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Equivariant Stable Homotopy Theory and
Idempotents of Burnside Rings

By

Shoro ARAKI*

Introduction

Let G be & finite group throughout the present work. We denote by A(G)

the Burnside ring of G. The stable G-homotopy theory is a G-homoIogy-

cohomology theory of A(G)-modules and any idempotent of A(G) decomposes

it as a direct sum of G-homology-cohomology theories. Such a decomposition

for p-localized case was partly investigated by Kosniowski [13] and torn Dieck

[7].
Let X and Y be pointed G-CW complexes. We assume X to be finite.

The group of stable G-maps from X to Y is denoted by a>%(X: Y). We put

ao%(X: Y) = a}%(ZvX:ZuY) for a=U-VERO(G). We study e(b%(X: Y) for

each primitive idempotent e of A(G). Denote by P the set of all conjugacy

classes of perfect subgroups of G. Primitive idempotents of A(G) correspond

bijectively with members of P, Dress [9]. Denote by eH the primitive idempotent

of A(G) corresponding to (H) e P, then

Let H be a perfect subgroup of G. We denote N = NG(H) and W= NG(H)/H

for simplicity. The main result of the present work is the following.

Theorem A. There hold the isomorphisms

which are eHA(G)- and eHA(N)-module isomorphisms respectively, where eH

and e<{> denote the primitive idempotents of A(N) and A(W} corresponding

to (H)N and the trivial perfect subgroup {1} of W respectively, a' = res^a and
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a" = UH- VH for af = U-VE RO(N).

Corollary B. There hold the ring isomorphisms

Direct proof of this corollary is not difficult. T. Miyata and T. Yoshida

communicated to the author relatively short direct proofs of this corollary.

Theorem A hold also for any G-homology-cohomology theories defined

by G-spectra. The p-localized version of Theorem A is also ture. In fact we

prove the more generalized version of Theorem A (Theorem 3.6, (3.7) and

Theorem 4.7). We obtain Theorem A by specializing 7r = {all primes} and

the p-localized version by n = {p}.

In Section 1 we observe certain relations between primitive idempotnents

of A(G)(lt) and A(N)(n), and their behaviors in Mackey double coset formula. The

explicit formula (1.2) for primitive idempotents due to Yoshida [17] is essential.

In Section 2 we prove an isomorphism theorem (Theorem 2.5) for Mackey

functors on the category G of finite G-sets. In Section 3 we see briefly that stable

G-homotopy theory provides Mackey functors on G, then we obtain the first

isomorphism of Theorem A (Theorem 3.6 and (3.7)) by applying Theorem 2.5.

In Section 4 we construct the fixed-point exact sequences for stable G-homotopy

theory and prove the second isomorphism of Theorem A (Theorem 4.7).

§ 1. Idempotents of Burnside Rings

Let G be the category of finite G-sets and G-maps. The set of all iso-

morphism classes in G forms a commutative semi-ring A+(G) with addition and

multiplication defined by disjoint unions and direct products (with diagonal

G-actions) respectively. The Burnside ring of G, denoted by A(G), is the

Grothendieck ring of A+(G). A finite G-set S represents an element of A(G),

denoted by [S]. Then every element of A(G) can be expressed in the form

[S]-[T]. Every finite G-set is expressed uniquely as the disjoint union of U

orbits, which implies that A(G) is additively a free Z-module with basis {[G/L];

(L) E C(G)}, where C(G) denotes the set of conjugacy classes of subgroups of G.

As to the basic properties of A(G) we refer to [8] [9] [10].

Let n be a set of primes and Z(7r) the subring of Q consisting of all fractions

a/b such that (a, b) = l and b is prime to every member of n. Thus, Z(7t)=(l

in case 7c = 0; Z(Jt)=Z in case 7r = {all primes}; Z(7c)=Z(p) in case n = {p}y the



EQUIVARIANT STABLE HOMOTOPY THEORY 1195

set consisting of a single prime p. We write A(n^ = A®Z(n) for any abelian

group A. Let G^L, a subgroup. The assignment "Si-»|SL|" defines a semi-

ring homomorphism A^(G)->Z and induces the ring homomorphism

cj)L: A(G\V) - > Z (n),

which is important in studying structure of A(G)(7r) [8] [9] [17]. E.g., A(G)(K)

9x = 0<=>0L(x) = Ofor all L^G.

