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On Weakly 1-Complete Surfaces without

Non-Constant Holomorphic Functions

By

Kensho TAKEGOSHI*

Introduction

In this paper, we are interested in a class of two dimensional complex

manifolds which are called weakly 1-complete surfaces. Here we call a two

dimensional complex manifold X a weakly 1-complete surface if X possesses a

C°°-exhausting plurisubharmonic function. This class includes two different

extreme objects: compact analytic surfaces and two dimensional Stein manifolds.

But at the same time, this class includes some curious examples from

the function theoretic point of view i.e. there are weakly 1-complete surfaces

without non-constant holomorphic functions (see [3] [6] [8] [12]) and moreover

non-compact weakly 1-complete surfaces have an extreme function theoretic

property i.e. a non-compact weakly 1-complete surface X is holomorphically

convex if and only if X possesses a non-constant holomorphic function (see

[9]). Looking back to the case of compact analytic surfaces, roughly speaking,

they are classified by the existence or non-existence of meromorphic function.

Hence it is natural to suppose that this aspect might give a new standpoint to

analyze such a curious example in the class of weakly 1-complete surfaces as far

as weakly 1-completeness is expected as a nice intermediate concept between com-

pactness and Stein. This note is an attempt towards the problem of the

existence of meromorphic function on non-compact weakly 1-complete

surfaces. From now on, all weakly 1-complete surfaces are connected and

non-compact and have no exceptional compact curves of the first kind unless

otherwise is explicitly stated. Then we shall prove the following theorem.

Main theorem. Let X be a weakly {-complete surface without non-

constant holomorphic functions and let 0 be a C^-exhausting plurisubharmonic
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function on X. If X possesses a non-constant meromorphic function, then

each sublevel set Xc = {xEX\ <P(x)<c} is projectively embeddable. More-

over if X contains no exceptional compact curves, then X is projectively

embeddable if and only if X possesses a non-constant meromorphic function.

Up to the present, the known examples of weakly 1-complete surfaces

without non-constant holomorphic functions contain no exceptional compact

curves. But it is still unknown if there is a weakly 1-complete surface without

non-constant meromorphic functions (see also [3] [6] [8] [12]).

The author expresses his hearty thanks to Dr. A. Fujiki and Dr. T. Ohsawa

for their interests to this result and valuable criticisms and suggestions in prep-

aration of this paper and he also expresses his gratitude to Professor S. Nakano

for his constant encouragements.

1. The following lemma was proved by Ohsawa (see [9] Theorem 1.1).

Lemma 1. Let X be a weakly 1-complete surface and let /: X-^P1 be

a holomorphic map, where P1 is the complex projective line. Then either

0 /"1(p)H-X"c is empty or non-compact for any peP1 and ceR

or

ii) f~1(p) n Xc is compact for any peP1 and ceR.

For a complex manifold Y, we denote by 0(7) the ring of holomorphic

functinos on 7.

Proposition 2. Let X be a weakly l-complete surface and assume 0(X)

= C. If there exists a non-constant meromorphic function f on X, then the

fibres of f are non-compact.

Proof. Let I be the set of indeterminacy of/. If 1^0, by taking a finite

number of iterated quadratic transformations with centres at points of I, we

obtain a complex manifold 7 and a proper surjective holomorphic map h:

Y-*X such that &(Y)^C and the map g = h*f: 7-+P1 is holomorphic. Then

7 is a weakly 1-complete surface because, if we let $ be a C^-exhausting pluri-

subharmonic function on X, we can take a function h*$ as a C°°-exhausting

plurisubharmonic function on 7. In this case, it sufficies to show that the fibres

of g are non-compact. Hence we may assume that/: X-+P1 is holomorphic.

Then i) or ii) of Lemma 1 holds. If ii) holds, the connected components of

f~l(p) H Xc are compact. Hence from Theorem 3 in [1], the equivalence re-

lation R defined by these connected components is proper and the quotient
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space X/R is an analytic space. Let p: X-+X/R be the natural projection.

