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On the Moduli Space of Anti-Self-Dual Yang-Mills
Connections on Kahler Surfaces

By

Mitsuhiro ITOH*

§0. Introduction and Main Theorems

The purpose of this paper is to give a complete proof of the result announced
in [7]. In fact in this paper we discuss the dimension of moduli space con-
sisting of anti-self-dual solutions of Yang-Mills equation in the case where the
base space is Kahler and we obtain the dimension formula which is similar to
the case of moduli space of self-dual solutions over a self-dual base space, given
by Atiyah, Hitchin and Singer [2]. Further we get on a compact Kahler sur-
face a suggestive observation that the moduli space of anti-self-dual Yang-Mills
connections may have a close relation to moduli space of holomorphic vector
bundles.

Yang-Mills connections, namely, solutions to Yang-Mills equation have origi-
nated from field theory in physics ([12]). Yang-Mills equation is considered as
a generalization of Maxwell equation from a viewpoint of non-abelian gauge
group. Mathematically, Yang-Mills connections are formulated by the aid of
notions of connections on a principal fibre bundle.

Let P be a principal bundle over a compact oriented Riemannian 4-manifold
M with a compact semi-simple Lie group G. Let E be an associated complex
vector bundle. A functional ^M is defined over the space CE,G consisting of
all G-connections on E by ^5^(7)=(1/2) H^7!!2 for the curvature form R^ of 7.
The Euler-Lagrangian equation of the functional is written by dv(^7)—0. A
G-connection which gives a solution to this equation is called a Yang-Mills G-
connection. From Bianchi's identity an (anti-)self-dual G-connection which
satisfies that *R^=±R^ is a special Yang-Mills G-connection. If we denote by
J>E,G the set of all (anti-)self-dual G-connections, then the space M%tGt which
is a quotient space of J.E, G, modulo the group of gauge transformations SP repre-
sents moduli space of essentially distinct (anti-)self-dual G-connections.

Now suppose that M is a Kahler surface. Then M admits the canonical
orientation induced from the complex structure of M. With respect to the space
of infinitesimal deformations of anti-self-dual G-connections, that is, the tangent
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space of the moduli space M^,G, we have the following theorem.

Theorem 0.1. Let M be a compact Kahler surface of positive scalar curva-
ture and P a smooth principal bundle with a compact semi-simple Lie group G.
Let E be a complex vector bundle associated with P. Then the space of infinitesimal
deformations of irreducible anti-self-dual G-connections has the dimension

Here QP is the Lie algebra bundle associated with P and g£ is its complexification,
and Ponti(-), % and T are the first Pontrjagin number, the Euler number of M
and the signature of M, respectively,

This theorem is shown by the aid of propositions (Proposition 2.4, Theorem
3.1 and Theorem 4.1) mostly parallel to the proof of Theorem 6.1 in [2]. How-
ever, the fact that an anti-self-dual 2-form is characterized as a form of type
(1,1), orthogonal to the fundamental form Q plays an essential role in proving
our theorem (Lemma 2.1). If we are given an irreducible anti-self-dual G-con-
nection V, then we observe in Proposition 2.4 that the space of infinitesimal
deformations of V preserving anti-self-duality is exactly the first cohomology
group H1 of a certain elliptic complex. That the 0-th cohomology group H°
vanishes follows immediately from the irreducibility of V. Further under the
assumption that M has positive scalar curvature the vanishing theorem of the
second cohomology group Hz is shown by a Bochner type estimate of the
Laplacians associated with the complex in Theorem 3.1. Then the dimension of
the space of infinitesimal deformations is obtained by applying the Atiyah-Singer
index theorem to the complex in the similar manner to the Riemann-Roch-Hirze-
bruch theorem for a holomorphic vector bundle (Theorem 4.1).

If we apply Kuranishi's method to Theorem 0.1 in the same manner as in
the proof of Theorem 6.1 in [2], then we obtain the following.

Theorem 0.2. Under the same assumption as that in Theorem 0.1, the moduli
space <3tt~E,G of irreducible anti-self-dual G-connections has a structure of manifold
of dimension

1

if it is not empty.

Remark 1. Theorem 6.1 in [2] is stated as follows; the moduli space
of irreducible self-dual G-connections over a compact self-dual Riemannian 4-
manifold of positive scalar curvature is either empty or a manifold of dimension

Pont1(gg)--|dimG(%--r).

However in our situation dim ^fj, G over a Kahler surface M with the canonical
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orientation does not necessarily coincide with the above formula, because the
second cohomology group H2 may not vanish, even if M is of positive scalar
curvature.

