Equivariant Stable Homotopy Theory and Idempotents of Burnside Rings

By

Shôrô Araki*

Introduction

Let G be a *finite* group throughout the present work. We denote by A(G) the Burnside ring of G. The stable G-homotopy theory is a G-homology-cohomology theory of A(G)-modules and any idempotent of A(G) decomposes it as a direct sum of G-homology-cohomology theories. Such a decomposition for p-localized case was partly investigated by Kosniowski [13] and tom Dieck [7].

Let X and Y be pointed G-CW complexes. We assume X to be finite. The group of stable G-maps from X to Y is denoted by $\tilde{\omega}_G^0(X:Y)$. We put $\tilde{\omega}_G^\alpha(X:Y) = \tilde{\omega}_G^0(\Sigma^V X: \Sigma^U Y)$ for $\alpha = U - V \in RO(G)$. We study $e\tilde{\omega}_G^\alpha(X:Y)$ for each primitive idempotent e of A(G). Denote by P the set of all conjugacy classes of perfect subgroups of G. Primitive idempotents of A(G) correspond bijectively with members of P, Dress [9]. Denote by e_H the primitive idempotent of A(G) corresponding to $(H) \in P$, then

$$\tilde{\omega}_{G}^{\alpha}(X:Y) = \coprod_{(H)\in P} e_{H} \tilde{\omega}_{G}^{\alpha}(X:Y).$$

Let *H* be a perfect subgroup of *G*. We denote $N = N_G(H)$ and $W = N_G(H)/H$ for simplicity. The main result of the present work is the following.

Theorem A. There hold the isomorphisms

$$e_H \tilde{\omega}_G^{\alpha}(X:Y) \cong \bar{e}_H \tilde{\omega}_N^{\alpha'}(X:Y) \cong \tilde{e}_{\langle 1 \rangle} \tilde{\omega}_W^{\alpha''}(X^H:Y^H)$$

which are $e_H A(G)$ - and $\bar{e}_H A(N)$ -module isomorphisms respectively, where \bar{e}_H and $\tilde{e}_{\langle 1 \rangle}$ denote the primitive idempotents of A(N) and A(W) corresponding to $(H)_N$ and the trivial perfect subgroup $\{1\}$ of W respectively, $\alpha' = \operatorname{res}_N^G \alpha$ and

Communicated by N. Shimada, March 15, 1982.

^{*} Department of Mathematics, Osaka City University, Osaka 558, Japan.

 $\alpha'' = U^H - V^H$ for $\alpha' = U - V \in RO(N)$.

Corollary B. There hold the ring isomorphisms

 $e_H A(G) \cong \bar{e}_H A(N) \cong \tilde{e}_{\langle 1 \rangle} A(W).$

Direct proof of this corollary is not difficult. T. Miyata and T. Yoshida communicated to the author relatively short direct proofs of this corollary.

Theorem A hold also for any G-homology-cohomology theories defined by G-spectra. The p-localized version of Theorem A is also ture. In fact we prove the more generalized version of Theorem A (Theorem 3.6, (3.7) and Theorem 4.7). We obtain Theorem A by specializing $\pi = \{all \text{ primes}\}$ and the p-localized version by $\pi = \{p\}$.

In Section 1 we observe certain relations between primitive idempotents of $A(G)_{(\pi)}$ and $A(N)_{(\pi)}$, and their behaviors in Mackey double coset formula. The explicit formula (1.2) for primitive idempotents due to Yoshida [17] is essential. In Section 2 we prove an isomorphism theorem (Theorem 2.5) for Mackey functors on the category \hat{G} of finite G-sets. In Section 3 we see briefly that stable G-homotopy theory provides Mackey functors on \hat{G} , then we obtain the first isomorphism of Theorem A (Theorem 3.6 and (3.7)) by applying Theorem 2.5. In Section 4 we construct the fixed-point exact sequences for stable G-homotopy theory and prove the second isomorphism of Theorem A (Theorem 4.7).

§1. Idempotents of Burnside Rings

Let \hat{G} be the category of finite G-sets and G-maps. The set of all isomorphism classes in G forms a commutative semi-ring $A^+(G)$ with addition and multiplication defined by disjoint unions and direct products (with diagonal G-actions) respectively. The Burnside ring of G, denoted by A(G), is the Grothendieck ring of $A^+(G)$. A finite G-set S represents an element of A(G), denoted by [S]. Then every element of A(G) can be expressed in the form [S]-[T]. Every finite G-set is expressed uniquely as the disjoint union of ts orbits, which implies that A(G) is additively a free Z-module with basis $\{[G/L]; (L) \in C(G)\}$, where C(G) denotes the set of conjugacy classes of subgroups of G. As to the basic properties of A(G) we refer to [8] [9] [10].

Let π be a set of primes and $Z_{(\pi)}$ the subring of Q consisting of all fractions a/b such that (a, b)=1 and b is prime to every member of π . Thus, $Z_{(\pi)}=Q$ in case $\pi=\varphi$; $Z_{(\pi)}=Z$ in case $\pi=\{\text{all primes}\}$; $Z_{(\pi)}=Z_{(p)}$ in case $\pi=\{p\}$, the

set consisting of a single prime p. We write $A_{(\pi)} = A \otimes \mathbb{Z}_{(\pi)}$ for any abelian group A. Let $G \ge L$, a subgroup. The assignment " $S \mapsto |S^L|$ " defines a semiring homomorphism $A^+(G) \to Z$ and induces the ring homomorphism

$$\phi_L \colon A(G)_{(\pi)} \longrightarrow Z_{(\pi)},$$

which is important in studying structure of $A(G)_{(\pi)}$ [8] [9] [17]. E.g., $A(G)_{(\pi)} \ni x = 0 \Leftrightarrow \phi_L(x) = 0$ for all $L \leq G$.

Primitive idempotents of $A(G)_{(\pi)}$ are discussed in [8] [9] [11] [17]. Following [17] we denote by $S^{\pi}(G)$ the minimal normal subgroup of G by which the quotient is a solvable π -group. $S^{\pi}(G)$ is the uniquely determined characteristic subgroup of G [9]. G is called to be π -perfect provided $S^{\pi}(G) = G$. When $\pi = \{$ all primes $\}$, π -perfect groups are perfect groups.

 $S^{\pi}(G)$ is always π -perfect as $S^{\pi}(S^{\pi}(G)) = S^{\pi}(G)$. Let P_{π} denote the set of all conjugacy classes of π -perfect subgroups of G. Primitive idempotents of $A(G)_{(\pi)}$ correspond bijectively with members of P_{π} [9] [17].

Let *H* be a π -perfect subgroup of *G* and e_H^{π} the primitive idempotent corresponding to the conjugacy class (*H*). Put

$$S_{\pi}(H, G) = \{L \leq G; S^{\pi}(L) = H\}$$

following [17]. e_H^{π} is characterized by

(1.1)
$$\phi_L(e_H^{\pi}) = 1 \quad \text{if} \quad L \sim S_{\pi}(H, G)$$
$$= 0 \quad \text{otherwise,}$$

where " \sim " means "conjugate to a member of" [8] [9] [17].

