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Equivariant Stable Homotopy Theory and
Idempotents of Burnside Rings

By

Shord ARrRAkKI*

Introduction

Let G be a finite group throughout the present work. We denote by A(G)
the Burnside ring of G. The stable G-homotopy theory is a G-homology-
cohomology theory of A(G)-modules and any idempotent of A(G) decomposes
it as a direct sum of G-homology-cohomology theories. Such a decomposition
for p-localized case was partly investigated by Kosniowski [13] and tom Dieck
[71.

Let X and Y be pointed G-CW complexes. We assume X to be finite.
The group of stable G-maps from X to Y is denoted by ®2(X: Y). We put
DEX:Y)=0Q(2ZVX: 2VY) for a=U—VeRO(G). We study edg(X:Y) for
each primitive idempotent e of A(G). Denote by P the set of all conjugacy
classes of perfect subgroups of G. Primitive idempotents of A(G) correspond
bijectively with members of P, Dress [9]. Denote by ey, the primitive idempotent
of A(G) corresponding to (H) € P, then

DE(X: Y)—"—‘H(H)eP eg@E(X:Y).

Let H be a perfect subgroup of G. We denote N=N;(H) and W=N4(H)/H
for simplicity. The main result of the present work is the following.

Theorem A. There hold the isomorphisms
egDEX: Y)zeyo% (X: Y)=2E 0% (XH: YH)

which are ey A(G)- and éyA(N)-module isomorphisms respecitvely, where éy
and &, denote the primitive idempotents of A(N) and A(W) corresponding
to (H)y and the trivial perfect subgroup {1} of W respecitvely, o’ =res§a and
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o' =UH—V1 for o' =U— Ve RO(N).
Corollary B. There hold the ring isomorphisms
egA(G)= ey A(N)= & A(W).

Direct proof of this corollary is not difficult. T. Miyata and T. Yoshida
communicated to the author relatively short direct proofs of this corollary.

Theorem A hold also for any G-homology-cohomology theories defined
by G-spectra. The p-localized version of Theorem A is also ture. In fact we
prove the more generalized version of Theorem A (Theorem 3.6, (3.7) and
Theorem 4.7). We obtain Theorem A by specializing n={all primes} and
the p-localized version by n={p}.

In Section 1 we observe certain relations between primitive idempotnents
of A(G)ryand A(N)(,, and their behaviors in Mackey double coset formula. The
explicit formula (1.2) for primitive idempotents due to Yoshida [17] is essential.
In Section 2 we provean isomorphism theorem (Theorem 2.5) for Mackey
functors on the category G of finite G-sets. In Section 3 we see briefly that stable
G-homotopy theory provides Mackey functors on G, then we obtain the first
isomorphism of Theorem A (Theorem 3.6 and (3.7)) by applying Theorem 2.5.
In Section 4 we construct the fixed-point exact sequences for stable G-homotopy
theory and prove the second isomorphism of Theorem A (Theorem 4.7).

§1. Idempotents of Burnside Rings

Let G be the category of finite G-sets and G-maps. The set of all iso-
morphism classes in G forms a commutative semi-ring A*(G) with addition and
multiplication defined by disjoint unions and direct products (with diagonal
G-actions) respectively. The Burnside ring of G, denoted by A(G), is the
Grothendieck ring of A%(G). A finite G-set S represents an element of A(G),
denoted by [S]. Then every element of A(G) can be expressed in the form
[S]-[T]. Every finite G-set is expressed uniquely as the disjoint union of t;
orbits, which implies that A(G) is additively a free Z-module with basis {[G/L];
(L) e C(G)}, where C(G) denotes the set of conjugacy classes of subgroups of G.
As to the basic properties of A(G) we refer to [8] [9] [10].

Let n be a set of primes and Z,, the subring of Q consisting of all fractions
a/b such that (a, b)=1 and b is prime to every member of n. Thus, Z,,=Q
in case n=8; Z,,=Z in case n={all primes}; Z =Z, in case n={p}, the
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set consisting of a single prime p. We write A,,=A®Z,, for any abelian
group A. Let G=L, a subgroup. The assignment “S~|SL|>’ defines a semi-
ring homomorphism A*(G)—Z and induces the ring homomorphism

dr: A(G)(n:) I Z(n)!
which is important in studying structure of A(G), [8] [9] [17]. E.g., A(G),,
3x=0«<¢, (x)=0forall L<G.

