) for some 1=0 and all x e 2 is denoted by 2, and the infimum of 2
is denoted as p,(T) or |T|, The locally convex inductive limit topology
(Chapter I1 §6 [13]) for the system of normed spaces (2, p,) is the p-topology
of A introduced and studied in [10]. (Note that U= - A,

In the present paper, we consider only countabfymdominated A, ie. we
assume the existence of a sequence A4, e N*, 4,=1 which is cofinal in A", i.e.
we may choose a monotone increasing sequence A, € U satisfying A=\ U
except that the countability is not essential in the result on structure of Q'[l’ and
A”. As already noticed in [10], all positive linear maps of % into another space
of the same type decreases the p-norms and hence is automatically continuous;
in particular, the p-norms are preserved under an isomorphism (preserving linear
and order structure) in analogy with C*-norms. We also note that (2, p) is a
separated, bornologic DF space*, for which the strong dual U? of (2, p) is a
Fréchet space.

A further condition on 2 on which we focus our attention in this paper is

the following:

Condition I. There exists a cofinal sequence A, in U™ such that 4,=1 and
A;le U

Again, we may choose a monotone increasing sequence A4, without loss of
generality.

Condition I together with our definition of *-algebras imply A4,2=2.
On the other hand if 4,2 =2 is satisfied, then the algebra ¥ generated by A
and all A;?! (restricted to 2) is a *-algebra on 2 satisfying Condition I. In
fact, our structure result will be formulated in terms of the following:

Condition I,. There exists a cofinal sequence A4, in A* such that 4,=1
and 4,2 =9.

* 9 is separated because & x.Z which gives p-continuous forms already separate ¥U; born-
ologic as an inductive limit of bornologic spaces by Corollary 1, Chapter 2, §8, [13]; DF as
an inductive limit of DF spaces by Proposition 5, Chapter 4, Part 3, §3 in [7].



*.ALGEBRAS OF UNBOUNDED OPERATORS 1015

Actually our structure result holds under the following weaker condition:

Condition I,. There exists a cofinal sequence 4, in A" such that 4,>1
and A2 is essentially selfadjoint (on 2).

Condition I, implies Iy (Lemma 4.5).

The ultraweak closure of 2 (and the bicommutant) contains, in general,
elements f e B(2, 2) which cannot be expressed as f(x, y)=(Bx, y) for oper-
ators B satisfying B9 2. (Either there is no operator B or BZ is not
contained in 2). It is therefore convenient to consider a condition similar to
Condition I for a subset of B(2, 2). It is formulated as follows:

Condition II. Let A, be a cofinal sequence in B*(2, 2) satisfying 4,=1
and 4,2=2. B is a subspace (by which we always mean a linear subset) of
B(2, 2) satisfying the following:

(1) B is symmetric, i.e. B implies f*eB where f*(x, y)=p(, x),
the bar denoting the complex conjugate.

(2) peB implies A4,4,€B and A;!fA;'eB where (CBD)(x, y)=
B(Dx, C*y).

(3) The set B,, of all bounded operators B in B(i.e. f(x, y)=(Bx, y)eB)
is an algebra containing 1.

In Section 2, we describe definitions of basic notion in our study. The
terminology is then used to describe main results in Section 3 in the form of

Theorems and Corollaries. Their proof will be given in subsequent sections.

§2. Basic Notation

In the present paper we shall be concerned with linear operators (not neces-
sarily bounded) 4 defined on a dense linear subset 2 of a Hilbert space .
The closure of A will be denoted by A, the adjoint of 4 by A" and, if Dom A’
(the domain of A") contains 2, the restriction of A’ to 2 by A*.

A set A of linear operators will be called a *-algebra on a domain & if
the following conditions are satisfied.

. A is symmetric, i.e. Dom A"52 and A*e W forany Ae¥.

2. 2 isinvariant, ie. A2<2 forany Aell

3. Wis an algebra, i.e. A+BeW, ABeW, cAc U for any A, Be A and
any complex number c.
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4. U is unital, i.e. 1eU.

We shall assume below that U is countably dominated (see Section 1).
We shall always equip 2 with the topology given by the collection of semi-norms
x—]Ax|, Ae U, where we may take a monotone increasing sequence of semi-
norms | 4,x| (Lemma 4.2).

The completion & of @ is (Lemma 3.6, [12])

.1 9= DomA.
Ae¥l

Semi-norms in & are given by 17 e x—||Ax| for AeA. Without loss of gener-
ality (Lemma 4.3) we may and do assume the completeness of 2 :

~

2.2) 2=3.

The set of all continuous sesquilinear forms on 2 will be denoted by
B(2, 2). For e B(2, 2), the continuity implies the existence of A € A such
that for some constant M and all x, ye 2,

(2.3) 1B(x, »)I=M|Ax| |4yl .
It is equivalent to the existence of some M'(< M) satisfying
(2.4) |B(x, x)| S M'(A*Ax, X)

for all xe 2. Therefore a confinal sequence in A* is also cofinal in B(2, 2).
We define

2.5) p (B =inf {A=0; |B(x, x)| < X(Ax, x) forall xe2}

for Ae A,

For a symmetric subspace B of B(2, 2), B=3y + By where By denotes
the set of all hermitian f (i.e. f*=p) in B. Let B* denote B N B¥(2, 2) and
AeB*. The set of all De By with p,(D)=<1 (i.e. —A=D=A) will be denoted
as[—A, A]Jor [— A4, Alg.

A subset S is called order convex if x, yeS and x<z=<y implies z€ S.
If a topology can be generated by order convex sets, the topology is called order
convex. This is equivalent in a topological vector space the so-called normality
of the positive cone A*. (For example, Chapter 5, §3, 3.1 [13].) This property
is shown in Theorem 1 for a *-algebra 2 satisfying Condition I, its ultraweak
closure and some other cases.

The linear form

(2.6) . (B)=Bx, y), BeB(2,2),
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for x, y € 2 is in the strong dual A~ of (A, p) (and in the strong dual B(2, 2)°
of (B(2, 2), p)) and w extends to a continuous linear map from the projective
completion 2®2~ of 2®2~ into A° (or B(2, 2)*) (Chapter 1, §1, Pro-
position 2, [6]). Here 2~ is the complex conjugate of 2 (i.e. multiplication of
a complex number z in 2~ is that of Z in 2).

A general element u in 2® %, which is a Fréchet space under our as-
sumption, is of the form

@7 u=3 Ix®y, 3 |hl<wo
i=1 i=1

where x; and y; are sequences converging to 0 in 2 and 2~ (Chapter 1, §2,
Theorem 1, [6]). The above-mentioned extension of w is given by

2.8) w,= 3 Ao
i=1

XiyYi ©

The topology on U (and on B(2, 2)) induced by o(B(2, 2), 2R2")
and o(B(2, 2), 2® 2") are called weak and ultraweak topology.

They are given by semi-norms f € A—|f(x, y)| with x and y varying in 2
for the weak topology and by semi-norms fe U—|{f, w,>|=| % AB(x;, y)| for
the ultraweak topology. The set of all ultraweakly continuous i;riear functionals
on (U, p) is called the predual of A and denoted #. The predual of B(2, 2)
is 2®2 and B(2, 2) is the dual space of 2 ® 2~ (Chapter 1, §1, Proposition 2,
[6]. However the strong topology on B(2, 2) induced by 2®2 has been
shown to coincide with p so far only under the condition that 2 is quasi-
normable. See Proposition 7 (1°) in [9].) The map w induces a topological
isomorphism of the predual of 2 onto the Fréchet space 2 & 2~/U° (Proposition
7.2) where O is the polar of U in the duality (2® 2, B(2, 2)).

For any selfadjoint ultraweakly closed subspace B of B(2, 2), a positive
linear form ¢ on B is called normal if

(2.9 <p(sgp T,)= sup o(T,)

for any bounded increasing net T, in B*. We shall determine in Theorem 2
a form of such ¢ on the ultraweak closure of a *-algebra satisfying Condition I.
Together with Corollary 1a, it gives a concrete description of elements in the
predual.

The commutant ¢’ of a *-algebra 2 is the subspace of B(2, 2) consisting
of all feB(2, 2) satisfying p(Ax, y)=p(x, A*y) for all Ae¥W and x, ye 2.