Recently an explicit formula for the idempotent e_H^{π} has been given by Yoshida [17]. (The formula for the case $\pi = \emptyset$ is given also by Gluck [11].) Let μ be the Möbius function on the subgroup lattice of G. For $D \leq G$ he defines

$$\lambda(D, H) = \sum_{L \in S_{\pi}(H,G)} \mu(D, L)$$

and obtains the explicit formula for e_H^{π} [17], Theorem 3.1, as follows:

(1.2)
$$e_{H}^{\pi} = (1/|N_{G}(H)|) \cdot \sum_{D \leq N_{G}(H)} |D|\lambda(D, H)[G/D]$$

Let $K \leq G$. Restricting G-actions to K on each finite G-set S, one obtains the ring homomorphism

$$\operatorname{res}_K^G \colon A(G)_{(\pi)} \longrightarrow A(K)_{(\pi)},$$

called the restriction homomorphism. Clearly

$$\phi_L(\operatorname{res}_K^G x) = \phi_L(x)$$

for $x \in A(G)_{(\pi)}$ and $L \leq K$. The assignment " $S \mapsto G \times_K S$ " for each finite K-set S induces the linear homomorphism

$$\operatorname{tr}_K^G \colon A(K)_{(\pi)} \longrightarrow A(G)_{(\pi)},$$

called the transfer homomorphism. By definition

$$\operatorname{tr}_{K}^{G}[K/L] = [G/L].$$

There holds the Frobenius formula

$$\operatorname{tr}_{K}^{G}(x \cdot \operatorname{res}_{K}^{G} y) = (\operatorname{tr}_{K}^{G} x) \cdot y$$

for $x \in A(K)_{(\pi)}$ and $y \in A(G)_{(\pi)}$. res^G_K maps idempotents to idempotents (which may be decomposable), whereas tr^G_K does not in general. Obviously res^G_G = tr^G_G = id for K = G.

Let *H* be a π -perfect subgroup of *G* and put $N = N_G(H)$, the normalizer of *H* in *G*. Let \bar{e}_H^{π} denote the primitive idempotent of $A(N)_{(\pi)}$ corresponding to $(H)_N$, the conjugacy class of *H* in *N*, which we call the *central idempotent* of $A(N)_{(\pi)}$. It is characterized by

(1.3)
$$\phi_L(\bar{e}_H^{\pi}) = 1 \quad \text{if} \quad L \in S_{\pi}(H, N)$$
$$= 0 \quad \text{otherwise},$$

since $H \lhd N$. (Compare with (1.1).) Remark that $S_{\pi}(H, G) = S_{\pi}(H, N)$ and $\lambda(D, H), D \leq N$, is the same for G and N. Since $N_G(H) = N_N(H)$, we compute by (1.2) as follows:

$$\begin{aligned} \operatorname{tr}_{N}^{G} \bar{e}_{H}^{\pi} &= (1/|N_{N}(H)|) \cdot \sum_{D \leq N_{N}(H)} |D| \lambda(D, H) \cdot \operatorname{tr}_{N}^{G} [N/D] \\ &= (1/|N_{G}(H)|) \cdot \sum_{D \leq N_{G}(H)} |D| \lambda(D, H) [G/D] \\ &= e_{H}^{\pi}, \end{aligned}$$

i.e., we obtain

(1.4) $\operatorname{tr}_N^G \bar{e}_H^{\pi} = e_H^{\pi} \,.$

 $\operatorname{res}_{H}^{G} e_{H}^{\pi}$ is an idempotent of $A(N)_{(\pi)}$ and we see easily by (1.1) that it decomposes as a sum of primitive idempotents which correspond to conjugacy classes $(H')_{N}$ in N such that $H' \sim H$ in G. Such conjugacy classes correspond bijectively to a part of the double cosets $N \setminus G/N$. Let $\{g_{1}, \ldots, g_{t}\}$ be a complete system of representatives of $N \setminus G/N$. Choose a numeration of this system so that $i \leq s \Leftrightarrow H_{i} = g_{i}Hg_{i}^{-1} \leq N$ (which does not depend on the choice of the representative g_{i}). Then $\{(H_{i})_{N}, 1 \leq i \leq s\}$ forms the complete set of the above mentioned conjugacy classes $(H')_{N}$ in N. We choose $g_{1} = 1$ always, then $H_{1} = H$.

Let \bar{e}_i^{π} denote the primitive idempotent of $A(N)_{(\pi)}$ which corresponds to $(H_i)_N$. $\bar{e}_i^{\pi} = \bar{e}_H^{\pi}$, the central idempotent of $A(N)_{(\pi)}$. And we obtain

(1.5)
$$\operatorname{res}_{N}^{G} e_{H}^{\pi} = \sum_{1 \leq i \leq s} \bar{e}_{i}^{\pi}.$$

By (1.4) and (1.5) we see that

$$\operatorname{res}_N^G \circ \operatorname{tr}_G^N \bar{e}_H^{\pi} = \sum_{1 \leq i \leq s} \bar{e}_i^{\pi}$$
.

Next we apply the Mackey decomposition to $\operatorname{res}_N^G \circ \operatorname{tr}_N^G$. Putting $N_i = N_G(H_i)$, $1 \leq i \leq t$, we obtain

(1.6)
$$\operatorname{res}_{N}^{G} \circ \operatorname{tr}_{N}^{G} = \sum_{1 \leq i \leq i} \operatorname{tr}_{N \cap N_{i}}^{N} \circ \operatorname{res}_{N \cap N_{i}}^{N_{i}} \circ c_{i}^{*},$$

where $c_i^* \colon A(N)_{(\pi)} \to A(N_i)_{(\pi)}$, the isomorphism induced by the conjugation isomorphism $N_i \simeq N$ with respect to g_i^{-1} .

We observe $\operatorname{tr}_{N \cap N_i}^N \circ \operatorname{res}_{N \cap N_i}^{N_i} \circ c_i^*(\bar{e}_H^{\pi})$ for each $i, 1 \leq i \leq t$. c_i^* maps primitive idempotents to primitive ones. By (1.3) we see that

$$\phi_L(c_i^*(\bar{e}_H^\pi)) = 1 \quad \text{if} \quad L \in S_\pi(H_i, N_i)$$
$$= 0 \quad \text{otherwise}.$$

Thus $c_i^*(\bar{e}_H^{\pi})$ is the central idempotent of $A(N_i)_{(\pi)}$. Then

$$\phi_L(\operatorname{res}_{N\cap N_i}^{N_i} \circ c_i^*(\bar{e}_H^{\pi})) = 1 \quad \text{if} \quad L \in S_{\pi}(H_i, N \cap N_i) \\ = 0 \quad \text{otherwise},$$

which shows that $\operatorname{res}_{N\cap N_i}^{N_i} \circ c_i^*(\bar{e}_H^{\pi}) = 0$ for i > s and = the central idempotent of $A(N_N(H_i))_{(\pi)}$ for $1 \le i \le s$ by (1.3) as $N \cap N_i = N_N(H_i)$. Let \bar{e}_i^{π} denote the central idempotent of $A(N_N(H_i))_{(\pi)}$. We have obtained

(1.7)
$$\operatorname{res}_{N \cap N_{i}}^{N_{i}} \circ c_{i}^{*}(\bar{e}_{H}^{\pi}) = \bar{e}_{i}^{\pi} \quad for \quad 1 \leq i \leq s$$
$$= 0 \quad for \quad s < i \leq t.$$

Apply (1.4) for the pair (N, H_i) and obtain

(1.8)
$$\operatorname{tr}_{N\cap N_{i}}^{N}(\bar{e}_{i}^{\pi}) = \bar{e}_{i}^{\pi} \quad for \quad 1 \leq i \leq s.$$

We add two remarks. Since \bar{e}_i^{π} is the primitive idempotent of $A(N \cap N_i)_{(\pi)}$ corresponding to $(H_i)_{N \cap N_i}$, we have the decomposition

$$\operatorname{res}_{N\cap N_i}^N \bar{e}_i^{\pi} = \bar{e}_i^{\pi} + \cdots$$

into primitive ones for $1 \leq i \leq s$ by (1.5). Thus

(1.9)
$$(\operatorname{res}_{N\cap N_{i}}^{N}\bar{e}_{i}^{\pi})\cdot\bar{\bar{e}}_{i}^{\pi}=\bar{\bar{e}}_{i}^{\pi}$$
 for $1\leq i\leq s$.