Primitive idempotents of A(G),,, are discussed in[8][9][11][17]. Following
[17] we denote by S*(G) the minimal normal subgroup of G by which the quotient
is a solvable n-group. S™(G) is the uniquely determined characteristic subgroup
of G[9]. Giscalled to be n-perfect provided S*(G)=G. When n={all primes},
n-perfect groups are perfect groups.

S*(G) is always m-perfect as S*(S™(G))=S"(G). Let P, denote the set of
all conjugacy classes of m-perfect subgroups of G. Primitive idempotents of
A(G)(s) correspond bijectively with members of P, [9] [17].

Let H be a n-perfect subgroup of G and e} the primitive idempotent corre-
sponding to the conjugacy class (H). Put

S«{(H, G)={L=G; SL)=H}

following [17]. % is characterized by

(1.1) ¢rlef)=1 if L~S.(H, G)
=0 otherwise,

where “~ " means ‘“‘conjugate to a member of”" [8] [9] [17].

Recently an explicit formula for the idempotent e} has been given by
Yoshida [17]. (The formula for the case n=g is given also by Gluck [11].)
Let u be the M&bius function on the subgroup lattice of G.  For D< G he defines

A(D, H)=ZLES,,(H,G).U(D, L)
and obtains the explicit formula for e} [17], Theorem 3.1, as follows:
(1.2) eg=(1/INg(HD))- X p<ngay IPIMD, H)[G/D].

Let K< G. Restricting G-actions to K on each finite G-set S, one obtains
the ring homomorphism

resf: A(G) ) — A(K)(z)»
called the restriction homomorphism. Clearly

¢ r(res§ x)=¢(x)
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for x € A(G)(;y and LK. The assignment “S—G xxS” for each finite K-set
S induces the linear homomorphism

trf: A(K)(zy —> A(G)ny»
called the transfer homomorphism. By definition
tr [K/L]=[G/L].
There holds the Frobenius formula
trg (x-res§ y)=(tr§ x)-y

for x e A(K)(,y and y € A(G)(,y. res§ maps idempotents to idempotents (which
may be decomposable), whereas tr§ does not in general. Obviously resg
=tr§ =id for K=G.

Let H be a n-perfect subgroup of G and put N =N;(H), the normalizer of
H in G. Let e} denote the primitive idempotent of A(N),,, corresponding to
(H)y, the conjugacy class of H in N, which we call the central idempotent of
A(N)(z). It is characterized by

(1.3) ¢L(ep)=1 if LeS,(H, N)
=0 otherwise,

since H<aN. (Compare with (1.1).) Remark that S.(H, G)=S,(H, N) and
MD, H), DEN, is the same for G and N. Since Ng(H)=Ny(H), we compute
by (1.2) as follows:

tr§ g =(1/|Ny(H))) - ZDgNN(H) IDIA(D, H)-tr§ [N/D]
=(1/[NG(H)|) . 2D§NG(H) IDM(D’ H) [G/D]

=ef,
i.e., we obtain
(1.4) tr§ e =ef .

res§ e, is an idempotent of A(N),, and we see easily by (1.1) that it de-
composes as a sum of primitive idempotents which correspond to conjugacy
classes (H')y in N such that H'~H in G. Such conjugacy classes correspond
bijectively to a part of the double cosets N\G/N. Let {g,,..., g,} be a complete
system of representatives of N\G/N. Choose a numeration of this system so
that i<s<H;=g;Hg,*< N (which does not depend on the choice of the re-
presentative g;). Then {(H,)y, 1=<i<s} forms the complete set of the above
mentioned conjugacy classes (H')y in N. We choose g, =1 always, then H, =H.
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Let eF denote the primitive idempotent of A(N),, which corresponds to (H,)y.
ef =ef, the central idempotent of A(N).,. And we obtain

(15) resgeﬁ=zl§i§sé¥.
By (1.4) and (1.5) we see that
resfotrie = 1 <i<s €7 .

Next we apply the Mackey decomposition to res§otr§. Putting N,=Ng(H,),
1<i<t, we obtain

(1.6) resotrf =31 <i < TN nn,oT€SN hw,oCF,

where cf: A(N)y— ANy, the isomorphism induced by the conjugation
isomorphism N;~ N with respect to g;!.

We observe tryy, cresyy ocf(eg) for each i, 1<i<t. ¢ maps primitive
idempotents to primitive ones. By (1.3) we see that

¢r(crEp)=1 if LeS,(H; N)
=0 otherwise .

