On the Bott Cannibalistic Classes

By

Koichi HIRATA* and Akira Kono**

§1. Introduction

Let G be a compact Lie group, V a (complex) representation of G and $\lambda_V \in K_G(V)$ the Thom class. Since $K_G(V)$ is a free R(G)-module generated by λ_V (cf. [1]), there is an element $\theta_k(V) \in R(G)$ such that $\psi^k(\lambda_V) = \theta_k(V) \cdot \lambda_V$. The element $\theta_k(V)$ is called the Bott cannibalistic class of V.

By $K_G^*(\)$ we denote the RO(G)-graded equivariant K-theory. Since $\theta_k(V)$ is not a unit of R(G), the Adams operation ψ^k is not always a (stable) cohomology operation (cf. section 3). So the purpose of this paper is to show the following:

For a finite group G, ψ^k is a cohomology operation of $K_G^*() \otimes \mathbb{Z}[\frac{1}{k}]$ if and only if (|G|, k) = 1 (for details see Theorem 3.1).

This paper is organized as follows: In section 2 we show that the element $\theta_k(V)$ is a unit of $R(G) \otimes Z[\frac{1}{k}]$ if (|G|, k) = 1. In the next section the main theorem is proved.

If G is a p-group, then Atiyah and Tall showed that $\theta_k(V)$ is a unit of $R(G) \otimes Z_p^{*}$ (cf. [2]).

§2. The Bott Cannibalistic Classes

First recall the following properties of $\theta_k(V)$ (see [2]):

Lemma 2.1. Let V and W be representations of G and ε : $R(G) \rightarrow Z$ the augmentation. Then

- (i) $\theta_k(V+W) = \theta_k(V)\theta_k(W)$,
- (ii) $\theta_k(V) = 1 + V + \dots + V^{k-1}$ if dim V = 1,
- (iii) $\varepsilon(\theta_k(V)) = k^n$ if dim V = n.

- * Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
- ** Department of Mathematics, Kyoto University, Kyoto 606, Japan.

Communicated by N. Shimada, March 12, 1982.

From now on we assume that G is a finite group, N, k integers such that (N, k) = 1 and |G| devides N.

Proposition 2.2. Let V be a one dimensional representation of G. Then there exists a polynomial $f_{N,k}(x) \in \mathbb{Z}[\frac{1}{k}][x]$ such that

$$\theta_k(V) f_{N,k}(V) = 1$$

in $R(G) \otimes Z[\frac{1}{k}]$.

To prove Proposition 2.2 we need the following lemma:

Lemma 2.3. Let R be a (commutative) ring (with unity) such that k is invertible and $r \in R$. If $r^N = 1$, then there exists $f_{N,k}(x) \in \mathbb{Z}\left[\frac{1}{k}\right][x]$ such that

$$(1+r+\cdots+r^{k-1})f_{N,k}(r)=1$$
.

Proof of Proposition 2.2. Since $V^N = 1$ and $\theta_k(V) = 1 + V + \dots + V^{k-1}$ by Lemma 2.1, $\theta_k(V) f_{N,k}(V) = 1$ by Lemma 2.3.

Proof of Lemma 2.3. Let ζ be a primitive N-th root of 1 then we have (i) $1+\zeta^i+\dots+\zeta^{(N-1)i}=0$ for $1\leq i\leq N-1$

and

(ii)
$$\prod_{i=1}^{N-1} (1-\zeta^i) = \prod_{i=1}^{N-1} (1-\zeta^{i}) \neq 0$$
 if $(t, N) = 1$.

If we denote the matrix

$$\begin{pmatrix} x_0 & x_1 & \cdots & x_{N-1} \\ x_{N-1} & x_0 & \cdots & x_{N-2} \\ & & & & \\ & & & & \\ x_1 & x_2 & \cdots & x_0 \end{pmatrix}$$

by $A(x_0, x_1, \dots, x_{N-1})$ then

det
$$A(x_0, x_1, \dots, x_{N-1}) = \prod_{i=0}^{N-1} (x_0 + \zeta^i x_1 + \dots + \zeta^{i(N-1)} x_{N-1}).$$