Remark 2. An oriented Riemannian 4-manifold is called to be (anti-)self-
dual if its Weyl's conformal curvature tensor, regarded as an End (TM)-valued
form, is (anti-)self-dual ([2]). From the result of [6] together with Corollary
14.5 in [11], a compact Kahler surface is self-dual if and only if it is a complex
space form or a ruled surface (i.e., a Pi(C)-bundle over a compact complex
curve) covered by the product of Pi(C) with positive constant curvature c and
the unit disk D1 with constant curvature — c. Therefore, a compact self-dual
Kahler surface of positive scalar curvature is P2(C) of standard metric. The
product ftCOxfW) and a ruled surface F={(z0: zx: za)X(s, t)^P2(C)xP1(C);
sz0—tz!=Q} with standard metrics are examples of simply connected compact
Kahler surfaces of positive scalar curvature, both of which are not self-dual. It
is noticed that any ruled surface admits a Kahler metric of positive scalar cur-
vature ([13]). Our theorem can be applied to these Kahler surfaces.

Suppose that a complex vector bundle E associated with a principal bundle
P over a compact Kahler surface admits an anti-self-dual G-connection V. Then
from Note after Proposition 2.2 in Section 2, E admits a hermitian structure h and
a holomorphic structure / such that V/i=0 and V/=0. Since the curvature form
R*=(RVj) is g-valued 2-form with respect to a G-frame (g<=§u(n), n=rankE),

Ci(E) is represented by (l/(2x<\/^T)) 2 /?7J=0. Then there are topological restric-

tions on E, Ci(E)=0 and c8(£)=(l/2)(cf(JB)—Pont!(£))>0, if V is irreducible.

Proposition 0.3. Let M be a compact Kahler surface and E be a complex
vector bundle associated with a principal bundle P over M with G. // there exists
an irreducible anti-self-dual G-connection V on E, then H°(M; O(E)}=Q with respect
to the holomorphic structure J. And if further E is a bundle of rank 2, defined
over PZ(C), then E is stable as a holomorphic vector bundle.

This proposition is verified as follows. Suppose that the holomorphic vector
bundle E with the holomorphic structure / has a nontrivial global holomorphic
section 0. Since Sg^^j^O (Proposition 2.2), 0 is parallel with respect to V
([8]) and hence it vanishes nowhere. Then the holonomy group is reduced to a
proper closed subgroup of G. This is a contradiction to the irreducibility of V.
Hence we have that H°(M; #(£))=0. The last part of this proposition is shown
by the aid of Lemma 1.2.5, page 165 in [10]. For the definition of a stable
vector bundle, refer to [10].

Remark. The moduli space ME, G of irreducible anti-self-dual S£/(2)-connec-
tions has dimension 2(4n—3) for a complex vector bundle E of rank 2, defined
over P2(C), where d(E)=0 and cz(E) = n. This dimension corresponds to the
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fact that the moduli space of holomorphic vector bundles of rank 2 with Ci—Q,
Cz—n over PZ(C) is a variety of complex dimension 4n— 3 ([4]).

In Section 1 we define a G-connection and its curvature form on a vector
bundle and treat notions of Yang-Mills G-connections and (anti-)self-dual G-
connections. This section also provides a note that is elemental when we
covariantly exterior differentiate on a complex manifold.

In Section 2 we give a characterization of anti-self-dual G-connections over
a Kahler surface and present a proposition which states a relation between infin-
itesimal deformations of anti-self-dual G-connections and the first cohomology
group of a certain elliptic complex.

The vanishing theorems of the 0-th and the second cohomology groups of the
complex are obtained in Section 3 and the index of the complex is calculated in
Section 4.

In the remainder of this paper we devote ourselves to verification of Bochner's
type formulas (Lemmas 3.2 and 3.3) that are key formulas in proving the vanish-
ing theorem of the second cohomology group in Section 3.

For basic references about Yang-Mills G-connections, see [2] and [5], and
for fundamental notions of Kahler manifolds, refer to [9] and [14].

The author is very grateful to Dr. Mulase for helpful conversations, especially
for an advice on the stability condition of vector bundles.

§ 1. Connections and Curvature Forms on a Vector Bundle

Let M be a compact oriented Riemannian manifold and P a smooth principal
bundle over M with a compact semi-simple Lie group G. Then the Lie group
bundle GP and the Lie algebra bundle gP are naturally induced from P by GP=
PxcG and QP=PxAd 9 respectively, where c: G-^AutG is the group conjugation
and Ad is the adjoint representation of G to the Lie algebra g of G. A global
smooth section of GP is called a gauge transformation of Pand F(M; GP\ which
is denoted by QP, is called the group of gauge transformations of P.