Thus cf(ef) is the central idempotent of A(N ;). Then

P r(resiny, oc¥(eR)) =1 if LeS.(H, NnN)
=0 otherwise,

which shows that resiiy, ocf(e)=0 for i>s and =the central idempotent of
ANy(H )y for 1Si<sby (1.3) as NN N;=Ny(H;). Let &7 denote the central
idempotent of A(Ny(H})),- We have obtained

(1.7 resNiy, ocF(ep)=¢7  for 1=ZiZ<s

=0 for s<iZt.
Apply (1.4) for the pair (N, H,) and obtain
(1.8) tr¥oy, (€7)=eF  for 1=<i<s.

We add two remarks. Since &7 is the primitive idempotent of A(N N N;),,
corresponding to (H,)yny,> We have the decomposition

resN oy, EF=ef+ -
into primitive ones for 1<i<s by (1.5). Thus
(1.9) (res¥ oy, €F)- EF=e7 for 1<i<s.

The second remark is that g, =1, H,=H and N,;=N by our choice. Thus
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(1.10) tr oy, =Teshhy, =cf =id.

§2. Idempotents and Mackey Functors

Dress [10], Section 4, defined the Burnside functor on G. Let T be a
finite G-set and G/T the category of objects over T. The set of all isomorphism
classes of G/T forms a commutative semi-ring A&(T) with addition and multi-
plication defined by disjoint unions and pull-backs. Its Grothendieck ring is
denoted by Ag(T). The element of A4(T) represented by an object f: S—T
of G/T is denoted by [f: S»T]. The Burnside functor Ag=(Agy, A¥) on
G is a pair of functors Ag,: G—Ab and A4%: GoP—Ab such that Ag.(T)
= A¥(T)=A4x(T) on each object T and, for a morphism f: S»>Tin G, Ags(f)
=fx: Ag(S)>Ag(T) is given by fylg: U-S]=[fog: U>T] and AZf)=f*:
Ag(T)—> Ag(S) by f*[h: WT]=[Wx S—S§].

As for the definition of a Mackey functor M =(My, M*) on G we refer to
[7], p. 68. The Burnside functor A, is a Mackey functor on G. Moreover,
f* is multiplicative (i.e., A% is ring-valued) and there holds the Frobenius
property among f,, f* and multiplication, i.e., A; is a Green functor in the sense
of [10].

There holds the canonical isomorphism

Ag(G/K)~ A(K)
for K £G such that

Py =trk and p*=resf

for LXK=ZG and p: G/L—-G/K, the canonical projection.

Let M=(M,, M*) be any Mackey functor on G. We write M,(f)=fs
and M*(f)=f* for a morphism f: S»Tin G. M(T) becomes an Ag(T)-module
by [f: S T]-x=feof *x, xe M(T), [7][10]. By these module actions M is an
Ag-module in the sense that M* is a module-valued functor (f*(xy)=(f*x)(f*y)
for f: S—T, xe AG(T) and y e M(T)) and there holds the Frobenius property
among fy, f* and module action [10], Proposition 4.2. We write p,=tr¥,
p*=res¥ for any Mackey functor M, LXK <G and p: G/L—G/K, the canonical
projection, in conformity with the above mentioned identities for Ag.

Let 7 be a set of primes and M a Z,-module-valued Mackey functor.
Put Ag,=Ag®Z.. The above module action of A; on M makes M an
Ag -module.
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For each K <G, M(G/K) is an A(K),y-module. Hence primitive idempo-
tents of A(K),, decomposes M(G/K) as a direct sum of submodules. In partic-
ular

M(pt)=11(a)ep, eEM(p1).

We observe ey M(pt) as an e A(G),,-module.

Let H be a n-perfect subgroup of G and N=Ng(H). Let e} be the central
idempotent of A(N),,. We want to discuss res§ otr§ (ex) for exx € eFM(G/N).
The axiom (M1) (or the Mackey functor [7] applied to the pull-back diagram

G/INxG|N > GIN
l l
G/N pt

implies the Mackey decomposition
res§otr =31 i<, trNow,oTesNhy, 0¥

for M [10][12] (the same formula as (1.6)), where we used the same notations
as in Section 1, i.e., {g;,..., g:} (g1 =1) is a complete system of representatives
of N\G/N, N;=g;Ng7', and c}: M(G/N)~M(G/N,), the isomorphism induced
by the right multiplication with g;: G/N;~G/N, for 1<i<1.

