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On Essential Selfadjointness, Distinguished
Selfadjoint Extension and Essential Spectrum of
Dirac Operators with Matrix Valued Potentials

By

Masaharu ARAI*

§ 1. Introduction

The Dirac operator with a 4x4 symmetric (i.e. Hermitian symmetric) matrix
valued measurable potential Q(x) is given by

(1.1) H= |j ajpj+p+Q(x) (*e/Z»),
j— i

where pj=—id/dxj (i= V^l), and ajf fi=a4 are 4x4 constant symmetric matrices
satisfying the anti-commutation relations

(1.2) ajak+akaj=2djkl (/, fe = l, 2, 3, 4).

We denote by HQ the operator H with
We denote by < , > and | | the usual inner product and norm in C4, respectively,

and by ( , ) and || || the inner product and norm in the Hilbert space «#=[L2CR8)II4,
respectively. We also denote by | | and || || the operator norm of a 4x4 matrix
and a bounded linear operator in «#, respectively. We denote by / the 4x4
identity matrix, which at times implies the 2x2 identity matrix, but no confusion
will occur. For a closable operator T in JC, we denote by T its closure. For
an (formal) operator T, we denote by T the restriction of T to the domain

(1.3) ^

except L(k) defined in Section 2. It is evident that the operator H is symmetric
in M if

(1.4) \QM\^L2AOC(RS\0).

We shall consider the following problems with special emphasis on (P. 1) and
(P. 4).
(P. 1) Is H essentially selfad joint ?
(P. 2) If (P. 1) is affirmatively answered, dose the domain of the unique self-
adjoint extension of H coincide with that of H0 ? If this is true we have
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(1.5) ^(#)=,0(#o)=the Sobolev space [H1]4.

(P. 3) If (P. 1) is negatively answered, does H has any selfadjoint extension ?
(P. 4) If (P. 3) is affirmatively answered, can we select a selfadjoint extension
which has a certain clear physical meaning among selfadjoint extensions of H ?
(This extension will be called distinguished after Schmincke [14], Wiist [18]
[19] and Nenciu [9].)
(P. 5) Does the essential spectrum of the unique selfadjoint extension or the
distinguished selfadjoint extension, if any, coincide with that of H0 ?

Remark 1.1. One may consider, instead of H, the restriction H to 3)—
[CS°Cff3)]4, which will be denoted by H for the time being. Even if we replace
H by H in the above problems, nothing new will occur if

(1.4)' IQW|eL2 , locCR3),

which will be assumed throughout this paper. Indeed, under the assumption
(1.4)', the operators H and H are symmetric in M and their closures coincide
with each other. In order to prove this, it is sufficient to prove He//. The
rest is obvious. Let ^ be a real valued C°° function in R5, which vanishes in
U|^l and equals 1 in \x\^2. Put 0e(;0=0(*/e). Let ̂ e£). ^e5) tends
strongly to <p in M as e I 0.

-i- £ aj-jp-We
£ j—l u X j

The c^-norm of the first term in the right hand side of the above equation is
of order e1/2, since <p is bounded, so that it vanishes as e ! 0. The second term
tends to fi<J), which yields HdH.

Let us sketch some results already known and what our main interests are
In connection with (P. 1). At first we note that only the local behavior of Q(x)
affects (P. 1):

Lemma 1.2 (Chernoff [3]). Assume that for any y ei?3, there exists a potential
Qy('}^L2,ioc such that Q(x}—Qy(x) in some neighborhood of y and that H^+Qy
is essentially selfadjoint. Then H—HQ+Q is also essentially selfadjoint.

Thus our consideration will be concentrated on the local singularities of
Q(x). But if the singularities are so weak that for any constant c>0 there
exists a constant b such that

(1.6) ||0M||^fl||ff0M||+&IMI for any ut=&,

then we can apply the following well-known theorem with T0=H0 and V=Q to
see that (P. 1) and (P. 2) are affirmatively answered. (As to sufficient conditions
for (1.6) see [2; §2.])
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Lemma 1.3 (Kato [5] ; Theorems 4.4 and 4.6 in Chap. V). Let TQ be an
essentially self adjoint operator and V be a symmetric operator such that ^)(T0)C
3)(V). Put T=T0+V.

(1) Assume that there exist positive constants a and b such that a^l and

(1.7) \\Vu\\^a\\T0u\\+b\\u\\ for any

Then T is essentially self adjoint.
(2) // in addition a<l, then

Let Q(x)=r~al (r=(S */)1/2, <*'• positive constant). Then each sufficient

condition for (1.6) listed up in [2] requires the same condition a<l. Thus the
simplest case to be considered next is

(1.8) Q(x}=—I (e: constant).