1018 HuziHIRO ARAKI AND JEAN PAUL JURZAK

If an U satisfies Condition I, then A’ is a *-algebra over 2 in the sense that
any fe U’ can be written as f(x, y)=(Bx, y) with B2<% and B’s form a
*-algebra over 2 as defined eariler, except that 2 is not complete relative to
the topology induced by U’. The same conclusion can be achieved under
Condition I, or I;. In either case 2’ satisfies Condition 1. '

We shall define the bicommutant 2" as the commutant of 2’ within
B(2, 2). We may consider the commutant (', D)’ of A’ in the earlier sense,
namely within B(D, D) for the completion D of 2 relative to the topology on
2 induced by A’'. It is smaller than A" in general. We shall clarify in Theorem
3, the structure of A, A” and (W, D)".

Another topology called the A-topology on a *-algebra U on 2 has been
introduced in [10]. We define for Te W and 0# A e ¥,

2A(T)=sup {| Tx[|/|4Ax|: x€ 2, | Tx| + [ Ax] #0;

where we define a/0= + co>b for any a>0 and real b, and M, denotes the set
of all Te A with 1,(T)<oo. Then the A-topology is the inductive limit topology
of A=\ {Wi,: 0# A € A} for the system of normed spaces (I, 1,). In general,
the A-topology is known to be different from the p-topology, a typical example
being the set L(2) of all operators A such that Dom A=2, A2 =2, Dom -
A'>2 and A2 2. The coincidence of the p and 2 topologies for U has a
significance because it is equivalent to the p-continuity of the product ST as
a map from A x A to A. We shall prove the coincidence of the two topologies
for some A (Theorem 3 (1)).

§3. Main Results

We describe our main results as theorems in this section, their proof being
given in later sections. If 2 is countably dominated, B(2, 2) satisfies Con-
dition I and hence all the following results hold for B(2, 2).

This first group of results are about order-convexity of p-topology.

Theorem 1. Let B be a symmetric subspace of B(2, ) containing the
cofinal sequence A, of BY(2, 2). The p-topology on By (or on B) (defined as
the inductive limit topology of a system of normed spaces (Bg)4,, Pa,) Where
p4(T)=inf {AZ0; |(Tx, x)| SA(A4,x, x) for all xe @}) is order convex if one of
the following conditions is satisfied.

(1) B isa *-algebra over @ satisfying Condition I.



*.ALGEBRAS OF UNBOUNDED OPERATORS 1019

(ii) B is the completion (relative to the p-topology) of a *-algebra over
92 satisfying Condition I.

(iii) B is the ultraweak closure of a *-algebra over @ satisfying Con-
dition I.

(iv) Condition 1I is satisfied.

Remark. (i) corresponds to C*-closure and (iii) corresponds to W*-
colsure in the case of *-algebras of bounded operators. (1), (ii) and (iii) are
actually special cases of (iv) and hence it suffices to prove theorem 1 under (iv).

The order-convexity of p-topology immediately implies the following.
(Chapter 5, 3.3, Corollary 1, [13].)

Corollary 1a. Any continuous linear form on (B, p) decomposes as a
linear combination of positive continuous linear forms if 2 satisfies one of
conditions of the preceding Theorem.

Corollary 1b. Let B be a symmetric subspace of B(2, 2) containing a
cofinal sequence in B (2, 9). The positive cone B* is normal for p if and

only if (€, p) induces the topology (B, p) for any symmetric subspace € of
B(2, 2) containing B.

This is the converse of Proposition 6 in [9].

The second group of results are about description of the predual.

Theorem 2. (1) Any ultraweakly continuous linear functional f on a
symmetric subspace of B(2, 2) is of the form f=f, —f,+i(f;—f,) where f;
(j=1,...,4) is an ultraweakly continuous positive linear functional.

(2) Any ultraweakly continuous positive linear functional on a symmtric
ultraweakly closed subspace of B(2, 2) is normal.

(3) Any normal positive linear functional f on the ultraweak closure
B of B can be written as

3.1) f(T)= '21 T(x,. x;), Te B,

for a sequence x;€ 2 if B is a subspace of B(2, 2) satisfying Condition II.
In particular, fis ultraweakly continous on B°. A *-algebra A on 2 satisfy-
ing Condition I is a special case of such ‘B.

(4) Any normal positive linear functional f on B(2, @) is of the form
(3.1) (without any condition on ).
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The third group of results are about structure of A’ and A”.

Theorem 3. Let U be a *-algebra on a domain 2 satisfying Condition I,.

(1) The commutant W is an ultraweakly closed *-algebra on 2 satisfy-
ing Condition I and the topologies p and A coincide on U'.

(2) The bicommutant N" is ultraweakly closed and satisfies Condition II.

(3) The bicommutant A" is the ultraweak closure of *-algebra N generated
by U and all A;*.

(4) Let M be the von Neumann algebra generated by all bounded
operators in W and 3 be its center. The set of all bounded operators in A’
is M’ (the commutant of M in the sense of von Neumann algebras) and W is
algebraically generated by W' and [A,]5 (n=1, 2,...) where A,, the closure
of A,, is a selfadjoint positive operator affiliated with M and [A,]g is the
greatest lower bound of A, affiliated with 3 (i.e. the largest element of the
set of all selfadjoint positive operators C affiliated with 3 satisfying Dom
C> 2 and (A.x, x)=(Cx, x) for all xe @) which exists and satisfies [A,]g =1,
[4,]3' e 3= cW'. (See Appendix.)

(5) A closable operator defined on 2 is in W if and only if it is affiliated
with M.

(6) All Be(W)* is essentially selfadjoint on 2, B> e (W')* for >0 and,
if B21, B*9=9.

(7) Let D be the completion of 2 relative to the topology induced by a
countable set of norms ||[[4,]gx| for xe 2 and (W', D)’ be the commutant of
A’ in B(D, D). Then W' is ultraweakly closed relative to D®D, (', D)’ is an
ultraweakly closed *-algebra on D satisfying Condition I, generated algebrai-
cally by M and [A,]g (n=1,2,...), and D is complete relative to (', D).
(W, D)Y'=W.

Theorem 3'. Under Condition Iy for U, the conclusion (1), (4), (6) and (7)
of Theorem 3 hold except I is the von Neumann algebra generated by bounded
operators in WA, for all n. In addition, (2) takes the following form: A"
is ultraweakly closed and the set of all bounded operators in W is IN.

The reason for failure of (3) and Condition II in (2) in Theorem 3’ is
because 4,12 need not be contained in 2.
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§4. Preliminary Lemmas

Before plunging into proof of main results, we settle minor problems in
this section.

Lemma 4.1. If AeU* and A=1, then A2Z=A.

Proof. By Schwarz inequality and the assumption A =1,
4.1) IAx] lIx]| 2 (Ax, x)= [|x]?.
Therefore | Ax|| = ||x]||, which implies
“4.2) (A%x, x)=lAx|*2 | Ax]| [x] = (4x, x).

Lemma 4.2. If A,eW (n=1, 2,...) is cofinal in A", then for any Ae U,
there exists an integer n and 1>0 such that | A,x| = | Ax|| for all xe 9.

Proof. For given Ae U, A*A e Nt and hence there exists (n, 1) such that
AA,2 A*A and 14,=21. By Lemma 4.1, A242>1A4,= A*A and hence 1?|4,x||?
=(A242%x, x)=2(A*Ax, x)=|Ax|? for all xe 2.

Lemma 4.3. Let 9 be the completion of 2 given by 2.1). If Be B(2, 2),
then there is a unique extension BGB(Q, é) of B. For any given Ae W and
2>0, |B(x, x)| SMAx, x) for all xe @ if and only if |B(x, x)|<A(Ax, x) for
all xe 9.

Proof. The existence of the extension and its unqiueness is straightforward
because fe B(2, 2) is continuous in 2 x2. For xe 9, there exists a net
X, € 2 such that (A(x,—x), x,—x)—0 for all AeA*. Since |f(x,, x,)|=(4x,,
x,) for some 4 € AU+, B(x,, x,) has a limit which must be B(x, x). Hence the first
inequality implies the second. The second inequality implies the first as its
restriction.

Lemma 4.4. If A,=1 is a cofinal sequence in *, then A2 is also a cofinal
sequence in A*. Furthermore, there is a subsequence n(m), m=1, 2,... and
a monotone increasing sequence A,=1, A,—00 such that both B,=2,A,m
and B2, are monotone increasing and cofinal in A*, and B, ., =B2.