Put

X;=resihy, (cFx)e M(GIN N N)), 1Si<t.
As res ¥y, and cf preserve module actions we see that

resyiy.ocf(efx) =erx; for 15iss,

by (1.7). Next we put
x;=tr¥qan, (€7X;) € M(G/N),  1=ZiSs.
Then
trN oy, (€7X;) =tri o, ((resf oy, 87) €T X;) =eFx;, I=siss,
by (1.9). For i=1, the remark (1.10) is applicable also for M and we see that
eTx; =efxx,

the given element. Thus we obtain
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Proposition 2.1. Using the notations of Section 1 we have the direct sum
decomposition
(res§ ex)M(G/N)=11, <iss ertM(G/N),
and, for any &% x € &5M(G/N), we have the decomposition

resfotrf (EFX) = X1 <i<s E7X;

such that
erx; =try oy, oresns v ocF(egx)
and
e5x, =eyx, the given element.
Put
(2.2) tr'§{=tr§ |egM(G/N): e M(G/N) — ez M(pt).

Suppose efx € Kertr'§.  Then res§otr§ (efx) =2, <;<, €7x;=0. Hence &%x;=0
for all i, 1<i<s. In particular efx=e7x; =0. Thus we obtain

2.3) tr'§: eEM(G/N) — ef; M(pt) is monomorphic.
Let
2.4 res'§: ey M(pt)— e M(G/N)
be the ef A(G);-module map defined by
res'§ (x)=e% -res§ x, x e e M(pt).
By Frobenius property and (1.4) we see that
tr'ores'§ (x) =tr§ (F - res§ x) =€ x=Xx
for x e ey M(pt). Thus
tr'eres’§=id,
which shows that tr'§ is epimorphic and hence isomorphic by (2.3). Clearly
res’§ is the inverse to tr'§ and we obtain

Theorem 2.5. Let n be a set of primes, M a Zy-module-valued Mackey
functor on G, H a m-perfect subgroup of G and N=Ng(H). Let e% be the
primitive idempotent of A(G),, corresponding to (H)e P, and &} the central
idempotent of A(N)). Then there holds the efA(G)y-module isomorphism

res'§: ey M(pt)= ey M(G/N).
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§3. Stable G-Homotopy Theory

By a G-module V we mean a finite dimensional real or complex G-module
equipped with an invariant metric for simplicity. By S” and BY we denote the
unit sphere and unit ball of V respectively. We put 2¥=B"/SY, which is G-
homeomorphic to the one-point compactification of V.

Let X and Y be pointed G-CW complexes. We assume X to be finite.
By the group of stable-G-maps from X to Y we understand

AUX: Y)=colim[Z¥VX, ZVY]¢

[8], Section 7, where [, ]¢ denotes the set of G-homotopy classes of pointed
G-maps, Z2¥YX =XV A X, V runs over the system of complex G-modules which
is directed by G-embeddings as G-submodules, and the colimit is taken with
respect to suspensions

IV [ZVX, 2V Y]6 — [ZVOVY, ZWOVY ]G,

AYUX: Y)is a well-defined abelian group.

We use complex G-modules by the following two reasons: i) the directed
system of complex G-modules may be regarded as a cofinal subsystem of that of
real G-modules so that we loose nothing by this restriction; ii) the group of
complex automorphisms of a complex G-module V is connected so that G-maps
2V 2" induced by complex automorphisms of V are all G-homotopic to the
identity, which makes several identifications among G-homotopy sets coming from
isomorphisms of G-modules unique.

Let f: S>T be a map in G. Endowing discrete topology to S and T
respectively, a G-embedding i: S< Tx V such that Vis a complex G-module and
prici=f is called an admissible embedding for f. The existence of an admis-
sible embedding is easily shown by making use of the complex permutation re-
presentation V5 of S. Let i: ScTx V be an admissible embedding for f. We
may assume that i(S)cTxIntB”. Regard S and T as O-dimensional G-
manifolds and let vi be the normal G-bundle of the embedding i. Then vi
~;Sx V. Choose the normal disk G-bundle Dvi so that Dvic Tx BY. Since
Dvi~ ;S x BY, the Thom construction gives a pointed G-map

trf: TTAZYY — STAXY.

This construction is of course a very special case of the equivariant Becker-
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Gottlieb transfer [15]. (Compare also with [8], §7, in which the case of com-
pact Lie group actions is discussed.) The following properties of tr f are easily
shown by standard techniques and left to readers.