Primitive idempotents of A(G\n) are discussed in [8] [9] [1 1] [17]. Following

[17] we denote by S"(G) the minimal normal subgroup of G by which the quotient

is a solvable Ti-group. Sn(G) is the uniquely determined characteristic subgroup

of G [9] . G is called to be n- perfect provided Sn(G) = G. When n = {all primes} ,

Ti-perfect groups are perfect groups.

S*(G) is always 7r-perfect as 5w(S7t(G)) = S7r(G). Let Pn denote the set of

all conjugacy classes of 7r-perfect subgroups of G. Primitive idempotents of

A(G\n) correspond bijectively with members of Pn [9] [17].

Let H be a Ti-perfect subgroup of G and e\ the primitive idempotent corre-

sponding to the conjugacy class (H). Put

following [17]. e^j is characterized by

(1.1) 0L(«&)=1 ^ L~S,(H9G)
= 0 otherwise,

where "~"') means "conjugate to a member of" [8] [9] [17].

Recently an explicit formula for the idempotent e% has been given by

Yoshida [17]. (The formula for the case n = 0 is given also by Gluck [11].)

Let fi be the Mobius function on the subgroup lattice of G. For D ̂  G he defines

and obtains the explicit formula for e\ [17], Theorem 3.1, as follows:

(1-2) e*H = (ll\NG(H)\) • ZD^G(H) \WD, H) [G/D] .

Let K^G. Restricting G-actions to K on each finite G-set S, one obtains

the ring homomorphism

called the restriction homomorphism. Clearly
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for xeA(G)(ny and L^K. The assignment "SWGx^S" for each finite K-set

S induces the linear homomorphism

called the transfer homomorphism. By definition

There holds the Frobenius formula

for x G A(K)(K) and y e A(G\n). res£ maps idempotents to idempotents (which

may be decomposable), whereas trg does not in general. Obviously resg

= trg = idfor K = G.

Let H be a Ti-perfect subgroup of G and put N = NG(H), the normalizer of

H in G. Let e\ denote the primitive idempotent of A(N)(n^ corresponding to

(H)N, the conjugacy class of H in N, which we call the central idempotent of

A(N)(n). It is characterized by

(1.3) 0L(*&) = 1 if LeSK(H,N)
= 0 otherwise ,

since H^N. (Compare with (1.1).) Remark that Sn(H, G) = Sn(H, N) and

A(D, H), D<^ N, is the same for G and N. Since NG(H) = NN(H), we compute

by (1.2) as follows:

trg e*H = (1I\NN(H)\) • ̂ NN(H, \D\1(D, H) - trg [JV/D]

i.e., we obtain

(1.4) tr$e«H = e«H.

res^e^ is an idempotent of A(N)(n) and we see easily by (1.1) that it de-

composes as a sum of primitive idempotents which correspond to conjugacy

classes (H')N in N such that H' ~H in G. Such conjugacy classes correspond

bijectively to a part of the double cosets N\G/N. Let {gl9..., gt} be a complete

system of representatives of N\G/N. Choose a numeration of this system so

that i^s^>Hi = giHgi~
i^N (which does not depend on the choice of the re-

presentative gt). Then {(Ht)N, l^i^s} forms the complete set of the above

mentioned conjugacy classes (H')N in N. We choose g^ = 1 always, then H ^ =H.
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Let e*l denote the primitive idempotent of A(N\n^ which corresponds to (Ht)N.

e7t = e%, the central idempotent of A(N)M. And we obtain

(1.5) resfc^E^,*?.

By (1.4) and (1.5) we see that

Next we apply the Mackey decomposition to res$ otrg. Putting Ni =

1 ̂  i ̂  t, we obtain

(1.6)

where cf : A(N\n)-^>A(Ni\n}9 the isomorphism induced by the conjugation

isomorphism Nt~N with respect to 0J"1.

We observe tr$n]Vi °TesN\\Nl°
cf(?li) f°r each i, l^i^t. cf maps primitive

idempotents to primitive ones. By (1.3) we see that

0L(*f (*&)) = ! if LeSK(Hi9Nt)
= 0 otherwise .

Thus c*(e%) is the central idempotent of A(N ^ny Then

^L(res^>oC*(^)) = l if LeS,(Ht,Nr\NJ

= 0 otherwise ,

which shows that resX£
n]V[ °cf(e%) = Q for i>s and =the central idempotent of

A(NN(Ht)\n} for 1 ̂  igs by (1.3) as JV n N—N^HJ. Let if denote the central

idempotent of A(NN(Hj))(7t). We have obtained

(1.7) resSf'nNl°cf(e&) = e7 /or

= 0 /or

Apply (1.4) for the pair (JV, Ht) and obtain

(1.8) t r jy n N l (gf ) = gf for l^i^s.

