Publ. RIMS, Kyoto Univ. 19 (1983), 1-6

The Mod-5 Splitting of the Compact Exceptional Lie Group E_8

By

Daciberg Lima GONÇALVES*

Introduction

J.H. Harper [1] proved that E_8 , localized at the prime 5, has the same homotopy type of $K(5) \times B(15, 23, 39, 47) \times B_{13}(5)$ where $H^*(B(15, 23, 39, 47); \mathbb{Z}_5) = A(x_{15}, x_{23}, x_{39}, x_{47})$. See [2] resp. [4] for more details about K(5) resp. $B_{13}(5)$. One would like to know whether B(15, 23, 39, 47) is irreducible or of the same homotopy type of $B_7(5) \times B_{19}(5)$. The purpose of this paper is to show that $\Re(x_{23}) = x_{39}$ where \Re is the secondary operation defined by the relation $((1/2)\beta P^1 - P^1\beta)(P^1)$ $+P^2(\beta)=0$ and $x_{23}, x_{39} \in H^*(E_8, \mathbb{Z}_5)$. This certainly implies that B(15, 23, 39, 47)is indecomposable. Using this fact one can compute the 5-component of $\pi_{38}(E_8)$ which turns out to be zero.

In 1970, H. Toda [4] announced that the following cases of mod-p decompositions of exceptional Lie groups were unknown:

$$F_4, E_7, E_8 \mod 3$$
$$F_8 \mod 5$$

Since then, the case $F_4 \mod 3$ was solved in [3], and the cases E_7 , $E_8 \mod 3$ were done in [6]. The result of this paper will answer the last question about the mod-p decomposition of a simply connected simple compact exceptional Lie group. This paper is organized as follows: In Part I we prove a result about the cohomology of the classifying space of certain loop spaces; in Part II we compute the Hopf Algebra structure of a certain cover of E_8 ; in Part III we prove the main result.

Part I

The following result, I believe, is known, but I don't have a reference in the form I need. Let X be a loop space and p an odd prime. Suppose $H^*(X, \mathbb{Z}_p) \simeq \mathbb{Z}_p[x_1, x_2, \cdots] \otimes \Lambda(y_1, y_2, \cdots)$ where dim x_i are even, dim y_i odd and x_i 's, and y_i 's are universally transgressive. Call BX the classifying space of X.

Communicated by N. Shimada, June 30, 1980.

^{*} Institute de Matemática e Estatística, Universidade de São Paulo, Brasil.

^{*} Supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Pesquisas).

Theorem 1.1. $H^*(BX, \mathbb{Z}_p)$ is isomorphic as an algebra to $\Lambda(z_{1,1}, z_{1,2}, \cdots, z_{i,j}, z_{i,j+1}, \cdots) \otimes \mathbb{Z}_p[v_1, \cdots, v_i, \cdots, \mu_{1,2}, \mu_{1,3}, \cdots, \mu_{i,k}, \mu_{i,k+1}, \cdots]$ where $i=1, 2, \cdots, j=1, 2, \cdots, k=2, 3, \cdots, \tau(x_i^{pj})=z_{i,j}, \tau(y_i)=v_i$ and $d_{pj(p-1)\dim x_i+1}(z_{i,j}\otimes x_i^{pj(p-1)})=\mu_{i,j+1}$. (τ is the transgression and d_{τ} is the r-th differential in the Serre spectral sequence associated with the path-loop fibration over BX).

