
Publ. RIMS, Kyoto Univ.
19 (1983), 1-6

The Mod-5 Splitting of the Compact
Exceptional Lie Group E*

By

Daciberg Lima GONCALVES*

Introduction

J.H. Harper [1] proved that E8, localized at the prime 5, has the same homotopy
type of K(5) X 5(15, 23, 39, 47)X513(5) where #*(5(15,23,39,47); ZJ=A(xls,xZB,
x39, *47). See [2] resp. [4] for more details about K(5) resp. 513(5). One would
like to know whether 5(15, 23, 39, 47) is irreducible or of the same homotopy
type of 57(5)XJ3i9(5). The purpose of this paper is to show that &(x2Z)=x39
where Si is the secondary operation defined by the relation ((l/2)/3P1—P1/3)(P1)
+P2(/3)=0 and *23, xsg^H*(E8, Z5). This certainly implies that 5(15,23,39,47)
is indecomposable. Using this fact one can compute the 5-component of 7r38(E8)
which turns out to be zero.

In 1970, H. Toda [4] announced that the following cases of mod-/) decom-
positions of exceptional Lie groups were unknown:

F4, E7, E8 mod 3
F8 mod 5

Since then, the case F4mod3 was solved in [3], and the cases Elf £8mod3
were done in [6]. The result of this paper will answer the last question about
the mod-p decomposition of a simply connected simple compact exceptional Lie
group. This paper is organized as follows: In Part I we prove a result about
the cohomology of the classifying space of certain loop spaces; in Part II we
compute the Hopf Algebra structure of a certain cover of E8; in Part III we
prove the main result.

Part I

The following result, I believe, is known, but I don't have a reference in
the form I need. Let X be a loop space and p an odd prime. Suppose H*(X, Zp)
—Zp[_xlf xz, •~'](£)A(y1, yz, • • • ) where dim Xi are even, dim yi odd and z/s, and
yt's are universally transgressive. Call BX the classifying space of X.
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Theorem 1.1. H*(BX, Zp) is isomorphic as an algebra to A(zlilf zli2, • • • ,
zt.j, zt.j+1, ~')®ZP[vi, "• , vi} ••• , ;f l i2, fjtlit> ••• , ptik, pi.k+i, •"] where i=l, 2, • • • ,
/=!, 2, • • - , 6 = 2, 3, • • • , T(xf') = zt.j, T(y-)=Vi and dpjcp-i)dima?i+iUi.j®^f /cp-1))=
Pi,j+i' (^ 2S £Ae transgression and dr is the r-th differential in the Serre spectral
sequence associated with the path-loop fibration over BX}.

Sketch of the proof. Let A be the algebra which is a candidate for
H*(BX, Zp). By [10] chapter 9 we have that H*(X, Z^®A is an acyclic con-
struction where the differentials are defined as stated in the theorem. Now we
define a map / : A— >H*(BX, Zp). Since A is a free algebra, it suffices to define
/ on each generator. Let /(zi.^rU?'), f(vt)=T(yt) and

By the hypothesis and Kudo's transgression theorem (see [7]) the above equalities
make sense. So we have a map between the algebraic spectral sequence
H*(X, ZP}®A and the Serre's spectral sequence associated with the path-loop
fibration. The fact that the differentials commute with the map is clear from
the definition. So by Zeeman's comparison theorem (see [12]) it follows that
A=H*(BX, Zp\

Remarks. 1) This result has been applied when X is the 3-connective
cover of some exceptional Lie group, and of course when X is K(ZP, ri).

2) By Kudo's transgression theorem and the fact that T commutes with the
Steenrod operations, we get :

Pzi,j+i=fii,j+i and P

3) If we consider the Eilenberg-Moore spectral sequence (see [9]):

£2^EXTW.V(ZP, ZP)=3H*(BX, Zp)

an easy calculation tells us that E2^H*(BX, Zp}. So the EilenbergMoore
spectral sequence collapses.