Since (k, N) = 1, we can write k = sN + t (s, $t \in Z$) with $1 \le t \le N - 1$ and (t, N) = 1. Put $u_i = s + 1$ if $0 \le i < t$ and $u_i = s$ if $t \le i \le N - 1$. Then

$$1 + r + \dots + r^{k-1} = u_0 + u_1 r + \dots + u_{N-1} r^{N-1}$$

and

1188

$$\det A(u_0, u_1, \dots, u_{N-1}) = \prod_{i=0}^{N-1} (u_0 + \zeta^i u_1 + \dots + \zeta^{i(N-1)} u_{N-1})$$

= $k \prod_{i=1}^{N-1} (1 + \zeta^i + \dots + \zeta^{i(t-1)} + s(1 + \zeta^i + \dots + \zeta^{i(N-1)}))$
= $k \prod_{i=1}^{N-1} (1 + \zeta^i + \dots + \zeta^{i(t-1)}) = k((\prod_{1=1}^{N-1} (1 - \zeta^{i})))/(\prod_{i=1}^{N-1} (1 - \zeta^i))) = k.$

Since the determinant is a unit of $Z[\frac{1}{k}]$, there exists $a_i \in Z[\frac{1}{k}]$ such that

$$(a_0, a_1, \cdots, a_{N-1})A(u_0, u_1, \cdots, u_{N-1}) = (1, 0, \cdots, 0).$$

Putting $f_{N,k}(x) = a_0 + a_1 x + \dots + a_{N-1} x^{N-1}$, we have

$$(1+r+\dots+r^{k-1})f_{N,k}(r) = 1$$
. Q.E.D.

Define $h_{N,k}^{(n)}(X_1, \dots, X_n) \in \mathbb{Z}\begin{bmatrix}\frac{1}{k}\end{bmatrix} [X_1, \dots, X_n]$ by

$$h_{N,k}^{(n)}(\sigma_1(x_1,\cdots,x_n),\cdots,\sigma_n(x_1,\cdots,x_n))=\prod_{i=1}^n f_{N,k}(x_i)$$

where σ_i is the *i*-th elementary symmetric function. Then we have

Theorem 2.4. Let V be an n-dimensional representation of G and k an integer such that (|G|, k)=1. Then

$$\theta_k(V)h_{N,k}^{(n)}(\Lambda^1(V),\cdots,\Lambda^n(V)) = 1$$

in $R(G) \otimes Z[\frac{1}{k}]$.

Proof. Let $\{C_{\alpha}\}$ be all cyclic subgroups of G, then the restriction

$$R(G) \longrightarrow \bigoplus_{\alpha} R(C_{\alpha})$$

is a monomorphism. Since θ_k , $f_{N,k}$ and $h_{N,k}^{(n)}$ commute with restrictions, we may assume that G is cyclic. Since every irreducible representation of a cyclic group is one dimensional, V is a sum of one dimensional representations: $V = V_1$ $+ V_2 + \dots + V_n$. Note that

$$\Lambda^{i}(V) = \sigma_{i}(V_{1}, V_{2}, \cdots, V_{n})$$

and $\theta_k(V) = \prod_{i=1}^n \theta_k(V_i)$. Then Theorem 2.4 is an easy consequence of Proposition 2.2. Q. E. D.

Corollary 2.5. The element $\theta_k(V)$ is a unit of $R(G) \otimes Z[\frac{1}{k}]$ if (|G|, k) = 1.

§3. Proof of the Main Theorem

If (|G|, k) = 1, then we can extend the Adams operation ψ^k over $K_G^*()[\frac{1}{k}]$ by the commutative diagram

$$\begin{split} \tilde{K}_{G}(\Sigma^{\omega} \wedge X_{+}) \begin{bmatrix} \frac{1}{k} \end{bmatrix} & \xrightarrow{\theta_{k}(\omega)^{-1} \Psi^{k}} \tilde{K}_{G}(\Sigma^{\omega} \wedge X_{+}) \begin{bmatrix} \frac{1}{k} \end{bmatrix} \\ & \uparrow \cdot \lambda_{\omega} & \uparrow \cdot \lambda_{\omega} \\ & K_{G}(X) \begin{bmatrix} \frac{1}{k} \end{bmatrix} & \xrightarrow{\Psi^{\mu^{k}}} & \longrightarrow & K_{G}(X) \begin{bmatrix} \frac{1}{k} \end{bmatrix}, \end{split}$$

where ω is the regular representation of G.