A locally faithful representation p of G to GL(n; C) induces a smooth com-
plex vector bundle E—PxpC

n over M. Every s of P over x of M naturally
defines a linear isomorphism of Cn onto the fibre Ex by v-*s-v. Fix a frame
{ei}i<azn of Cn. Then a local smooth section s of P over an open U of M
induces a local frame fallen of E over U given by ti=s-ei} l^i^n. The
frame feli^^ is called a G-frame.

We denote by AP(E] the set of all smooth E-valued p-forms F(M; AP®E}
for £^0.

A connection V on E is a linear differential operator of first order from
A\E) to A\E) which satisfies that V(/0)=d/<g)0+/70 for /eC°°(M) and ̂ EE

Since V^ is represented by ^ti=^jA
7itj for a matrix valued 1-form A*=
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(A7!), the covariant derivative of 0=S*0^« is written by

(1.1) V^^W+S^M^i.
The matrix valued 1-form A7=(A*i) = (£ftA*fl

j
ldxft) is called the connection form

of V with respect to {£j.

Definition 1.1. A connection V on E is called a G-connection if its connec-
tion form A7 takes values in g with respect to any G-frame, where g is identified
with a subalgebra of gl (n; C) through /?.

We denote by CE.G the set of all G-connections on E. Since the difference
of G-connections represents a gP-valued 1-form, CE, G has an affine structure, that
is, CE.G=^°+A1(^P) for a fixed V° of CE,G.

We notice that there is a one-to-one correspondence between CE,G and the
set of all connections in P in the following manner. A connection in P with con-
nection form a) defines a G-connection Vw on E by ^a)ti=^IJ(ps^(f)")itj, l^i^n,
for a local section s of P and a G-frame {^} defined by s ([2]). Conversely,
for any ^J^CE,G we can define a connection in P with connection form a> such
that 7 coincides with V".

We introduce the notion of the irreducibility of a G-connection. A G-con-
nection is called irreducible if its holonomy group is an open subgroup of G
([2]). The set of irreducible G-connections is an open subset of CElG in a cer-
tain topology.

Given a G-connection V we can define a differential operator of first order
dv: AP(E)-*AP+1(E), called the covariant exterior differentiation as follows:

(1.2) d7(Sie*®fi)=24We*+(-l)'S,^A^7
J%

for local p-forms 6\ l^i^n.
An End(£)-valued 2-form #7=(#7J) given by

(1.3) /?7*=<M7j-Sft<A7*A47fc

is called the curvature form of V. Then we have

(1.4) d7'V(0)=S<,,0'*vft

for (j)^A\E\ The similar formula also holds for d of Ap(£), p^l;

(1.5) d7oi7(0)=S,.,0'A/?7fr.

Since ^v takes values in g locally and is transformed in the form of the
adjoint representation of G with respect to a transformation of G-frames, R"7 is
regarded as a gP-valued 2-form, that is, J?ve^42(gP).

The bundle gP is identified with a subbundle of End(E) through p. We
introduce a connection on gp by the aid of V in the following natural manner;

(1.6) (7(P)(^)=V((P(^))-(P(7#)

for @^AQ($p) and 6^A°(E}. Then for 0= S 0^(g)^eA0(gP) (^ is the dual of
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tj) V$ is written locally by

(1-7)

Introduce a bilinear mapping [ -A-] : Ap(QP)xAq(QP)-+Ap+q(QP) by

(1.8)

If we set p=q=Q, then [$/\W] represents the ordinary bracket product [<P, f]
of matrices 0 and ?F. Then the covariant exterior differentiation cF : AP(QP)-+
AP+I(QP} has the following expression;

(1.9) (d*0)j=d(0j)+(-l)pL0/\A7~]j

for 0e=A*(uP).
We have the following identities;

(1.10) dv#v=0 (Bianchi's identity)

and

(1.11) dvodv((P) = [(PA/?7], $e;,4%p).

These are easily verified by the aid of the formula R*=dA7— (1/2)DA7A.47]
together with the following properties of [ -A*] ;

(1.12) [<PA?T] = -(-l)MlT A(P],

(1.13) dl0/\W]=ld0/\¥l+(-l)pl0/\dV]

and

(1.14) [[0AF]A0] + (-lF2+9t[rA@]A(2>]+(-l)5r+pT[0A^]A^

for a local g-valued ^-form 0, a local g-valued g-form W and a local g-valued
r-form 0.