Sketch of the proof. Let A be the algebra which is a candidate for $H^*(BX, \mathbb{Z}_p)$. By [10] chapter 9 we have that $H^*(X, \mathbb{Z}_p) \otimes A$ is an acyclic construction where the differentials are defined as stated in the theorem. Now we define a map $f: A \rightarrow H^*(BX, \mathbb{Z}_p)$. Since A is a free algebra, it suffices to define f on each generator. Let $f(z_{i,j}) = \tau(x_i^{pj}), f(v_i) = \tau(y_i)$ and

$$f(\tau v_{i,j+1}) = d_{p^{j}(p-1) \dim x_{i+1}}(z_{i,j} \otimes x_{i}^{p^{j}(p-1)}).$$

By the hypothesis and Kudo's transgression theorem (see [7]) the above equalities make sense. So we have a map between the algebraic spectral sequence $H^*(X, \mathbb{Z}_p) \otimes A$ and the Serre's spectral sequence associated with the path-loop fibration. The fact that the differentials commute with the map is clear from the definition. So by Zeeman's comparison theorem (see [12]) it follows that $A=H^*(BX, \mathbb{Z}_p)$.

Remarks. 1) This result has been applied when X is the 3-connective cover of some exceptional Lie group, and of course when X is $K(\mathbf{Z}_p, n)$.

2) By Kudo's transgression theorem and the fact that τ commutes with the Steenrod operations, we get:

$$\beta z_{i,j+1} = \mu_{i,j+1}$$
 and $P^{n_i p^j}(z_{i,j}) = z_{i,j+1}$.

3) If we consider the Eilenberg-Moore spectral sequence (see [9]):

$$E_{2} \simeq \operatorname{EXT}_{H^{*}(X, Z_{p})}(Z_{p}, Z_{p}) \Longrightarrow H^{*}(BX, Z_{p})$$

an easy calculation tells us that $E_2 \simeq H^*(BX, \mathbb{Z}_p)$. So the EilenbergMoore spectral sequence collapses.

Part II

Let \tilde{E}_8 be the 3-connective cover of E_8

where $f_1^*(i_3) = x_3$ and $H^*(E_8, \mathbb{Z}_5) \simeq \Lambda(x_3, x_{11}) \otimes (\mathbb{Z}_5[x_{12}]/(x_{12})^5) \otimes \Lambda(x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47})$. The cohomology of \tilde{E}_8 as an $\mathcal{A}(5)$ -algebra is known (see [5]). Namely

$$H^{*}(\vec{E}_{8}, \mathbf{Z}_{5}) \simeq \mathbf{Z}_{5}[y_{50}] \otimes \Lambda(\vec{x}_{15}, \vec{x}_{23}, \vec{x}_{27}, \vec{x}_{35}, \vec{x}_{39}, \vec{x}_{47}, y_{51}, y_{59})$$

where $\bar{x}_i = p_1^*(x_i)$, $\beta y_{50} = y_{51} P^1 y_{51} = y_{59} P^1 \bar{x}_i = \bar{x}_{i+8} i = 15, 27, 39$. I don't know

the Hopf Algebra structure of $H^*(\widetilde{E}_8, \mathbb{Z}_5)$.

Now let's consider the following fibration

$$K(\mathbf{Z}, 14) \times K(\mathbf{Z}, 26) \longrightarrow X$$

$$\downarrow$$

$$\hat{E}_{8} \xrightarrow{f_{2}} K(\mathbf{Z}, 15) \times K(\mathbf{Z}, 27)$$

where $f_{2}^{*}(i_{15}) = \bar{x}_{15} f_{2}^{*}(i_{27}) = \bar{x}_{27}$.

Since E_8 is a loop space and x_3 is a loop class, it follows that \tilde{E}_8 is a loop space. By dimensional reasons \bar{x}_{15} , \bar{x}_{27} are also loop classes. So X is also a loop space. We conclude that the tower (1) of fibration below is in fact the loop of the tower (2) below.