Proof. For xe 2, A,21 implies (4,x, x)<|4,x]|>*=(42x, x) by Lemma
4.1. Because 4, is cofinal, there exists N(n) and g(n)=1 such that

“3) g(m) Ay Z 3 (Aut43),
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which implies g(n)Ay = A, and, due to Lemma 4.3 for Ay,,21, g(n)A4% .,
2g(M)Anm= A Starting with n(1)=1 and B;=A4;, we choose inductively
n(m)=N(I) for I=max (n(m—1), m) and A,=(4,_,)*9(l). Then the desired
properties are satisfied.

Lemma 4.5. If A and B are linear operators with a common dense domain
9 satisfying A92<2,B2<2, A=1 (as a form) and AB=BA=1 on 2,
then the closures of A and B are positive self-adjoint operators, B=A"1<1
and A2 is the closure of A2.

Proof. We have A9 =2 on one hand and B9 = 2 implies A2 > AB9 =
9 on the other hand. Therefore A2=2. Similarly B9=2. For xe2,

4.4) (Bx, x)=(Bx, ABx)=(ABx, Bx) (=0)
=(x, Bx)

and hence Be A*. Further, Schwarz inequality and 4=1 imply
4.5 I Bx|l |x[| 2 (Bx, x)=(ABx, Bx)=(Bx, Bx)=|Bx||

for all xe 2 and hence |B||<1. Namely B is a positive bounded self-adjoint
operator. For the selfadjoint operator B~!, B2 for any dense set 9 is a core
due to ||B]|<o and hence 2=B% is the core of B! in the present case.
Furthermore, for xe 2, B-!x=B 'BAx=Ax and hence A=B"!l. Since

A2e U, B2e A, A2=1 and A2B2=B24?=1, we have A2=(B?)!=B"2=42
In the following, we shall denote B=A""! in the above situation.

Lemma 4.6. If a closable operator T defined on 2 has its range in
9, then T is continuous as a map from the Fréchet space 9 into itself, where
the countable domination and completeness 9=9 are assumed. For any
BeB(2. 2) and such operators T, and T,, T§BT\(x, y)=B(T;x, T,y) is again
in B(2, 2).

Proof. Since T is closable on s, it is closed on the Fréchet space 2.
(Note that x,€ 2 and x,—0in 2 implies x,—0in 5#.) By closed graph theorem,
T is continuous.

§5. A Representation of %, by Bounded Linear Operators

In this section we work with subspaces B in B(2, 2). A *-algebra U over 2
can be viewed as B and, if U satisfies Condition I, then it satisfies Condition II.



*. ALGEBRAS OF UNBOUNDED OPERATORS 1023

Proposition 5.1. Let B be a symmetric subspace of B(2, 2), Ac U,
A=1. Then (B4, p,) is canonically isometrically isomorphic to a subspace
of (L(s#), p;) where B,=BnB(2, 2),, p(4) is the infimum of 120 satis-
fying |(Ax, x)|ZA|x||? for all xe s# and coincides with | Al for any normal
A.

Proof. For AeB*(2, 2), there exists (for example, see [9]) a unique
positive selfadjoint opertor 4, such that @ is the core of AY/2 (hence 4129 is
dense in #) and

A(x, y)=(4}?x, 4}?y),
because A4 is closable. Since A=1, 4,21 and in particular the kernel of 4,
is 0.
Let fe B(2, 2), A=20 and |B(x, x)| S AA(x, x) for all xe 2.

6.1 B(x, v)=Ty(4}?x, 4}2)

defines a hermitian sesquilinear form on 4%/?2 which satisfies | Tp(x, x)| <] x|>.
This implies the existence of unique T, € L(5#) satisfying

(5.2) B(x, v)=(Tpd}?x, 44/%y).

The map f— Tj is obviously linear. Since p,(T}) is the infimum of 2 =0 satisfying
[(Tpx, x)| < Allx]|?, which is equivalent to |B(x, x)| S A(Ax, x) for all xe 2, it is
p4(B). Hence the map is isometric.

Remark 5.2. Y A2=2 in Proposition 5.1, then 4,=A42 by Lemma
4.5 and hence (4,,)/2=A4.

Proposition 5.3. Let B be a symmetric subspace of B(2, 2) containing a
cofinal seqeunce of operators A, in BY(2, @) such that A,21, A,2=2, fcB
implies A,fA,e€B and A;'BA;' €B. Then B=\U By, for B,=A2, and By,
are isometrically isomorphic to B,y (the set of a;'I bounded operators in B),
where B,=8B N B(2, 2), for A=B, or A=id.

Proof. By Lemma 4.4, 8=\ B,. By Remark 5.2, 4}2=4,. For e

B, we have
(5.3) A1 BATNx, y)=B(A;'x, A71y)=(T{x, y)

where T is T for A= B, in Proposition 5.1. Thus T} (as a sesquilinear form
on 2) is in B;y. Conversely if a bounded linear operator B, is in B4, then
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B=A4,B;A,eB and Ty=B,. Namely T(™ is an isometric isomorphism of By
onto By,.

The following is an immediate consequence of the definition.

Lemma 5.4. The map T™ is bicontinuous from U, with o(W, , 2@ D)
onto N, with o(N,, 2,89,) where N,=T™U, and 2,=4129.

Proposition 5.5. Let B= U B,, be a symmetric subspace of B(Z, 2)
containing a cofinal sequence A of B*(2, 2) satisfying A,21 and let T™ be
the map BeB, —T,e L(#) defined in Proposition 5.1 for A=A,. Then B
is ultraweakly closed if and only if the image N, of T™ is ultraweakly closed
in L(s#) for all n.

Proof. Obviously B is ultraweakly closed if and only if By is. The
circled closed convex hull of {1~1(4,x, x)~! (x®x); x € 2} forms a fundamental
system of neighbourhood of 0 in 2® 2 when A varies over positive reals and
n varies over natural numbers. (Chapter 1, §1, Proposition 2(2), [6]. The
circled closed convex hull is actually circled o-convex hull, Exercise 2, §13,
Chapter 2, [6].) Its polar in B(2, 2) is the set of fe B(2, 2) satistying
1B(x, x)| S A(4,x, x). Therefore, by the Banach-Dieudonné theorem (Chapter
4, §6, Theorem 6.4, [13]), By is ultraweakly closed if and only if [—A4,, 4,]s
is ultraweakly compact for all n, and by the Ascoli theorem which asserts equiv-
alence of simple convergence on 2®2 and simple convergence on its dense
subset 2®2 for the equicontinuous set [ —A4,, 4,]s (Theorem 4, Chapter 0
in [7]), if and only if [—A4,, A,]s is 0(B,,, 2®2) compact for all n. By
isomorphism T(™, this is the same as the o(%,, 2,89,) compactness of [—id,
id]y, where 9, is the image of B, by T™ and 9,=4}22, which is dense in
. By the Ascoli theorem, this is equivalent to the o(%R,, # ® #°) compactness
of [—id, id]y, and, by the Banach-Dieudonné theorem, to the condition that
(9t)r and hence N, is ultraweakly closed in L(s#) for all n. (Note that T(™
preserves the adjoint.)

Corollary 5.6. Assume that A,=1 is a cofinal sequence of B(2, 2)*
and A,2=2. Let B a symmetric subspace of B(2, 2) such that

1° ide B,

2° A,BA,and A;'BA; are in B if B is in B. Then B is ultraweakly
closed if and only if [id, id]g is compact relative to the c-weak topology of
bounded operators, equivalently if and only if the set of all bounded operators
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in B is o-weakly closed.

Proof. The two conditions imply that B contains the cofinal seqeunce
A2 of B(2, 2). By the proof of Proposition 5.5, B is ultraweakly closed if
and only if [— A2, A2]y is 0(B, 2® 2P) compact for all n. By Lemma 5.4, this
is the case if and only if T([— A2, A2]y is o(-, 9,8 9,) compact, where 4}?=
A, for B,= A% by Remark 5.2 and hence 2,=4,2=2.

We shall prove

(54 T™W[-A42, Aflg=[—id, id]y.

If this is shown, then this set is bounded in the set B(s#) of all bounded operators,
it is o(-, 2,09,) compact if and only if it is (-, #®#) compact (i.e. o-
weakly compact), by the Ascoli theorem for example, and this is the case if and
only if B, is o-weakly closed (Chapter 1, §3, Theorem 1, (iv) [3]), proving
Corollary.

To show (5.4), the definition (5.3) of T and our assumption 2° imply

(5.3) T™W[—-A47, AZlp=[—id, id]g.
On the other hand, for any Te[—id, id]g,

(5.6) B(x, y)=(TAx, 4,y)  (x, y€ D)

belongs to B by our assumption 2°, is in [—A2, A2] and satisfies T§"=T.
Therefore we (5.6).