The second remark is that $g_1 = 1$, $H_1 = H$ and $N_1 = N$ by our choice. Thus

(1.10)
$$\operatorname{tr}_{N\cap N_{1}}^{N} = \operatorname{res}_{N\cap N_{1}}^{N_{1}} = c_{1}^{*} = \operatorname{id}.$$

§2. Idempotents and Mackey Functors

Dress [10], Section 4, defined the Burnside functor on \hat{G} . Let T be a finite G-set and \hat{G}/T the category of objects over T. The set of all isomorphism classes of \hat{G}/T forms a commutative semi-ring $A_G^+(T)$ with addition and multiplication defined by disjoint unions and pull-backs. Its Grothendieck ring is denoted by $A_G(T)$. The element of $A_G(T)$ represented by an object $f: S \to T$ of \hat{G}/T is denoted by $[f: S \to T]$. The Burnside functor $A_G = (A_{G*}, A_G^*)$ on \hat{G} is a pair of functors $A_{G*}: \hat{G} \to A\mathbf{b}$ and $A_G^*: \hat{G}^{op} \to A\mathbf{b}$ such that $A_{G*}(T) = A_G^*(T) = A_G(T)$ on each object T and, for a morphism $f: S \to T$ in $\hat{G}, A_{G*}(f) = f_*: A_G(S) \to A_G(T)$ is given by $f_*[g: U \to S] = [f \circ g: U \to T]$ and $A_G^*(f) = f^*: A_G(T) \to A_G(S)$ by $f^*[h: W \to T] = [W \times TS \to S]$.

As for the definition of a Mackey functor $M = (M_*, M^*)$ on \hat{G} we refer to [7], p. 68. The Burnside functor A_G is a Mackey functor on \hat{G} . Moreover, f^* is multiplicative (i.e., A_G^* is ring-valued) and there holds the Frobenius property among f_* , f^* and multiplication, i.e., A_G is a Green functor in the sense of [10].

There holds the canonical isomorphism

$$A_G(G/K) \simeq A(K)$$

for $K \leq G$ such that

$$p_* = \operatorname{tr}_L^K$$
 and $p^* = \operatorname{res}_L^K$

for $L \leq K \leq G$ and $p: G/L \rightarrow G/K$, the canonical projection.

Let $M = (M_*, M^*)$ be any Mackey functor on \hat{G} . We write $M_*(f) = f_*$ and $M^*(f) = f^*$ for a morphism $f: S \to T$ in \hat{G} . M(T) becomes an $A_G(T)$ -module by $[f: S \to T] \cdot x = f_* \circ f^* x, x \in M(T), [7]$ [10]. By these module actions M is an A_G -module in the sense that M^* is a module-valued functor $(f^*(xy) = (f^*x)(f^*y)$ for $f: S \to T, x \in A_G(T)$ and $y \in M(T)$) and there holds the Frobenius property among f_*, f^* and module action [10], Proposition 4.2. We write $p_* = \operatorname{tr}_L^K$, $p^* = \operatorname{res}_L^K$ for any Mackey functor $M, L \leq K \leq G$ and $p: G/L \to G/K$, the canonical projection, in conformity with the above mentioned identities for A_G .

Let π be a set of primes and M a $Z_{(\pi)}$ -module-valued Mackey functor. Put $A_{G,\pi} = A_G \otimes Z_{(\pi)}$. The above module action of A_G on M makes M an $A_{G,\pi}$ -module.

For each $K \leq G$, M(G/K) is an $A(K)_{(\pi)}$ -module. Hence primitive idempotents of $A(K)_{(\pi)}$ decomposes M(G/K) as a direct sum of submodules. In particular

$$M(pt) = \coprod_{(H) \in P_{\pi}} e_H^{\pi} M(pt)$$

We observe $e_H^{\pi}M(pt)$ as an $e_H^{\pi}A(G)_{(\pi)}$ -module.

Let *H* be a π -perfect subgroup of *G* and $N = N_G(H)$. Let \bar{e}_H^{π} be the central idempotent of $A(N)_{(\pi)}$. We want to discuss $\operatorname{res}_N^G \circ \operatorname{tr}_N^G(\bar{e}_H^{\pi}x)$ for $\bar{e}_H^{\pi}x \in \bar{e}_H^{\pi}M(G/N)$. The axiom (*M*1) for the Mackey functor [7] applied to the pull-back diagram

$$\begin{array}{ccc} G/N \times G/N \longrightarrow G/N \\ & & \downarrow \\ & & \downarrow \\ G/N \longrightarrow pt \end{array}$$

implies the Mackey decomposition

$$\operatorname{res}_{N}^{G} \circ \operatorname{tr}_{N}^{G} = \sum_{1 \leq i \leq t} \operatorname{tr}_{N \cap N_{i}}^{N} \circ \operatorname{res}_{N \cap N_{i}}^{N_{i}} \circ c_{i}^{*}$$

for M[10][12] (the same formula as (1.6)), where we used the same notations as in Section 1, i.e., $\{g_1, \ldots, g_i\}$ $(g_1 = 1)$ is a complete system of representatives of $N \setminus G/N$, $N_i = g_i N g_i^{-1}$, and $c_i^* \colon M(G/N) \simeq M(G/N_i)$, the isomorphism induced by the right multiplication with $g_i \colon G/N_i \simeq G/N$, for $1 \le i \le i$.

Put

$$\bar{x}_i = \operatorname{res}_{N \cap N_i}^{N_i} (c_i^* x) \in M(G/N \cap N_i), \ 1 \leq i \leq t.$$

As res $N_{N\cap N_i}$ and c_i^* preserve module actions we see that

$$\operatorname{res}_{N \cap N_i}^{N_i} \circ c_i^* (\bar{e}_H^\pi x) = \bar{e}_i^\pi \bar{x}_i \quad \text{for} \quad 1 \leq i \leq s ,$$
$$= 0 \quad \text{for} \quad s < i \leq t$$

by (1.7). Next we put

$$x_i = \operatorname{tr}_{N \cap N_i}^N \left(\bar{e}_i^\pi \bar{x}_i \right) \in M(G/N), \qquad 1 \leq i \leq s \,.$$

Then

$$\operatorname{tr}_{N\cap N_{i}}^{N}(\bar{e}_{i}^{\pi}\bar{x}_{i}) = \operatorname{tr}_{N\cap N_{i}}^{N}((\operatorname{res}_{N\cap N_{i}}^{N}\bar{e}_{i}^{\pi})\bar{e}_{i}^{\pi}\bar{x}_{i}) = \bar{e}_{i}^{\pi}x_{i}, \qquad 1 \leq i \leq s$$

by (1.9). For i=1, the remark (1.10) is applicable also for M and we see that

$$\bar{e}_1^\pi x_1 = \bar{e}_H^\pi x \,,$$

the given element. Thus we obtain

Proposition 2.1. Using the notations of Section 1 we have the direct sum decomposition

$$(\operatorname{res}_N^G e_H^{\pi})M(G/N) = \coprod_{1 \le i \le s} \bar{e}_i^{\pi}M(G/N)$$

and, for any $\bar{e}^{\pi}_{H} x \in \bar{e}^{\pi}_{H}M(G/N)$, we have the decomposition

$$\operatorname{res}_{N}^{G} \circ \operatorname{tr}_{N}^{G} \left(\bar{e}_{H}^{\pi} x \right) = \sum_{1 \leq i \leq s} \bar{e}_{i}^{\pi} x_{i}$$

such that

$$\bar{e}_i^{\pi} x_i = \operatorname{tr}_{N \cap N_i}^N \circ \operatorname{res}_{N \cap N_i}^{N_i} \circ c_i^* (\bar{e}_H^{\pi} x)$$

and

 $\bar{e}_1^{\pi} x_1 = \bar{e}_H^{\pi} x$, the given element.