We add two remarks. Since en
{ is the primitive idempotent of A(N n Nt)^

corresponding to (H,)Nf]N., we have the decomposition

res$nNfe? = e? + -

into primitive ones for 1 ^ i ̂  s by (1.5). Thus

(1.9) (resjfn j v ie?).e? = e? for Igi^s .

The second remark is that g1 = !9H1=H and N±=N by our choice. Thus
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(1.10) trjJn N l

§ 2. Idempotents and Mackey Functors

Dress [10], Section 4, defined the Burnside functor on G. Let T be a

finite G-set and G/Tthe category of objects over T. The set of all isomorphism

classes of G/T forms a commutative semi-ring AG(T) with addition and multi-

plication defined by disjoint unions and pull-backs. Its Grothendieck ring is

denoted by AG(T}. The element of AG(T) represented by an object/: S-»T

of 6 IT is denoted by [/: S->T]. The Burnside functor AG = (AG%, AG) on

G is a pair of functors AG*\ G-^Ab and A$: G°^->Ab such that AG*(T)

= AG(T) = AG(T) on each object T and, for a morphism/: S-^Tin G, AG*(f)

=/„: AG(S)->AG(T) is given by f^g: C/-*S] = [/o0: C/->T] and A&f)=f*i

^(TO-^GCS) by/*[/i: W^7] = [^xTS->S].
As for the definition of a Mackey functor M = (M*, M*) on G we refer to

[7], p. 68. The Burnside functor AG is a Mackey functor on G. Moreover,

/* is multiplicative (i.e., AG is ring-valued) and there holds the Frobenius

property among/*,/* and multiplication, i.e., AG is a Green functor in the sense

of [10].
There holds the canonical isomorphism

for K <; G such that

p*=tr£ and

for L^K^G and p: G/L-+G/K, the canonical projection.

Let M = (M*, M*) be any Mackey functor on G. We write M*(/)=/*

and M*(/) =/* for a morphism /: S-> Tin G. M(T) becomes an ̂ 4G(T)-module

by [/: S-> T] • x =/*°/*x, x e M(T), [7] [10]. By these module actions M is an

^4G-module in the sense that M* is a module-valued functor (f*(xy) = (f*x)(f*y)

for/: S->T, xe^[G(T) and veM(T)) and there holds the Frobenius property

among /*,/* and module action [10], Proposition 4.2. We write p* = tr£,

jp* = resf for any Mackey functor M, L^K^G and p: G/L-^G/K, the canonical

projection, in conformity with the above mentioned identities for AG.

Let 7i be a set of primes and M a Z(7t)-module-valued Mackey functor.

Put AGtn = AG®Z(n}. The above module action of AG on M makes M an
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For each K^G, M(G/K) is an A(K)(n)-module. Hence primitive idempo-

tents of A(K\n) decomposes M(G/K) as a direct sum of submodules. In partic-

ular

We observe e]jM(pt) as an e|j,4(G)(7t)-module.

Let H be a 7r-perfect subgroup of G and N = NG(H). Let e\ be the central

idempotent of A(N)(rcy We want to discuss res$ otr$ (e/jx) for e^x e e#M(G/JV).

The axiom (Ml) for the Mackey functor [7] applied to the pull-back diagram

G/NxG/N - >G/N

GjN - > pt

implies the Mackey decomposition

for M [10] [12] (the same formula as (1.6)), where we used the same notations

as in Section 1, i.e., {<7i,...50 r} (0i = l) is a complete system of representatives

of N\G/N, N^gtNgf1, and cf: M(G/A/)-M(G/^), the isomorphism induced

by the right multiplication with gt: G/Ni^G/N, for 1 ̂ i^L

Put

| (cfx)eM(G/N n N

As res^n]V. and cf preserve module actions we see that

res$^.°cf(e]^)==i?3q for

= 0 for

by (1.7). Next we put

Then

by (1.9). For i = l, the remark (1.10) is applicable also for M and we see that

the given element. Thus we obtain
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Proposition 2.1. Using the notations of Section 1 we have the direct sum

decomposition

and9 for any e\ x e egM(G/N)9 we have the decomposition

such that

^^ = tr^n]V£ores^n]Viocf(^x)

and

elxl=e1}Ix, the given element.