Then there exists a holomorphic map q: X/R-+P1 such that q is finite and /

= qop. Combining this with the fact that X is non-compact and p is proper,

we can conclude that X/R is a one dimensional analytic space. Since X/R is

holomorphically convex and p is proper, X is holomorphically convex i.e.

G(X)£C. This is a contradiction. q. e. d.

As a consequence of Proposition 2, we obtain the following

Theorem 3, Let X be a weakly 1-complete surface and assume 0(X)

= C. Let f be a non-constant meromorphic function on X. Then Xc\P(f)

is \-convexfor every ceJR, where P(f) is the pole divisor off.

Proof. Let (P be a C00-exhausting plurisubharmonic function on X and let

I be the set of indeterminacy of /. By taking a finite number of quadratic

transformations with centres at points of I, we obtain a complex manifold Y

and a proper surjective holomorphic map h: Y-+X such that Y is a weakly

1-complete surface with respect to /?*<£>, 0(Y)^C and the map g = h*f: 7-^F1

is holomorphic. Let E± (resp. E2) be the total (resp. strict) transformation of

the pole divisor P(f) of/. Then it holds that g~~l(co') (P1 = {00} U C) coincides

with E2. Let {t/J^o.i be the standard covering of F1 with the local coodinate

(z) in l/0 and (w) in Ul respectively and YC\E2 is weakly 1-complete with respect

to (expto-exp^*^))-1*^!*!2), where Yc = {ye Y\ h*$(y)<c}. Since

YC\E2 is a weakly 1-complete surface and g \Yc\s2 *
s a holomorphic map whose

fibres are non-compact (Proposition 2), YC\E2 is holomorphically convex by [9]

Proposition 1.4. On the other hand, the critical values of g\Yc are finitely many

and g\Yc\E2 is constant on every connected curve contained in YC\S2. Hence

YC\S2 contains only finitely many connected compact curves. This fact implies

that YC\E2 is obtained from a two dimensional Stein space by blowing up a finite

number of points to compact curves. Hence YC\E2 is 1-convex. Next we assert

that Yc\El is L-convex. To prove this, we use the following assertion (see

[11] lemma 2):

*) The complement of a Stein divisor of a two dimensional 1-convex manifold

is [-convex.

The set of indeterminacy I of / in Xc = {x E X \ <P(x) < c} is a finite points set of

Xc and S2 meets each connected component of E3 = h~1(Z n Xc). Let D1 be

the union of the irreducible components of E3 which meet E2 and £3 =Di\E2,
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Then E^ is a Stein divisor in YC\S2, hence from *) (Yc\E2)\Ei is 1-convex. Let

D2 be the union of the irreducible components of S3 which meet Dl and E2

= D2\Di. Then E2 is a Stein divisor in (Yc\S2)\El. Hence (Y^S^E^ U E2)

is 1-convex. We continue this process. Since S2 meets each connected

component of £3, there exists an integer fe0 such that Dko = S3. Hence (Yc\32)\

\j]folEi = (Yc\S2)\(Dko\S2)=Yc\El is 1-convex. So our assertion holds. Since

YC\E1 is isomorphic to Xc\P(f), Xc\P(f) is 1-convex. q. e. d.

2. Let M be a complex manifold or space and n: B->M be a holomorphic line

bundle over M with trivializing covering {C/J and transition functions {&/_/}.

B is said to be positive (resp. semi-positive) on a subset Y of M if there exists a

metric {<?J along the fibres of B i.e. a system of positive C^-functions al on L/f

satisfying ai\bij\
2 = aj on t/f n £//, such that — loga f is strictly plurisubharmonic

(resp. plurisubharmonic) on every U{ n Y.

Proposition 4. Let X be a weakly 1-complete surface and assume

®(X) = C. Let f be a non-constant meromorphic function on X and let F be

the line bundle on X determined by the pole divisor P(f) of f. Then, for

any ceR, F is semi-positive on Xc and positive outside a compact subset Kc

ofXc.