Proposition 5.7. Let B be a subspace of B(2, 2) satisfying Condition II.
The ultraweak closure B of B in B(2, 2) also satisfies Condition II with
the same cofinal sequence A,=1 and (B°);q is the von Neumann algebra gen-
erated by B,,.

Proof. Since the multiplication of A4, and A;' is continuous on 2 by
Lemma 4.6, f—A,BA, and f—A;1fA;! is weakly and ultraweakly continuous.
Therefore the first half is immediate except for (3) of Condition II. By
Corollary 5.6 (U°);4 contains the ultraweak closure 9 of A;,; which is a von
Neumann algebra. Thus it remains to show that (20°);;=I0.

Let Be9M'. Since 4, is selfadjoint (Lemma 4.5) and A;2€(B);qy, 45!
is in M and commutes with B. This implies B Dom A,=Dom A4, and hence
B2 <2, namely x® y—Bx®y and x® y—»x®By induces a continuous linear
map on 2R 2.

By Proposition 5.3, any 4 €B can be written as A=A,TA, with Te B,,.
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"Therefore A commutes with B on 2, i.e.
B(Bx, y)=p(x, B*y)
holds for f B and hence € B°. This implies
(B)ja (W) =Nt
Therefore (B9);q=M=(B,y)".

§6. Normality of the Positive Cone

Lemma 6.1. Let & be a *-algebra of bounded linear operators on a
Hilbert space H, Be X, B=0 and O0<a<1. If TeK and

6.1) [(Tx, x)|S((B+al)x, x)
for all x e o, there exists Ty and T, in & such that T=T, + 1),
(6.2) I(Tyx, x)| <(Bx, x),
6.3) (T3%, %) < G(IB)at/2 x|
for all x € # where G(t)=2(1+1)/2+1.

Proof. On the interval I=[0, ||B]], consider a real function
6.4) f@®)=min {[t(t+a)]"V/?*—g, 1 +a1}

where ¢>0 is sufficiently small. (For example 4 1a!/2[1+ | B|]73/2>¢.) Let
g(t) be a polynomial satisfying | f(t)—g(t)| <efor all tel. Let h(t)=g(t)t. We
have

(6.5) 12 (t/(t+0) 2 2 h(£) 20,
(6.6) 0=(1—=h@®)(t+a)/2<all2.
For Te & satisfying (6.1), let
6.7) T,=hB)Th(B), T,=T-T,.
Then
(6.8) I(Tyx, x)|=|(Th(B)x, h(B)x)|
< ((B+al)h(B)x, h(B)x)
=(Bx, x)

where the last inequality is due to (6.5). Furthermore (6.1) implies |T'| <1
for T'=(B+al)"1/2T(B+al)~1/2 and hence
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69). I TS 1A~ hB)THB)| +|TA~h(B)
< (1= A(B) (B+a)* 2 (|(B+21)"2h(B)] + | (B-+oD)'/2])
S a2 B+ 0+ o) St Bl + D2+ 1).

Lemma 6.2. Let B be a subspace of B(2, 9) containing a cofinal sequence
A,21 in B¥(2, 9) and satisfying Condition II. For any given B=0 in
B, for B,=A2, there exists a number G depending only on pg (B) such that
for any O<a<1 and any PeB satisfying |B(x, x)|S((B+aB,)x, x), there
exists B, and , in B satisfying

(6.10) B=B1+ B2, |B1(x, )| S(Bx, x), |B2(x, x)| < Ga/2(B,x, x),
forall xe 9.

Proof. By Proposition 5.3, there is an order preserving isometric isomor-
phism of By onto the *-algebra B;, of bounded operators where B, is mapped
to the identity operator. The decomposition of Lemma 6.1 in B;, then yields
the desired decomposition in By .

Lemma 6.3. Let B be a symmetric subspace of B(2, 9) containing a
cofinal monotone sequence B, (n=1, 2,...) in BY* (2, 2) and B be a neigh-
bourhood of 0 in (B, p). Let 4, (n=1,2,...) be a seqeunce of real numbers
satisfying 0<A,<1 for all n and ]0_0[ 4,>0. The following 3 conditions are
equivalent. "

1° B contains an absolutely convex and order convex neighbourhood of
0 in (B, p).

2° There exist «,>0 (n=1, 2,...) such that

(6.11) [~ 3 4By 11BlecD.
3° There exist a,>0 (n=1, 2,...) such that
(6.12) Co="% (T 2)mB,+%B,
=1 j=k

satisfies (for all n) [—C,, C,]g<B.

Proof. 1°-2°: Let 9B be an absolutely convex and order convex neigh-
bourhood of 0 in B and U be an absolutely convex open set in ¥B. If Ce U n B+,
[-C, Clg is in W. For B;e B* and CeUnB*, there exists A>0 such that
C+ 4B, is in U, for which [-(C+4B;), C+1B;]Jg<¥B. By repetition, 2° holds.

2°-3°: Dueto C,= ﬁ:l o;B;.

=
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3°>1°: Leti= ﬁ 4;>0. Then A<AA,-++4, and hence

Jj=1
(6.13) C,=1Y. o,B;
j=1
satisfies (for all n) C,<C,,; and [-C,, C,]=B. Since B, =B, the set

(6.14) U [-C) €]

n=1

is absolutely convex, order convex and is a neighbourhood of 0 in (B, p) con-
tained in B.

Proof of Theorem 1 (i)-(iii). In all cases (i)—(iii), B satisfies Condition II
and hence these cases follow from (iv).

Proof of Theorem 1 (iv). The condition 1° of Lemma 6.3 for arbitrary
neighbourhood B of 0 in (B, p) is the order convexity of the topology p by
definition. We shall apply Lemma 6.2 to find a, and show 3° in Lemma 6.3.

Let 8B be a neighbourhood of § in (B, p) and 4, 4,,..., 4,,... be as in Lemma
6.3. By Lemma 4.4, we may assume that B,=A42>1 is monotone increasing.
Set B,=BnBp,. Then B;=B,c<---. By induction on n, we shall find «,>0
satisfying

(615) [—an+ an+1 —Ancm Oy + an+1 +incn]58= [_ Cn+ 1> Cn+ 1]%C$n+1

with C, defined by (6.12). Since 8B, is a neighbourhood of 0 in the normed
space (Bg,, pp,), there is a; such that [-C,, C;]<=B, for C;=a,B;. Suppose
we have already found C, with [-C,, C,]<®8,. Choose «,, , such that

(6.16) [-Gal3B, ., Ga}l3 B, 1=(1-1,)B, .,
where G is given by Lemma 6.2 for B=C,. Note that C,e B, =Bp,.,. Let
(617) Te [—/l"C"— oy an+19 )."C" +an-r 1Bn+ 1]93 .

By Lemma 6.2, there exists T; and T, in B satisfying

(618) Tl € [— /‘{ncm )'nCn] < ln%n C/ln%n%- 1
and
(6.19) T, e[~ Gul3B, sy, GaliiB,  1c(1-4)B, ., .

Therefore Te B, ,, which shows [—C, 11, Cry 1l =B+ 1-

Proof of Corollary 1b. If B* is normal, then the topology induced by the
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restriction of (€, p) to B is the p-topology of B by Proposition 6 (1°) of [9].
Conversely, if (€, p) induces the p-topology of B for any €>B, then take
C€=B(2, 2). We know by Theorem 1 that the p-topology for B(2, 2) is
order-convex. The restriction of an order-convex topology to a subspace is
again order-convex and hence the p-topology of B must be order-convex.

§7. Predual

Proposition 7.1. Let B be a symmetric ultraweakly closed subset of
B(2, 2) with a monotone increasing cofinal sequence A,=1 in B*(2, 2).
For a linear functional ¢ on B, ¢ is ultraweakly continuous if and only if the
restriction of ¢ to [—A4,, A,ls is ultraweakly continuous for all n. Further,
this is the case if and only if the restriction of ¢ to [ — A,, A,]y is weakly con-
tinuous for all n.

Proof. Since weak and ultraweak topology coincide on an equicontinuous
set [—A4,, 4,]s, the last two conditions are equivalent. The second condition
follows from the first condition by restriction. Thus we have only to show
that the last condition implies the first.

Let ¢ be a linear functional on B, with its restriction [—A4,, 4,]s being
weakly continuous for all n. Let S=ker ¢. Theset K n[—A4,, 4,]y is weakly
closed and hence, by Banach-Diendonné theorem, & is ultraweakly closed, which
is the ultraweak continuity of ¢.

