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The Mod-5 Splitting of the Compact
Exceptional Lie Group FEs

By

Daciberg Lima GONCALVES*

Introduction

J.H. Harper [1] proved that Es, localized at the prime 5, has the same homotopy
type of K(5)X B(15, 23, 39, 47)X B15(5) where H*(B(15,23,39,47); Z;)=A(x15, %ss,
X39, X47). See [2] resp. [4] for more details about K(5) resp. Bis(5). One would
like to know whether B(15, 23, 39, 47) is irreducible or of the same homotopy
type of B;(5)X By(5). The purpose of this paper is to show that R(xgs)=xs
where R is the secondary operation defined by the relation ((1/2)8P*—PB)(P?)
+P%B)=0 and x5, x5y H*(Eq, Z;). This certainly implies that B(15, 23, 39, 47)
is indecomposable. Using this fact one can compute the 5-component of mgs(Es)
which turns out to be zero.

In 1970, H. Toda [4] announced that the following cases of mod-p decom-
positions of exceptional Lie groups were unknown:

F4; E’b Es m0d3
F; mod 5

Since then, the case F,mod3 was solved in [3], and the cases E,;, E;mod3
were done in [6]. The result of this paper will answer the last question about
the mod-p decomposition of a simply connected simple compact exceptional Lie
group. This paper is organized as follows: In Part I we prove a result about
the cohomology of the classifying space of certain loop spaces; in Part II we
compute the Hopf Algebra structure of a certain cover of E;; in Part III we
prove the main result.

Part I

The following result, I believe, is known, but I don’t have a reference in
the form I need. Let X be a loop space and p an odd prime. Suppose H*(X, Z,)
=Z [ %1, x5, IR A(y1, ¥, -++) where dim x; are even, dim y; odd and x,’s, and
y;’s are universally transgressive. Call BX the classifying space of X.
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Theorem 1.1. H*(BX, Z,) is isomorphic as an algebra to Az, z1,2, -,
Zi, 55 %4, j+1s "')®Zp[7)1; iy Uiy vty Miey Ui,y oy Mi Ry Hi R+ -] where i=1, 2, -+,
=12, k=23, -, ‘L'(xfj):Zi,j, o(¥:)=v: and dpicp-» dim zi+1(Zi.j®xfj(p'1’)=
Ui i1 (T s the transgression and d, is the r-th differential in the Serre spectral
sequence associated with the path-loop fibration over BX).

Sketch of the proof. Let A be the algebra which is a candidate for
H*(BX, Z,). By [10] chapter 9 we have that H*( X, Z,)QA is an acyclic con-
struction where the differentials are defined as stated in the theorem. Now we
define a map f: A—H*(BX, Z,). Since A is a free algebra, it suffices to define
f on each generator. Let f(zi,,-)———r(xfj), fs)=7(y;) and

f(zvi, j+1)=d picp-» dim z,;+1(zi,j®xzpj(p_l)) .
By the hypothesis and Kudo’s transgression theorem (see [7]) the above equalities
make sense. So we have a map between the algebraic spectral sequence
H* X, Z,)®A and the Serre’s spectral sequence associated with the path-loop
fibration. The fact that the differentials commute with the map is clear from
the definition. So by Zeeman’s comparison theorem (see [12]) it follows that
A=H*BX, Z,).

Remarks. 1) This result has been applied when X is the 3-connective
cover of some exceptional Lie group, and of course when X is K(Z,, n).

2) By Kudo’s transgression theorem and the fact that - commutes with the
Steenrod operations, we get:

Bzi =t 501 and PPz )=z; ju;.
3) If we consider the Eilenberg-Moore spectral sequence (see [9]):
Ey=EXTaecx.zp(Zy, Zp)== HXBX, Z,)
an easy calculation tells us that E,~H*(BX, Z,). So the EilenbergMoore
spectral sequence collapses.
Part II
Let Es be the 3-connective cover of E,
E,
|
E, K(Z, 3)

where f¥(i;)=x, and H*(E,, Zz):/l(xs, 1) Z 5[ %121/ (%10))QA(X 15, X3, X2z, X35,
X390, X47). The cohomology of E, as an J(5)-algebra is known (see [5]). Namely

H*(Es; Zs):Zstyso]@)A(fm X3, a1, Xssy Xaoy Xar, Ys1, Vso)
where Z;=p¥(x:), Byso=Ys1 P'¥s1=yss P '%:=2ZXsss 1=15,27,39. I don’t know
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the Hopf Algebra structure of H*(EB, Zy).
Now let’s consider the following fibration

K(Z, 14)XK(Z, 26) — X

l

By K(Z, 155 K(Z, 27)
where f%(i1s)= X1/ 5(20)= X or.