Proof. We may assume that the pole divisor P(f) of/contains no compact

components. Take a real number c' with c'>c. Then D' = XC, n P(f) is a

union of one dimensional analytic spaces {D'l9..., D'm}. By the theorem of

Richberg (see [10] Satz 3.3), there exist a neighborhood W'k of Dk in Xc> and a

C°°-strictly plurisubharmonic function uk on W'k such that the restriction of

/4 onto D'k coincides with a C°°-strictly plurisubharmonic function on D'k
(1^/c^m). For some real number d with c<d<cf and k, we take a neigh-

borhood Wk ofD'k n Xd and a C°°-function %k on X such that Wk(& Wk9 0^x/c^l5

supple W'k and & = ! on W k ( ] X d . Put l^=Ui;?=i Wk, then MK is a neighbor-
hood of the closure of D = D' {\XC. On the other hand, there exist a

finite covering {Vi}1^i^n of D and a family of holomorphic functions {0"Ji^H

such that 1) if V^Wk(i}, Vt€ Wm 2) Vif}D = {ffi = Q}. Put V=\Jn
i=1 Vh then

D c F C W. If Vt n F7- 7^ 0, we set Fu — G^G^ then Ftj is a nowhere vanishing

holomorphic function on Vt n F/. Then there exists a family of positive C00-

functions {fl,-}i^n such that |F^-|2 = araJ-~1 on Ff n V}. We set ^ = 0rexp

{C'-(Zfe=iX&-A iD} on ^P where C is a positive constant. Since Fc W, if C is
large enough, log A\ is a C°°-strictly plurisubharmonic function on Vt. Put
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AfQ = A\l\a^2 on V19 then A'Q is a positive function on V. Moreover log A'Q is

C°°~strictly plurisubharmonic on V\D' and tends to infinity on V n D'. We set

Vo = Zc/\D' and define FiQ = ai on F0 n F£. Then {F^-Jo^y^,, define a system of

transition functions for F on K U F0. We take real constants bl9 b2 and fe3

sothatbj >b2>b3>Qand{xeV\b3/2^logA'0(x)^cQ} ( \ X c ( g V . We choosea

C°°-functionA(0:(-oo, oo)->(-oo, oo) such that A(r) = b2if r^b3 , A'(0>0, A"(0

>0 if f e(fe3 , &0 and A(f) = f if f^V We put JLI(X) = ̂ (log A'0(x)} for xe Fand

extend f.i(x} = b2 for xeX c + < 5 \F(0<(5«J) . Then the function p. is plurisub-

harmonic on Xc+d\D' and strictly plurisubharmonic on {xe V\ b^ <logy4o(x)

< + oo} nXc + (5. From Theorem 3, XC\D' is 1-convex. Hence there exists a

C°°-plurisubharmonic function 0 on XC\D' which is strictly plurisubharmonic on

Xc\(D
r U MC0, where Mc, is the maximal compact subvariety of Xc\D

r. We

take a C°°-function T on A" such that 0^r<£l , r = l on J^lxeF^^!

<log^4oW^+00) and SUPP T H Xc n {xe F|log^o(x)==351} = 0. Since fj. is
strictly plurisubharmonic on {xEV\b3<log A'0(x)<3bl} ft Xc+d, if e>0 is

small enough, e - T - $ - f ^ is plurisubharmonic on XC\D (D = XC n D') and

strictly plurisubharmonic on XC\(D\JMC>) (we may assume that FnM c , = 0).

We put y40 = e x p ( c - T • $ + //) on XC\D. Then ^40 coincides with the original

A'0 near D. We set v4^ = ^0 • I0"/!2 on VJ -n^ . Then it is easily verified that

{/171} is a metric of F = { F l J ] on Xc and —log^f 1 is strictly plurisubharmonic

on Vt n Xc if / G {!,..., 77], plurisubharmonic on Vir\(Xc\D) and strictly pluri-

subharmonic on V0 fl (^C\(D U Mc,)). This implies that F is semi-positive on

^Tc and positive outside the maximal compact subvariety Mc of Xc\P(f).

q. e. d.

Theorem 5. Le£ X be a weakly \-complete surface and assume @(X) = C.