Put

(2.2)
$$\operatorname{tr}_{N}^{\prime G} = \operatorname{tr}_{N}^{G} | \bar{e}_{H}^{\pi} M(G/N) \colon \bar{e}_{H}^{\pi} M(G/N) \longrightarrow e_{H}^{\pi} M(pt)$$

Suppose $\bar{e}_{H}^{\pi}x \in \text{Ker tr}'_{N}^{G}$. Then $\operatorname{res}_{N}^{G} \circ \operatorname{tr}_{N}^{G}(\bar{e}_{H}^{\pi}x) = \sum_{1 \leq i \leq s} \bar{e}_{i}^{\pi}x_{i} = 0$. Hence $\bar{e}_{i}^{\pi}x_{i} = 0$ for all $i, 1 \leq i \leq s$. In particular $\bar{e}_{H}^{\pi}x = \bar{e}_{1}^{\pi}x_{1} = 0$. Thus we obtain

(2.3)
$$\operatorname{tr}'_{N}^{G}: \bar{e}_{H}^{\pi}M(G/N) \longrightarrow e_{H}^{\pi}M(pt)$$
 is monomorphic.

Let

(2.4)
$$\operatorname{res}'_{N}^{G} \colon e_{H}^{\pi}M(pt) \longrightarrow \bar{e}_{H}^{\pi}M(G/N)$$

be the $e_H^{\pi}A(G)_{(\pi)}$ -module map defined by

 $\operatorname{res}'_N^G(x) = \bar{e}_H^{\pi} \cdot \operatorname{res}_N^G x, \ x \in e_H^{\pi} M(pt).$

By Frobenius property and (1.4) we see that

 $\operatorname{tr}'_{N}^{G} \circ \operatorname{res}'_{N}^{G}(x) = \operatorname{tr}_{N}^{G}(\bar{e}_{H}^{\pi} \cdot \operatorname{res}_{N}^{G}x) = e_{H}^{\pi}x = x$

for $x \in e_H^{\pi}M(pt)$. Thus

 $tr'_N^G \circ res'_N^G = id$,

which shows that tr'_N^G is epimorphic and hence isomorphic by (2.3). Clearly res'_N^G is the inverse to tr'_N^G and we obtain

Theorem 2.5. Let π be a set of primes, $M \ a \ Z_{(\pi)}$ -module-valued Mackey functor on G, $H \ a \ \pi$ -perfect subgroup of G and $N = N_G(H)$. Let e_H^{π} be the primitive idempotent of $A(G)_{(\pi)}$ corresponding to $(H) \in P_{\pi}$ and \bar{e}_H^{π} the central idempotent of $A(N)_{(\pi)}$. Then there holds the $e_H^{\pi}A(G)_{(\pi)}$ -module isomorphism

$$\operatorname{res}'_N^G \colon e_H^{\pi} M(pt) \cong \bar{e}_H^{\pi} M(G/N) \,.$$

§3. Stable G-Homotopy Theory

By a *G*-module V we mean a finite dimensional real or complex G-module equipped with an invariant metric for simplicity. By S^{V} and B^{V} we denote the unit sphere and unit ball of V respectively. We put $\Sigma^{V} = B^{V}/S^{V}$, which is G-homeomorphic to the one-point compactification of V.

Let X and Y be pointed G-CW complexes. We assume X to be finite. By the group of stable-G-maps from X to Y we understand

$$\tilde{\omega}_{G}^{0}(X \colon Y) = \operatorname{colim} [\Sigma^{\nu} X, \Sigma^{\nu} Y]^{G}$$

[8], Section 7, where [,]^G denotes the set of G-homotopy classes of pointed G-maps, $\Sigma^{V}X = \Sigma^{V} \wedge X$, V runs over the system of complex G-modules which is directed by G-embeddings as G-submodules, and the colimit is taken with respect to suspensions

$$\Sigma^{W}_{*}: [\Sigma^{V}X, \Sigma^{V}Y]^{G} \longrightarrow [\Sigma^{W \oplus V}X, \Sigma^{W \oplus V}Y]^{G}.$$

 $\tilde{\omega}_{G}^{0}(X:Y)$ is a well-defined abelian group.

We use complex G-modules by the following two reasons: i) the directed system of complex G-modules may be regarded as a cofinal subsystem of that of real G-modules so that we loose nothing by this restriction; ii) the group of complex automorphisms of a complex G-module V is connected so that G-maps $\Sigma^V \rightarrow \Sigma^V$ induced by complex automorphisms of V are all G-homotopic to the identity, which makes several identifications among G-homotopy sets coming from isomorphisms of G-modules unique.

Let $f: S \to T$ be a map in \hat{G} . Endowing discrete topology to S and T respectively, a G-embedding $i: S \subset T \times V$ such that V is a complex G-module and $pr_1 \circ i = f$ is called an *admissible embedding* for f. The existence of an admissible embedding is easily shown by making use of the complex permutation representation V_S of S. Let $i: S \subset T \times V$ be an admissible embedding for f. We may assume that $i(S) \subset T \times Int B^V$. Regard S and T as 0-dimensional Gmanifolds and let vi be the normal G-bundle of the embedding i. Then vi $\simeq_G S \times V$. Choose the normal disk G-bundle Dvi so that $Dvi \subset T \times B^V$. Since $Dvi \simeq_G S \times B^V$, the Thom construction gives a pointed G-map

$$\operatorname{tr} f \colon T^+ \wedge \Sigma^V \longrightarrow S^+ \wedge \Sigma^V.$$

This construction is of course a very special case of the equivariant Becker-

Gottlieb transfer [15]. (Compare also with [8], §7, in which the case of compact Lie group actions is discussed.) The following properties of tr f are easily shown by standard techniques and left to readers.

(3.1) The stable class $\{\operatorname{tr} f\} \in \tilde{\omega}_G^0(T^+: S^+)$ is uniquely determined by f.

(3.2) Let $f: S_1 \rightarrow S_2$ and $g: S_2 \rightarrow S_3$ be morphisms in G. Then

 $\{\operatorname{tr}(g \circ f)\} = \{\operatorname{tr} f\} \circ \{\operatorname{tr} g\}$

as stable G-maps.

(3.3) *Let*

$$\begin{array}{ccc} S' \xrightarrow{g'} S \\ \downarrow f' & \downarrow f \\ T' \xrightarrow{g} T \end{array}$$

be a pull-back diagram in \hat{G} . Then

$${g'^+} \circ {tr f} = {tr f} \circ {g^+}$$

as stable G-maps.

We define a bifunctor

$$\omega_{\mathbf{G}}[X\colon Y]\colon \widehat{G} \longrightarrow \mathbf{Ab}$$

as follows:

$$\omega_G[X:Y](S) = \tilde{\omega}_G^0(S^+ \wedge X:Y)$$

on objects; for a morphism $f: S \rightarrow T$ in \hat{G} we put

$$f_* = (\operatorname{tr} f \wedge 1)^* \colon \tilde{\omega}^0_G(S^+ \wedge X \colon Y) \longrightarrow \tilde{\omega}^0_G(T^+ \wedge X \colon Y)$$

which gives a covariant functor by (3.2), and

$$f^* = (f^+ \wedge 1)^* \colon \tilde{\omega}^0_G(T^+ \wedge X \colon Y) \longrightarrow \tilde{\omega}^0_G(S^+ \wedge X \colon Y)$$

which gives obviously a contravariant functor.

Proposition 3.4. $\omega_G[X:Y]$ is a Mackey functor.