Since E; is a loop space and x; is a loop class, it follows that Es is a loop
space. By dimensional reasons Z;, %, are also loop classes. So X is also a loop
space. We conclude that the tower (1) of fibration below is in fact the loop of
the tower (2) below.

K(Z, 14)xK(Z, 2%6) > X  K(Z,15)XK(Z,2T) —> BX

| [

Es—> K(Z,15XK(Z,2T)  BE, > K(Z,16)X K(Z, 28)

i P1 l hy
B, Kz, 3) BE, > K(Z, 4).
@ )
Our purpose now is to describe H*(X, Z;) as a Hopf Algebra.
Let I=(ey, 71, =, n, i) be an admissible sequence. See [11] for more

details. Call ¢;, 0, H*(X, Z;) the classes such that j*(¢;)=P%i, ;%0 1)=PTis,
where P! means f°1Pig%2P% ... faPin,

Theorem 2.1. a) H*(X, Z;) is the free algebra in the following generators:
¢ where I runs over the admissible sequences of excess less than 14 with i,>1
or in=e,=1; 0; where | runs over the admissible sequences of excess less than
26 with 7n>0 or ]'n’_—sn:]-; ¢(o.7): ¢<0,11,o,1), 0 0.1, co.17.0.12, Z15Q8(10)*, 2@
(P, %20Q(i26)t, E55Q(P26)*, Fs0, Vo1, Fso, Xsey Xag where p¥(y)=3; and p¥(x;)
=X

b) We have ‘B(¢(0.7)>:x15®(i26)4; ,8(0(0,17.0,1)):x35®(P1i26) and the set {¥s,
%39, Prvs ¢(o.z), ¢(0,5)y ¢(o,5,0.1); 0., 0.2, 0.5, o500 15 a set of A(5)-genera-
tors for H¥(X, Z5).

c¢) H*X, Zs) is primitively generated.

Proof. Part a) is a routine application of the Serre’s spectral sequence and
Kudo’s transgression theorem.
b) Let’s consider the fibrations

X———>l7f8

|

K(Z, 15)XK(Z, 27) .
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Observe that ¢, is transgressive and (¢, »)=P"i. S0 Béw.» is also
transgressive and z(B¢e.n)=FP":s. This implies e, »#0. On the other hand
]‘*(ﬁgﬁ(o,’,)):‘@P"iM:O. So ,B¢(0,7)Eker]'*- But ¢(0,7):P2¢(0.5)- Since Do 5 is
primitive by dimensional reasons, it follows that B¢, is also primitive. But
the only non trivial-element of H™(X, Z;), which may be primitive and belongs
to Ker j*, is %,;Q@1,)%. The other cases are similar. Finally the fact that the
set {¥so, X0, b1, D.2s P55 Peo.s0.1 Ou,v, 0w, Ows, Oosont is a set of
A(5)-generators, follows from the description of H*(X, Z;) given in part a), the
fact that j*(d;)=P7iy, j*(0;)=P7is and the first part of b).

¢) In order to show that H*(X, Z;) is primitively generated, it suffices to
show that the set of A(5)-generators described in b) is primitive. We certainly
have ¥, and X%, primitive. The map j: K(Z, 14) X K(Z, 26)—X is certainly an
H-map. It is in fact a loop map. Let g be the multiplication of X and z one
of the remaining A(5)-generators for H*(X, Z;). Since j*(z) is primitive, we
have that g*(z)eKer j*QH*(X, Z;)DH*(X, Z;)QKer j* where g* is the reduced
coproduct. The remaining JA(5)-generators ¢u,1, Gw.2, Po.5r P50, a,
Ocw.2, .5, 0w 50 are in dimension 23, 30, 54, 55, 35, 42, 66, 67 respectively.
Up to dimension 45 Ker j* has X, as a Z;-base. Up to dimension 28, H*(X, Z;)
has ¢ as a Zs-base. So up to dimension 67, Ker j*@H*(X, ZYDHX, Zy)
QKer j* has %30Q¢ . and ¢, XXz as a Zs-base. They are in dimension 62.
So the above generators are primitive. Q.E.D.