(3.1) The stable class {trf} e @UT*: S*) is uniquely determined by f.
(3.2) Letf:S,—S, and g: S,—S; be morphisms in G. Then
{tr (gof )} ={tr f}o{tr g}

as stable G-maps.

(33) Let
AN
b b
T 4, T

be a pull-back diagram in G. Then
{g"}o{tr fr={tr f}o{g™}

as stable G-maps.
We define a bifunctor
wg[X: Y]: G — Ab
as follows:
W[ X: YI(S)=a¥STAX:Y)
on objects; for a morphism f: S—Tin G we put
fa=(trfAD)*: ®USTAX:Y)— DOUT AX: Y)
which gives a covariant functor by (3.2), and
fr*=(fTAD*: AT AX:Y)— BUSTAX:Y)
which gives obviously a contravariant functor.
Proposition 3.4. wg[X: Y] is a Mackey functor.

Proof. (3.3) implies the axiom (M1) of [7], p. 68. As to the axiom (M2),
let S1L. T be a disjoint union of finite G-sets, then (SILT)*=S*v T+ and

AUSLTAX: YV)=0US*AX)Vv(T*AX): Y)
~AHSTAX: V)OOUT AX: Y). O

Let LZG. Since the directed system of L-modules which are obtained
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from G-modules by restriction of actions is a cofinal subsystem of that of arbitrary
L-modules, we get the homomorphism

¢=resf: ®Q(X: Y)— dY(X: Y)

by restricting G-actions to L-actions. On the other hand we get the
isomorphism

K: Q2UGIL)Y*AX: Y)~dUX: Y)

by restricting stable G-maps to {L}* A X ~; X, which we regard as the canonical
isomorphism. Let
p: G/[L— pt

be the unique G-map. We can easily identify
p*=res§
via the canonical isomorphism x. We define
trf =peox: HYX: V) — D(X: Y).

With these setting we apply Theorem 2.5 to the Mackey functor wg[ X : Y]
and obtain

Theorem 3.5. Let X and Y be pointed G-CW complexes. Assume X to
be finite. Let  be a set of primes. Using the same notations as in Theorem
2.5 there holds the e} A(G)r-module isomorphism

res’§: eFDUX: Y) () ZeEDUX : Y)(ry -

The above theorem applies also to G-homology and G-cohomology theories.
Any G-cohomology theory defined on the category of (finite) G-CW complexes
satisfying suitable axioms is representable by a G-spectrum [2][14]. So we
discuss here only G-homology and G-cohomology theories defined by G-spectra
[2] [13]. We use G-spectra indexed by complex (virtual) G-modules in the
same reason as the definition of the group of stable G-maps. Practically we may
restrict our G-spectra to those indexed by a cofinal subsystem of that of complex
G-modules and will do so in the sequel.

Let p=p; be the complex regular representation of G. {np: neZ} is one
of such cofinal subsystems. We use this system particularly. A G-spectrum
E;={E, &,: 2’E,—~E, . ; neZ} consists of a pointed G-CW complex E, and
a pointed G-map (structure map) ¢,: 2° E,—~E,,, for each neZ. When E,
=27 and g,=id: ZrXw=2(1r for n=0 (E,=pt for n<0), the G-spectrum
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is called the G-sphere spectrum and denoted by Z;.
Let Eg={E,, ¢,; neZ} be a G-spectrumand L<G. Asres¢ p;=|G/L|-p,,
where p’=p; is the complex regular representation of L, putting

E'\gLiw+x=2*"E, for 0=k<|G/L|
& \6/Lin+e=1d for 0<k<|G/L|—1
=g, for k=|G/L|—-1,

we get an L-spectrum
Y Ec={E,, &,; neZ}
by restricting G-actions to L-actions. Clearly
YirZe=2L.

The Eg-homology-cohomology group in degree 0 (homology with respect
to Y and cohomology with respect to X) is defined by

EYX; Y)=colim[2Z»X, E,A Y]¢,
where the colimit is taken with respect to the compositions g,,02% as usual.
EYX: Y) is a well-defined abelian group. Obviously
ZUX: Y)=0UX:Y).

Again we obtain a Mackey functor G—~Ab by the assignment: S—E2(S*
AX:Y) and “f: SoT’—fo=@1rfAl)* and f¥*=(ftAl)*. Also we have
the restriction homomorphism

Yf=resf: EYX:Y) — (Y Eg)%X: Y)
and the transfer homomorphism
trf: (W EQ)(X: Y) — EYX: Y)
together with the canonical isomorphism
k: E2(G/LY* A X: Y)=(YLEG)(X: Y)
in the parallel way to the case of ®@2.