Proposition 7.2. Let B be as in Proposition 6.1. Let B? be the strong
dual of (B, p), which is a Fréchet space. In B, the closure of the set of all
weakly continuous linear functionals is exactly the predual 2 of B, i.e. the set
of all ultraweakly continuous linear functional. The map w from the Fréchet
space 2®2 into W* given by (2.8) induces a topological homomorphism onto
the Fréchet space 2.

Proof. By the Banach theorem on the dual B(2, 2) of the Fréchet space,
any ultraweakly bounded set is simply bounded on 2 ® 2 and, by Corollary 2,
Section 5, Chapter 3, [13], it is equicontinuous and hence is in the polar of a
neighbourhoods of 0. Hence [—A14,, 14,]s, A>0 and n=1, 2,..., as polars
of a fundamental system of neighbourhoods of 0 in 2® 2, is a fundamental
system of bounded sets of B in ultraweak topology. Thus the strong topology
on the predual 2 of U is the topology induced on £ by 2». By a theorem of
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Grothendieck (Chapter 4, 6.2, Corollary 1, [13]), the completion of # is the
set of all linear functionals f on U, whose restriction to each [—A4,, 4,] is
ultraweakly continuous. By Proposition 7.1, f must be ultraweakly contin-
uous and hence £ is closed in 2.

Since bounded sets of U relative to weak topology is the same as above,
the same argument shows that the completion of the set of all weakly continuous
linear functionals on 2 is the set of all linear functionals f on 2, whose restric-
tion to each [—A4,, 4,] is weakly continuous. The coincidence of weak and
ultra-weak topology on the equicontinuous set [ —A4,, 4,] of U then proves the
first part of Proposition.

B(2, 9) is the dual of 2®2 ([6]) as a vector space and B is its ultra-
weakly closed subspace. Hence B is, as a vector space, the dual of (2 & 2/8°)
by the bipolar theorem where BO is the polar of B in 2®%. By the above
proof, 2 is a Fréchet space as a closed subset of the Fréchet space (B, p)” (the
dual of (B, p) and (B, p) is a DF-space as an inductive limit of normed spaces
by Proposition 5, Chapter 4, Part 3, §3 in [7]). By Hahn-Banach extension
theorem, w is surjective and hence w induces an isomorphism from a Fréchet
space 2®2/B° onto another Fréchet space 2. Furthermore w as a homo-
morphism from 2&® 2 into (B, p)° is separately continuous by the proof of
Proposition 8 in [9] and hence is continuous. Therefore w induces a topological
isomorphism of 2& 2/B° onto 2.

Lemma 7.3. Let U be a *-algebra satisfying Condition I and n be an
amplification Te A—-P(T) e UR1 acting on the Hilbert space

7.1 H=#RQL(N)=Y. &x.

Let the set of all x= Z ®x; such that x;€ @ and Z | A,x;[1? < oo for all n(called
g-convergent in [10]) be denoted by &. Then

1.2) F= 251 Dom (7(4,)) .

Proof. By Lemma 4.4, we may assume that A4, is monotone increasing,
A,=1, A;'e U and A2 is also monotone increasing. Since ||4,x|2= Z (A2x
x;)< 0, J is included in the right hand side. Let x= Z ®x; be in Dom (7t(A ))
for all n. Since the projection P on i-th space # commutes with 7n(4,), Pxe
Dom (7(4,)) and hence x; € 5} D(A).
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By Lemma 4.5, 2 is the core of the selfadjoint operator 4, for all n. There-
fore there exists x;,€ 2 such that

(73) HAn(xin_xi)” <n_1 .
Since A2 is monotone increasing, we have
(74) ”Ak(xin—xim)n én_l+)7]_1

for all n, m = k including 4,=1, x,;, converges to x; relative to the topology given
by seminorms | 4,x| (n=1, 2,...). Since 2 is assumed to be complete, we have
X;€D.

From x € Dom (n(4,)), it follows that f‘, |4,x;12=n(A4,)x||*<o0. There-
fore xe . =

Proof of Theorem 2 (1). By Proposition 7.2, any ultraweakly continuous
functional f can be written as

(7.5) FB)y=w(B)=2 7;B(x}, y;)
where 3 |4;|=1, lim (4,x;, x;)=0 and lim (4,y;, y;)=0 for all n. By a change
of x;, we may assu;ne 2;>0. Then f= g]0 —g,+i(g, —g3;) where

(7.6) gup)=4-t ; AiB(x;+iky;, x;+iky;)
is positive and ultraweakly continuous.

Proof of Theorem 2 (2). Let T, be a monotone increasing net in B bounded
by some € B(2, 2).

Let T(x, x)=sup T(x, x). Then T(x, x)<oo and hence T(x, x)=Ilim-
T.(x, x). ThereforeaT satisfies the parallelogram law and hence is uniquely
extended to a sesquilinear form which we write T again. Since f(x, x)= T(x, x)
20, Te B(2, 2) and T(x, y)=lim T(x, y). Since T, and T are in a bounded
set [0, 8], where weak and ultraweak topologies coincide, T is the ultraweak
limit of T, and hence is in B. Since f=T, implies f=T, T=sup T,. If f is

ultra-weakly continuous, we have f=1lim f(T,).

Proof of Theorem 2 (3). Asin Proposition 5.3, consider the order preserving
isometric isomorphisms T from (B7),2 to (B°),q which is a von Neumann
algebra by Corollary 5.7. Let f be a normal positive linear {unctional on B
and ¥,=f-(T)~1. Then ¥, is a normal positive linear functional on the
von Neumann algebra (B9),,=M. Hence there exists a sequence of vectors

o0
x;e such that ¥,= 3. o, ,. Since 2 is dense in #, we can find y,e 2
i=

]
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approximating x;, so that ¥, = é{ w, , satisfies

(1.7 1= ¥allm<e.

Setting z;=A4;'y;€ 2 and f,= gl w,, ., We have

(7.8) ITS|U<IZ LA(T) 1Tl = Sup. |¥,(B)—¥.(B)|=¢

and hence f is ultraweakly continuous by Proposition 7.2.
On the amplified space ## defined by (7.1), we define amplification n(f)
of Be B(2, 2) as a continuous sesquilinear form on & (see (7.2)) by

(79) TC(B) (X, }')=Z ﬂ(xis yi),
(7.10) x=Y®x,ed, y=3®y,eP,

where we equip & with a countable system of norms ||n(4, )x” An ultraweakly
continuous linear functional f can be Wntten as f(B)= Z B(x;, y;) with o-
convergent sequence x; and y;. (If f(f)= Z AB(x3, v w1th 4;20, x;—0 and
;=0 in 92, then set x;=1}2x}, y; —/ll/zy,) Settmg x=329®x;, and y=>9%y,
both x and y are & and

(7.11) F(B)=n(B)(x, y).

Since any f € B° can be written as 4,TA4, for some n and Te(B°);=M
and since T can be decomposed as a linear combination of positive operators in
the von Neumann algebra 9,  is a linear combination of positive elements
in Be. Since f is positive, we have f(f*)=f(B). This implies

(7.12) (B) (v, x)=n(B*) (x, y)=f(B*)=f(B)=n(B) (x, )
for all peB°. Therefore g(f)=p(u, u) for u=x+ y satisfies
(7.13) 9(B)=B(x, x)+ By, »)+2f(B)22/(B).

First we restrict our attention to fe(B°);q=MM. Then f(n(T))=f(T),
Te 9, is a positive linear functional on 7(M) majorized by (n(T)u, u). Hence
there exists a (unique) positive operator T, € M’ such that its range is the closure
of w(M)u and

(7.14) f(S*T)=(Toyn(T)u, n(S)u)=(n(S*T)T?u, T ?u)

for all S and T in M. Since (1) and 1B, in (3) of Condition II imply
A;2€B;=M, T§? commutes with spectral projections of n(4,)=nr(4,) for all
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n, which implies T}/2 Dom n(A4,)=Dom n(4,) and hence T}/2P <F. There-
fore x=T}?ue Z and, for x=Y P x,,

(7.15) FB =B (x, )= 3 Bx;, x)
holds for fe(B°);4. Since both ends of (7.15) are ultraweakly continuous
(positive) linear functionals, (7.15) holds for all § € B¢ by the following Lemma.

(Be is an ultraweakly closed symmetric subspace of B(2, 2) satisfying Condi-
tion II.)