Let 0 be a gP-valued p-form. Then we have the following two local expres-
sions of 0;

(1.15) ^^yrS^.^.-.^

and

(1.16) 0 =-Si.j2 / .1^2 , . ,Ai

for g-valued local functions 0f,r,./Jlp and local functions ^r../*pj> which are skew
symmetric with respect to /*i, • • • , ^p. In the following we use a suitable expres-
sion as occasion requires.

For a G-connection V we define a linear differential operator from
P p+i

F(M\ ®T*M®gP) to F(M; ® T*M(g)gP), for which we use the same symbol
V, by

(1.17) ^0=^^^...^^^..
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for 0=^f,1,...,fjip0fjll...fjlpdxfl1® '" (g)dxVp<=r(M', (g) T*M®gP). For any gp-valued
£-form 0=(l/p l)^lf,1,...,ap0f,r.,^pdxfilA ••• /\dx^p (0^...^ is skew symmetric with
respect to indices fjilf • • • , //p) rfv$ is written by the aid of the covariant differ-
entiation V by

(1.18)

We set [7 ,̂ VJCP^...^ =7^7,,$^...^ —7y7A£(PA£l.../, for 0^F(M] ® T*M®QP)
and we represent the curvature form T?7 locally by R ^ = ( l / 2 } ^ f J [ , v R ^ f j [ v d x f * / \ d x v ,
R"7

fiv=-R"r
Vf,=(3/dx^A7

v-(d/dxv)A^f,-lA'7fl) A^v~]. Then we obtain the Ricci
formula which will be used in proving a Bochner's type formula in Section 5;

(1.19) [7 , 7J$ ... j =[^^ ...fi , R^ftvl •

On each AP(QP) we define an inner product by the aid of Hodge star operator
* as follows;

(1.20) <0,¥yM= — \Tr(0/\*W), 0,

Since the trace operator Tr A-B on ol(?z ; C) is adjoint invariant and its restric-
tion to g is negative definite, the above global inner product is well defined.

A functional ^M on CE,G defined by

(1-21)

is called Yang-Mills functional.

Definition 1.2. A G-connection is called a Yang-Mills G-connection if it
gives a critical point of

We see that a G-connection is a Yang-Mills connection if and only if it
satisfies a quasi-linear elliptic differential equation of second order ([5]) rfv(*j?v)
=0.

The gauge group QP operates on CE,G as /(V)=/~1°V°/ for f^GP and Ve
CE.G- Then the connection form ^4/(V) and the curvature form J?/(V) of /(V)
are given by

(1.22)

Hence, y^i is ^-invariant and for every / of QP /(V) is a Yang-Mills G-con-
nection if so is V.

In the following, G-connections are identified from the viewpoint of physical
meaning if they are transformed by gauge transformations.
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Now suppose that M is real four dimensional. Since * operates on the 2-
form bundle A2 and satisfies *°*=id, A2 splits into A2=A+JrA- with eigenspaces
A± corresponding to eigenvalues ±1. We extend the operation of * on A2(g)Qp.
Then #7 splits into R*=Rl+RI, Rl^F(M] Al®^}.

The notion of the (anti-)self-duality of a G-connection is given by

Definition 1.3. A G-connection 7 is called (anti-)self-dual if R* satisfies that

(1.23) R*=Q (Rl=Q) ,

respectively.

We see that from Bianchi's identity (1.10) an (anti-)self-dual G-connection
is a Yang-Mills G-connection. Since the first Pontrjagin number Ponti(E) is

given by -(l/4x2) Tr (/?7A/?7) = (l/47r8)(||^J||i-U^||Sf) from the Chern-Weil
J M

theorem and Vc3«(V)=(l/2)(||/??||if+||/?7||if), we see that ^^(V)^27r2|Pont1(£)!
for all y^CE,o and the equality holds if and only if V is (anti-)self-dual. If the
bundle E admits an (anti-)self-dual G-connection, then Ponti(£) must be non-
negative (non-positive).

Let M be a compact complex surface with a Hermitian metric g=
t£Eifji,vgiivdzl*'dzv. We use the following notation for the complex surface M.
We let Ak

c and Ap>q denote the complexification of the &-form bundle Ak and
the bundle consisting of complex forms of type (p, q), respectively. And by Ak

c

and Ap-q we denote F(M; Ak
c) and F(M; Ap>q), respectively. Moreover, for a

complex vector bundle F F(M; Ak
c®F) and F(M; Ap-q®F] are denoted by Ak

c(F]
and Ap-q(F), respectively. Then we see that Ak

c=*EP+q=kA
p>q, Ak

c=^p+q=kA
p'q

and Ak
c(F)=2P+q=kA

p'q(F).
Let QC be the complexification of g and — the conjugation on gc with respect

to Q. Then the complexification of real bundle QP coincides with PxAdQ
c which

we denote by Q?. By the aid of the conjugation — on gc together with the
natural conjugation — on Ak

c we define the conjugation — on Ak
c®§% such that

$sEAq'p®$% for 0e^'9(g)g£. Notice that a g?-valued &-form 0 takes vaues in
gp if and only if $ = 0.