Proof. (3.3) implies the axiom (M1) of [7], p. 68. As to the axiom (M2), let $S \perp T$ be a disjoint union of finite G-sets, then $(S \perp T)^+ = S^+ \vee T^+$ and

$$\widetilde{\omega}^{0}_{G}((S \perp T)^{+} \wedge X; Y) = \widetilde{\omega}^{0}_{G}((S^{+} \wedge X) \vee (T^{+} \wedge X); Y)$$
$$\simeq \widetilde{\omega}^{0}_{G}(S^{+} \wedge X; Y) \oplus \widetilde{\omega}^{0}_{G}(T^{+} \wedge X; Y).$$

Let $L \leq G$. Since the directed system of L-modules which are obtained

from G-modules by restriction of actions is a cofinal subsystem of that of arbitrary L-modules, we get the homomorphism

$$\psi_L^G = \operatorname{res}_L^G : \tilde{\omega}_G^0(X; Y) \longrightarrow \tilde{\omega}_L^0(X; Y)$$

by restricting G-actions to L-actions. On the other hand we get the isomorphism

$$\kappa: \tilde{\omega}_G^0((G/L)^+ \wedge X: Y) \simeq \tilde{\omega}_L^0(X: Y)$$

by restricting stable G-maps to $\{L\}^+ \wedge X \simeq {}_L X$, which we regard as the canonical isomorphism. Let

$$p: G/L \longrightarrow pt$$

be the unique G-map. We can easily identify

$$p^* = \operatorname{res}_L^G$$

via the canonical isomorphism κ . We define

$$\operatorname{tr}_{L}^{G} = p_{*} \circ \kappa^{-1} \colon \tilde{\omega}_{L}^{0}(X; Y) \longrightarrow \tilde{\omega}_{G}^{0}(X; Y).$$

With these setting we apply Theorem 2.5 to the Mackey functor $\omega_G[X: Y]$ and obtain

Theorem 3.5. Let X and Y be pointed G-CW complexes. Assume X to be finite. Let π be a set of primes. Using the same notations as in Theorem 2.5 there holds the $e_{\pi}^{\pi}A(G)_{(\pi)}$ -module isomorphism

$$\operatorname{res}_{N}^{\prime G} : e_{H}^{\pi} \tilde{\omega}_{G}^{0}(X \colon Y)_{(\pi)} \cong \bar{e}_{H}^{\pi} \tilde{\omega}_{N}^{0}(X \colon Y)_{(\pi)}.$$

The above theorem applies also to G-homology and G-cohomology theories. Any G-cohomology theory defined on the category of (finite) G-CW complexes satisfying suitable axioms is representable by a G-spectrum [2] [14]. So we discuss here only G-homology and G-cohomology theories defined by G-spectra [2] [13]. We use G-spectra indexed by complex (virtual) G-modules in the same reason as the definition of the group of stable G-maps. Practically we may restrict our G-spectra to those indexed by a cofinal subsystem of that of complex G-modules and will do so in the sequel.

Let $\rho = \rho_G$ be the complex regular representation of G. $\{n\rho: n \in \mathbb{Z}\}$ is one of such cofinal subsystems. We use this system particularly. A *G*-spectrum $E_G = \{E_n, \varepsilon_n: \Sigma^{\rho} E_n \rightarrow E_{n+1}; n \in \mathbb{Z}\}$ consists of a pointed *G*-CW complex E_n and a pointed *G*-map (structure map) $\varepsilon_n: \Sigma^{\rho} E_n \rightarrow E_{n+1}$ for each $n \in \mathbb{Z}$. When E_n $= \Sigma^{n\rho}$ and $\varepsilon_n = \text{id}: \Sigma^{\rho} \Sigma^{n\rho} = \Sigma^{(n+1)\rho}$ for $n \ge 0$ ($E_n = pt$ for n < 0), the *G*-spectrum is called the *G*-sphere spectrum and denoted by Σ_G .

Let $E_G = \{E_n, \varepsilon_n; n \in \mathbb{Z}\}$ be a G-spectrum and $L \leq G$. As $\operatorname{res}_L^G \rho_G = |G/L| \cdot \rho_L$, where $\rho' = \rho_L$ is the complex regular representation of L, putting

$$\begin{aligned} E'_{|G/L|n+k} &= \Sigma^{k\rho'} E_n \quad \text{for} \quad 0 \leq k < |G/L| \\ \varepsilon'_{|G/L|n+k} &= \text{id} \quad \text{for} \quad 0 \leq k < |G/L| - 1 \\ &= \varepsilon_n \quad \text{for} \quad k = |G/L| - 1 , \end{aligned}$$

we get an L-spectrum

 $\psi_L E_G = \{E'_n, \varepsilon'_n; n \in \mathbb{Z}\}$

by restricting G-actions to L-actions. Clearly

 $\psi_L \Sigma_G = \Sigma_L \, .$

The E_G -homology-cohomology group in degree 0 (homology with respect to Y and cohomology with respect to X) is defined by

$$E_G^0(X; Y) = \operatorname{colim} [\Sigma^{n\rho} X, E_n \wedge Y]^G,$$

where the colimit is taken with respect to the compositions $\varepsilon_{n*} \circ \Sigma_*^{\rho}$ as usual. $E_G^{0}(X; Y)$ is a well-defined abelian group. Obviously

$$\Sigma_G^0(X; Y) = \tilde{\omega}_G^0(X; Y).$$

Again we obtain a Mackey functor $\widehat{G} \to A\mathbf{b}$ by the assignment: $S \mapsto E_G^0(S^+ \wedge X; Y)$ and "f: $S \to T$ " $\mapsto f_* = (\operatorname{tr} f \wedge 1)^*$ and $f^* = (f^+ \wedge 1)^*$. Also we have the *restriction* homomorphism

$$\psi_L^G = \operatorname{res}_L^G \colon E_G^0(X \colon Y) \longrightarrow (\psi_L E_G)^0(X \colon Y)$$

and the transfer homomorphism

$$\operatorname{tr}_L^G : (\psi_L E_G)^0(X \colon Y) \longrightarrow E_G^0(X \colon Y)$$

together with the canonical isomorphism

$$\kappa \colon E^0_G((G/L)^+ \wedge X \colon Y) \cong (\psi_L E_G)^0(X \colon Y)$$

in the parallel way to the case of $\tilde{\omega}_G^0$.

Now apply Theorem 2.5 to the above Mackey functor and obtain

Theorem 3.6. Under the same assumptions and notations as in Theorem 3.5 there holds the $e_H^{\pi}A(G)_{(\pi)}$ -module isomorphism

 $\operatorname{res}'_{N}^{G}: e_{H}^{\pi} E_{G}^{0}(X:Y)_{(\pi)} \cong \bar{e}_{H}^{\pi}(\psi_{L} E_{G})^{0}(X:Y)_{(\pi)}$

for any G-spectrum E_G .

Let $\alpha \in RO(G)$ and express $\alpha = U - V$ as a difference of real G-modules. The E_G -homology-cohomology group in degree α is defined by

$$E^{\alpha}_{G}(X; Y) = E^{0}_{G}(\Sigma^{V}X; \Sigma^{U}Y).$$

Let $\alpha = U' - V'$ be another expression. We can certainly find an additive isomorphism

$$E^{0}_{G}(\Sigma^{V}X:\Sigma^{U}Y)\simeq E^{0}_{G}(\Sigma^{V'}X:\Sigma^{U'}Y),$$

but it is no more canonical and there are many choices of this isomorphism. So, as far as we are interested in additive structures we may use the RO(G)grading; but, when we are interested in mulitplicative structure based on ring-G-spectra, we will meet with serious troubles in RO(G)-grading as to commutativity etc., and we need some other device which will be discussed in another occasion.

Anyway we get the restriction homomorphism

$$\psi_L^G = \operatorname{res}_L^G \colon E_G^{\alpha}(X; Y) \longrightarrow (\psi_L E_G)^{\psi_L^{\alpha}}(X; Y)$$

and the transfer homomorphism

$$\operatorname{tr}_{L}^{G}: (\psi_{L} E_{G})^{\psi_{L} \alpha}(X; Y) \longrightarrow E_{G}^{\alpha}(X; Y)$$

in degree $\alpha \in RO(G)$, where $\psi_L \alpha = \operatorname{res}_L^G U - \operatorname{res}_L^G V \in RO(L)$ for $\alpha = U - V \in RO(G)$.