Part III

Now let us consider the following diagram:

X PBX BX

. .

E, PBE, BE,

where p, and h, were defined in part II and the horizontal lines are the path-
loop fibration.

Theorem 3.1. a) H*(X, Z;) has a set of generators, which are universally
transgressive, as an algebra.
b) PYz(Z:))=B((Xa))=0 and P*(z(X4)=1(Xs0)t(Xsr).

Proof. To show that H*(X, Z;) has generators as an algebra which are
universally transgressive, it suffices to show that it has a set of A(5)-generators
which are universally transgressive. So let’s consider the Eilenberg-Moore
spectral sequence, see [9], namely

E2:EXTH‘(X,ZE)(Z5; Z)=— H*BX, Z5).
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Since the JA(5)-generators described in Theorem 2.1 part b) are primitive we
have d;(z)=0 where d, is the first differential of the Eilenberg-Moore spectral
sequence and z is one of the J(5)-generators.

Since dy(z) is an element of a quotient of

SHHX, ZIQZHNX, Z)QZH(X, Z5),

and the first non zero element appears in the dimension, 72, we must have d,(z)
=0. By a similar argument d;(z)=0 for all 7. So z is a permanent cycle.

b) By Theorem 1.1 we know that H*(BX, Z,) is a free algebra. Call wy,
=17(X3) and w,s=1(%4). So we must have P*w,=w3,. Now let’s consider the
commutative diagram above. We have that %,, is transgressive by dimensional
reasons. S0 w;=h%(z(%x). This implies that fw., Pw, and PPw, belong to
Im hf. By the description of H*(BX, Z;) we must have fw,=P'w,;s=0 and
Péw=Awswys, A€ Z;. Suppose A2=0. Then by the Adem’s relations it follows
that P**w,=0 which is a contradiction. So A1#0. Without loss of generality
let us assume A1=1. Q.E.D.

Call 224:‘5(925(1,1)), 231:‘5(?5(0,2)), 255:T(¢(o.5)), Zes:T(¢<o,s,o,1))y tss=7(0 1. 1) Lus
=t(0a. ), ter=1(0w.»), t1s=7(00,5.0.0)-

Proposition 3.2. The following relation holds in H*(BX, Z5):
P?zy—BP'zy=aw, O0+FacZ;.

Proof. Since we have Bw,s=P'w,=0, by Liulevicius’s decomposition of P?,
see [8], we have:
aP5w4s:Paﬂ(w4s)+ﬁF(w4s)

modulo the total indeterminancy and a#0. By Theorem 3.1 part b) the left
hand side is aw,wy. Let I be the ideal of H*(BX, Z;) generated by all genera-
tors but w,, ws. By dimensional reasons R(w,) and '(ws,)El. Now one
would like to know if yxeI for yeA(5), xI and dim (yx)<88. Among the
A(5)-generators, we have the following relations up to dimension 83:

dim: relation

25 ,3224

32 P1224—‘3231
40 P?zy—B P2y
55 P3zy

56 PBzss—Ptza
64 P5224—ﬂ263

71 P3zy - P2z— Plzg,
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dim: relation

79 Pz

37 Btss

44 Pltss“,Btu

52 P2tye—BP,,

67 Pty

68 ,Bte7—P4t36

76 Pstas_',Bt'ts

83 Pstyg+ PPt— Pl .

So the only element which might not be in [ is P%zy,—3P'z;;. On the other
hand, if P?z,,—pP'z,l we have that [ is closed under the action of the
Steenrod Algebra at least up to dimension 88, so w,ws <[ which is a contra-
diction. So P?z;—fP'25=Awy, 0#£2€Z;. Q.E.D.

Theorem 3.3. R(xy3)=x39 where R 1is the secondary cohomology operation
defined by the relation (1/2)BP'—P'B)P'—P*8=0.

Proof. Let’s apply the suspension homomorphism to the equality P2z;,— 3 P'zs,
=wy. We get P’ba.n—BP'¢wn=%5 Now by the second Peterson-Stein
formula we have: - . ~

?—539:]53‘(52(7523))
modulo the total indeterminancy. Since the total indeterminancy is zero we

have:
fagzpazk(g{(fza)):p?(xw) .

S0 R(Xas)=7Fs. But Fos=p¥(xs;) and Tso=p%(x39). S0 R(PT(x22))=DpF(R(x22))=
D¥(x39). SO R(x95)="xs0.
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