Put

(2.2) tr'£ = trS |g&M(G/N): e«HM(G/N) - > *

Suppose e^x e Ker tr'$. Then res$°trg (e^x) = Z i ̂ i^s ̂ i = 0. Hence en
txt = 0

for all i, 1 g i ̂  s. In particular ejx = ef x± = 0. Thus we obtain

(2.3) tr'g: e%M(G/N) - > e^M(pt) is monomorphic.

Let

(2.4) res'£: e&M(pO - >e"HM(G/N)

be the ej^(G)(7r)-module map defined by

res'jf (x) = e^ • res^ x, x e e^M(pt) .

By Frobenius property and (1.4) we see that

tr'fcres'g (x) = trg (e& - resg x) = e%x = x

for x e e%M(pi). Thus

tr'gores'g = id,

which shows that tr'^ is epimorphic and hence isomorphic by (2.3). Clearly

res'$ is the inverse to tr'$ and we obtain

Theorem 2.5. Let n be a set of primes, M a Z ̂ -module-valued Mackey

functor on G, H a n-perfect subgroup of G and N = NG(H). Let e% be the

primitive idempotent of A(G\n^ corresponding to (H)ePn and ejj the central

idempotent of A(N)(n). Then there holds the e%A(G)(jt)-module isomorphism

res'g: e«HM(pi) * e%M(G/N) .
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§ 39 Stable ^-Honiotopy Theory

By a G-module Fwe mean a finite dimensional real or complex G-module

equipped with an invariant metric for simplicity. By Sv and Bv we denote the

unit sphere and unit ball of V respectively. We put IV = BVJSV, which is G-

homeomorphic to the one-point compactification of V.

Let X and Y be pointed G-CW complexes. We assume X to be finite.

By the group of stable-G-maps from X to Y we understand

o}°G(X: Y) = colim[ZvX,ZvY']G

[8], Section 7, where [ , ]G denotes the set of G-homotopy classes of pointed

G-maps, IVX = IV AX, V runs over the system of complex G-modules which

is directed by G-embeddings as G-submodules, and the colimit is taken with

respect to suspensions

2%: [ZVX, IVY~\G > \ZW®VX9 IW®VY~]G .

a)%(X: 7) is a well-defined abelian group.

We use complex G-modules by the following two reasons: i) the directed

system of complex G-modules may be regarded as a cofinal subsystem of that of

real G-modules so that we loose nothing by this restriction; ii) the group of

complex automorphisms of a complex G-module V is connected so that G-maps

ZV-*ZV induced by complex automorphisms of V are all G-homotopic to the

identity, which makes several identifications among G-homotopy sets coming from

isomorphisms of G-modules unique.

Let/: S-»Tbe a map in G. Endowing discrete topology to S and T

respectively, a G-embedding i: ScTx Fsuch that Fis a complex G-module and

P ri°J — /is called an admissible embedding for/. The existence of an admis-
sible embedding is easily shown by making use of the complex permutation re-

presentation Vs of S. Let i: ScTx Fbe an admissible embedding for/ We

may assume that /(S) c Tx Int Bv. Regard S and T as 0-dimensional G-

manifolds and let v/ be the normal G-bundle of the embedding /. Then vi

~GSxV. Choose the normal disk G-bundle Dvi so that Dvi<=.TxBv. Since

Dvi^GSxBv, the Thorn construction gives a pointed G-map

tr/: T+A!V >S**ZV.

This construction is of course a very special case of the equivariant Becker-
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Gottlieb transfer [15]. (Compare also with [8], §7, in which the case of com-

pact Lie group actions is discussed.) The following properties of tr/ are easily

shown by standard techniques and left to readers.

(3.1) The stable class {tr/} ec5g(T+: S+) is uniquely determined by f.

(3.2) Let f: Sl-*S2 and g\ S2-^S3 be morphisms in G. Then

as stable G-maps.

(3.3) Let

S'

be a pull-back diagram in G. Then

as stable G-maps.

We define a bifunctor

coGlX: 7]: G - > Ab

as follows:

a>GlX: 7](S) = c5g(S+AX: 7)

on objects; for a morphism/: S-»Tin Q we put

/*=(tr/Al)*: a)°G(S+AX: 7) - >cog(T+AX: 7)

which gives a co variant functor by (3.2), and

/* = (/+ A 1)*: cb°G(T+AX: 7) - >c5g(S+A^: 7)

which gives obviously a contravariant functor.

Proposition 3.4. wG[X: 7] is a Mackey functor.