$$\begin{split} K(\mathbf{Z}, 14) \times K(\mathbf{Z}, 26) & \stackrel{j}{\longrightarrow} X \qquad K(\mathbf{Z}, 15) \times K(\mathbf{Z}, 27) \stackrel{k}{\longrightarrow} BX \\ & \downarrow^{p_2} & \downarrow^{h_2} \\ & \tilde{E}_8 \longrightarrow K(\mathbf{Z}, 15) \times K(\mathbf{Z}, 27) \qquad B\tilde{E}_8 \stackrel{g_2}{\longrightarrow} K(\mathbf{Z}, 16) \times K(\mathbf{Z}, 28) \\ & \downarrow^{p_1} & \downarrow^{h_1} \\ & E_8 \stackrel{f_2}{\longrightarrow} K(\mathbf{Z}, 3) \qquad BE_8 \stackrel{g_1}{\longrightarrow} K(\mathbf{Z}, 4) \,. \end{split}$$

Our purpose now is to describe $H^*(X, \mathbb{Z}_5)$ as a Hopf Algebra.

Let $I = (\varepsilon_1, i_1, \dots, \varepsilon_n, i_n)$ be an admissible sequence. See [11] for more details. Call ϕ_I , $\theta_I \in H^*(X, \mathbb{Z}_5)$ the classes such that $j^*(\phi_I) = P^I i_{14}$, $j^*(\theta_I) = P^I i_{26}$, where P^I means $\beta^{\varepsilon_1} P^{i_1} \beta^{\varepsilon_2} P^{i_2} \dots \beta^{\varepsilon_n} P^{i_n}$.

Theorem 2.1. a) $H^*(X, \mathbb{Z}_5)$ is the free algebra in the following generators: ϕ_I where I runs over the admissible sequences of excess less than 14 with $i_n > 1$ or $i_n = \varepsilon_n = 1$; θ_J where J runs over the admissible sequences of excess less than 26 with $j_n > 0$ or $j_n = \varepsilon_n = 1$; $\phi_{(0,7)}$, $\phi_{(0,11,0,1)}$, $\theta_{(0,13)}$, $\theta_{(0,17,0,1)}$, $\bar{x}_{15} \otimes (i_{14})^4$, $\bar{x}_{23} \otimes (P^{1i}_{14})^4$, $\bar{x}_{27} \otimes (i_{26})^4$, $\bar{x}_{35} \otimes (P^{1i}_{26})^4$, \bar{y}_{50} , \bar{y}_{51} , \bar{y}_{59} , \bar{x}_{39} , \bar{x}_{47} where $p_2^*(y_i) = \bar{y}_i$ and $p_2^*(\bar{x}_i) = \bar{x}_i$.

b) We have $\beta(\phi_{(0,7)}) = x_{15} \otimes (i_{26})^4$, $\beta(\theta_{(0,17,0,1)}) = x_{35} \otimes (P^1 i_{26})$ and the set $\{\overline{y}_{50}, \overline{x}_{39}, \phi_{(1,1)}, \phi_{(0,2)}, \phi_{(0,5)}, \phi_{(0,5,0,1)}, \theta_{(1,1)}, \theta_{(0,2)}, \theta_{(0,5)}, \theta_{(0,5,0,1)} \text{ is a set of } \mathcal{A}(5)\text{-generators for } H^*(X, \mathbb{Z}_5).$

c) $H^*(X, \mathbb{Z}_5)$ is primitively generated.

Proof. Part a) is a routine application of the Serre's spectral sequence and Kudo's transgression theorem.

b) Let's consider the fibrations

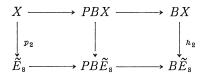
$$\begin{array}{c} X \longrightarrow \tilde{E}_{s} \\ & \downarrow \\ K(\boldsymbol{Z}, \, 15) \times K(\boldsymbol{Z}, \, 27) \, . \end{array}$$