Kato ([5]; p. 307) shows that H is essentially self adjoint if M^l/2, using the
well-known inequality

a.9) du
( V w c

r* Jj~i

and Lemma 1.3. Since this result is based on (1.7) and (1.9), we can easily extend
to the case when the potential Q(x) is matrix valued, that is, we have if

(1.10) supri

then H is essentially self adjoint. Moreover, if e<l/2, then (1.5) holds.
Now we return to the case (1.8). Weidmann [17] (see also Rellich [10] [11])

shows by separating out the angular variables that H is essentially selfadjoint if
and only if M^V3/2. The "if part" of this assertion is extended to the case
of a scalar potential

(1.11) Q(x)=q(x)I

by Schmincke [13], who shows that the assumption

(1.12) su

implies the essential selfadjointness of H and (1.5). (Strictly speaking, his assump-
tion is more general than (1.12) and he does not state explicitly (1.5).)

Since Kato's result is extended to the case of matrix potentials, and Rellich-
Weidmann's to the case of a scalar potential (1.11) as above, one might expect
that, also in the case of matrix potentials, the assumption sup r Q(x)\<V3/2

X

is sufficient for H to be essentially selfadjoint. But this is not true. On the
contrary, Arai [1] showed that the number 1/2 in the assumption (1.10) is best
possible in the following sense.

Theorem 1.4. For any constant e>l/2, there exists a matrix valued potential
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Q(x) with

(1.13) \QW\=e/r

such that H is not essentially self adjoint and H has self adjoint extensions.

This will be re-proved in Section 2.

Remark 1.5. It is also true that for any g^O there exists a potential Q(x)
satisfying (1.13) such that H is essentially selfadjoint. This is easy to see by
putting Q^O and g=elogr in the next lemma.

Lemma 1.6. Let g(x] be a real valued C°° function in R3\0. The operator
H with the potential Q(x) is unitarily equivalent to the operator HI with the

dg
potential Qi(x) = Q(x)~- 2 OLJ-^- by means of the unitary operator of multiplica-

3 OXj

tion by exp[— ig(x}~}.

Recently, Arai and Yamada [2] have shown the following result: Put

VW = QW-mr/(2r) (ar= 2 a,*,/r),
j—i

and assume that there exists a constant m0 such that

(1.14) r*V(x)*V(x)^m<><l.

Then H is essentially selfadjoint and (1.15) holds.
Note that in the case of (1.11), (1.14) is reduced to (1.12).
In Section 2, we shall treat a certain class of potentials which allows us to

apply the separation of variables and we shall give a necessary and sufficient
condition for these JTs to be essentially selfadjoint (Theorem 2.7) and the proof
of Theorem 1.4. We shall also consider (P. 3) there (Theorem 2.9). In Section 3,
we shall discuss (P. 1) and (P. 2) for more general potentials and generalize the
above mentioned result of Arai- Yamada [2] (Theorem 3.1). In Section 4, we
shall treat (P. 4) and (P. 5) (Theorem 4.1).

§ 2o Separation of Variables

Almost all lemmas stated in this section are well known. Some of them
will be proved here for the sake of completeness.

We define the matrices a( (1=1,2,3) by

(2.1) o'i = —ia3ak (/, k, /) = (!, 2, 3) in the cyclic order.

Then they are symmetric and unitary and satisfy

(a) o'3a
r
k=iari (/, k, /) = (!, 2, 3) in the cyclic order,

(2.2) (b) aX+ai<7;=23JJk ( / , f e = l, 2, 3),

(c) a',p = W 0 = 1,2,3).
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Lemma 2.1. There exists an orthonormal basis of C4 in terms of which ajf

'J and ft are represented as follows:

/O 1 \ /O -* \ / I Ox
aiHl Q> ^ 2 =Vf 0> *3=U -1>

(2.4)

Proof. (1.2) with j—k—^ implies ^2—I so that the eigenvalues of /3 are
±1, whose eigenspaces will be denoted by C7(±). Again, (1.2) implies that a^
maps C(±) onto C(+) bijectively so that dimC(+)=dim(7(—)=2. The eigen-
spaces C(±) reduce a'j by virtue of (2.2-c). We denote by o^ the part of o'j in
C(+). Then (2.2) implies

(a) OjGk—iai (/, k, /) = (!, 2, 3) in cyclic order,
(2.2)'

(b) ^**+<j,aj=23j* (/, ft = l, 2, 3).