Proof. (3.3) implies the axiom (Ml) of [7], p. 68. As to the axiom (M2)5

let SILT be a disjoint union of finite G-sets, then (SJIT)+ = S+ v T+ and

£g((S_LL T)+ A X : 7) = d>g((S+ A X) v (T+ A X) : 7)

-c5g(S+AZ: 7)©d)g(T+AZ: 7). D

Let L^G. Since the directed system of L-modules which are obtained
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from G-modules by restriction of actions is a cofinal subsystem of that of arbitrary

L-modules, we get the homomorphism

iA2=res£: co°G(X: Y} >cb°L(X: Y)

by restricting G-actions to L-actions. On the other hand we get the

isomorphism

ic: ti°G((G/L)+*X: Y)~co°L(X: Y)

by restricting stable G-maps to (L}+ A X ~ LX, which we regard as the canonical

isomorphism. Let

p: G/L > pt

be the unique G-map. We can easily identify

p* = res£

via the canonical isomorphism K. We define

trg^o*-1: cb°L(X: Y) > &%(X: Y).

With these setting we apply Theorem 2.5 to the Mackey functor o)G\_X: 7]

and obtain

Theorem 3.5. Let X and Y be pointed G-CW complexes. Assume X to

be finite. Let n be a set of primes. Using the same notations as in Theorem

2.5 there holds the e%A(G\n}-module isomorphism

res'£: e%&°G(X: Y\n)^e«Hao°N(X: 7)(7r).

The above theorem applies also to G-homology and G-cohomology theories.

Any G-cohomology theory defined on the category of (finite) G-CW complexes

satisfying suitable axioms is representable by a G-spectrum [2] [14]. So we

discuss here only G-homology and G-cohomology theories defined by G-spectra

[2] [13]. We use G-spectra indexed by complex (virtual) G-modules in the

same reason as the definition of the group of stable G-maps. Practically we may

restrict our G-spectra to those indexed by a cofinal subsystem of that of complex

G-modules and will do so in the sequel.

Let p = pG be the complex regular representation of G. {np: neZ} is one

of such cofinal subsystems. We use this system particularly. A G-spectrum

EG = {En, £„: ZpEn-»En+1i neZ} consists of a pointed G-CW complex En and

a pointed G-map (structure map) e,,: Ip En-*En+l for each neZ. When En

= Inp and e^id: 2W = 2;(»+1)p for n^Q (En = pt for n<0), the G-spectrum
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is called the G-sphere spectrum and denoted by ZG.

Let EG = {En, sni neZ} be a G-spectrum and L^ G. Asres£pG = |G/L| -pL ,

where p' = pL is the complex regular representation of L, putting

k = Zk?'En for

* = id for
= eB for fc=|G/L|-l,

we get an L-spectrum

iltLEG = {Ei,s'n'9neZ}

by restricting G-actions to L-actions. Clearly

il/LZG=ZL.

The EG-homology-cohomology group in degree 0 (homology with respect

to Y and cohomology with respect to X) is defined by

EG(X; 7) = colim [Z»PX, EnA 7]G,

where the colimit is taken with respect to the compositions Bn^°Z^. as usual.

EG(X: 7) is a well-defined abelian group. Obviously

I°G(X: Y) = a)°G(X: Y).

Again we obtain a Mackey functor G-»Ab by the assignment: S\-*E%(S+

AZ:7) and "/: S-»T'W/s|E=(tr/A 1)* and /* = (/+A!)*. Also we have

the restriction homomorphism

>A£ = resg: E°G(X: T> > (^LEG)°(X: Y)

and the transfer homomorphism

trg: («ALEC)°(X: 7) > E°G(X: Y)

together with the canonical isomorphism

K: E°G((GJL)+AX: Y)^(ijsLEG)0(X: Y)

in the parallel way to the case of cog.

Now apply Theorem 2.5 to the above Mackey functor and obtain

Theorem 306« Under the same assumptions and notations as in Theorem

3.5 there holds the e\A(G)^-module isomorphism

res'£: e«HEG(X: Y)(Jf) s e^LEG)G(X: Y)(jr)

/or a?t^ G-spectrum EG,
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Let a e RO(G) and express a = U — Fas a difference of real G-modules. The
£G-homology-cohomology group in degree a is defined by

E«G(X: Y)=EQ
G(IVX:IUY).

Let x=Ur — V be another expression. We can certainly find an additive iso-

morphism

E°G(IVX: ZUY)~EI(IV'X: ZU'Y),

but it is no more canonical and there are many choices of this isomorphism.