For a G-connection V the covariant derivative V0 of $e/L£(g£) belongs to
^c(flp)=^1>0(Q?)+^0'1(lJ?). We denote by V+0 and 7-(P (1, 0)-part and (0, 1)-
part of 70, respectively. Moreover, Jv splits into dv=37+57 on Ap'q($£) as
follows ;
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The operators 37 and 3V have the following expressions;

(1.24)

for (P = Si.^i^i®^eJA
p-«(gg), where A*+ and A*~ are (l,0)-part and (0, l)-part

of the connection form ^Lv, respectively.

§ 2. Deformations of Anti-Self-Dual Connections

In this section we shall discuss the space of infinitesimal deformations of
irreducible anti-self-dual G-connections and we shall show that this space is
nothing but the first cohomology group H1 of an elliptic complex associated with
a fixed irreducible anti-self-dual G-connection (Proposition 2.4).

First we show a proposition which characterizes an anti-self-dual G-connec-
tion. Before proving this proposition we need a key lemma which gives a
characterization of an (anti-)self-dual form in terms of complex forms of type

(P, ?)•
We fix an orientation on M induced from the complex structure of M.
An inner product <•, •> induced from g on the cotangent space T*M=AL

at x is given by the aid of a local holomorphic coordinate {z^}^=i,2 as follows;

for 0=^/t(ffftdzlt+atldzft\ T=^fl(Tfldzft+Tftdzft)GAx, where (g^(x)) denotes the
inverse matrix of (g^x)). We choose a suitable local holomorphic coordinate
{z1=x1+*/^-i x2, z2=xs+<\/~^l x*} around x such that g^(x}=dfjtv. Then we
have that (dx?, dx»>=(l/2)df"' for real 1-forms dx?, l^/^4.

Since the orientation is given by {dxl, •••, dx*}, we see that the following
2-forms constitute a basis of A\ at x;

(2.2)

Because the fundamental form Q = ^ / — l ^ f t , v g f J l v d z f l A d z v
f associated to g is

reduced to Q=^/'^I(dz1/\dz1Jrdz2/\dzz) at x, it is observed from (2.2) that these
2-forms are written by fi+fi + aQ for a form of type (2,0) /3 and a real a.
Similarly we see that the following 2-forms which give a basis of A- at x are
forms of type (1,1), orthogonal to Q;
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(2.3)

Here the inner product <•, •> on Aii1={a^A1>1, a— a} is given at x by

(2.3) <a, ry = ^^,,r,sg^)gv'£(x)a^T^=^^,(x^r^

for a=S^i^^Ad£y and r=S^,y?>^AG^y of A1^1 at *.
Since that a form is of type (p, q) is free of holomorphic local coordinates,

we obtain the following

Lemma 2.1 ([2]). (i) A real 2- form a is self -dual if and only if a is writ-
ten by a=a2'0jraz-QjraQ for a form of type (2, 0) a and a real number a, and

(ii) a real 2- form a is anti-self-dual if and only if a is a real form of type
(1, 1), orthogonal to Q.

Remark, (i) Because ||fl||2 —2, Q is a nowhere vanishing section of A^1.
Then from this lemma the complexification of Al is represented by (A%)c=
K@K@CQ as a Whitney sum, where K and K are the canonical line bundle of
M and its conjugate bundle, respectively.

(ii) The complexification (A-)c of Al consists of primitive forms of type
(1,1). Here a form a is primitive if a satisfies £?A*a=0 ([9] and [14]).

We extend <•, •> on A^1 to a bilinear mapping <•, •>: A^^QpX A^-^Qp.
Then as an immediate consequence of Lemma 2.1, we have

Proposition 2.2. A G-connection V z's anti-self-dual if and only if R^ is a
QP-valued form of type (1, 1), orthogonal to Q, that is, R"7 belongs to A1-1^)
and satisfies that ~W*=R* and <#v, fi>=0.

