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Quadratic Spline and Two-Point
Boundary Value Problem

By

Manabu SAKATI* and Riaz A. USMANI**

§1. Introduction

We shall concern ourself with the solution of real, nonlinear two-point
boundary value problems of the form

x"O=r@¢ x@), =’®), t<[0, 1]
(1.1) a,x(0)—box’(0)=c,
ax(D+bx"(1)=c,

where f(f, x, y) is defined and twice continuously differentiable in a region D of
the (¢, x, y)-space intercepted by two hyperplanes t=0 and ¢t=1. The analytical
solution of (1.1) for arbitrary choices of the function f cannot be found in general.
We usually resort to some numerical method for obtaining an approximate solu-
tion of the problem (1.1). The standard numerical methods for the numerical
treatment of (1.1) consist of finite difference methods, shooting methods, Rayleigh-
Ritz and Galerkin’s procedure and collocation methods. A long list of references
of all of these methods is given by Keller [4] in [2]. The subject of obtaining
spline solutions for the initial as well as boundary value problems is briefly dis-
cussed in [1]. Since then many papers have appeared dealing with the con-
tinuous approximation of x(f) satisfying (1.1) via cubic and quintic splines mainly
(see [3,91). The collocation methods using spline functions have been developed
and analysed by Sakai (see [5], [6], [71) again employing cubic and quintic
splines at equi-distant knots. Recently Usmani and Sakai [11] have also used
quadratic spline function for solving a two-point boundary value problem involving
a fourth order differential equation.

In this brief report, we propose a second order collocation method using
quadratic spline employing B-splines. In the sequel, it will be shown that our
method is an O(h?-convergent procedure. In the last section some numerical
evidence is included to show the practical applicability of our method by solving
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nonlinear as well as linear boundary value problems of the form (1.1). We begin
the next section by giving a formal definition of our numerical method.

§ 2. Definition of Our Method
We first rewrite the differential system into an equivalent form

x'(t)=2z(t)
(2.1) ZO=r(@, x®), z(1)
a0x(0)—bez(0)=c,, a1 x(1)+bz()=c;.

Now making use of B-spline Q,+:#)=1/m!) ﬁf}l(—l)i<mj 1)(1‘—2')1", we consider

quadratic and piecewies linear functions of the form
n-1 -1
(2.2) xn(t)?—i;zaiQa(l‘//’l—i), Zh(t)::;E_I‘BiQZ(t/h—'i) (nh=1)

with undetermined coefficients (@-s, _s, @y, -+ , &tn-1) and (B-1, Bo, =, Br-1). The
above x,(f) and 2,(t) will be approximate solutions to (2.1) if they satisfy

xn(@)=zx(t)
(2.3) zp(O)=Pf(t, xn(t), za())
aox1(0)—bezr(0)=c,, a1 xn(1)+biza()=cy.

Here P is an operator such that
n-1
2.4) (Pg)(l‘)= 1:‘—?6 g(ttﬂ/z)x(t/h"i) ’ tivro=(tes1+1)/2

where X(t) is a step function with the property

1, 0<t<1
A=
0, otherwise.

From (2.3), we have the following system of nonlinear equations connecting a;
and B;:
F_((a, ,3):(00/2)(a—1+a—2)“‘boﬁ-l_cozo;
Fi(e, B)=(1/h)(@i-1—ai-2)—Bi-1=0,  i=0D)n;
(2.5) Fuiile, B)=1/h)(Bi-1—Bi-2)—f (ti-1s2, (1/8)(@i-1
1 +ba;ptai-s), (1/2)(Bi-1tBi-2))=0, i=11)n;
Fonila, ,3):(al/z)(an-1+an—2)+b1,8n—1_51:0 .
In any practical computations, however, we may use the following system of
nonlinear equations containing «; alone:
(@o/2)(a-1Fa_p)—(bo/ W) (@-1—a_s)=Cy,
(1/h®)as-1—20-pFai_g)=f (ti—172, (1/8)(cts-1
+6a; o t+ais), 1/2h)(ai-i—ai-g),  i=11)n,
(@:1/2)(@n-1Fan_p)+(bi/h)(An-1—arn-3)=C; .

(2.6)
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The system (2.6) is easily obtained from (2.5) on eliminating S;.