The same argument as above shows that the eigenvalues of aB are ±1 and its
eigenspaces are of dimension 1 and are mapped by ai onto each other. Let e^
be a normalized eigenvector of <73 belonging to +1 and e2=0ielf which is a
normalized eigenvector of as belonging to — 1. In this co-ordinate system, the
<j/s are represented as (2.4), where we have used (2.2-a)' to obtain the repre-
sentation of <72 from the others. We define p = — ia^a^a^—p'1, which is symmetric
and unitary, and maps C(±) onto Cf(+). (1.2) and (2.1) imply

(2.5) aj=paj = (jjp .

Put £3=^1 and e±=pez. Then {elf ez, e3, e±] is an orthonormal basis of C74. It
is obvious that ft is represented as in (2.3) and that

(2.6) p=(
\ JL \J f

in terms of this basis. (2.5) and (2.6) yield the representations of aj and a'j in
(2.3), since C(±) reduce aj. H(2.3), since C(±) reduce

We put a=(alf az, a8), x = (xl9 x2, XB), $ = (pi,

(2.7) ar=a-x/r, pr^r-l(x-p-i}

(2.8) L = xXp = (L1} L2, L,)

and

(2.9)

Then Lj commutes with the multiplication operator rX, and K with H0, ar,
pr and rX at least in 4). We regard the Hilbert space M as

(2.10) M=
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where S2 denote the unit sphere in R3 and R+=(Q, oo). Then a, ar, £, o', L
and K can be regarded as operators in the Hilbert space $=C*

Lemma 2.2. T/ze Hilbert space |) can 6e decomposed into an orthogonal direct
sum of two-dimensional spaces $(k, m) (k = ±l, ±2, ••• and m— — k\, —\k\+l,
-, 1*1-1):

(2.11) $= S 0£(*, m)
k, m

such that
( i ) each $(k, m} reduces ar, ft and K,
(ii) K=kX on $(k, m),
(iii) each $(k, m} has an orthonormal basis {(Pc±)(&, m)} consisting of C4-

valued C°° functions on S2, in terms of which ar and ft are represented as

Proof. Let {F(/, m) ; /=0, 1, 2, ••• and m=-/, -/+!, - , /} be the totality
of the spherical harmonic functions, which is a complete orthonormal system of
L2(S

Z), so that we have the decomposition

(2.13) £= S 0 {[C(+)®^(/)]0[C(-)(g) V(/)]} ,
z=o

where C(±) are those defined in the proof of Lemma 2.1, and <y(/) is the linear
hull of {Y(l, m); ??z=— /, — /+!, ••• , /} for each fixed /. We adopt the same
basis as in the proof of Lemma 2.1 for C(±) and C4. The image of the general

element s(^1>m)^W, TTX) in C(+)(g)^(/) by the operator a-L+I is
'

-m) C2, l

, m)

where we used (2.4), the well-known identities

f LiY(l, m}

=cV(/+m+l)( / -m) F(/,z

L,r(/, m)

(/, 77Z-1)]

(2.14)

m)=mY(l, m)

and conventions F(/, m)==0, Ci,m=0 for \m\>L Thus S-L+I restricted to
------ •" f^ an eigenvalue l+l with orthonormal 2/+2 eigenvectors

/V/H-m+1 F(/, m)\
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and the other eigenvalue — / with 21 orthonormal eigenvectors

, m)

For k = ±l, ±2, ••• and m=—\k\, ••• , \k\-l, we put

(2.15) (/>(k,m) = t

' k, m

/9, . , (A>0)
•vLk—\\jh_m_\ v(b—\ w,4-iv

where C^,m are constants with modulus one, which will be determined later.
Then we have

(2.16) (3-L+D<f>(k, m) = k(I>(k, m) .