By the above definition we see that we may apply Theorem 3.6 to E_G^{α} and obtain the $e_H^{\pi}A(G)_{(\pi)}$ -module isomorphism

(3.7)
$$\operatorname{res}'_{N}^{G}: e_{H}^{\pi} E_{G}^{\alpha}(X; Y)_{(\pi)} \cong \bar{e}_{H}^{\pi}(\psi_{L} E_{G})^{\psi_{L}\alpha}(X; Y)_{(\pi)}.$$

§4. Fixed-Point Exact Sequences

Let $G \succ K$, a normal subgroup; then $(\rho_G)^K = \rho_{G/K}$, the complex regular representation of G/K. Let $E_G = \{E_n, \varepsilon_n; n \in \mathbb{Z}\}$ be a G-spectrum. Putting

$$\begin{split} E_n'' &= E_n^K, \\ \varepsilon_n'' &= \varepsilon_n^K \colon \Sigma^{\rho''} E_n'' \longrightarrow E_{n+1}'', \quad \rho'' &= \rho_{G/K}, \end{split}$$

for $n \in \mathbb{Z}$, we get a G/K-spectrum

$$\phi_K E_G = \{ E_n'', \varepsilon_n''; n \in \mathbb{Z} \}$$

which is called the K-fixed-point spectrum of E_G . Clearly

$$\phi_K \Sigma_G = \Sigma_{G/K}.$$

By restriction to K-fixed-points we get a homomorphism

$$\phi_{K}^{G} \colon E_{G}^{\alpha}(X;Y) \longrightarrow (\phi_{K}E_{G})^{\phi_{K}\alpha}(X^{K};Y^{K})$$

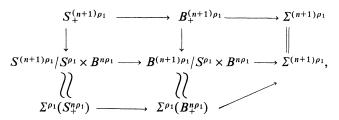
called the *K*-fixed-point homomorphism, where $\phi_K \alpha = U^K - V^K \in RO(G)$ for $\alpha = U - V \in RO(G)$.

We construct an exact sequence involving ϕ_K^G which generalizes the fixedpoint exact sequence for $G = \mathbb{Z}/2$, [3], Section 1.

Decompose

$$\rho_G = \rho_1 \oplus \rho_2, \ \rho_2 = \rho_G^K \simeq \rho_{G/K} \qquad \text{and} \quad \rho_1^K = \{0\}$$

For each integer n > 0 we get a G-homotopy commutative diagram of pointed G-cofibrations



where we identify $B^{(n+1)\rho_1} = B^{\rho_1} \times B^{n\rho_1}$, $S^{(n+1)\rho_1} = \partial(B^{\rho_1} \times B^{n\rho_1}) = S^{\rho_1} \times B^{n\rho_1} \cup B^{\rho_1} \times S^{n\rho_1}$, which implies the following commutative diagram with two horizontal exact sequences:

for each $\alpha \in RO(G)$ by fixing the same expression $\alpha = U - V$, where the homomorphism χ is induced by the inclusion $\chi = \chi_{\rho_1}$: $\Sigma^0 \subset \Sigma^{\rho_1}$ and ξ_n is induced by the collapsing map $S^{(n+1)\rho_1}_+ \rightarrow \Sigma^{\rho_1}(S^{n\rho_1}_+)$. (Compare with the commutative diagram of [3], p. 5.) Take the colimit in vertical direction of this diagram and obtain an exact sequence which is an S-dual version of the localization exact sequence of tom Dieck [5] under a specified situation. We identify this exact sequence with our desired exact sequence.

Define

(4.2)
$$(\lambda_K E_G)^{\alpha}(X:Y) = \operatorname{colim}_n \left[E_G^{\alpha+n\rho_1-1}(S_+^{n\rho_1} \wedge X:Y), \xi_n \right],$$

and we prove the isomorphism

(4.3)
$$\operatorname{colim}_{n} \left[E_{G}^{\alpha+n\rho_{1}}(X \colon Y), \chi \right] \cong (\phi_{K} E_{G})^{\phi_{K}\alpha}(X^{K} \colon Y^{K}).$$

First we prove

Lemma 4.4. colim $[E_G^{n\rho_1}(X/X^K: Y), \chi] = 0.$

Proof. Take $x = \{f\} \in \operatorname{colim} [E_G^{n\rho_1}(X/X^K; Y), \chi]$. x is represented by a G-map $f: \Sigma^{m\rho}(X/X^K) \to \Sigma^{n\rho_1} E_m \wedge Y$. We want to show that replacing f by another representative g of x, $g^L \simeq 0$ for all $L \leq G$; then $g \simeq_G 0$ by [4], Chapter II, Lemma 5.2, and hence x=0. Suppose $L \geq K$, then $pt = (X/X^K)^K \supset (X/X^K)^L$; thus $(X/X^K)^L = pt, (\Sigma^{m\rho}(X/X^K))^L = pt$ and $f^L = 0$. Next, suppose $L \geq K$. Since ρ_G is the complex regular representation of G, there exists a non-zero $v \in \rho_G$ such that $G_v = L$. Let $v = (v_1, v_2) \in \rho_1 \oplus \rho_2 = \rho_G$, then $v_1 \neq 0$ and $\rho_1^L \neq \{0\}$. Thus $(\Sigma^{k\rho_1})^L$ is a sphere of dimension $\geq 2k$ for any integer k > 0. In the present colimit f and $(\chi^k \wedge 1) \circ f: \Sigma^{m\rho}(X/X^K) \to \Sigma^{(k+n)\rho_1} E_m \wedge Y$ represent the same element x for any integer k > 0. Since X is finite by our assumption, we may choose k large enough so that $\dim \Sigma^m (X/X^K) < 2(k+n) - 1$. Now, put $g = (\chi^k \wedge 1) \circ f;$ $\dim (\Sigma^{m\rho}(X/X^K))^L < 2(k+n) - 1$ and $(\Sigma^{(k+n)\rho_1} E_m \wedge Y)^L$ is at least (2(k+n)-1)connected for any $L \geq K$; thus $g^L \simeq 0$ for all $L \leq G$ and $g \simeq_G 0$.

Proof of (4.3). We prove the case $\alpha = 0$. General case follows from this special case by replacing X by $\Sigma^{V}X$ and Y by $\Sigma^{U}Y$ for $\alpha = U - V \in RO(G)$.

Consider the exact sequences associated with the G-cofibration $X^K \rightarrow X$ $\rightarrow X/X^K$ and take the colimit of these sequences with respect to χ . We get an exact sequence

$$\operatorname{colim}_{n} \left[E_{G}^{n\rho_{1}}(X/X^{K} \colon Y), \chi \right] \longrightarrow \operatorname{colim}_{n} \left[E_{G}^{n\rho_{1}}(X \colon Y), \chi \right]$$
$$\longrightarrow \operatorname{colim}_{n} \left[E_{G}^{n\rho_{1}}(X^{K} \colon Y), \chi \right] \longrightarrow \operatorname{colim}_{n} \left[E_{G}^{n\rho_{1}+1}(X/X^{K} \colon Y), \chi \right].$$

By the above lemma colim $[E_G^{n\rho_1}(X/X^K: Y), \chi] = 0$ and also colim $[E_G^{n\rho_1+1}(X/X^K: Y), \chi] = 0$ replacing Y by ΣY . Thus we get the isomorphism

(#)
$$\operatorname{colim}_{n} \left[E_{G}^{n\rho_{1}}(X \colon Y), \chi \right] \cong \operatorname{colim}_{n} \left[E_{G}^{n\rho_{1}}(X^{K} \colon Y), \chi \right].$$