Lemma 7.4. Let B be an ultraweakly closed symmetric subspace
satisfying Condition II. Any ultraweakly continuous linear functional f on B
is positive if it is positive on B,y. Any two ultraweakly continuous linear
functionals f, and f, coincide on B if they coincide on B,4.

Proof. The second assertion is obtained by applying the first assertion to
fi—f, and —(f;—f,). To prove the first assertion, we note that (4,)"2eIMN
=%B,;, and hence g(4,) for any bounded measurable function g is in M. If
f(B)= i B(x;, ;) and T=0 is in B,,, then

(7.16) Z (Tg(A,)x;, g(A,)y) 20.

Taking a monotone increasing sequence of bounded positive g,(x) converging
to x, on [0, o0), we have the estimate
(7.17) EN (Tg(A)xi, g(A,)y )l = i>ZN lgu(A)x:l gAYl I T
SITILE, @A) T (G A)ys 1D}V
SITIL Y (Axs, x)32{ X (A%yi v},
i>N i>N

which can be made smaller than any given ¢>0 for some N due to Y (42x;, x,)
< oo and Y (A2y,, y)<oo. Then

M M
(7.18) 2. (TA,x;, Anyi)=lil£n Zl (Tg(An)x;, gdA)y) =z —¢,

i=1

for M=N. Taking the limit of M — o0 and then ¢—0, we obtain
(7.19) 3 (TAx: A,y)20.
i=1

Any positive § in B, for B,= A2 is of the form f(x, y)=(TA,x, A,y) with Tedi*
and hence (7.19) implies f(8)=0 for such . Since B, is cofinal in B*(2, 2),
we have f(f)=0 for all e B,



1034 HuziHIRO ARAKI AND JEAN PAUL JURZAK

Proof of Theorem 2 (4). Let {A;} be a monotone increasing confinal
sequence in BY(2, 2) with A;=1 and B;=A? monotone increasing. B;
=B*(2, 2)p,. B, is the von Neumann algebra L(s#) of all bounded linear
operators. Proposition 5.3 implies that Te B,—»A;!TA;'e B, is a bijective
isometric isomorphism (isometry relative to || T|lp, in B;).

If f is a normal positive linear form on B(2, 2), then f(S)=f(A4;SA4;) for
S e B, is a normal positive linear form on L(2#°) and hence f(S)=Tr Sp; for a
unique positive trace class operator p;. Since f(A7!'SA;!)=f(S), we have
Tr(SA71p;A7)=Tr Sp; for all SeL(s#) and hence A;lp;A7'=p,. This
implies that p,# crange A;7'=Dom 4; for all i. Hence p;# <2 and in
particular, all eigenvectors of p, (with non-zero eignevalues) are in 2. This
implies
(7.20) (D=2 T(x; x)
for x;e 2 for all Te L(s#). By normality of f, we have (7.20) for all Te
B*(2, 2) and, by linearity, for all Te B(2, 2).

§8. Commutants and Bicommutants

In this section, the *-algebra U on 2 is assumed to have a cofinal sequence
A, in BY(2, 2) satisfying 4,21 and 4,2=2. (Condition I;) By Lemma
4.4, we may and do assume that 4, and B,=A2 are both monotone increasing.

Lemma 8.1. The set of all bounded operators in the commutant W' is the
commutant (in the sense of von Neumann algebras) of all bounded operators

in the *-algebra U generated by N and A;!.
Proof. Let Te L(s#) be in WA. By definition,
(8.1) (Tx, A y)=(4,x, T*y)

for all x, ye 2. By taking limit, the same equation holds for A4, and for all
x, y in the domain of 4,. Since 4,2 =2 implies the existence of B for A=A,
in Lemma 4.5 (BA,x =x for x € 2) and hence A,, is a selfadjoint positive operator
with A, £1(dueto 4,=1). Substituting x=A4,x" and y=A4,y’ with arbitrary
x" and y’ in #, we obtain the commutativity of T with A;!. It now follows
that T commutes with all bounded elements of U because Tis in 2.
Conversely, Te L(s#) be in the commutant of all bounded elements in
A. Obviously T(x, y)=(Tx, y)eB(2, 2) due to T(x, x)<|T| |Ix|2. Fur-
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thermore, for A €, there eixsts an n such that A%< A2, which implies that
AA;' is bounded and hence

(8.2) T(x, Ay)=(Tx, (AA7)A,Y)= (4, A*x, T*A,y)
=(A;1A*x, A, T*y)=(A*x, T*y)=T(A*x, y).

Lemma 8.2 QU is an ultraweakly closed *-algebra on 9.

Proof. Let fe'. By definition, § is continuous, i.e. there exists an n
such that

(8.3) IB(x, MI=[Aux] [ Appll -

Therefore, there exists a bounded operator B,, for every m =>n such that

(8.4) B(x, ¥)=(B,A.x, AY).

By Be’, we have B(A4x, y)=p(x, A*y) for all AeW. For A=A,, we have
(8.5) (B, A2x, A,y)=(B,A,.x, A%)).

Setting x=A,'x’, y=A,'y’ with arbitrary x’ and y’ in 9, we have

(8.6) (BpAx', ¥y)=(B,x', A,y").

Therefore B,2 cDom(4,,) and A,B,,=B,A, on 9. Let B=B,A2. Then

m*

B% <Dom (4,,) due to A29 <2 and B,,2 =Dom A4,,. Furthermore
(8'7) :B(x9 y) = (ZmBmAmx’ y) = ((BmAm)Amx’ y) = (va y)

for all x, ye 2. Therefore B is actually independent of m. Hence

(8.8) B2 < an Dom (4,,)= mQx Dom (4,,)

: :A[;[ Dom (A)=9 .
We also note that § e A’ implies
(8.9) BA=AB on 9 for any Ae?.

Let B;eW and Byx, y)=(Bix, v) (i=1,2). Then it is immediate that
Bi+B,eW, BFeW and cf,eW for a complex number ¢. For sufficiently
large n, A;'B;A,' is bounded by | and hence A4;2B,B,A4,2=(4;'B,4;")
(A4;,'B,A;") is bounded and

(8.10) |(ByByx, y)I < [ A%x]| [ 47yl

for x, y € 2, which shows that §,8,(x, y)=(B;B,x, y) is in B(2, 2). Further-
more
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(8.11) B1B2(Ax, y)=(B1ByAx, y)=(B1Byx, A*y)=p1fa2(x, A*Y)

due to the commutativity of 4 with B,, Hence f,8,e U’ and A’ is a *-algebra
over 2.

The relation B(Ax, y)=p(x, A*y) for Ae N is stable under ultraweak limit
(of B) and hence W’ is ultraweakly closed.

For any selfadjoint operator A affiliated with a von Neumann algebra 9,
there exists a unique operator [4]; affiliated with 3. (See Appendix.) If A=A4*
and B=B* are affiliated with 9t and 9’, then A=B (in the sence of (Ax, x)
2 (Bx, x) for all x in (Dom A) n (Dom B)) if and only if [A]g=B. In particular,
if A=a, then [4]g=a for a real number «. (Similarly we can define the lowest
upper bound [A]3 of A affiliated with 3. Then A=B is equivalent to [A]g
=[B]3 in the above situation. We also have [A71]3=([4]3)"! for positive 4.)

Lemma 8.3 W' is algebraically generated by its bounded part and
[4,]5- In particular [A,] is a central cofinal sequence in (W')*. W’ satisfies
Condition I.

Proof. Let BeU'. By the proof of Lemma 7.2,
(8.12) A2>B*B
for some n and hence || 4,x||2= | Bx|? for all x in Dom A,. Therefore
(8.13) B*B<[A]3=[4,1}

where J is the center of von Neumann algebra generated by the bounded part
of A. Because [4,] is affiliated with 3,

(8.14) ([4,13x, Ay)=(A*x, [4,13y)
for AeW and x, ye2. Furthermore A22=[A4,]3. Therefore B,(x, y)=

([4,13x, y) belongs to A’ and the same holds for [4,]3!. (Note that 4,>1
implies [4,]3 =1 and hence [4,]3! is bounded.) Then

(8.15) B'=B[A4,]3!
is bounded due to (8.12), and is in A’. Thus
(8.16) B=(B[4,]3") [4.]3

where [Z,,]B (restricted to 2 or considered as a sesquilinear form on 2 x 9)
isin A'. This also shows that [4,]3 is a cofinal sequence in (A')*. Since 4, ,
> A2 implies [A4,4,]3=[4,13, [4,]3 is also a cofinal sequence. Since [4,]3!
e W, W satisfies Condition 1.
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Lemma 8.4 The p and ) topologies coincide on W'.