An elementary calculation shows the anti-commutation relation

0v(5-L+/) = -(5-L+/)<7r (aT=a-x/r\

which implies that ar^(k, m} is a linear combination of<f>(—k, m'} with fixed k.
On the other hand it is shown that the first component of Gr<p(k, m) is an
eigenf unction of L3 belonging to the eigenvalue m, so that we have Gr0(k, m)
— Ck,m(/>(—k, m), where C A , m is a constant with modulus 1. We choose constants
Ck,m in (2.15) so as to yield Ck,m=—i for &>0. Then we have

(2.17) <*T<l>(k, m) = -z(sgn k)<f>(-k, m)

by virtue of ar
2—L We put

/ 0 \
®^(k, m)=\ 0

\(sgnfe)0(-JSf, m)/

and let $(^, m) be the linear hull of 0^(k, m) with fixed k and m. The above
arguments show that the $(k, m)'s satisfy the required properties. H

Now, since

(2.18) a-$ =

we have

(2.19) HQ=ar

which is reduced by M(k, rri)=$(k, iri)®Lz(R+', r2dr) by virtue of Lemma 2.2 (i).
Let Q(x) be a linear combination of /, ar, ft and iarjl with coefficients which
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are functions of r only. Then H is also reduced by &(k,m). But the term
f(r}ar has no influence on (P. 1) by Lemma 1.6. (Let g=g(r) be a primitive
function of /(r).) Our central interest is in the potential Q(x) satisfying (1.13).
Hence we assume

(2.20) Q(x)=—I+^arpb1+-^-b2 (a, bl9 b2: real constants)

in this section. Since we consider (P. 1), we may omit the bounded operator /3
from H and assume

(2.21) H^arpr+^arpK+^ + ̂ arph+^bt.

An element u in M(k, m) can be expressed as

(2.22) u = — fa(r)0w(k, m} + — fa(r}®^(k, m)

and H in this reducing subspace becomes

(2.23)

r , , 2 1-fa H -- - — fa -- - — fa

,
H

a—b2

r r

where we used (2.7), Lemma 2.2(ii) and (2.12). We denote by L(k) the restriction
of L(k) to ^i^[Q°GK+)]2. Each L(k) is a symmetric operator in the Hilbert
space [L2CR+)]2. Since 0^(kf m)eC°°(S2) by Lemma 2.2 (iii), the orthogonal
projection Pk,m onto &(k, m) maps 3) onto the totality of the functions u =

Lemma 2.3. H is essentially self adjoint if and only if all L(k] are essentially
selfadjoint.

Proof. Assume that some L(k) is not essentially selfadjoint. Then there
exists a non-trivial vector </><E[L2CR+)]2 satisfying

(2.24) (L(k}fa <p)=i(<l>, fa for any ^e^ lB

We put v=t/*.OT(0). Let ^e4) and put u=Pk.n$=Uk.n($). Then ^e^. We
have (Hfa v) = (Pk,mH$, v} = (HPk,mfa v) = (L(fe)0, 0)=i(#, $)=i(u, v}=i(Pk,mfa v)
=i(fa v) for any ^e^), which implies that H is not essentially selfadjoint.

Conversely, assume that H is not essentially selfadjoint. Then there exists
a non-trivial vector ^e^f such that

(2.25) (Hfa$}=i(fa$] for any $s=&.

There exists (k, ni) such that v=Pk,m$=Uk.m(<p)=£Q. Let $=Uk.m($), $&&!.
Then (2.25) reduces to (2.24), which shows that this L(k) is not essentially self-
adjoint, m
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As to the operator L(k), the analogue of Weyl's alternative theorem on the
second order differential euqations holds:

Lemma 2.4 ([17]; Satze 1.4 and 1.5, see also [12]). i) Assume that for
some X^C all solutions of the equation

(2.26) L(k)<f>=ty (k: fixed)

satisfy

(2.27)0

Then for any l^C all solutions of (2.26) also satisfy (2.27)0. (In this case we
say that L(k) is in the limit circle case at 0, and otherwise, in the limit point
case at 0.)

i)' The above assertion is also true when the condition (2.27)0 is replaced by

(2.27)oo \~\<p\2dr<oo.

(We define similarly " limit circle case at oo " and " limit point case at oo ".)
ii) For any non-real 2, (2.26) has at least one non-trivial solution satisfying

(2.27)0 and also has at least one non-trivial solution satisfying (2.27)oo.
iii) The operator L ( k ) is essentially self adjoint if and only if L(k) is in the

limit point case at both end points 0 and oo.

Lemma 2.5 (Evans [4]; p. 538, Weidmann [17]; Satz 5.1). L(k) is in the
limit point case at oo.

Combining the above three lemmas, we have

Corollary 2.6. H defined by (2.21) is essentially self adjoint if and only if all
the equations

(2.28) L(k)<j>=Q (k = ±l, ±2, • • • )

have at least one solution which does not satisfy (2.27)0.