Part II

Let E8 be the 3-connective cover of E8

where /?(*'8)=*s and H*(E8, Z^A(xS) Xu)®(Z5[x12]/(xlz)
5)®A(xn, xzs, x27, x35,

^39, ^47). The cohomology of E8 as an cJ(5)-algebra is known (see [5]). Namely

H*(E8, Z5)^Z£y5Q]®A(x15, x23, £27, £35, ̂ 39, x^, y&i, 3^9)

where xt=p^(xi\ fiy5Q=y5i Ply5i=y59 PlXi=xi+8 f=15, 27, 39. I don't know



THE SPLITTING OF THE LIE GROUP E8

the Hopf Algebra structure of H*(E8, Z5}.
Now let's consider the following fibration

K(Z, U)xK(Z, 26)—>Z

! ,.
1, 1S)XK(Z,27)

wnere / 2(^15)—-£15/2(227) — ^27-
Since E8 is a loop space and x3 is a loop class, it follows that E8 is a loop

space. By dimensional reasons jc15, f 27 are also loop classes. So X is also a loop
space. We conclude that the tower (1) of fibration below is in fact the loop of
the tower (2) below.

K(Z, 14) X K(Z, 26) -^ X K(Z, 15) X K(Z, 27) -^-> BX
I I

£8 •—> K(Z, 15) X tf(Z, 27) BE8 -^> /iC(Z, 16) X tf(Z, 28)

, 3) BE8 -> K(Z, 4).

(1) (2)

Our purpose now is to describe H*(X, Z5) as a Hopf Algebra.
Let /=(ei, fi, ••• , en, «J be an admissible sequence. See [11] for more

details. Call $It 6Z^H*(X, Z5) the classes such that y*(^/)=P7/i4j /*(0/)=PJ/28,
where PJ means fi'iP^p'tP** — p^P**.

Theorem 2.1. a) H*(X, Z6) is the free algebra in the following generators:
(f)2 where I runs over the admissible sequences of excess less than 14 with z'ra>l
or in=sn=l'} Oj where J runs over the admissible sequences of excess less than
26 with jn>Q or jn=£n=l; 0Co,7) , ^ C O . H . O . D , 0co.i3), ^co .n .o .D, ^iB®tfu)4, ^23®

^zeY, y50, ysl, y5g, x89, ^4

/3(0(0,7))=^15®(226)4, J5(#(0,17,0,1))=^35(8)(^1226;

^rs /or //*(Z, ZB).
c) H*(X, Z5) is primitively generated.

Proof. Part a) is a routine application of the Serre's spectral sequence and
Kudo's transgression theorem.

b) Let's consider the fibrations

V Z?^ > £g

J
A"(Z, 15)X/f(Z, 27).
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Observe that 0c0,7) is transgressive and T(^a0,^)=P7i15. So /?0(0,7) is also
transgressive and r(/30Co,7))=/3P72i5. This implies/30Co, 7)^0. On the other hand
/*(00Co,7>)=j8P7:i4=0. So /30Co,7)^ker/*. But (j)^,^=P2^^,^. Since 0CO ,5) is
primitive by dimensional reasons, it follows that /30c0,7) is also primitive. But
the only non trivial-element of H71(X, Z5), which may be primitive and belongs
to Ker/*, is fi5®(/i4)4. The other cases are similar. Finally the fact that the
Set {3/50, f39, 0(1,1), 0(0,2), 0(0,5), 0(0,5,0,1), #(1,1), #(0,2), #(0,5), #(0,5,0,1)} iS a S6t Of

j2(5)-generators, follows from the description of H*(X, Z5} given in part a), the
fact that /*(0i)=P7z"i4, j*(Oj)=PJiw and the first part of b).

c) In order to show that H*(X, Z6) is primitively generated, it suffices to
show that the set of <J(5)-generators described in b) is primitive. We certainly
have 3/50 and I39 primitive. The map /: K(Z, 1£)XK(Z, 26)—>X is certainly an
H-map. It is in fact a loop map. Let ^ be the multiplication of X and z one
of the remaining jZ(5)-generators for H*(X, Z5}. Since j*(z) is primitive, we
have that /z*(z)eKer/*®#*(X, ZB)®H*(X, Z5}®Ker j* where /Z* is the reduced
coproduct. The remaining u4(5)-generators 0a,i), 0(o,2), 0(0 > 5), 0(o,5 , i ,o) , #a,D,
#(0,2), #(0,5), #(0,5,0,1) are in dimension 23, 30, 54, 55, 35, 42, 66, 67 respectively.
Up to dimension 45 Ker /* has jc89 as a Z5-base. Up to dimension 28, H*(X, Zs)
has 0Cl l l) as a ^-base. So up to dimension 67, Ker j*®H*(X, Z5}®H(X, Z5)
®Kery* has ^89®0a,i) and 0a,i)®^39 as a ^5-base. They are in dimension 62.
So the above generators are primitive. Q. E. D.