Our object now is to show that under certain conditions the system of non-
linear equations (2.5) has a unique solution. To this end, we assume that the
system (2.1) has an isolated solution (£(t), 2(#)) satisfying the internality condition

(2.7 U={t x,2): |x—i®)|+|z—2@)|=0, t<[0,1]}cD

for some 0>0. A solution (£(?), 2(¢)) is isolated if and only if

2.8) G=| a1o(1) +b:95(1) a1¢1(1)+b1¢1(1)]

is nonsingular, where ¢, and ¢, are the solutions of the initial value problems
2.9) { 7=h, £, 211, £, 2)¢; of

$;2(0)=0di;, G j=0,1), (filxs, xs x3)=—a;;, 1=2,3).
Corresponding to (£(#), 2(¢)), we can determine quadratic spline and piecewise
linear functions

(2.10) 2= a:Qst/h—i), 2.0=%,O)=32 B:Qst/h—1)
so that

Enic)=%{ir1r2) i=01)n—1
(2.11)

Entivr)=2%"(tss1s2) =0, n—1.
By the use of consistency relations

(/W {Zntirare) =28 n(irrre) +Enltio1s2)}

=(1/8){ &3 (ti4312) +6% 5 (tsr1s0)F £ (Es—1s2)},
(L/2n){ &1 ivsre)— Zn(ti-1r2)} =(1/8){ &7 (iwss2) 687 Fivrre) + 21 (Eim1s2)},
1) =1/ W% 0 @ss0) — 20 (1s2)} — (A /8){£7(ts/0) +32 5 (E1s2)},

we can easily deduce
ERtirre) =Z" (tir172)+O(RP), i=01)n—1
[£5™ — 2™ || =max| ™) —2™ @) |=0Mh*>™)  (m=0, 1),

(see the details of (2.12) and (2.13) in [117).
From the preceding estimates (2.13), it easily follows that

(2.14) IF(a, Bll=0(h?,

(2.12)

(2.13)

where for any finite dimensional vector, we shall denote its maximum norm by
-1
§ 3. Existence and Convergence of Spline Approximations

Let J(a, B) be the Jacobian matrix of F(a, 8) with respect to (a, 8). In
order to investigate the properties of J(&, B), let us consider a linear system
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3.1) J(&, BE =@, p
where E=(€_y, &ny o, En-1)s 772(77—1; Mo, **° 77n—1)
A=Ay, Aoy =, An), ﬂ:(/ll, ey " [ln+1) .

Corresponding to & and 7, we consider quadratic spline and piecewise Iinear
functions ¢(f) and ¢(t)

(3.2) 0= "% E:Qut/h—i) and GO)='% 7Qult/h—i).
From (3.1), we have
aop(0)—bop(0)=2_,
O (t)—Pt)=2:, @=0(1)n)
3.3 @ (tion)=To(tio1re, Bnltiovse), 2n(tic1e))P(tiri)
1 dfolti-1re, Zaltio1r2), Zn(tic1s2))P(ticrra)+ e (=1)n),
a1¢(1)+b1¢(1):[1n+1 .
Let A() and p(f) be piecewise linear and step functions satisfying the conditions:
At)=24;, (E=01)n) and plti-ip)=p; @E=11)n),
then we have
¢’ O=¢t)+21), 0=t=1
G'®)=P[ fo(t, (1), 22(D)P@)+1s&, £a(), 22D ]+ p(@),
ti<t<t1+1 y Z"—_—O(l)n""l
ao¢(0)"bt¢(0):2—1 ’ al¢(l)+b1¢(l):ﬂn+1 ’

from which follows

¢ () —gBH)=2(1)
(3.9)

(3.4

'O —falt, £, 2@ —f5(t, (1), ZENYO=R+p(t),  t#t;
a0(0)—bop(0)=2_,, a1 6V)+bp(V)=ptns1,
where R=—I—P)[ f20+1:o1-+OMLII+IplD (I the unit operator) by the use
of (2.13).
Since G is nonsingular due to the assumption that (2.1) has an isolated solution
(£, 2), there exists the Green function H(t, s) such that
{ OHLE—G*M,0(1)]D(s), 0=s=t

—0WG*M,D(1)D(s), s<t=1,

(3.6) H(, s)=

where
0 0 1 0 Po ¢
L PR I PR PO P B
0 a; bl 0 1 ( ) ¢0 ¢l
By making use of the Green function, we obtain

@2 [ 1=o0e 322 T e oY g o=
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From now on, for any finite dimensional vector v=(v;), we denote mziaxlv,-l by
lv|l, and a generic constant independent of 4 by C. Since

IR Nces 054 n=CRUSI IS I+ NP AN ez 20049
=Ch(lgl -+l -+ elces eqe 021 (5D,

we have
(3.8) IRl ey =CRUG 11+ ety g gt 120D -
On applying inequality (3.8) to (3.7) we have
Igl, 191=Cli@, wI for any h<h,
provided that h, is sufficiently small. Since [¢[|=C|&l, [I4II=Cl5l, we have
(3.9) & PI=CIQ@, wll  for any A<h,.