Now, let us solve (2.28). We put p = (k+b1)
2-a2+b2

2 and s± =
Direct calculation shows that the following pairs are systems of linearly inde-
pendent solutions of (2.28).

(i) 0=r^~z if p*Q and
s+

( i i ) <j)^r^~p .\ if p^O and
-

, /a—bz\ /(a— Wlog r \ .,
V=(k+b)' b+WIogr -l) lf P=
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Thus, L(&) is in the limit point case at 0 if and only if |ReV^o~|^l/2, which
is equivalent to

(2.29) (&+W2+&2
2^G2-f-l/4.

Summing up, we have

Theorem 2.7. T/ze operator H with Q given by (2.20) is essentially self ad joint
if and only if (2.29) holds for all k = ±l, ±2, ••• .

Let b1=b2=Q in this theorem. Then we have the result of Weidmann [17]
mentioned in Section 1.

Proof of Theorem 1.4. Since (*arj8&i+j9W8=(&i2+&22)/ and ia^b^^ is not
a scalar times / if 6i2+£2

2=£0, the eigenvalues of iarpbi+ f)b2 are ±
Thus Q(x) defined by (2.20) satisfies

Let 62=0, &!=l/2 and a>0. Then r |Q(*)l=fl+l/2 and (2.29) does not hold for
k =—l so that H is not essentially self ad joint by virtue of Theorem 2.7, which
with the next theorem yields the result. m

Now, let us consider (P. 3).

Theorem 2.8. H with Q given by (2.20) has a self adjoint extension.

Proof. Let 4) be the totality of finite linear combinations of Uk,m(<j>) (see
(2.22)) with 0e[q[CR+)]2 and H be the restriction of H to ®. It is obvious that
HdHciH, so that //=//, which implies that H has a self ad joint extension if and
only if H does. We define the operator / by /: Uk,m(0}^Uk,m(<f>)' Then /can
be extended uniquely to a conjugation on M. This conjugation commutes with
H since the coefficients of L(k) are real valued functions so that H has a self-
adjoint extension. H

By the way, let us give a theorem which guarantees the existence of a
selfad joint extension of a certain type of H with Q not necessarily given by
(2.20). For a 4x4 matrix A we denote by A the matrix whose (/, &)-element
is the complex conjugate of the (/, &)-element of A in the remaining part of
this section only. Mimicking Veselic [16] ; Lemma 1, we have

Theorem 2.9. Represent the matrices in terms of the basis in C4 introduced
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in Lemma 2.1. Assume that Q(x) satisfies

(2.30) A(£1} £2, £3)Q(£i*i, £2x2} £sx3) = Q(x1, xz, xz}A(el, ez, eB)

for S07ne £lf £2, £3=±, (£1, £2, £3)=£(+, +, +), w/i0r0 A(elf ez, £3) ere constant
matrices defined by

(2.31)

where GI and c2 are such constants that guarantee the unitarity of As. Then H
has a set fad joint extension.

Proof. (2.3) with (2.4) implies

which with (1.2) shows that each A satisfies

(2.33) A='A.

We define the operator / by /: </>*-> A(ei, e2, es)(f>(eixlt £2x2, £zx3), which is a con-
jugation by virtue of the unitarity of A and (2.33). H—jl commutes with / if

(2.34) A(£1} £2, £3)aj-= — £JaJA(£1, £2} es) O'=l, 2, 3)

and (2.30) hold. The latter is assumed now. We can ascertain one by one that
each A defined by (2.31) satisfies (2.34) using (2.32) and (1.2). This completes
the proof. H

Another proof of Theorem 2.8 using Theorem 2.9. This Q satisfies (2.30) for
any A in (2.31) commuting with ft, since (2.34) implies Aiar(e^x^ £2x2, £3*3) =
iar(xlf x2,

§3. Essential Selfadjointness

Let us consider more general potentials than those in Section 2. Let bi, b2,
and s be real numbers. We put

(3.1) A(bl9bt, s}=A(x;bl)b2, s)

(r=\x\, ar= So^/
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(3.2) V(blt b2, s) = V(x ; ft,, bz, s) = Q(x)-A(x ; blt bt, s) ,

and

(3.3) m(blt bt, s}= Min

where Z is the totality of integers. The condition of Theorem 2.7 is equivalent
to the inequality

1 2 - - -
k<=Z\{0] 4

So, it might be conjectured that the estimate

(3.4) r2V(b1} b2} 0)2^m0
2< Min ,

k<EZ\(0} 4

with some real constants hi, b2 and m0 would imply the essential selfadjointness

of H with the potential Q. It has not yet been proved. (C.f. Corollary 3.2.) Our

main result is

Theorem 3.1. (1) Assume that there exist real numbers b1} b2, s and in0

satisfying the following conditions :

(3.5) ]s] gl/2,

(3.6) m(bl9 b2, s)>0,

(3.7) r2V(b1} b2, s)*V(blf b2, s^?nQ
2<77i(blt b2, s)2.