Now apply Theorem 2.5 to the above Mackey functor and obtain

Theorem 3.6. Under the same assumptions and notations as in Theorem

3.5 there holds the e A(G)(-module isomorphism
res'§: eREUAX: Y) (= (Y Ec)(X: Y

for any G-spectrum Eg.
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Let o € RO(G) and express a=U — V as a difference of real G-modules. The
Eg-homology-cohomology group in degree o is defined by
E4X:Y)=E2(2"X:2VY).
Let a=U’'—V"' be another expression. We can certainly find an additive iso-
morphism
EQ(ZVX:ZUY)~EQ(ZV' X: 2V’ Y),
but it is no more canonical and there are many choices of this isomorphism.
So, as far as we are interested in additive structures we may use the RO(G)-
grading; but, when we are interested in mulitplicative structure based on ring-
G-spectra, we will meet with serious troubles in RO(G)-grading as to com-
mutativity etc., and we need some other device which will be discussed in another

occasion.
Anyway we get the restriction homomorphism

Yf=resf: EL(X:Y) — (Y. E g)=*(X: Y)
and the transfer homomorphism
trf: (YLEg) /= *(X: Y) — E&(X: Y)

in degree « € RO(G), where y;a=res§ U—res¢ Ve RO(L) for «=U — Ve RO(G).
By the above definition we see that we may apply Theorem 3.6 to E% and
obtain the efA(G),-module isomorphism

3.7 res'§: e EL(X: Y) (2R LE) " (X: Y )iy -

§4. Fixed-Point Exact Sequences

Let G==K, a normal subgroup; then (pg)*=pgk, the complex regular
representation of G/K. Let Eg={E,, ¢,; neZ} be a G-spectrum. Putting

E,=E¥,
en=ek: 2"E — Enyy,  p"=pgx
for ne Z, we get a G/K-spectrum
¢xEq={Ey;, ¢,; neZ}
which is called the K-fixed-point spectrum of Eg. Clearly

¢KZG=ZG/K .
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By restriction to K-fixed-points we get a homomorphism
¢%: EE (X: Y) — (¢xkEe)?=*(XX: YK)
called the K-fixed-point homomorphism, where ¢go=UK—VKe RO(G) for
a=U—Ve RO(G).
We construct an exact sequence involving ¢§ which generalizes the fixed-

point exact sequence for G=Z/2, [3], Section 1.
Decompose

P6=p1Dp2, P2=PE~ pgk and pf={0}.

For each integer n>0 we get a G-homotopy commutative diagram of pointed
G-cofibrations

Sg_n+1)p1 Bs_n+l)p1 F(n+1)ps

| i |

S("H)m/sm X Bt — B(n+1)m/3p1 X By — Z(n+1)m’

where we identify B(**Dei=Brix B, S(+1)p1=g(Br1 x B"rt)= 8Pt x Bt |J

Beix Smri, which implies the following commutative diagram with two

horizontal exact sequences:
s Efnecl(SumA X Y) O, EX(X;Y) XL ER (X Y) — oo
(4.1) Jex J] J+

E&+(u+l)p1—l(sg_n+1)p1/\X: Y) dn+1 ELX(X:Y) Tl Eé+(n+1)p1(X: Y)

for each a € RO(G) by fixing the same expression a=U — ¥, where the homo-
morphism y is induced by the inclusion y =y, : 2°c 2?1 and &, is induced by the
collapsing map S¢{n+Det — Xei(Sney),  (Compare with the commutative diagram
of [3], p. 5.) Take the colimit in vertical direction of this diagram and obtain
an exact seqeunce which is an S-dual version of the localization exact sequence
of tom Dieck [5] under a specified situation. We identify this exact sequence
with our desired exact sequence.
Define

(4.2) (xEg)*(X : Y)=colim [Egm»i=1(S17: A X: Y), &,],

and we prove the isomorphism
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(4.3) colim [E&*"e:(X : Y), y]1=(pxEg)?x*(XK: YK),

First we prove

Lemma 4.4. colim [EF"(X/XX: Y), y]=0.