From (3.1) and (3.9) it follows that the martix J(&, B) is nonsingular ard in
addition

(3.10) [ J%a, BISC  for h<h,.

Let 2u,={(@, B): la—al -+ f—BI S8;=0—] 2—£4] —2—24]} for h<h, provided
h, is sufficiently small, then we have
(3.11) I ](ab ,81)_](012; ,Bz)u§cﬂ(a1; ﬁl)—(aﬂy ﬁz)“
for (ai, 81) and (a, ﬁz)egho-
The inequalities (2.14), (3.10) and (3.11) satisfy all the conditions of Newton-

Kantorovitoch’s theorem (see Rall [8]). Thus the system of nonlinear equations

F(a, B)=0 has one and only one solution (&, §) in the neigbourhood of (&, ,@) SO
that

3.12) Ia, B)—(a, PlI=0(r.

Hence we have

Theorem. In a sufficiently small neigbourhood of the isolated solution (1),
there exists an approximate solution

(3.13) In()=2a;Q,/h—1)
so that
g™ —zf™(=0*, (m=0,1), (h—0).

§ 4. Numerical Illustrations

We now illustrate the usefulness of the method of this paper by applying it
to the following two-point boundary value problems of the form (1.1).

Example 1. x”=100x, x(0)=x1)=1 with the solution
£()=cosh (10¢t—5)/cosh 5.
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Example 2. x"=Q2/t)x—1/t, x(2)=x3)=0, with the solution x{t)=
(19t—>5t2—36/t)/38.

Example 3. x”=[e**+(x")?1/2, x(0)—x’(0)=1, x(1)+x'(1)=—05—In 2, with
the exact solution %{#)=—1n(1+1).

Example 4. x"=(x+tx")/1+1), x(0)—2x'(0)=—1, x(1)+2x’(1)=3e, with the
exact solution %()=e".

All the computations were performed in double precision arithmetic in order
to keep the rounding errors to a minimum.

We solved all the four examples with different step-sizes h=2"™, m=1, 2,
-, 5. In Table 1, we display the computed solution of Example 1 with 4=1/32
for 0=t=1/2, for the solution of this problem is symetrical about the line t=1/2.
In Table 2, we list the observed maximum errors for 0<¢t<1. The entries of
Table 2 do confirm that our numerical procedure is an O(h?)-convergent process.
For example the observed maximum errors for Example 4 with A=1/16 and
h=1/32 are 0.25359x10-%, and 0.63404 < 10-* respectively. Thus, on reducing the
step-size from ~£=1/16 to 1/32, the maximum absolute error is reduced approxi-
mately by a factor of 1/4.

We remark that by using Richardson’s extrapolation technique the accuracy
of our computed solution can be improved at mesh points. The extrapolated
solution {[4Xn/s(t;)—%n(:)]1/3, i=0(1)n} will in fact be O(h*)-convergent.

Table 1 (Example 1: e;=|%(ts) —%n(t:) | x 10%, h=1/32)

1 /16 2/16  3/16  4/16 5/16 6/16 7/16  8/16
e; 0.471 0.740 0.596 0.430 0.297 0.205 0.155 0.138

Table 2
Observed max. errors
h Example 1 Example 2 Example 3 Example 4
1/2 0.218-0 0.297-3 0.660-2 0.161-1
1/4 0.499-1 0.793-4 0.171-2 0.405-2
1/8 0.140-1 0.206-4 0.432-3 0.101-2
1/16 0.306-2 0.520-5 0.108-3 0.254-3

1/32 0.758-3 0.130-5 0.271-4 0.634-4
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(1]
[2]
(3]
[4]
[5]
[6]

[71]
[8]
L9]
(10]
[11]
[12]

Table 3

Observed errors based on h2-extrapolation at t=1/2.

h Example 1 Example 2 Example 3 Example 4

1/2

14 0.677-1 0.670-5 0.299-4 0.121-3

18 0.522-3 0.456-6 0.196-5 0.760-5
116 0.607-4 0.299-7 0.124-6 0.477-6

0.413-5 0.188-8 0.777-8 0.298-7
1/32
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