(Here and in the sequel an inequality including operators is in the sense of

quadratic form on ^)X4).) Then the operator H is essentially self adjoint and the

domain preserving property (1.5) holds.

(2) Assume

(3.6)' m(bl9 b2, 0)>0

and

(3.7)' r2V(x ; bl9 b2, 0)*^m(blf b2, O)2 .

Then H is essentially self adjoint.

Note that the assumptions of this theorem imply that

(3.8) lO

for some constant C1} so that Q(x] satisfies (1.4)'. Before proving this theorem

we will give some applications. First, put bi=b2=Q and s=y. Then (3.5) and

(3.6) are satisfied and (3.7) is nothing but (1.14), so that we have the result of

[2] mentioned in Section 1. Secondly, we can give a partial answer to the

conjecture mentioned above.

Corollary 3.2. Assume that there exist real constants blf b2 and mQ satisfying
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the following conditions :

(i) (&i, W*(&,0)/0r any k^Z\{Q},
(ii) V(bi, bz, 0) commutes with ar,
(iii) (3.4) holds.

Then H is essentially self adjoint and (1.5) holds.

Proof. Let s=-y. Then (3.5) and (3.6) are satisfied by virtue of (i) , and
1

V(blf b2, —)=V(blt b2, 0)--7^-ar implies

by virtue of (ii). Thus (3.4) implies (3.7) with s = -~-, so that we can applyLI
Theorem 3.1(1) to obtain the result. B

Corollary 3.3. (1) Assume that Q(x} = QQ(x) + Q1(x), Q^ satisfying the con-
ditions of Theorem 3.1(1) and QQ being of class Lz,\oc such that for any e>0 and
R>Q there exists a constant C(e, R) such that

(3.9) \\XRQoU\\^e\\H0u\\+C(e, R)\\u\\ (VMed>),

where IR is the characteristic function of the ball {x^R3; \x\^R}. Then H is
essentially selfadjoint. In particular, if C(e, R) does not depend on R, then (1.5)
holds.

N
(2) Assume that Q(x)= S Q3(x — a3], Q0 being as above, each Q3-(x) (l^j^N)

J=Q

satisfying the assumptions of Theorem 3.1(1) and dj being distinct points in RB.
Then H is essentially selfadjoint. If C(e, R) in (3.9) does not depend on R, then
(1.5) holds.

Remark. As to sufficient conditions which guarantee (3.9), see e.g. ([2] ; § 2).

Proof of Corollary 3.3. At first, let us prove (1). Put /f1=//'0+01. Then
Hl is essentially selfadjoint and HQ (H^i)'1 is bounded by virtue of Theorem
3.1(1) and the closed graph theorem. Thus (3.9) implies

(3.10) IIX/zOo

for any

Let £ be so small that one can apply Lemma 1.3 to obtain that
is essentially selfadjoint. Since Qi^L2,iQc as was noted after Theorem 3.1, we
can apply Lemma 1.2 to obtain the first assertion. If C(e, R) does not depend
on R, then (3.10), Lemma 1.3(2) and Theorem 3.1(1) yield (1.5).

Next, let us prove (2). (3.8) which holds for Q,- (1^/^AO implies that
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Qj(x — dj) is bounded outside a neighborhood of ajf Thus the first half is an
immediate consequence of Lemma 1.2 and (1). We can apply Landgren and
Rejto's method [8] to obtain the second assertion. •

Now let us prepare some lemmas to prove Theorem 3.1. We define the
operators HQ± and S±(b1} b2, s) by

(3.11) H0

(3.12) S±(bl9 bz, s)=ff0±+4(&i, b2, s) .

Lemma 3.4. Assume (3.5) and (3.6). Then S±=S±(blf b2, s) satisfy

(3.13) S±*S±^r-*m(blt b2, s)2+(l-4s2) .

// s = ±l/2, we also have

(3.13)' S±*S±^r-2[m2

Proof. Since

by virtue of (2.19), (3.1) and (3.12), their formal adjoint is

where we have used the fact that K commutes with ar and ^, and pr with ar.