Observe that $\phi_{(0,7)}$ is transgressive and $\tau(\phi_{(0,7)})=P^{\tau_i}i_{15}$. So $\beta\phi_{(0,7)}$ is also transgressive and $\tau(\beta\phi_{(0,7)})=\beta P^{\tau_i}i_{15}$. This implies $\beta\phi_{(0,7)}\neq 0$. On the other hand $j^*(\beta\phi_{(0,7)})=\beta P^{\tau_i}i_{14}=0$. So $\beta\phi_{(0,7)}\in \ker j^*$. But $\phi_{(0,7)}=P^2\phi_{(0,5)}$. Since $\phi_{(0,5)}$ is primitive by dimensional reasons, it follows that $\beta\phi_{(0,7)}$ is also primitive. But the only non trivial-element of $H^{\tau_1}(X, \mathbb{Z}_5)$, which may be primitive and belongs to Ker j^* , is $\bar{x}_{15}\otimes(i_{14})^4$. The other cases are similar. Finally the fact that the set $\{\bar{y}_{50}, \bar{x}_{39}, \phi_{(1,1)}, \phi_{(0,2)}, \phi_{(0,5)}, \phi_{(0,5,0,1)}, \theta_{(1,1)}, \theta_{(0,2)}, \theta_{(0,5)}, \theta_{(0,5,0,1)}\}$ is a set of $\mathcal{A}(5)$ -generators, follows from the description of $H^*(X, \mathbb{Z}_5)$ given in part a), the fact that $j^*(\phi_I) = P^I i_{14}, j^*(\theta_J) = P^J i_{26}$ and the first part of b).

c) In order to show that $H^*(X, \mathbb{Z}_5)$ is primitively generated, it suffices to show that the set of $\mathcal{A}(5)$ -generators described in b) is primitive. We certainly have \bar{y}_{50} and \bar{x}_{39} primitive. The map $j: K(\mathbb{Z}, 14) \times K(\mathbb{Z}, 26) \rightarrow X$ is certainly an *H*-map. It is in fact a loop map. Let μ be the multiplication of X and z one of the remaining $\mathcal{A}(5)$ -generators for $H^*(X, \mathbb{Z}_5)$. Since $j^*(z)$ is primitive, we have that $\bar{\mu}^*(z) \in \text{Ker } j^* \otimes \overline{H}^*(X, \mathbb{Z}_5) \oplus H^*(X, \mathbb{Z}_5) \otimes \text{Ker } j^*$ where $\bar{\mu}^*$ is the reduced coproduct. The remaining $\mathcal{A}(5)$ -generators $\phi_{(1,1)}, \phi_{(0,2)}, \phi_{(0,5)}, \phi_{(0,5,1,0)}, \theta_{(1,1)},$ $\theta_{(0,2)}, \theta_{(0,5)}, \theta_{(0,5,0,1)}$ are in dimension 23, 30, 54, 55, 35, 42, 66, 67 respectively. Up to dimension 45 Ker j^* has \bar{x}_{39} as a \mathbb{Z}_5 -base. Up to dimension 28, $H^*(X, \mathbb{Z}_5)$ has $\phi_{(1,1)}$ as a \mathbb{Z}_5 -base. So up to dimension 67, Ker $j^* \otimes \overline{H}^*(X, \mathbb{Z}_5) \oplus \overline{H}(X, \mathbb{Z}_5)$ $\otimes \text{Ker } j^*$ has $\bar{x}_{39} \otimes \phi_{(1,1)}$ and $\phi_{(1,1)} \otimes \overline{x}_{39}$ as a \mathbb{Z}_5 -base. They are in dimension 62. So the above generators are primitive. Q. E. D.

Part III

Now let us consider the following diagram:



where p_2 and h_2 were defined in part II and the horizontal lines are the pathloop fibration.

Theorem 3.1. a) $H^*(X, \mathbb{Z}_5)$ has a set of generators, which are universally transgressive, as an algebra.

b) $P^{1}(\tau(\bar{x}_{47})) = \beta(\tau(\bar{x}_{47})) = 0 \text{ and } P^{5}(\tau(\bar{x}_{47})) = \tau(\bar{x}_{39})\tau(\bar{x}_{47}).$

Proof. To show that $H^*(X, \mathbb{Z}_5)$ has generators as an algebra which are universally transgressive, it suffices to show that it has a set of $\mathcal{A}(5)$ -generators which are universally transgressive. So let's consider the Eilenberg-Moore spectral sequence, see [9], namely

$$E_2 \simeq \operatorname{EXT}_{H_*(X, Z_5)}(Z_5, Z_5) \Longrightarrow H^*(BX, Z_5).$$

Since the $\mathcal{A}(5)$ -generators described in Theorem 2.1 part b) are primitive we have $d_1(z)=0$ where d_1 is the first differential of the Eilenberg-Moore spectral sequence and z is one of the $\mathcal{A}(5)$ -generators.

