A Stein Domain with Smooth Boundary Which Has a Product Structure

By

Takeo OHSAWA*

It is well known that the unit ball in \mathbb{C}^2 is not biholomorphically equivalent to the bidisc. Its first proof is due to H. Cartan [1], although it is customally called Poincaré's theorem. H. Rischel [3] extended this theorem by proving that there exists no surjective proper holomorphic map from a strictly pseudoconvex domain \mathcal{B} to a product domain \mathcal{E} . Recently, A. Huckleberry and E. Ormsby [2] generalized it to the case where \mathcal{B} is a bounded domain in \mathbb{C}^n with smooth boundary and \mathcal{E} is the total space of a holomorphic fiber bundle. It will be natural to ask whether we can generalize it to the case where \mathcal{B} is a relatively compact Stein domain with smooth boundary in a complex manifold and \mathcal{E} is the total space of a fiber bundle. The purpose of the present note is to show an example of a Stein domain \mathcal{B} in a compact complex manifold which has the following properties.

- 1) The boundary of B is smooth.
- 2) B is biholomorphically equivalent to the product of two Stein manifolds.

Let \mathcal{A} be an elliptic curve which is isomorphic to $\mathbb{C}/(\mathbb{Z}+i\mathbb{Z})$. We denote the points of \mathcal{A} by [z], where $z \in \mathbb{C}$. Let \mathcal{B} be a domain in $\mathcal{A} \times \mathbb{P}^1$ defined by

$$\mathbb{B} := \{ ([z], \zeta) \in \mathbb{A} \times \mathbb{P}^1 \mid \operatorname{Re} \left(\zeta \exp \left(2\pi i \operatorname{Re} z \right) \right) < 0 \}$$

Here ζ denotes an inhomogeneous coordinate of \mathbb{P}^1 . Clearly, \mathcal{B} is welldefined and the boundary of \mathcal{B} is smooth. Note that \mathcal{B} is contained in $\mathcal{A} \times \mathbb{C}^*$, where $\mathbb{C}^* := \mathbb{P}^1 \setminus \{\zeta = 0, \infty\}$, and that we have a biholomorphic map

$$\begin{array}{ccc} A \times \mathbb{C}^* & \longrightarrow & A \times \mathbb{C}^* \\ & & & & \\ & & & \\ ([z], \zeta) & \longmapsto & \left(\left[z + \frac{i}{2\pi} \cdot \ln \frac{i}{\zeta} \right], \zeta \right) \end{array}$$

Received March 9, 1982.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

Clearly, $\operatorname{Re}\left(\zeta \exp\left(2\pi i \operatorname{Re}\left(z - \frac{i}{2\pi} \cdot \ln \frac{i}{\zeta}\right)\right)\right) = 0$ if and only if $\operatorname{Re} z$ is an integral multiple of 1/2. Hence,

$$\boldsymbol{B} \simeq \{ [z] \in \boldsymbol{A} \mid 0 < \operatorname{Re} z < 1/2 \} \times \mathbb{C}^*,$$

so that \boldsymbol{B} is the product of an annulus and the punctured plane.

Remark. Note that the boundary of B is everywhere pseudoflat.

Acknowledgement

The author is very grateful to Prof. K. Diederich. The disucssion with him led the author to finding the above example.

References

- [1] Cartan, H., Les fonctions de deux variables complexes et le probleme de la representation analytique, J. Math. Pure et Appl. 9e série 10, (1931), 1–114.
- [2] Huckleberry, A. and Ormsby, E., Nonexistence of proper holomorphic maps between certain complex manifolds, *Manuscripta Math.* **26** (1978/79), 371–379.
- [3] Rischel, H., Holomorphe Uberlagerungskorrespondenzen, Math. Scand. 15 (1964), 49–63.

Added in proof: Recently, Diederich and Fornaess constructed in an analoguous way a domain with smooth pseudoconvex boundary D in $\mathbb{P}^1 \times \text{Hopf}$ surface, and showed that D cannot be exhausted by pseudoconvex subdomains. In fact, D is biholomorphic to $(\mathbb{C}^2 \setminus \{0\}) \times$ an annulus!