Note that pr --- pr—ir~2. Direct calculation shows

(3.14) s±*S±

where we put

Z±^r-^(K+b^B-^}\b^~2ia^(s-^

Let (j)(r] be a real valued smooth function of r>0. Then

2u, u]

so that we have p f ^ f i ' — f i 2 . Put <f*(r) = — — + a, where a is a constant, to
obtain

(3.15) pr
2- --V ̂ ~-a2.

4r2 r

Lemma 2.2 shows that Z± are reduced by each subspace $(k, m) and that they
are represented there by the matrices
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-(l-2s)bzr-2±2isr-1 r

in terms of the basis {$c±:!(&, m}}. The smallest eigenvalue of them is

which is equal to

The last term of this is non-negative by virtue of (3.5). The first term is esti-
mated from below by r~zm(blf bz, s) by virtue of (3.3) and (3.6). Thus, in view
of (3.14) and (3.15), we have

(3.16) S±*S^r-2m(blf b2,

Put fl=2|s| in (3.16) to obtain (3.13). If s = ±~ , adding (3.13) multiplied by
z

1— s and (3.16) with a=0 multiplied by e, we have (3.13)'. B

The following lemma will be used repeatedly,

Lemma 3.5 (Kato [5] ; p. 190 and p. 196). Let T be a closable operator in
M with its closure possessing a bounded inverse. Let B be a closable operator in
M such that 3)(T}c:2)(B} and there exists a constant d (0<3<1) such that

(3.18) \\Bu\\^d\\Tu\\ for any u

Then T+B is also closable, T+B=T+B has a bounded inverse and £>(T + B) =

Lemma 3.6. Let b(, b'z and s' be real numbers such that
(a) they satisfy (3.5) and (3.6) with bl} b2 and s replaced by b(, b'2 and s',

respectively,
(b) S±(b'i, b'2, s') are closable operators with its closure possessing a bounded

inverse,

(c) m(b(, hi, s/)>V(^-&D2+(^-^)2 + |s-s/|. Then S±(b1} bz, s) are also
closable operators with its closure possessing a bounded inverse and it holds that

Proof. By virtue of Lemma 3.5, it sufficies to show (3.18) with T=
S±(b{, b'z, sO and B=A(b1—b(, bz~b'z, s—s'), that is, to show



48 MASAHARU ARAI

(3.19) Afa-bi, b2-b'2) s-s'PAfa-bl, &,-«, s-s'

^3'S±(6{, «, s')*S±(«, W, s')

for some 5<1. The identities

A(E19 52,
and

show that

which with B^bj-b'j (/=1, 2) 3=s—s', (3.13) of Lemma 3.4 and (c) imply (3.19)
for some 5<l. This proves the present lemma. d

Lemma 3.7. Assume (3.5) and (3.6). T/zen S±(bl9 b2, s) are dosable operators
with its closure possessing a bounded inverse and

(3.20)

Proof. Put Z=.R2X[-l/2, +1/2] and induce a metric d on Z by d(P, P')
W)2 + 1 s-s' | for P=(&!, &2, s) and P'=(ftJ, 6J, s'). Let G be

the totality of (bly b2} s)^X satisfying (3.6). G is connected and open in X and
contains the origin (0, 0, 0). For any (blf b2, s)eG, draw a curve G in G from
(0, 0, 0) to (blf b2, s) and put

}= Min m(b'l9 b2j

where 3G denotes the boundary of G in A" (not in J?3). The minimum in the
above exists and is positive since G is compact and m is continuous. The com-
pactness of G implies that there exist finite points P0=(0, 0, 0), P1} ••• , Pj=
(biu\ b2

(j\ sc'}), ••• , PN=(bi, b2, s) on G such that the open balls with centers Pj
and PJ+I and radius d/0/2 have non-void intersection, so that d(PJ9 Pj+i)<dQ^
mW, b2

(j\ sa)) for Q^j^N—1. This means that (c) in Lemma 3.6 with
(61, 61, s7)=(&i ( j>, 6>w, sa)) and (blf b2, s) = (b^+1\ bz

(j+l\ s"'+1>) holds, (a) is obvious
since P,-eCcG. Thus the induction and Lemma 3.6 show that the present
lemma is valid if (b) in Lemma 3.6 with b[=b2= sx=0 holds, which is obvious
since S±(0, 0, Q}=HQ—/3±i and HQ is essentially self ad joint as is well known.