Consider the following sequence

$$[\Sigma^{m\rho}X^{K},\Sigma^{n\rho_{1}}E_{m}\wedge Y]^{G} \xrightarrow{\Sigma_{*}^{n\rho_{2}}} [\Sigma^{m\rho+n\rho_{2}}X^{K},\Sigma^{n\rho}E_{m}\wedge Y]^{G}$$
$$\xrightarrow{\varepsilon_{*}^{n}} [\Sigma^{m\rho+n\rho_{2}}X^{K},E_{n+m}\wedge Y]^{G} \xrightarrow{\Sigma_{*}^{n\rho_{1}}} [\Sigma^{(n+m)\rho}X^{K},\Sigma^{n\rho_{1}}E_{m+n}\wedge Y]^{G}$$

and observe that the composition = $(\varepsilon_* \circ \Sigma_*^{\rho})^n$, which proves the isomorphism

$$E_G^{n\rho_1}(X^K\colon Y) \cong \operatorname{colim}_m \left[\left[\Sigma^{m\rho+n\rho_2} X^K, E_{n+m} \wedge Y \right]^G, \, \varepsilon_* \circ \Sigma_*^\rho \right].$$

And we get the isomorphism

(##)
$$\operatorname{colim}_{n} E_{G}^{n\rho_{1}}(X^{K}; Y) \cong \operatorname{colim}_{n,m} [\Sigma^{m\rho+n\rho_{2}} X^{K}, E_{n+m} \wedge Y]^{G}.$$

Observe the commutative diagram:

which shows that the homomorphism χ may be used as $\chi = (\chi \wedge 1)^*$ as well as $\chi = (\chi \wedge 1)_*$. In the right hand side of the isomorphism (##) we may understand $\chi = (\chi \wedge 1)_*$. Then we see that the directed system of this double colimit contains the sequence $\{[\Sigma^{n\rho_2} \wedge X^K, E_n \wedge Y]^G, \chi \circ \varepsilon_* \circ \Sigma_*^\rho\}$ as a cofinal subsequence. Thus

$$\operatorname{colim}_{n} E_{G}^{n\rho_{1}}(X^{K} \colon Y) \cong \operatorname{colim}_{n} \left[\left[\Sigma^{n\rho_{2}} X^{K}, E_{n} \wedge Y \right]^{G}, \chi \circ \varepsilon_{*} \Sigma_{*}^{\rho} \right]$$

Now, K acts trivially on $\Sigma^{n\rho_2} X^K$. Hence

$$[\Sigma^{n\rho_2}X^K, E_n \wedge Y]^G = [\Sigma^{n\rho_2}X^K, E_n^K \wedge Y^K]^G = [\Sigma^{n\rho_2}X^K, E_n^K \wedge Y^K]^{G/K},$$

and we get the isomorphism

$$\operatorname{colim}_{n} E_{G}^{n\rho_{1}}(X^{K}:Y) \cong (\phi_{K}E_{G})^{0}(X^{K}:Y^{K}),$$

which, together with (#), completes the proof of (4.3).

In the exact sequence obtained by taking the colimit of (4.1) in the vertical direction, identify one term with $(\phi_K E_G)^{\phi_K \alpha}(X^K \colon Y^K)$ by (4.3). It is easy to identify colim χ^n with the fixed-point homomorphism ϕ_K^G , and we obtain the desired exact sequence

$$(4.5) \qquad \cdots \longrightarrow (\lambda_{K} E_{G})^{\alpha} (X; Y) \longrightarrow E_{G}^{\alpha} (X; Y) \xrightarrow{\phi_{K}^{G}} (\phi_{K} E_{G})^{\phi_{K}^{\alpha}} (X^{K}; Y^{K}) \\ \longrightarrow (\lambda_{K} E_{G})^{\alpha+1} (X; Y) \longrightarrow \cdots$$

for $\alpha \in RO(G)$, which we call the K-fixed-point exact sequence.

Let π be a set of primes and H a π -perfect subgroup of G. Denote $N = N_G(H), W = N_G(H)/H, E_N = \psi_N E_G, E_W = \phi_H E_N, \alpha' = \psi_N \alpha$ and $\alpha'' = \phi_H \alpha'$ for $\alpha \in RO(G)$. Consider the following H-fixed-point exact sequence (tensored with $\mathbb{Z}_{(\pi)}$):

$$\cdots \longrightarrow (\lambda_H E_N)^{\alpha'} (X; Y)_{(\pi)} \longrightarrow E_N^{\alpha'} (X; Y)_{(\pi)} \xrightarrow{\phi_H^N} E_W^{\alpha''} (X^H; Y^H)_{(\pi)} \longrightarrow \cdots$$

Since actions of A(N) on $E_N^{x'}(X:Y)$ are natural with respect to X and Y, the central idempotent \bar{e}_H^{π} of $A(N)_{(\pi)}$ acts on this sequence as an idempotent. Remark that \bar{e}_H^{π} acts on $E_W^{x''}(X^H:Y^H)_{(\pi)}$ through the homomorphism

$$\phi_H^N \colon A(N)_{(\pi)} \longrightarrow A(W)_{(\pi)}$$

defined by $\phi_H^N[S] = [S^H]$ for finite N-sets S. By (1.3) we see easily that

$$\phi_H^N \bar{e}_H^\pi = \tilde{e}_{\langle 1 \rangle}^\pi,$$

the primitive idempotent of $A(W)_{(\pi)}$ corresponding to the trivial π -perfect subgroup {1} of W. Thus we get the following exact sequence

$$\cdots \longrightarrow \bar{e}_{H}^{\pi} (\lambda_{H} E_{N})^{\alpha'} (X; Y)_{(\pi)}$$
$$\longrightarrow \bar{e}_{H}^{\pi} E_{N}^{\alpha'} (X; Y)_{(\pi)} \xrightarrow{\phi_{H}^{N}} \tilde{e}_{\langle 1 \rangle}^{\pi} E_{W}^{\alpha''} (X^{H}; Y^{H})_{(\pi)} \longrightarrow \cdots$$

We will prove

Proposition 4.6. $\bar{e}_{H}^{\pi}(\lambda_{H}E_{N})^{\alpha'}(X:Y)=0$. As a corollary of this proposition we obtain

Theorem 4.7. Under the same setting as in Theorem 3.5 there holds the $\bar{e}_{H}^{\pi}A(N)_{(\pi)}$ -module isomorphism

$$\phi_H^N \colon \bar{e}_H^\pi E_N^{\alpha'}(X; Y)_{(\pi)} \cong \tilde{e}_{\langle 1 \rangle}^\pi E_W^{\phi_H \alpha'}(X^H; Y^H)_{(\pi)},$$

where $W = N_G(H)/H$, E_N is an N-spectrum, $E_W = \phi_H E_N$, $\alpha' \in RO(N)$ and $\tilde{e}_{\langle 1 \rangle}$ is the primitive idempotent of $A(W)_{(\pi)}$ corresponding to the trivial π -perfect subgroup $\{1\}$ of W.

Proof of Proposition 4.6. Again it is sufficient to prove the special case $\alpha'=0$. Decompose $\rho_N = \rho_1 \oplus \rho_2$, $\rho_2 = \rho_N^H \cong \rho_W$, $\rho_1^H = \{0\}$. By (4.2)

$$\bar{e}_{H}^{\pi}(\lambda_{H}E_{N})^{0}(X;Y)_{(\pi)} = \operatorname{colim} \bar{e}_{H}^{\pi}E_{N}^{n\rho_{1}-1}(S_{+}^{n\rho_{1}}\wedge X;Y)_{(\pi)}.$$

Therefore it is sufficient to prove

$$\bar{e}_H^{\pi} E_N^0 (S_+^{n\rho_1} \wedge \Sigma X; \Sigma^{n\rho_1} Y)_{(\pi)} = 0.$$

Since $\rho_1^H = \{0\}$, we see that $(S^{n\rho_1})^H = \emptyset$. $S^{n\rho_1}$ is an N-CW complex. Let $\sigma^k \times N/L$ be an N-cell of $S^{n\rho_1}$. Then $(\sigma^k \times N/L)^H = \sigma^k \times (N/L)^H = \emptyset$, whence $H \not\leq L$. The standard argument by induction on N-cell of $S_+^{n\rho_1}$ reduces the problem to show that

$$\bar{e}_{H}^{\pi} E_{N}^{0}(((\sigma^{k} \times N/L)/(\partial \sigma^{k} \times N/L)) \wedge \Sigma X \colon \Sigma^{n\rho_{1}} Y)_{(\pi)} = 0,$$

The left hand side

$$= \bar{e}_{H}^{\pi} E_{N}^{0} ((N/L)^{+} \wedge \Sigma^{k+1} X: \Sigma^{n\rho_{1}} Y)_{(\pi)}$$
$$\cong (\operatorname{res}_{L}^{N} \bar{e}_{H}^{\pi}) \cdot (\psi_{L} E_{N})^{0} (\Sigma^{k+1} X: \Sigma^{n\rho_{1}} Y)_{(\pi)}$$

and

$$\operatorname{res}_{L}^{N} \bar{e}_{H}^{\pi} = 0$$

by (1.3) as $H \not\leq L$, which completes the proof.