So, as far as we are interested in additive structures we may use the RO(G)-

grading ; but, when we are interested in mulitplicative structure based on ring-
G-spectra, we will meet with serious troubles in .RO(G)-grading as to com-

mutativity etc., and we need some other device which will be discussed in another

occasion.
Anyway we get the restriction homomorphism

iA£=res£: E«G(X: F) - > (^LE G)*^(X: Y)

and the transfer homomorphism

trg: WLEG)+-"(X: Y) — * EG(X: Y)

in degree ae£0(G), where ^La = resg l/-res£ Fe^O(L) for a=U-VeRO(G).

By the above definition we see that we may apply Theorem 3.6 to E£ and

obtain the e^(G)(7r)-module isomorphism

(3.7) res'g: e*HE*G(X: Y)(rt^el(^LEGY^(X: Y)M .

§4. Fixed-Point Exact Sequences

Let Gt>K, a normal subgroup; then (pG)K = pG/K, the complex regular
representation of GjK. Let EG = {En, sn; neZ} be a G-spectrum. Putting

for n E Z, we get a G/£>spectrum

<t>KEG = {E:,s:;nEZ}

which is called the K-fixed-point spectrum of EG. Clearly
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By restriction to K-fixed-points we get a homomorphism

0g: E'G (X: 7) — + (<frKEG)+*'(X*: Y*)

called the K-fixed-point homomorphism, where $Ko(,= UK— VK E RO(G) for

x=U-VERO(G).

We construct an exact sequence involving $# which generalizes the fixed-

point exact sequence for G=Z/2, [3], Section 1.

Decompose

2 = PG^PcK and p = 0.

For each integer n>0 we get a G-homotopy commutative diagram of pointed

G-cofibrations

x jg«pi _ > B(n+1)plISpl xBnpi

where we identify B^n+1^1=Bpl xB11^,

Bpl x Snpl, which implies the following commutative diagram with two

horizontal exact sequences :

... - , E^^'^Sy^X: Y) -*±+ E% (X\ Y) -̂ -> EG
+tt^(X: Y) - . •••

(4.1) Jc- |x

_ > ^g+CH+Dpi-i^n+Dp^^. 7)̂ 111̂  £«(Z: r)^lIi£g+<n+1)^(Ar: 7) _ > • • •

for each oceRO(G) by fixing the same expression a=U — V, where the homo-

morphism x is induced by the inclusion x = xpl: I°dlpl and £n is induced by the

collapsing map S<?+l)pl -+Zpi(S$pi). (Compare with the commutative diagram

of [3], p. 5.) Take the colimit in vertical direction of this diagram and obtain

an exact seqeunce which is an S-dual version of the localization exact sequence

of torn Dieck [5] under a specified situation. We identify this exact sequence

with our desired exact sequence.

Define

(4.2) ^KEGY(X : 7) = colim \E&*"-\Sy* A X : 7), £ J ,
n

and we prove the isomorphism
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(4.3) colim [E£+'""(X: Y), x]^(4>KEGfKX(XK: YK).
n

First we prove

Lemma 4.4. colim \E^(XIXK : 7), *] = 0.

Proof. Take x = {/} 6 colim [£gPl(Z/^x; Y)5 #]. x is represented by a

G-map f:ZmP(XIXK)-+2np*EmKY. We want to show that replacing / by

another representative g of x, #L~0 for all L^G; then #^G0 by [4], Chapter

II, Lemma 5.2, and hence x = 0. Suppose L^K, then pt = (X/XK)K=>(XIXK)L\

thus (XIXK)L = pt,(Zmp(XlXK))L = pt and /L = 0. Next, suppose L^K.

Since pG is the complex regular representation of G, there exists a non-zero

vepG such that GV = L. Let f = (u l3 v2)E p1®p2 = pG> then f^O and pf ^{0}.

Thus (Ikpl)L is a sphere of dimension ̂ 2k for any integer k>Q. In the present

colimit / and (%k A 1)°/: I™? (XIXK)-^^k+n^1 Em/\Y represent the same element

x for any integer /c>0. Since X is finite by our assumption, we may choose k

large enough so that dimlm (X/XK)<2(k-+-n) — 1. Now, put g=(%kAl)of;>

dim(ZmP(X/XK))L<2(k + n)-{ and (Z^k+n^ Em A Y)L is at least (2(fc + n)- 1)-

connected for any L^tK; thus gL~Q for all L ̂  G and 0 c^ G0. D

Proof o/ (4.3). We prove the case a = 0. General case follows from this

special case by replacing X by IVX and Y by IUY for a=E7-7e£0(G).