Proof. The p topology is given as an iductive limit of the norm topology on
A . given by p4;(-), where A, =[4,]g, for example.

If AeW, there exists n such that A*A<B,. Then |Ax|2Z|[4,]3x/>2
Thus the A-topology is given as an inductive limit of the norm topology on 2
given by

8.17) |1 4]l:=sup {1 AxI/ICA]gx]l; x € 2} = ALA,]5"|

where 2, is the set of 4 € W’ such that the above supremum is finite.
To compare the two, we first note that for xe 2 and A e W,

(8.18) (4%, )| < [|Ax] [|Ix]| S |41l CAdgx ] %]
SN AN n(CATE%s %) S Al 1[4+ 118X, )
due to [4,]3=1 and [4,,,]3=[4,]3 by our convention. Therefore
(8.19) Al 222 P a;,- ,(A) .
On the other hand, pg;(4)=k <o for B, =[A4,]3 implies
(8.20) pe(ReA)Sk, pg(ImA)<k
where 2Re A=A+ A4* and 2ilmA=A—A* For selfadjoint A, pg (4)=k
implies |4, 'AA4,'|=|AB,'| £k and hence
(8.21) [ Ax|| < k2(|Byx | = k2| A} x| < k2| Ajye 1 x|

where the last inequality is due to A,’<A, ., for selfadjoint operators A/, and
A+ associated with an abelian von Neumann algebra 3. Therefore

(8.22) [ Allam+ 1) =208,(A) =2p4,(4) .

Lemma 8.5 The bicommutant " satisfies Condition 11, it is the ultra-
weak closure of ¥ in B(2, @) and the set of bounded operators in A" is the
von Neumann algebra generated by bounded operators in U.

Proof. By definition, A, is cofinal in (A")*=B*(2, 2). By Lemma 8.1
and 8.3, 4;1is in A”. By assumption, 4;!2 c % and U is a *-algebra over 2.
Any Te U is a closed map from the F-space 2 into 2 and hence is continuous,
ie. ||T|l,,<oo for some n. Thus A=B(2, 2) and hence U=A".

From Lemma 8.1 and 8.3, it also follows that bounded elements of UA”
is the von Neumann algebra 9t generated by all bounded elements of ¥ and hence
is the ultraweak closure of 9. If A € A", then there exists n such that A;14A4;!
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is bounded. Therefore there exists a net C,e ¥ such that lim C,=A4;'44;! in
the ultraweak topology of the von Neumann algebra 9. Then

(8.23) (Ax, y)=lim (C,4,x, A,y)

for all x, ye 2. Namely A4 is in the ultraweak closure of %M. The fact that
A” is ultraweakly closed is immediate.

Since A is a *-algebra over 2 (contained in B(2, 2)) and A, A;1eN
=W, A" clearly satisfies the Condition II.

By Lemma 8.1, any bounded operator in 2" must be in the double com-
mutant (in the sense of von Neumann algebras) of the set of all bounded operator
in 91, (which is a *-algebra by definition). On the other hand, the preceeding
proof shows the opposite inclusion and hence equality. (Note that the ultraweak
closure in the sense of bounded operators is included in the ultraweak closure in
B(2, 2).)

Proof of Theorem 3 (1) and (4). By Lemmas 8.1, 8.2, 8.3 and 8.4.
Proof of Theorem 3 (2) and (3). By Lemma 8.5.

Proof of Theorem 3 (5). Let T be a closable operator defined on 2. Then
it is a closable map from the F-space 2 into the Hilbert space s and hence
[Tx||> < c||4,x[?=(cAFAux, x) for some ¢>0. Hence T(x, y)=(Tx, y) is in
B(2, 2). Aswe have seen in (3), Misin A” and hence, if Te W', then T(x, S*y)
=T(Sx, y) for all x, ye 2 and SeM, which implies ST<TS. Therefore T
is affiliated with 9. Conversely, if T is affiliated with 9, then ST<TS for
any Se 9. Taking S=A4;!, we obtain 4,TA;! < T. If we restrict this equation
on 4,2, we obtain A,T=TA, on @. For any S e, there exists n such that
A;1S*SA;1is bounded, i.e. B=SA;'eM. Then S=BA,| 2, S*=A4,B*| 2 and

(8.24) T(Sx, ))=(TBAx, y)=(BTA,x, y)=(4,Tx, B*y)
=(Tx, S*y)=T(x, S*y).
Therefore Te .

Proof of Theorem 3 (6). For any given Be(2')*, there exists an n and ¢>0
such that B<cA,. Let E, be the spectral projection of [4,]z for the interval
[0, k]. Then E, €3, o# = (-B Hy, #=(E,—E,_,)# and B is reduced by this
decomposition (because E, e 3 leaves 2 invariant and commutes with B on 2).
Furthermore B on each %, is bounded (by ck). Therefore B is essentially
selfadjoint.
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Proof of Theorem 3(7). Since A’ satisfies Condition 1 by (1) and the set of all
bounded operators in U’ is a von Neumann algebra 9t’, A’ is ultraweakly closed
in B(D, D) due to the last half of Corollary 5.6. 1f we use (2, D) for (2, 2) and
[4,]3 for A, and apply (1) and (4), then we see that (2U', D)’ is an ultraweakly
closed *-algebra on D satisfying Condition I and generated argebraically by 9t
=) and [4,]3=[[4,]1g]3. Repeated appications of this argument yield the
last assertion.

§9. Proof of Theorem 3’

Lemma 9.1 Let A be defined on a dense domain 9, A9 =2 and (Ax, x)
= | x||2 for all xe 2. If A? is essentially selfadjoint on 2, then A is also
essentially selfadjoint, (A)2=A2 and A2 is a core for A.

Proof. By Lemma 4.1, |A42x|?=(A4%x, x) = (4x, x)=||x|? for xe2.
Therefore Dom 42 =Dom A, A2<=(A4)*> (because A2x,—) implies x, and Ax,
converging), the relation holds for x e Dom 42 and 422 is the whole Hilbert
space #. Since A2 <2 implies 4129 = A9 and since A2 is dense because
2 is a core of the strictly positive selfadjoint operator A2, A2 is also dense.
Hence (Ax, x)=||x|? for x € 2 implies that any y € o is a limit of Ax, with x,
also converging and hence A(Dom A)=s#. Furthermore (Ax, x)=|x||? and
hence || Ax||2=(A4x, x)= ||x||? for all xe Dom A. This means that 4! is defined
on s with |4~ £1 and (A~1Ax, Ax)=(x, Ax)=0 for all xe Dom A. Hence
A-1z0. Hence A=(A"1)"! is positive selfadjoint. Since (4)? is selfadjoint,
A2c(A)? above implies A2=(A)?. For any xeDom 42, there exists x,€ 2
satisfying x,—»x and A42x,—»A2x, which implies Ax,—Ax. Therefore the
restriction of A to A% has the closure with a domain containing 4 Dom A2,
which is Dom 4 and hence A2 is a core of A.

Proof of (1) and (4). Since A, is essentially selfadjoint on 2 by Condition
Iy and Lemma 9.1, Lemma 8.1 holds. Note that WA, ! is defined on 4,2 and
for any Be ¥, there exists an n such that cA2>=B*B, i.e. BA;! is bounded.

In the proof of Lemma 8.2, we any take x" and y’ in 4,,2 which is a core for
A,, and hence (8.6) holds for all x” and y’ in the domain of 4,, when 4,, is replaced
by A4,,. Therefore B,(Dom 4,)=Dom 4,, and B,,4,,=A,,B,, on Dom 4,,. This
implies that B,,A3 = A4,,B,,A2 on Dom A3 >Dom 43 > % and hence, in particular
B,A29 < 9(A4,,). Setting B=B,,A%| 2, we obtain (8.7) and hence B is inde-
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pendent of m. Furthermore B9 = N\ Dom (4,)=2. The rest of the proof of
Lemma 8.2 holds as it is and hence '5[' is again an ultraweakly closed *-algebra
on 2.

The proof of Lemma 8.3 and 8.4 is unchanged.

Proof of modified (2), (6) and (7). The same as proof of Theorem 3.

§10. Abelian Case

We shall discuss the Gelfand transform for abelian case.