Proof. Take x={f}ecolim [E¥¥(X/XX;Y), x]. x is represented by a
G-map f: Zm (X/XK)—-X"1 E,AY. We want to show that replacing f by
another representative g of x, gt ~0 forall LZG:; then g=~;0 by [4], Chapter
I, Lemma 5.2, and hence x=0. Suppose L= K, then pt=(X/X¥)K>(X/XX)L;
thus (X/XK)L=pt, (™ (X/X¥)L=pt and fL=0. Next, suppose LzZK.
Since pg is the complex regular representation of G, there exists a non-zero
ve pg such that G,=L. Let v=(v,, v,) € p;Dp,=pg, then v;#0 and p#{0}.
Thus (Z¥»1)L is a sphere of dimension=2k for any integer k>0. In the present
colimit f and (y3* A 1)of: Zmr (X/XK)—Z(ktmer E A Y represent the same element
x for any integer k>0. Since X is finite by our assumption, we may choose k
large enough so that dim 2™ (X/XX)<2(k+n)—1. Now, put g=(x* A 1)of;
dim (27 (X|X¥)L <2(k+n)—1 and (Z*+tmer E A Y)L is at least (2(k+n)—1)-
connected for any LK ; thus gL ~0 for all LG and g~ 0. O

Proof of (4.3). We prove the case «a=0. General case follows from this
special case by replacing X by X¥X and Y by XVY for a=U-—VeRO(G).

Consider the exact sequences associated with the G-cofibration XX—X
— X /XX and take the colimit of these sequences with respect to y. We get an
exact sequence

colim [EZ*«(X/XX: Y), y] — colim [E}*«(X: Y), x]

— colim [E¥’«(XX: Y), y] — colim [E&+*1(X/XX: Y), x].
By the above lemma colim [E¥"«(X/XX: Y), x]=0 and also colim [E+*1(X/
XX:Y), x]=0 replacing Y by ZY. Thus we get the isomorphism
€] colim [EZ«(X: Y), y]=colim [E¥«(XX: Y), x].

Consider the following sequence

[Zme XK ZneiE A Y]6 ZeP2 [Emotnoa XK SmoE A Y6
eg [Z‘mp+np2XK, En+m A Y]G ZiPa [Z(n-rm)pXK’ Z‘nplEm'r" A Y]G

and observe that the composition=(g.0X%)", which proves the isomorphism
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E&pi(XK: Y)gcohm [[Z'”P+"P2 XK, En+m A Y]G, 8*02;] .
And we get the isomorphism

(#%) colim EFy(XX: Y)=~ colim [Zmrtne: XK E . AY]C.
Observe the commutative diagram:

[x, Y16 2, [ZeiX, ZmY ]C
(xAIN Au)*
[X, 2nY]°,

which shows that the homomorphism y may be used as y=(y A 1)* as well as
¥=(A1),. In the right hand side of the isomorphism (##) we may understand
¥=(x A 1),. Then we see that the directed system of this double colimit contains
the sequence {[2"P2 A XX E, A Y]C, yoe,o2%} as a cofinal subsequence. Thus

colnim Ezy(XX:Y) ;co}lim [[Zrr2 XX E, A Y], yoes 28].

Now, K acts trivially on X2 XX, Hence
[Zre2 XK, E,AY]C=[Zm2 XK E KAYK]GC=[Zrr2 XK E XKAYK]GIK,
and we get the isomorphism

colim Emi(XX: Y)=(¢pgEq)(XX: YK),

which, together with (#), completes the proof of (4.3). O

In the exact seqeunce obtained by taking the colimit of (4.1) in the vertical
direction, identify one term with (¢pgxEg)?**(XX: YX) by (4.3). It is easy to
identify colim " with the fixed-point homomorphism ¢§, and we obtain the
desired exact sequence

(4.5) o (U Ee)*(X: ¥)— E& (X: Y) 25, (¢ Eg)®x*(XK: ¥YK)
— (gEg)* (X Y) —> -
for « € RO(G), which we call the K-fixed-point exact sequence.

Let = be a set of primes and H a m-perfect subgroup of G. Denote N
=NG(H), W—'_-Ng(H)/H, EN=¢NEG’ EW=¢HEN9 OC'=!//NOC and a”—_—’¢H“, fOI‘ o
€ RO(G). Consider the following H-fixed-point exact sequence (tensored with
Z.):

s QEy)® (X: V) gy — E% (X: )y 28, B (XH: YH) () —s oo
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Since actions of A(N) on E%(X: Y) are natural with respect to X and Y, the
central idempotent éf of A(N), acts on this seqeunce as an idempotent.
Remark that ef acts on Eg (XH: YH),, through the homomorphism

oH: A(N)(n)__’A(W)(n)
defined by ¢}[S]=[S¥H] for finite N-sets S. By (1.3) we see easily that
dyen= €%,

the primitive idempotent of A(W), corresponding to the trivial n-perfect
subgroup {1} of W. Thus we get the following exact seqeunce