Since R"7 of an anti-self-dual G-connection V is a form of type (1, 1), the
following is derived from (1.11) for 0^Ap'q($p);

(2.4) d*»d*®=Q, av°3v0-0 and (9

Note. Since the image of G by p in GL(n, C] is a compact subgroup of
SU(ri) for a certain frame {e-i} of Cn, E admits a Hermitian structure h induced
from the G-structure. The structure h is preserved by all Ve^,G. If a G-
connection 7 is anti-self-dual, then from Theorem 5.1 in [2] V induces a holo-
morphic structure / on E such that 7 is a unique holomorphic Hermitian con-
nection, that is, V/2=0 and V/=0.

Now suppose that V* (\t\<e) is a one-parameter family of anti-self-dual G-
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connections on E with V0;=V. Since the infinitesimal deformation B=(
of Ve at t=Q defines an element of AI(QP), it follows from (1.9) that the curva-
ture form R^^dA^-A^'AA^ is reduced to

(2.5) R^=R7+td"B+o(t)

for a Qp-valued 2-form 0(0 of small order with respect to t.

Since B splits into B = B++B^ for B+eA1'0^), d*7B=d*B++(d^Rr-i-^B+)
+. Then from Proposition 2.2 the infinitesimal deformation B satisfies that

(2.6) 9V5+=0, 5*£F=Q and Ov

We define dj from ^(QP) to AJ(gP)=r(M; ^|(g)9p), which is well defined
from Remark (i) of Lemma 2.1, by

(2.7)

for B+eA1-0^). Then we obtain the following

Proposition 2.30 /I §P-valued 1-form B gives an infinitesimal deformation of
an anti-self-dual G-connection V preserving anti-self-duality if and only if B
belongs to Ker dj.

Now we let ft ( \t \ < e) be a one-parameter family of gauge transformations
of P with f ^identity. Then the differential of ft at f=0, f=(d/df)ft\t=o, gives
a smooth section of gP, that is, /eA°(gP). Notice that conversely every smooth
section / of gP induces a one-parameter subgroup /2=exp (tf) of £F. By (1.22) the
connection form A /^ ( V ) of G-connection /£(V) satisfies Aft^ = dft-(ft} ~*+ A d (/£) A

7.
Since ft=id+tf+o(t\ it follows that A/icV)=Av+^V/+o(0, that is, V/ gives an
infinitesimal deformation of V. Because /{(V) is anti-self-dual, we see from Prop-
osition 2.3 that V/ is in Ker dj.

Proposition 2.4. The space of infinitesimal deformations of an anti-self-dual
G-connection V preserving anti-self-duality, that is, the tangent space of ME,G at
V coincides with the first cohomology group H1—Ker d+/Im V of elliptic complex

Proof. In order to verify that (2.8) is elliptic we show that the symbol
sequence of (2.8) is exact ([!]).

By the aid of (1.24) and (2.7), the symbol sequence extended to the complex
numbers C is

where p is the projection of T*M\{0} to M, a(d) and ff(d+) are the principal
symbols of the following elliptic complex associated to M;
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(2.10) 0 — > A*c -^ A>c ̂  (Afic=r(M; (A$c) — > 0 .

Here d is the exterior differentiation and d+ is defined by d+(r++r~)=9r++
<3z-++dr-, QyQ+dr- for r+e^1-0 and r'e^l0'1. Thus the exactness of (2.9) is
an immediate consequence of the ellipticity of (2.10).

§ 3. Vanishing Theorem

We set JD
CO) = dC O )*od ( 0 ) , Dw = d^**dw + d^°dw* and D™ = dw*dw* for the

complex (2.8). Since (2.8) is elliptic, each D^ is an elliptic operator and each
i-th cohomology group #*=Ker d(i Vim d'*'1' is isomorphic to KerD^, /=0, 1
and 2. Here d^* is the formal adjoint operator of dci) with respect to the inner
products <, • ,>3f given at (1.20).

From the Atiyah-Singer index theorem the index h°—hljrh2 (hi—&mHi,
z=0, 1, 2) can be represented in terms of the characteristic classes of M and the
Lie algebra bundle $P. Therefore to obtain the dimension of the space of in-
finitesimal deformations of an irreducible anti-self-dual G-connection V it suffices
to estimate h° and h2.

Since V is irreducible, it is easily verified that h°=0 in the following manner.
Assume that 0e^°(gP) satisfies Dc°>0=0. Then we see that ||7<P||Sf=<£CO)<P, 0yM

=Q, that is, 0 is parallel. Hence 0 commutes with the holonomy group of V,
which is an open subgroup of G. That (5=0 follows from the semi-simplicity
of G.

Now we suppose that M is a Kahler surface. Then we have the following
vanishing theorem.