Lemma 10.1 Let A be an abelian *-algebra over 2 with the a cofinal
sequence A, in U satisfying Condition I. Let of be the C*-algebra which
is the norm closure of the * algebra W,y of bounded operators in A. Let X
be the space of all characters of o with the weak * topology. Then

(1) Anycharacter ye X such that y(A,;Y)#0 for all n has a unique exten-
sion of its restriction on W, to a character (again denoted by y) of .

(2) For any non-zero T in U, there exists a character ye X such that
x(T)#0.

Proof. (1) Let x be a character on /. For any 4 € ¥, there exists an n
and ¢>0 such that A*4<cA2. Then AA;'eA,. We define

2 A=y (A4 (A7)
Suppose A4, e A, and A4, €A, with n>m. Then
KAL) (A7) = (A4 A A7) (A7)
= (A4 1 (A A7) 1 (477!
= {2 (AL 1 (4" H a4 1 (Am Az ") (45
= (AL 1 (N {x (A7) (A4
= (A4 (4;1)7"
which shows the independence of the definition. The linear dependence on A4
is then immediate. If AA;'eU; and BA,!e?U,, there exists a k such that
A,A,Ax €U, and hence A4y, BA;!, ABA;! are all in U,. Then
WAB)=y(ABA;)y(Ag")™
=(ABA A )y(A7) 2
= (A4 BA)(4x 2
= {x(A4; (A ) BA (A
=1(A)x(B).
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(2) Let Te ¥ and n be such that TA;'eU,. The norm closure A, of A,
is a commutative C*-algebra. Hence the set of character y on %, which is non-
zero on any specific elements of 2, is a dense open set in the set of all characters
of A,. In particular the set of characters y on U, such that y(TA4;1)#0 forann
and y(A4;")#0 for all j is a G, and hence non-empty. Such a character induces a
character % such that y(T)#0.

Proposition 10.2. Let A be an ablian *-algebra on 9 satisfying Condition
I. Let o and X be as in Lemma 10.1. Let S be the set of all y€ X such
that (A, V) #0 for all n#0. Let ® be the Gelfand transform from % to C(S)
defined by ®(T)(x)=x(T). Then ® is a positive isomorphism of N into C(S).

Proof. By Lemma 10.1, @ is an isomorphism. If Te, T=0 and
TA;1eU,, then 4,;1TA,* =0 as an element of .« and hence

W)= x(A7 ' TATHx(4,)220
because yx is a character on a C*-algebra .

Remark. Since @ preserves order, it preserves p-norms defined by order.

Appendix

Proposition Al. Let A be an essentially selfadjoint operator affiliated
with a von Neumann algebra I and satisfying

(A1) (Ax, x)= x|
for all xeDom A. Then there exists the largest lower bound [Aly of A
among positive selfadjoint operators affiliated with the center 3 of 9.

Proof. Let & be the family of all positive selfadjoint operators B af-
filiated with 3, with Dom A4 included in Dom B and staisfying

(A2) (Ax, x)2(Bx, x) ~ (20)

for all xe Dom A. Since 1€ %, & is non-empty. By taking closure, Dom A
—Dom B for all Be # and (A.2) holds with 4 replaced by its closure 4 for all
x € Dom A.

Let B, and B, be in &#. Since J is a commutative von Neumann algebra,
there exists a projection E € 3 satisfying

(A.3) B,E>B,E, B,(1—E)<B,(1—E).
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Setting B=B,E+B,(1—E), it immediately follows that B=B,, B=B, and
Be#. Thus & with the ordering as sesquilinear forms on Dom A4 is a net.
(All Be & is essentially selfadjoint on Dom A4, which is 3-invariant.)

Let E(L) be the spectral projection of A for (—oo, L). Then BE(L) for
all L are bounded operators in JE(L) and have the supremum

(A4) B(L)=sup {BE(L); Be #}.

If L,=L,, then B(L,)E(L,)=B(L,) and (AE(L))>=B(L)>. (For a pure state
@ of E(LYME(L), which is a character for its center JE(L), @((AE(L))?)
= @(AE(L))*= ¢(B(L))>=¢(B(L)?) and hence the same holds for any state ¢
by convex combination and weak limit.)) Therefore B(n) is a monotone in-
creasing sequence as a sesquilinear form on Dom A with ||B(n)x||? monotone
increasing and bounded by ||Ax||? for all xe Dom A. Hence there is a limit
B=1im B(n) defined on Dom A. On each E(L) Dom 4, it coincides with the
bounded positive selfadjoint operator B(L). Therefore its closure is positive
selfadjoint. Since B(L) commutes with 0’ and E(L)IME(L) (both having Dom 4
invariant), B commutes with both M’ and E(L)ME(L) for all L. Therefore it is
affiliated with 3. Furthermore A= B and B is the largest element of &#.

Proposition A2. Let A be as in Proposition A1. Let B be a positive
operator on Dom A such that the closure B is affiliated with ' and (A.2) is
satisfied for all xe Dom A. Then

(A.5) ([41gx, x)=(Bx, x)
for all xeDom A.

Proof. Without loss of generality, we may assume that A=A, because
(A.2) implies the same for A and xeDom 4, and [A]g=[A4];. We assume
the existence of x e Dom A satisfing ||x||=1 and

(A.6) e=(Bx, x)—([4]gx, x)>0,

and derive a contradiction.
Let E, be the spectral projection of A for (—co, L). Then E; leaves Dom A
invariant, commutes with B and [A]g(EL € M),

(A7) (B(1—-Epx, x)—([4]g(1—Ep)x, x)

is monotone decreasing tending to 0 as L—oo and hence there exists an L such
that x; =E x/| E x| satisfies
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(A.8) (Bxp, x1)—([A]gxy, x1) 2 3e/4.
Since AE; is bounded (by L),

(A.9) (Ax, x)=(Bx, x)=0

(A.10) (Ax, x)2([4]gx, x)2 || x|?

implies that 4, [A]3, and B restricted to E, H are bounded and belong to My, ,
the center 3, of My, and (M), =M, ), respectively. Thus we are reduced
to the case where A and B are bounded, which we shall now assume and again
start from (A.6).

Let E be the spectral projection of A—[4]g (=0) for (-0, &/2). By de-
finition of [A4]g, the central support s3(E) must be 1. (Otherwise [A]g-+
(e/2) (1 —s3(E)) will be a lower bounded of 4 in 3 larger than [4]5.) It is then
possible to find a partition of the unity 1 by projections E, of 9t such that each
E, is equivalent to subprojection of E in M. Since

(A'll) g {(BE:xx: Eax)_([A],SEax’ Eax)}=(Bx7 x)_([A]3xs x)=82 HEatz >
there exists a such that E,x+#0 and x,=E_x/| E x| satisfies
(Alz) (Bxau xa)_([A]Bxau xaz);g-

Let u be a partial isometry in 9 such that u*u=E, and uu*<E. Let y=ux,.
Then

(A.13) V12 = (ux, ux,)=(u*ux, x,)=(x, x)=1.

(A.14) (By, y)=(u*Bux,, x,)=(Bu*ux,, x,)=(Bx,, X,),
(A.15) ([A1gy, y)=*[Algux,, X;)=([A]3%Xs X, -

Hence, (A.12), (A.14) and (A.15) imply

(A.16) (By, »)=([4]gy, ) +e.

Since [|(A—[A]g)E| <¢/2 by definition of E and Eu=u, (A.13) implies
(A.17) (Ay, y)—([A4lgy, y)=¢/2.

This implies

(A.18) (By, y)—(Ay, y)2¢/2>0

which contradicts A=B.

Lemma A3. If f(-) is a polynomial with positive coefficients, then

(A.19) [f(AD]z=f([4]3)-
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Proof. The von Neumann algebra 9t generated by spectral projections of
A and J is commutative. Since A and [A]g can be viewed as continuous
functions on the spectrum of ¢, 4=[A]g implies

(A.20) f(A)zf([4ly)-

Let B=[f(A4)]g. Then B= f([A4]g) by (A.20). If B#f([A]g), there exists
0>0 such that the spectral projection F on B—f([A4]3) for (o, §) is non-zero.
There also exists a spectral projection F, of [A]gF such that F, <F, F,#0 and
[A]gF, is bounded. There exists ¢>0 such that f(x+e)=<f(x)+(6/2) for
x€[0, [[[A]gF,|]. We then have f(4)=B=f([A]g+eF;) and by monotoni-
city of f on [0, c0], we obtain A=[A]g+eF; with F, € 3 which is a contradic-

tion.
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