Consider the exact sequences associated with the G-cofibration XK-*X

-*X/XK and take the colimit of these sequences with respect to %. We get an

exact sequence

colim \_En
G

p*(XIXK: Y), %] - > colim \_E^(X: 7), /]
n n

- > colim [£gp<XK: 7), x] - > colim [En
G

p^l(XIXK'. 7), ^] -

By the above lemma colim [E%pi(XIXK: 7), #] = 0 and also colim [EG
Pi+l(X/

XK : 7), %] = 0 replacing 7 by I" 7. Thus we get the isomorphism

(#) colim [E#XX : 7), *] s colim [E^ i(X* : 7), *] .

Consider the following sequence

[ZmPXK
9Z

n"EnA 7]G Z"P2 > [j«P+"P2^A-9 2;»pEm A 7]G

I«^£:m^MA 7]G

and observe that the composition = (£^0^)", which proves the isomorphism
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Etfi(XK: Y)^ colim [_[Zmf>+»p* XK, En+m/\ F]G, e
m

And we get the isomorphism

(**) colim Etfi(XK : 7) ̂  colim [P^+"^ XK, En+m A 7]G .
n «,m

Observe the commutative diagram :

which shows that the homomorphism # niay be used as % = (% A 1)* as well as

% = (% A 1)^. In the right hand side of the isomorphism (##) we may understand

# = 0c A 1) .̂. Then we see that the directed system of this double colimit contains

the sequence {[ZnfJ2/\XK, En/\ 7]G, x°e*°^i} as a cofinal subsequence. Thus

colim En
G

pi(XK: Y)^ colim [[Z"«XK, £„ A 7]G, ^o

Now, X acts trivially on Inp2 XK. Hence

[2nP*XK
9 EnAY]G = lZnf»XK,En

KA YX]G=[Zni*XK
9 En

K A

and we get the isomorphism

colim E"

which, together with (#), completes the proof of (4.3). D

In the exact seqeunce obtained by taking the colimit of (4.1) in the vertical

direction, identify one term with (cj)KEG)(l>Klx(XK: YK) by (4.3). It is easy to

identify colim %n with the fixed-point homomorphism <j)^ , and we obtain the

desired exact sequence

(4.5) - - - - ^KEGY(X: Y)-^E«G ( X : Y ) - > (<I>KEG)+

— > (A^G)«+1(AT: 7) — > -

for aeRO(G), which we call the K-fixed-point exact sequence,

Let n be a set of primes and H a Ti-perfect subgroup of G. Denote N

= NG(H), W=NG(H)/H,EN = ilsNEG,Ew = (l)HEN,vr = il/Noi and a^^a' for a

eKO(G). Consider the following H-fixed-point exact sequence (tensored with
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Since actions of A(N) on E%'(X: 7) are natural with respect to X and 7, the

central idempotent ejj of A(N)(lt) acts on this seqeunce as an idempotent.

Remark that e1^ acts on E&(XH: 7fl)(7c) through the homomorphism

defined by <£g[S] = [SH] for finite N-sets S. By (1.3) we see easily that

the primitive idempotent of A(W)W corresponding to the trivial 7r-perfect

subgroup {1} of W. Thus we get the following exact seqeunce

---- > e*Hy.HENY'(X: 7)(7r)

— > e*HE$(X: r)oo -*!> S^W**: 7*)(7r)— .... .

We will prove

Proposition 4.6. e£(AHEN)a' (X : 7) = 0 .

As a corollary of this proposition we obtain

Theorem 4.7. Under the same setting as in Theorem 3.5 there holds the

e^A(N) ^-module isomorphism

4$: e*HEf,'(X: Y)w* €?»£+*•' (X*: 7*)(7C)9

where W=NG(H)/H9EN is an N-spectrum, Ew = cj)HEN, a' eRO(N) and e<1>

is the primitive idempotent of A(W)(n) corresponding to the trivial re-perfect

subgroup {1} of W.

Proof of Proposition 4.6. Again it is sufficient to prove the special case

oc' = 0. Decompose pN = pl@p2, P2 = PN=Pw> P? = {®}- By (4.2)

e%(X.HEN)°(X: 7)(7t)=colim e$Etfi-*(Sy * A X: 7)(7r).

Therefore it is sufficient to prove

Since pf = {0}, we see that (Snpi)H = 0. Snpl is an JV-CW complex. Let ak

x JV/Lbe an JV-cell of Sn". Then (ak x N/L)H = ak x (N/L)H = 0, whence H^L.