Theorem 3.1. Let M be a compact Kahler surface with a Kahler metric g
of positive scalar curvature. Then h2=Q for each irreducible anti-self-dual G-
connection V.

This theorem is verified by the aid of the following key lemmas, whose
proof will be shown in Sections.

Lemma 3.2. For a ^-valued 2-form of type (1, 1) 0<g)<P
(0<8)<P) is written by

(3.1) d

Lemma 3.3. Every ^valued 2-form of type (2, 0) 0=(l/2)mtt.v0ftvdz't/\dzv

= — 0Vp} satisfies that

(3.2)

Here 3V* is the formal adjoint of 37 with respect to inner products <•, •>#
on ^4p>0(gp), p = l, 2 given at (3.4) later and p is the scalar curvature of the
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metric g. And we denote by V the sum of the Levi-civita Connection D on AP'Q

and V on F(M; gg), that is, the co variant derivative V^ is given for example by

(3.3) V^=£

by the aid of the Christoffel symbols F£v of D and the coefficients A*+ of A7.

Note. From Lemma 3.2, dl°dl*(Q®@) is again a form of type (1, 1) for
any ®$.

Before proving Theorem 3.1, we give integral expressions of the global inner
products <•, ->jf on A\^p) and A+($P) by introducing inner products <•, •># on

), p = l,2. We define the inner products <-, •>* on AP'°(Q%) by
(•

(<pp'° T[rp'ayM=\
J j

(3.4) _i

<^.>iVP.>> = — ^..^pg

for

where di; is the volume element induced from g. By the aid of (3.4) the inner
products <•, ->jf on AI(QP) and Al($P) are written by

(3.5)
«P1, ?F1>

for 01=01++"0IT and Wl=Wl++W (01+, y^eA1-0^?)) and

(3.6)
<^2, r2>

for flp-valued self-dual 2-forms (P2=^2-0+0^~0+^(8)C5() and ¥Z=

Proof of Theorem 3.1. Let ¥=¥2'°+¥^+ti®¥° (¥2'0^A2'Q(^} ¥Q^
A°(QP}) satisfies that D™ W=Q. If we take the inner product of D™¥ and

*, then we have

where we used the fact that dl° dl* (Q®WQ] is of type (1,1) and that (l,0)-part
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of dl*¥2'° is 3V*F2'°, and also (2.7).

Since Mis complex two dimensional, dW2-°^A*'°(&)={Q} and also
t=A°'*(Q$)={Q}. It follows that

(3.7) Q=((d*°d**+d***d^¥2'°, ¥z'Qy+<(d*°dv*+d**°d^¥*76, f^°> .
Because 37

0av*+av*oa7^(9vo9v*. |_9v*o9v)-? the above is reduced to

(3.8) 0-Re <(97-av*+97*«97)?P'0, y^ .

We apply Lemma 3.3 to (3.8). Then we see that

(3.9) 0-Re s a i / J l A l i gP9g*g*P Tr
I V. £7, T

-- Ziy ppa prt n Tr W2'o Zj/i, v, G,T& £ P *• * * ft

The second term of (3.9) is reduced to p(¥z'Q, F2>0>, which is a real number.
Integrate (3.9) over M and use Stokes' lemma. Then we have the following

Bochner type formula ;

(3.10) o=<v+F2'°, v+r2-0)^ +\
J M

Since the scalar curvature p is positive, it follows that ?F2'°=0. If we now apply
Lemma 3.2 to W=Q®WQ, then

(3.11) 0

We integrate (3.11) over M and use the formula (d*°dW°)^=Vfit¥0. Then we
have that

that is, vr^V+^+V+F^O. That F°=0 follows by the aid of the same argu-
ment as one in the proof of h°=0. Thus the theorem is proved.

§ 4. The Index of the Complex

Since the symbol sequence (2.9) of the complex (2.8) is given by the symbol
sequence of (2.10) being tensored with id on g£, the index of (2.8) can be cal-
culated by the aid of Proposition 2.17 in [3] as follows ;

(4.D A._ Ai+ A'= .cKM{ch(Ato
e(l M)

here e(TM) is the Euler class of M, ch(F) and £T(F) are the Chern character
and the Todd class of a complex vector bundle F, respectively.

Theorem 4.1. The index of (2.8) is equal to
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(4.2) Pont1(fl?) + -^ dim G(%+r) .