Since $d_2(z)$ is an element of a quotient of

$$\sum \overline{H}^*(X, \mathbb{Z}_5) \otimes \sum \overline{H}^*(X, \mathbb{Z}_5) \otimes \sum \overline{H}^*(X, \mathbb{Z}_5)$$
 ,

and the first non zero element appears in the dimension, 72, we must have $d_2(z) = 0$. By a similar argument $d_i(z)=0$ for all *i*. So *z* is a permanent cycle.

b) By Theorem 1.1 we know that $H^*(BX, \mathbb{Z}_5)$ is a free algebra. Call $w_{40} = \tau(\bar{x}_{39})$ and $w_{48} = \tau(\bar{x}_{47})$. So we must have $P^{24}w_{48} = w_{48}^5$. Now let's consider the commutative diagram above. We have that \bar{x}_{47} is transgressive by dimensional reasons. So $w_{48} = h_2^*(\tau(\bar{x}_{47}))$. This implies that βw_{48} , $P^1 w_{48}$ and $P^5 w_{48}$ belong to Im h_2^* . By the description of $H^*(BX, \mathbb{Z}_5)$ we must have $\beta w_{48} = P^1 w_{48} = 0$ and $P^5 w_{48} = \lambda w_{40} w_{48}$, $\lambda \in \mathbb{Z}_5$. Suppose $\lambda = 0$. Then by the Adem's relations it follows that $P^{24} w_{48} = 0$ which is a contradiction. So $\lambda \neq 0$. Without loss of generality let us assume $\lambda = 1$.

Call $z_{24} = \tau(\phi_{(1,1)}), z_{31} = \tau(\phi_{(0,2)}), z_{55} = \tau(\phi_{(0,5)}), z_{63} = \tau(\phi_{(0,5,0,1)}), t_{36} = \tau(\theta_{(1,1)}), t_{43} = \tau(\theta_{(1,1)}), t_{67} = \tau(\theta_{(0,5)}), t_{75} = \tau(\theta_{(0,5,0,1)}).$

Proposition 3.2. The following relation holds in $H^*(BX, \mathbb{Z}_5)$:

$$P^2 z_{24} - \beta P^1 z_{31} = \alpha w_{40} \qquad 0 \neq \alpha \in \mathbb{Z}_5.$$

Proof. Since we have $\beta w_{48} = P^1 w_{48} = 0$, by Liulevicius's decomposition of P^p , see [8], we have:

$$\alpha P^{5}w_{48} = P^{3} \mathcal{R}(w_{48}) + \beta \Gamma(w_{48})$$

modulo the total indeterminancy and $\alpha \neq 0$. By Theorem 3.1 part b) the left hand side is $\alpha w_{40} w_{48}$. Let *I* be the ideal of $H^*(BX, \mathbb{Z}_5)$ generated by all generators but w_{40}, w_{48} . By dimensional reasons $\Re(w_{48})$ and $\Gamma(w_{48}) \in I$. Now one would like to know if $\gamma x \in I$ for $\gamma \in \mathcal{A}(5), x \in I$ and dim $(\gamma x) \leq 88$. Among the $\mathcal{A}(5)$ -generators, we have the following relations up to dimension 88:

dim:	relation
25	βz_{24}
32	$P^{1}z_{24} - \beta z_{31}$
40	$P^2 z_{24} - \beta P^1 z_{31}$
55	$P^{3}z_{31}$
56	$\beta z_{55} - P^4 z_{24}$
64	P ⁵ z ₂₄ -βz ₆₃
71	$P^{3}z_{31} + P^{2}z_{55} - P^{1}z_{63}$