IfX possesses a non-constant meromorphic function/, then there exists a positive

line bundle on each sublevel set Xc and so Xc is realized as a locally closed

subspace of a complex projective space.

Proof. We have only to prove the former assertion since the latter one

follows from [2] Lemma 3. From Theorem 3, Xc\P(f) is 1-convex. Let Mc

be the maximal compact subvariety of Xc\P(f). First we assume that Mc is

connected. Let {M^Ji^,, be the irreducible components of Mc. Since Mc

is exceptional in Xc, the intersection matrix (MCjI- • Mcj) is negative definite and

MC ) f-M c J^0 if /Vj. Hence there exist natural numbers rl9...,rn such that

£?=i rtMC}i' McJ<0 for l-^j^n. Let pt be the ideal sheaf of MC}i and set
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J'= pril" • pr
n

n. Let L be the line bundle over Xc corresponding to the in-

vertible sheaf J and let fit: MCil^MC)i be the normalization of MCti. By the

choice of natural numbers rlv.., rn, fjf(L\Mc .) is positive over MCti. Since

each fa is a finite map, £|Mc £
 and so -^!MC *s positive over Mc. In a suitable

manner, we extend the metric {a-} which gives the positivity of L\Mc over Mc

to a metric {^4'J of L\w, where If is a neighborhood of Mc. Let 0 be a C°°-

plurisubharmonic function on Xc\P(f) which is strictly plurisubharmonic on

Xc\(P(f)UMc)9 then {Ai = Af
rexp(-C0)} becomes a new metric of L\w. If

C is large enough, L\w is positive over W. Hence by the same way as in the proof

of Proposition 4, we can conclude that L is semipositive outside a compact

neighborhood K of Mc and positive on a neighborhood W of Mc with We: Int X.

If Mc is not connected, it has a finite number of connected components,

and by applying the above argument to each connected component and tensoring

the line bundles obtained as the consequence, we see that there exists a line

bundle L over Xc such that L is semi-positive outside a compact neighborhood

K of Mc and positive on a neighborhood W of Mc with We Int K. Since from

Proposition 4 the line bundle F corresponding to the pole divisor of / is semi-

positive on Xc and positive on XC\MC9 F®m®L is a positive line bundle on Xc

if m is large enough. Hence our assertion holds. q. e. d.

In case X contains no exceptional compact curves, we can prove the fol-

lowing theorem which has been suggested by T. Ohsawa.

Theorem 6. Let X be a weakly 1-complete surface without non-constant

holomorphic functions and assume that X contains no exceptional compact

curves. Then the following three conditions are equivalent:

1) X possesses a non-constant meromorphic function,

2) X possesses a holomorphic line bundle F on X such that F\Xc is positive

for every ceR,

3) X is projectively embeddable i.e. X is realized as a locally closed sub-

space of a complex projective space.

Proof. l)->2) follows from Proposition 4 and 3)->l) is clear. Hence we

have only to prove 2)-»3). First we prove the following assertion:

a) There exists a positive integer mQ such that dimc F(X, 0(F®m®Kx))^2

for every m^.m09 where Kx is the canonical line bundle of X.

For a real number c, we take a point x0eXc. Let h: XC-+XC be the
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quadratic transformation at x0 and let L be the line bundle on Xc corresponding

to the divisor h'1(xQ). Then Xc is weakly 1-complete and there exists a positive

integer ra0 such that h*F®m®L*®* is positive onXcfor every m^m 0 . When

we denote the canonical line bundle of Xc by KXc, from Nakano's vanishing

theorem (see [7] Theorem 1), we have Hl(XC9 &(h*F®m®L*®3®KXc)) = Q
/N

for every m^m0 . By using the adjunction formula KXc = h*Kx®L, we have

H\XC9 &(h*Em®L*®2)) = Q for Em = F®m®Kx and every m^m0. Finally

we obtain H1(XC) I2
0®0(I£W)) = 0 for every m^m0, where Jxo is the maximal

ideal sheaf associated to {x0}. Hence we obtain that the restriction homo-

morphism p: F(XC, 0(Em))->F({x0}, @II2
XQ®0(Em)) is surjective for every

m^m 0 . Since dimc F({x0}, @/I20®@(Em)) = 3, we have dimc r(Xc, <P(Em))

^2 for every m^m0. On the other hand, from [13] Lemma 5.4, we have that

the restriction homomorphism r: F(Xd9 0(Em))-*F(Xe9 0(Em)) has a dense

image with respect to the topology of uniform convergence on compact subsets

for every m^l and real numbers d and e with d>e. Using this, we have

dimc F(X, &(Em))^2 for every m^m 0 .