The standard argument by induction on JV-cell of SlPl reduces the problem to

show that

e%E%(((ak x N/L)/(dak x JV/L)) A IX : 1^ 7)(7c) = 0 ,

The left hand side
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and

by (1.3) as H^L, which completes the proof. D

Apply (3.7) and Theorem 4.7 to the G-sphere spectrum. We get the iso-

morphisms

(4.8) e'H<o&(X: Y)w

for each (H)ePw, where ae.R0(G), OLf = \l/Na and a" = $Ha'. Specialize n = {all

primes}, then we get Theorem A (Introduction).

Put

Segal [16] showed the isomorphism

Then, by (4.8) we obtain

Corollary 4.9. There hold the ring isomorphisms

e*HA(G\K} * e*HA(N){K) * e^ >X( W\K} .

Specialize Corollary 4.9 to 7r = {all primes}, then we get Corollary B (Introduc-

tion).

Finally we may apply the classifying spaces of families of subgroups due to

torn Dieck [6], Let FK^olv denote the family of all solvable 7r-subgroups of

Wand EFn^0\v its classifying space. There holds the isomorphism

(4.10)

by arguments of [6] [7].

Let #0, ff !,..., Hk (H0 = {1}) be a complete system of representatives of PK.

Then, from the direct sum decomposition

and (4.8) we get the direct sum decomposition

(4.11) fig (X: Y)(K)
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where Nt = NG(Htl W, = NJHt and a, = 0Hi(^fa)) for 1 ^ i ̂  fc.

Example 1. G = S59 7r = {all primes}. Conjugacy classes of perfect sub-

groups are (^45) and ({1})? and we obtain the direct sum decomposition

where a" = <^5a.

Example 2. G=S6 ?7r = {all primes}. There are 4 conjugacy clashes of

perfect subgroups: (H±)9 (H2), (H3) and (H4), where H1=A69 H2=A59 H3

^A5 and H4 = {1}. #2 and ^3 are isomorphic but not conjugate, There is
an outer automorphism a of §6 such that a(H2) = H3a Thus: NG(H1) = S63

NG(H2) = S5 and NG(H3)^S5, We obtain the direct sum decomposition

cbG(X: Y) = e<iy

where af = $Hfil/Niai) for 1 g i ̂  38

[ 1 ] Araki, S0 and Murayama, M., r-cohomology theories, Japan, J. Math., 4 (1978),
363-416.

[2] , G-homotopy types of G-complexes and representations of G-cohomology
theories, PubL RIMS, Kyoto Univ., 14 (1978), 203-222.

[ 3 ] Araki, S. and Iriye, K., Equivariant stable homotopy groups of spheres with involutions
I, Osaka J. Math., 19 (1982), 1-55.

[4] Bredon, G. E., Equivariant cohomology theories, Lecture Notes in Math., 34,
Springer Verlag, 1967.

[ 5 ] torn Dieck, T., Lokalisierung aquivarianter Homologie-Theorien, Math. Z., 121
(1971), 253-262.

[gj ^ Orbittypen und aquivariante Homologie, I, Arch. Math., 23 (1972),
307-317; II, Arch. Math., 26 (1975), 650-662.

[7] ^ Equivariant homology and Mackey functors, Math, Ann., 206 (1973),
67-78.

jg] ^ Transformation groups and representation theory, Lecture Notes in
Math., 766, Springer-Verlag, 1979.

[9] Dress, A., A characterization of solvable groups, Math. Z., 110 (1969), 213-217.
PQJ ^ Contributions to the theory of induced representations, Lecture Notes in

Math., 342, Algebraic JT-theory II, 183-240, Springer-Verlag, 1973.
[11] Gluck, D., Idempotents formula for the Burnside algebra with applications to the p-

subgroup simplicial complex, III. /. Math., 25 (1981), 63-67.
[12] Green, L A., Axiomatic representation theory for finite groups, /. Pure AppL

Algebra, 1 (1971), 41-77.
[13] Kosniowski, C, Equivariant cohomology and stable cohomotopy, Math. Ann., 210

(1974), 83-104.



1212 Sn6R6 ARAKI

[14] Matsumoto, T., Equivariant cohomology theories on G-CW complexes, Osaka J.
Math., 10 (1973), 51-68.

[15] Nishida, G., The transfer homomorphism in equivariant generalized cohomology
theories, /. Math. Kyoto Univ., 18 (1978), 435-451.

[16] Segal, G., Equivariant stable homotopy theory, Actes Congrds Intern. Math., 2 (1970),
59-63.

[17] Yoshida, T., Idempotents of Burnside rings and Dress induction theorem, to appear in
J. Algebra.