dim:	relation
79	$P^{3}z_{55}$
37	$eta t_{36}$
44	$P^{1}t_{36} - \beta t_{43}$
52	$P^{2}t_{36} - \beta P^{1}t_{43}$
67	$P^{3}t_{43}$
68	$\beta t_{67} - P^4 t_{36}$
76	$P^{5}t_{36}-eta t_{75}$
83	$P^{3}t_{43} + P^{2}t_{67} - P^{1}t_{75}$.

So the only element which might not be in I is $P^2 z_{24} - \beta P^1 z_{31}$. On the other hand, if $P^2 z_{24} - \beta P^1 z_{31} \in I$ we have that I is closed under the action of the Steenrod Algebra at least up to dimension 88, so $w_{40}w_{45} \in I$ which is a contradiction. So $P^2 z_{24} - \beta P^1 z_{31} = \lambda w_{40}$, $0 \neq \lambda \in \mathbb{Z}_5$. Q. E. D.

Theorem 3.3. $\Re(x_{23}) = x_{39}$ where \Re is the secondary cohomology operation defined by the relation $((1/2)\beta P^1 - P^1\beta)P^1 - P^2\beta = 0$.

Proof. Let's apply the suspension homomorphism to the equality $P^2 z_{24} - \beta P^1 z_{31}$ $=w_{40}$. We get $P^2\phi_{(1,1)}-\beta P^1\phi_{(0,2)}=\bar{x}_{39}$. Now by the second Peterson-Stein formula we have:

$$\bar{x}_{39} = p_2^*(\mathcal{R}(\bar{x}_{23}))$$

modulo the total indeterminancy. Since the total indeterminancy is zero we have:

$$\bar{x}_{39} = p_2^*(\mathcal{R}(\bar{x}_{23})) = p_2^*(\bar{x}_{39}).$$

So $\Re(\bar{x}_{23}) = \bar{x}_{39}$. But $\bar{x}_{23} = p_1^*(x_{23})$ and $\bar{x}_{39} = p_1^*(x_{39})$. So $\Re(p_1^*(x_{23})) = p_1^*(\Re(x_{23})) =$ $p_1^*(x_{39})$. So $\Re(x_{23}) = x_{39}$.

Bibliography

- Harper, R.J., Private communication. ———, H-Spaces with torsion, preprint. ———, The mod-3 homotopy type of F_4 , Lecture Notes in Mathematics, 418, [1] [2] [3] Springer-Verlag, 1974.
- [4] H-Spaces, Conference, Lecture Notes in Mathematics, 196, Springer-Verlag, 1971.
- [5] Kono, A., Hopf Algebra structure of simple Lie Groups, J. Math. Kyoto Univ. 17 (1977), 259-298.
- [6] Kono, A. and Mimura, M., Cohomology operation and the Hopf Algebra structure of the compact exceptional Lie Groups E_7 and E_8 , Proc. London Math. Soc., XXXV Part III (1977), 345-358.
- Kudo, T., A transgression theorem, Mem. Fac. Sci. Kyushu Univ. A9 (1956), 79-81. [7]
- [8] Liulevicius, A., The factorization of cyclic reduced power by secondary operations, Amer. Math. Soc., Memoirs, 42 (1962).
- [9] Rothenberg, M. and Steenrod, N.E., The cohomology of the classifying space of H-spaces, Bull. A.M.S. 71 (1965), 872-875.
- [10] Séminaire Henri Cartan, 1954/1955, Algebra d'Eilenberg-MacLane et Homotopie.
- 11] Steenrod, N.E. and Epstein, Cohomology Operations, Ann. Math. Studies, 50(1962).
- [12] Zeeman, E.C., A proof of the comparison theorem for Spectral Sequence, Proc. Cambridge Phil. Soc. 53 (1957), 57-62.