- —— eR(AgEN)* (X: Y)(n)
L EHEY (X: Y) () 2, &5 By (X YH) (e

We will prove

Proposition 4.6. eF(AgzEy)* (X: Y)=0.
As a corollary of this proposition we obtain

Theorem 4.7. Under the same setting as in Theorem 3.5 there holds the
€5 A(N)y-module isomorphism

ON: EHEF (X: Y) (= EEp B (X H: Y )y,

where W=Ng(H)/H, Ey is an N-spectrum, Eyy=¢yEy, o' € RO(N) and &,

is the primitive idempotent of A(W), corresponding to the trivial m-perfect
subgroup {1} of W.

Proof of Proposition 4.6. Again it is sufficient to prove the special case
o'=0. Decompose py=p;@®ps, p2=pf =pw, p{={0}. By (4.2)
eH(AgEN)°(X: Y ) ny=colim eFEF 1 (S AX: Y )(ry.
Therefore it is sufficient to prove
EHEY(STPTAZX: Zm01Y ) 0y =0.

Since p¥={0}, we see that (S"r1)H=g. S"1 is an N-CW complex. Let o*
x N/Lbean N-cell of S":. Then (6% x N/L)H =% x (N/L)® =@, whence HZ L.
The standard argument by induction on N-cell of S7°: reduces the problem to
show that

eFER(((o*x N/L)/(0c* x NJ[L) AZX : 2"t Y),,=0.
The left hand side
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=eREJ((N/L)*Y AZ¥H1X: Xm01Y ) o,
= (resyeq)- (Y Ey)°(ZF1X: 2701 Y )
and
resy e =0
by (1.3) as HZ L, which completes the proof. dJ

Apply (3.7) and Theorem 4.7 to the G-sphere spectrum. We get the iso-

morphisms
(4.8) eHDEX: Y ) ) 2D (X1 Y )y =&, D (X P Y H) (o
for each (H)e P,, where o € RO(G), o' =yya and o =¢ya'. Specialize n={all

primes}, then we get Theorem A (Introduction).
Put

wa(pr) =B (2°: 29
Segal [16] showed the isomorphism
m2(pt) = A(G).

Then, by (4.8) we obtain

Corollary 4.9. There hold the ring isomorphisms

e A(G) () = EFAN) () = €7 A(W) 1y -

Specialize Corollary 4.9 to == {all primes}, then we get Coroliary B (Introduc-
tion).

Finally we may apply the classifying spaces of families of subgroups due to

tom Dieck [6], Let F,_,,,, denote the family of all solvable n-subgroups of
W and EF,_,,, its classifying space. There holds the isomorphism

(4.10) el (XM Y=g (XH: Y AEF7_ 1)) )

by arguments of [6] [7].
Let Hy, Hy,..., H, (Ho={1}) be a complete system of representatives of P,.
Then, from the direct sum decomposition

DX V) =Ilo<i<k eH,DEX: YV)(r
and (4.8) we get the direct sum decomposition

(4.11) (Z){‘—; (X. Y)(,”=e?1)a~)%(X: Y)(n)@]-_.[lgi_s_k é?l>d)ﬁ7'i(XH': YHi)(n)
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Where Ni=NG(Hi)’ W/,=N,/Hl and ai=¢H‘(|I/Nia)) for 1§i§k°

Example 1. G=8,, n=1{all primes}. Conjugacy classes of perfect sub-
groups are (45) and ({1}), and we obtain the direct sum decomposition

BEX: Y)=eyDE(X: Y)+DE)p(X4s: Y43),
where a” = ¢ 4, a.

Example 2. G=8¢, n={all primes}. There are 4 conjugacy classes of
perfect subgroups: (H,), (H,), (H5) and (H,), where H,=A, H,=As, H;
~Ads and H,={1}. H, and H, are isomorphic but not conjugate. There is
an outer automorphism a of Sy such that a(H,)=H;. Thus: N;(H)=S,,
Ng(H,)=S5 and Ng(H,;)=Ss. We obtain the direct sum decomposition

DX : V)=ey®E(X: V)OI <i<3 BFyo(XHr: YH,

where o;= ¢y (Yya) for 1Si<3.
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