Proof. We suppose that the first Chern class GI of the holomorphic tangent
bundle T^M splits into c1(T

1-°M) = ,t1+x2. Then we see that e(TM}=x,x2,
ch(Ati=exi+ex*+e-xi+e-x2 and ch(A^c=i+e^+x^+e'^+x^. The last formula
is derived from Remark (i) of Lemma 2.1. If we apply the Todd class formula ;

to the right-hand side of (4.1), then the index is reduced to

(4.3)

=Pont1(g£) + — dim G(cfM+c2M)[M] .
6

Then (4.1) is obtained, if we apply X+r=(l/3)(cfM+c2M)[M] to (4.3).

Remark. In the case of g=§u(2) we have ([2])

(4.4) Pont1(fl?)=4Pont1(E)

for the canonically induced complex vector bundle E of rank 2. This is derived

in the following manner. Because <jl(2, C)=§I(2, C)®cf A we have that

&@1=E*®E for the dual £* of E. If we take the Chern character of both
sides, then

(4.5)

hence, Pont1(fl?)=2(c?(E)-4c2(E))[M]=4 Ponti(E)-2c!CE)[M:|. Since the cur-
vature form of an S £7 (2) -connection on E is traceless, Ci(E)=Q from the Chern-
Weil theorem. Hence (4.4) is obtained.

§ 5. Proof of Lemmas 3.2 and 3.3

Lemmas 3.2 and 3.3, which were used to estimate /i2=0 in Section 3, are
obtained by consequences of formula (3.10) in [5] which concerns with Bochner's
type formula of the Laplacian of dv. In this section we deduce these lemmas
by the aid of classical method in differential geometry.

Proof of Lemma 3.2. We show first that d^*(Q®$} has the following
expression ;

(5.1)

This is derived from the following consideration. By its definition dl*
satisfies that <d?*(fi(g)(P), WyM=<Q®0, dl¥yM for any gp-valued 1-form W=
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. Since (l,l)-part of dW is £(S)<37r++971F, Q> =
-V^)}, the global inner product is given by

(5.2)

If we use Stokes' lemma ; 0=4 ^ptVDii{gvfiTT0'¥1}dvf then we have that
J M

(5.3) f Tr0-(SgvfiDfi¥v)dv=-(
JM jM

By using this formula together with Tr #•[?%, ^T] = -Tr [<P, ~A3+l'Wtt, we
obtain the following

(5.4) <fi<g)<P, rf?r>^=:<2V=I(3v^-3v0), r>M ,

from which (5.1) follows. Then it follows from (5.1) that dZ°dZ*(Q®@)=
2V^l{97°3v^+-G®<avo9v^-3vo3v(|), j2>-3vo3v0}. Now apply (2.4) to this.
Then we have that

(5.5) d

F®, Qy
for the curvature form #v. Since <[(PAJ?7], -Q> = [CP, <#7, fl>]=0, (5.5) is
reduced to -4VII

o/ Lem?nfl 3.3. The operations of 97 on (Pe^-^gg) and
are given as follows ;

37*=ySp.vOv*

Ov(P)^v=^<Pv-^
and

3^=^-S ,,V,a(^W} ,
(5.7) ^!

(9 v?r)//yff= cyclic summation of ^1 ̂ Fva .

We have the following for the operations of 9V* by the aid of (5.6) and (5.7);

(5.8)

for ?P"eA2'°(e?) and

(5.9)

for 0eE,43>0(g?).
Therefore we see that for
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and

hence we have

(5.10) 0

By using the formula (1.19), we express the right hand side in terms of the
curvatures of the Levi-Civita connection and the anti-self-dual G-connection V.
Then (5.10) is equal to

By the aid of the Rcici curvature tensor R&p of g given by Reft
=^Ljgfl"R&pvft, we can reduce the terms including the components of R to
— 2 ££?(#f /£$£*— Rfv$et*)- Notice that the components RB^a of R are defined by
ID,, D^a=^£R

s^E (see [9]).
Now we assume finally that M is complex two dimensional. Then, under

the assumption that gap=8ap at a fixed point x, the above quantity is reduced
to —(Rii+Rz2)@ftv Since the scalar curvature p is given by p = — 2^ga^R^a,
this is equal to (1/2) p^^.

The terms including J^v are also reduced to, under the same assumption that

gap=dap at x,

-S«([0aW R\i]-l®a,, R\J)>

Since it vanishes for fji=u, it suffices to consider only the case of //=! and v=2.
It is reduced in this case to — [$12, R* ii+ R7 22"], which vanishes from Proposi-
tion 2.2. Thus, the lemma is obtained by the above argument.

Note. The essential point that M is Kahler is that the curvature tensor R
of D is an End(TM)-valued form of type (1,1).
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