Apply (3.7) and Theorem 4.7 to the G-sphere spectrum. We get the isomorphisms

$$(4.8) \qquad e_H^{\pi} \tilde{\omega}_G^{\alpha}(X; Y)_{(\pi)} \cong \bar{e}_H^{\pi} \tilde{\omega}_N^{\alpha'}(X; Y)_{(\pi)} \cong \tilde{e}_{\langle 1 \rangle}^{\pi} \tilde{\omega}_W^{\alpha''}(X^H; Y^H)_{(\pi)}$$

for each $(H) \in P_{\pi}$, where $\alpha \in RO(G)$, $\alpha' = \psi_N \alpha$ and $\alpha'' = \phi_H \alpha'$. Specialize $\pi = \{ all primes \}$, then we get Theorem A (Introduction).

Put

$$\omega_G^{\alpha}(pt) = \tilde{\omega}_G^{\alpha}(\Sigma^0:\Sigma^0).$$

Segal [16] showed the isomorphism

 $\omega_G^0(pt) \cong A(G).$

Then, by (4.8) we obtain

Corollary 4.9. There hold the ring isomorphisms

$$e_H^{\pi}A(G)_{(\pi)} \cong \bar{e}_H^{\pi}A(N)_{(\pi)} \cong \tilde{e}_{1}^{\pi}A(W)_{(\pi)}.$$

Specialize Corollary 4.9 to $\pi = \{all \text{ primes}\}, then we get Corollary B (Introduction).$

Finally we may apply the classifying spaces of families of subgroups due to tom Dieck [6], Let $F_{\pi-\text{solv}}$ denote the family of all solvable π -subgroups of W and $EF_{\pi-\text{solv}}$ its classifying space. There holds the isomorphism

(4.10)
$$\tilde{e}_{\langle 1\rangle}^{\pi}\tilde{\omega}_{W}^{\alpha''}(X^{H}\colon Y^{H})_{(\pi)}\cong\tilde{\omega}_{W}^{\alpha''}(X^{H}\colon Y^{II}\wedge EF^{+}_{\pi-\operatorname{solv}})_{(\pi)}$$

by arguments of [6] [7].

Let H_0 , H_1 ,..., H_k ($H_0 = \{1\}$) be a complete system of representatives of P_{π} . Then, from the direct sum decomposition

$$\tilde{\omega}_{G}^{\alpha}(X:Y)_{(\pi)} = \coprod_{0 \leq i \leq k} e_{H_{i}}^{\pi} \tilde{\omega}_{G}^{\alpha}(X:Y)_{(\pi)}$$

and (4.8) we get the direct sum decomposition

 $(4.11) \qquad \tilde{\omega}_{G}^{\alpha}(X;Y)_{(\pi)} = e_{\langle 1 \rangle}^{\pi} \tilde{\omega}_{G}^{\alpha}(X;Y)_{(\pi)} \oplus \coprod_{1 \leq i \leq k} \tilde{e}_{\langle 1 \rangle}^{\pi} \tilde{\omega}_{W_{i}}^{\alpha}(X^{H_{i}};Y^{H_{i}})_{(\pi)}$

1210

where $N_i = N_G(H_i)$, $W_i = N_i/H_i$ and $\alpha_i = \phi_{H_i}(\psi_{N_i}\alpha))$ for $1 \le i \le k$.

Example 1. $G=S_5$, $\pi=\{\text{all primes}\}$. Conjugacy classes of perfect subgroups are (\mathcal{A}_5) and $(\{1\})$, and we obtain the direct sum decomposition

$$\tilde{\omega}_{G}^{\alpha}(X:Y) = e_{\langle 1 \rangle} \tilde{\omega}_{G}^{\alpha}(X:Y) + \tilde{\omega}_{Z/2}^{\alpha''}(X^{A_5}:Y^{A_5}),$$

where $\alpha'' = \phi_{A_5} \alpha$.

Example 2. $G=S_6$, $\pi=\{\text{all primes}\}$. There are 4 conjugacy classes of perfect subgroups: (H_1) , (H_2) , (H_3) and (H_4) , where $H_1=A_6$, $H_2=A_5$, H_3 $\cong A_5$ and $H_4=\{1\}$. H_2 and H_3 are isomorphic but not conjugate. There is an outer automorphism a of S_6 such that $a(H_2)=H_3$. Thus: $N_G(H_1)=S_6$, $N_G(H_2)=S_5$ and $N_G(H_3)\cong S_5$. We obtain the direct sum decomposition

$$\tilde{\omega}_{G}^{\alpha}(X:Y) = e_{\langle 1 \rangle} \tilde{\omega}_{G}^{\alpha}(X:Y) \oplus \coprod_{1 \leq i \leq 3} \tilde{\omega}_{Z/2}^{\alpha}(X^{H_{i}}:Y^{H_{i}}),$$

where $\alpha_i = \phi_{H_i}(\psi_{N_i}\alpha)$ for $1 \leq i \leq 3$.

References

- [1] Araki, S. and Murayama, M., τ -cohomology theories, Japan. J. Math., 4 (1978), 363–416.
- [2] ——, G-homotopy types of G-complexes and representations of G-cohomology theories, Publ. RIMS, Kyoto Univ., 14 (1978), 203-222.
- [3] Araki, S. and Iriye, K., Equivariant stable homotopy groups of spheres with involutions I, Osaka J. Math., 19 (1982), 1-55.
- [4] Bredon, G. E., Equivariant cohomology theories, *Lecture Notes in Math.*, 34, SpringerVerlag, 1967.
- [5] tom Dieck, T., Lokalisierung äquivarianter Homologie-Theorien, Math. Z., 121 (1971), 253–262.
- [6] —, Orbittypen und äquivariante Homologie, I, Arch. Math., 23 (1972), 307–317; II, Arch. Math., 26 (1975), 650–662.
- [7] —, Equivariant homology and Mackey functors, Math. Ann., 206 (1973), 67–78.
- [8] —, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer-Verlag, 1979.
- [9] Dress, A., A characterization of solvable groups, Math. Z., 110 (1969), 213-217.
- [10] ——, Contributions to the theory of induced representations, Lecture Notes in Math., 342, Algebraic K-theory II, 183–240, Springer-Verlag, 1973.
- [11] Gluck, D., Idempotents formula for the Burnside algebra with applications to the psubgroup simplicial complex, *Ill. J. Math.*, 25 (1981), 63-67.
- [12] Green, J. A., Axiomatic representation theory for finite groups, J. Pure Appl. Algebra, 1 (1971), 41–77.
- [13] Kosniowski, C., Equivariant cohomology and stable cohomotopy, Math. Ann., 210 (1974), 83–104.

- [14] Matsumoto, T., Equivariant cohomology theories on G-CW complexes, Osaka J. Math., 10 (1973), 51-68.
- [15] Nishida, G., The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ., 18 (1978), 435–451.
- [16] Segal, G., Equivariant stable homotopy theory, *Actes Congrès Intern. Math.*, 2 (1970), 59-63.
- [17] Yoshida, T., Idempotents of Burnside rings and Dress induction theorem, to appear in J. Algebra.