Let *H* be a subgroup of *G* and $\operatorname{Ind}_{H}^{G}: R(H) \to R(G)$ the induction homomorphism. Recall that $K_{G}(G/H) = R(H)$ and $K_{G}(G/G) = R(G)$. Following Nishida [5], $\operatorname{Ind}_{H}^{G}$ is the transfer

$$p_* \colon K_G(G/H) \longrightarrow K_G(G/G)$$

for $p: G/H \to G/G$ and every transfer commutes with cohomology operations. So if $\psi^k: K_G^*()[\frac{1}{k}] \to K_G^*()[\frac{1}{k}]$ is a cohomology operation, $\operatorname{Ind}_{H^\circ}^G \psi^k = \psi^{k_\circ} \operatorname{Ind}_{H}^G: R(H)[\frac{1}{k}] \to R(G)[\frac{1}{k}]$. Moreover since R(G) is torsion free, $\operatorname{Ind}_{H^\circ}^G \psi^k = \psi^{k_\circ} \operatorname{Ind}_{H}^G: R(H) \to R(G)$ if ψ^k is a cohomology operation of $K_G^*()[\frac{1}{k}]$ -theory.

Now we can prove the following:

Theorem 3.1. Let G be a finite group and k an integer. Then the followings are equivalent:

- (i) (|G|, k) = 1,
- (ii) for any representation V of G, $\theta_k(V)$ is a unit of $R(G)[\frac{1}{k}]$,
- (iii) $\psi^k \colon K_G^*()[\frac{1}{k}] \to K_G^*()[\frac{1}{k}]$ is a cohomology operation

and

(iv) $\operatorname{Ind}_{H}^{G} \circ \psi^{k} = \psi^{k} \circ \operatorname{Ind}_{H}^{G} : R(H) \to R(G) \text{ for any subgroup } H \text{ of } G.$

Proof. Clearly it remains to prove that (iv) implies (i). Suppose (iv) is true and a prime p devides (|G|, k). Then there exists $g_1 \in G$ such that g_1 is of order p (cf. [3]). Put $H = \{1\}$, then $\operatorname{Ind}_H^G(1) = \omega$. Note that

$$\chi_{\omega}(g) = \begin{cases} |G| & \text{if } g = 1 \\ 0 & \text{otherwise,} \end{cases}$$

where $g \in G$ and χ_{ω} is the character of the regular representation ω of G (cf. [6]). Now we have

$$\chi_{\mathrm{Ind}_{H}^{G}\circ\psi^{k}(1)}(g_{1}) = \chi_{\mathrm{Ind}_{H}^{G}(1)}(g_{1}) = \chi_{\omega}(g_{1}) = 0$$

and

$$\chi_{\psi^{k} \circ \operatorname{Ind}_{H}^{G}(1)}(g_{1}) = \chi_{\psi^{k}(\omega)}(g_{1}) = \chi_{\omega}(g_{1}^{k}) = \chi_{\omega}(1) = |G|.$$

This shows that $\operatorname{Ind}_{H}^{G} \circ \psi^{k} \neq \psi^{k} \circ \operatorname{Ind}_{H}^{G}$, which contradicts to (iv). Q. E. D.

References

- [1] Atiyah, M. F., Bott periodicity and the index of elliptic operators, *Quart. J. Math. Oxford* (2), **19** (1968), 113–140.
- [2] Atiyah, M. F. and Tall, D. O., Group representations, λ-rings and the J-homomorphism, Topology, 8 (1969), 253-297.
- [3] Hall, M., The theory of groups, Macmillan, 1959.
- [4] Kono, A., Induced representations of compact Lie groups and the Adams operations, *Publ. RIMS, Kyoto Univ.*, 17 (1981), 553–556.
- [5] Nishida, G., The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ., 18 (1978), 435–451.
- [6] Serre, J-P., Représentation linéaires des groupes finis, Hermann, 1971.