Part III

Now let us consider the following diagram:

X > PBX > BX

PBES - > BE,

where p2 and h2 were defined in part II and the horizontal lines are the path-
loop fibration.

Theorem 3.1. a) H*(X, Z5} has a set of generators, which are universally
transgressive, as an algebra.

b) P1Wf47))-/5(r(f47))=0 and P5(r(x «))=r(3c,9)r(*47).

Proof. To show that H*(X, Z5} has generators as an algebra which are
universally transgressive, it suffices to show that it has a set of cJ(5)-generators
which are universally transgressive. So let's consider the Eilenberg-Moore
spectral sequence, see [9], namely

H*(BX, Z5) .
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Since the j£(5)-generators described in Theorem 2.1 part b) are primitive we
have di(z)=Q where dl is the first differential of the Eilenberg-Moore spectral
sequence and z is one of the j2(5)-generators.

Since dz(z) is an element of a quotient of

^H*(X, Z^®^H*(X, Z5)®^H*(X, ZB) ,

and the first non zero element appears in the dimension, 72, we must have dz(z)
=0. By a similar argument di(z)—Q for all L So z is a permanent cycle.

b) By Theorem 1.1 we know that H*(BX, Z5) is a free algebra. Call w4Q

=T(X 39) and 1^48=^(^47). So we must have PZ4w48=wls. Now let's consider the
commutative diagram above. We have that %47 is transgressive by dimensional
reasons. So w4l8=h^(T(x^')). This implies that /3w>48, P1w48 and P5w48 belong to
Im hf. By the description of H*(BX, Z5} we must have ^wAB=P1w4tS=Q and
P5w48= lw±Qw48, X^Z5. Suppose 2=0. Then by the Adem's relations it follows
that P24K;48=0 which is a contradiction. So 2^0. Without loss of generality
let us assume 1=1. Q.E.D.

Call Z24=r(0Cl,l)), ^31 = ^(0(0,2)), ^55 = ^(0(0,5)); ^63 = ^(0(0,5,0,1)), ^36 = ^(^(1,1)). ̂ 43

= ^(^(1,1)), ^67 = ^(^(0,5)), ^75 =

Proposition 3.2. The following relation holds in H*(BX,

Proof. Since we have ^wi8=P1w48=Q, by Liulevicius's decomposition of Pp,
see [8], we have:

modulo the total indeterminancy and a^O. By Theorem 3.1 part b) the left
hand side is aw^w^. Let I be the ideal of H*(BX, Z5} generated by all genera-
tors but ttUo, ^48- By dimensional reasons 3l(w^} and F(w^}^L Now one
would like to know if f;te/ for pe«J(5), x^I and dim fr^)^88. Among the
Jl(5)-generators, we have the following relations up to dimension 88 :

dim : relation

25

32

40

55

56

64

71
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dim : relation

79 P3z55

37 ^36

44 P1^-/^
52 P^-pPHu

67 P^43

68 ptG1-P%6

76 P5f8e-#76
83 P3

So the only element which might not be in / is P2z24~/3P1z3i. On the other

hand, if jP2z24— /SP^e/ we have that / is closed under the action of the

Steenrod Algebra at least up to dimension 88, so wMw^^I which is a contra-

diction. So P2Z24-^P^3i=^4o, 0^eZ5. Q.E.D.

Theorem 3.3. 3l(xZz} — ̂ ^ where SI is the secondary cohomology operation

defined by the relation ((1/2)^P1-P1/3)P1-P2^=0.

Proof. Let's apply the suspension homomorphism to the equality Pzz24c—^Plz^

= W±Q. We get P2$ti,i)—pP1$to,Z) = xS9. Now by the second Peterson-Stein

formula we have :

modulo the total indeterminancy. Since the total indeterminancy is zero we

have :

So 3U*2s)=*89. But *2s=/>*(*28) and *39=/>*(*s9). So 31 (/>? (x23))= />?(#(* 23))=
). SO ^(,T23) = ^39.
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