Since X contains no exceptional compact curves, from a), Theorem 3 and

Proposition 4, we obtain that Em\Xc is positive for every ceR and m^m 0 .

Hence combining Nakano's vanishing theorem with [13] Lemma 5.4, we obtain

the following global vanishing theorem :

b) H1(X,(9(E®")) = 0 for every m^m0 and w ^ l .

Secondly we prove the following assertion.

c) For every m ^ m0 and n^2, there exist elements <pQ and <pv of F(X,

such that the map f : X-+P1 defined by the quotient of cpQ and cpl is holomorphic.

From a), we have dimc F(X, <9(E®n)) ^ 2 for every m^m 0 and

We fix two integers m and n with m ̂  m0 and n ̂ 2 and take elements \j/0 and \l/1

of F(X9 @(E®n)). From Proposition 2, there exist complex numbers a0 and

a1 such that the divisor D defined by a0\//1-i-a1il/Q is Stein. We set ^>o==

+ a1i//0. We consider an exact sequence 0->^(E®n-1)->^(E®n)->

From this and b), we obtain that the restriction homomorphism p : F(X9

—>F(D, @D(E®nJ) is surjective. Since D is a one dimensional Stein space, we

obtain that the second singular cohomology group H2(D, Z) of D and H 1(D, 0)

vanish. Hence any holomorphic line bundle on D is analytically trivial. Com-

bining this fact with the surjectivity of p, we have that there exists an element
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cp± of r(X., &(E®n)} such that (p1 nowhere vanishes on D. Hence cp0 and <$v

are the desired elements.

Thirdly we prove the following assertion.

d) F(X, 0(I£®3)) separates points of X and gives local coordinates at each

point of X for every m^m0 .

We fix an integer m with m^m0 . Let (p0 and (p^ be the elements of

F(X, 0(Ef3)) which realize the situation of c). We consider the set Lm =

{(cp)| cp = aQ(p1 -fa^o and a0» ^i^C1}, where (cp) is the divisor defined by (p.

Since/=cp1/<p0: X-*P{ is holomorphic, if an element of Lm contains compact

curves, each connected component of them is exceptional in X. This contradicts

the assumption. Hence each element of Lm contains no compact curves and so

Stein. For every point x of X9 there exists an element Dx of Lw passing through

x. Let Jr
Dx be the ideal sheaf associated to the divisor Dx. Let y be a point of

X which is different from x. Then if y^Dx, from the choice of q>0 and <p l 9

F(X9 @(E®3)) separates points x and y. Hence concerning the property of

separating points, we have only to prove the case y e Dx. We consider the fol-

lowing two exact sequences: $^®(E®2)^@(E®*)^(9lJPDx®6(E®*)-+$ and

0^0(EJ^0(E®3)^0/Slx®0(E®*)-+0. From b), restriction homomor-

phisms pi:r(X,0(E^))-^r(Dx,OlJ^i
Dx®(9(E^)) (i = l, 2) are surjective.

Since Dx is Stein, the surjectivity of pt (/ = !, 2) implies the assertion d).

From the assertion d), we can apply the standard argument of Whitney

type (see for example, Hormander [4] Chap. V, §3). Hence for N ^5, we can

choose N + l elements {(p0, <p l 5 . . . , cpN} of F(X9 &(E®3)) in such a way that the

map XBx^((pQ(x): cp^x):--: cpN(x))ePN is holomorphic, one-to-one and of

maximal Jacobian rank on X. q. e. d.
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