Proof of Theorem 3.1(1). Let IR be the characteristic function of the ball
{x^R3; \x\^R}. We split H±i into three parts:

(3.21) H±i=lHo-p+A(b1, b2, s)±f]

Q-A(bl9 b2, 0)}-A(0, 0, s)]

B2—B2(b1} bz) is symmetric and bounded by (3.8). Thus H is essentially self-
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adjoint if H—B2 is, and thus if the closures of S±(blf b2, s)+£i(&i, bz, s) have a
bounded inverse. This follows Lemmas 3.5 and 3.7, if it holds that

(3.22) B&i, b2, sFBAh, bz, s}^dzS±(blf bz, s)*S±(bl9 b2, s)

for some 8<1. In view of (3.1) and (3.2),

Bi=1RV(bi, bz, s)-(l-^M(0, 0, s),
so that we have

(3.23) Bi*Bi^r-'C^wio2+(l-%«)s*],

where we used (3.7). If |s|<l/2, in view of (3.13) of Lemma 3.4 and (3.23), in
order to prove (3.22) it is sufficient to show

fa, s)2+(l-4s2)r2] in

for some 5<1, which is obvious for large R by virtue of (3.7) and 1—4s2>0.
If ls| =1/2, in view of (3.13)' of Lemma 3.4 and (3.23), to prove (3.22) it sufficies
to show

(3.24) XRmQ
Zjr(l—IR)-—^dz\m(b1} bz, s)2-—e/4+sfr—r-J in x^R"

for some e (0<e<l) and d (0<<K1). Let e be so small that m{f<m(bi9 bz, s)2

—e/4, which is possible by virtue of (3.7), and let d be so near 1 that m0
2<

d2Lm(bi, b2} s)2—e/4]. Then (3.24) holds in \x\^R for any R and in \x\^R
for large R. Thus we have proved (3.22) so that H is essentially selfadjoint.
(1.5) follows from (3.20) of Lemma 3.7, (3.22) and Lemma 3.5. H

Proof of Theorem 3.1(2). Note that A=A(bl9 b2, 0) and V = V(bl9 b2} 0) are
symmetric. Lemma 3.7 implies that HQ+A—^=S±(blf bz, 0)=Fi is essentially self-
adjoint. (3.7)' and (3.13) of Lemma 3.4 show that

Vz^r'z?n(b1} bZ} 0)2^5±(&i, bz, Q)*S=(bl9 bZ) 0)—1

= (S±(blf b2} 0)=Ff)*(S±(6i, bz, 0)Tx),

so that we can apply Lemma 1.3(1) to obtain that S±(blf b2, ty+i+V=H0+Q—f}
is essentially selfadjoint and so is H=HQ+Q. H

§49 Distinguished Selfadjoint Extensions and
Inyarianee of the Essential Spectrum

In this section we shall consider (P. 4) and (P. 5). Schmincke [14] and Wiist
[18] [19] have constructed a selfadjoint extension H of H called distinguished,
which has the property that all states in £)(H} have finite potential energy :

on the other hand, Nenciu [9] has called H distinguished when all states in
3)(H) have finite kinetic energy:
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and has shown the unique existence of such an extension. Klaus and Wust [6]
have shown under an appropriate condition that these definitions coincide. Klaus
and Wiist [7] have also obtained the invariance of essential spectrum. Their
assumptions are respectively different and it is difficult to state them shortly.
We note only that in the simplest case (1.8) all of them are reduced to the same
condition M<1. (Cf. Example after Theorem 4.1.) The all authors mentioned
above except Nenciu [9] treated the case of scalar potentials.

Our aim is to consider these problems in the case of the matrix potentials
and to prove the following theorem.

Theorem 4.1. Assume that there exist constants bi, b2) s, a and mQ such
that they satisfy (3.5), (3.6),

(4.1)

and

(4.2) r2V(b1} b2, s-ff)*V(blf b2, s-a}^mQ
2<m(bl} b2, s)2 .

(As to the notations, cf. (3.1)-(3.3).) Then (i) we have

(4.3) ^(^*)n^(r-1/2)=^)(^*)n^(l^ol1/2) .

(ii) The restriction of H* to the above domain, which will be denoted by H,
is a self adjoint extension of H.

(iii) Let H' be a self adjoint extension of H whose domain is contained in

<2>(r-1/2) or in <3)(\HQ\lf2). Then H'=H.

(iv) C7es.(#) = *eBB(£o) = JB\(-l, +1).

Remark. Assume a=Q. Then the assumptions of Theorem 4.1 is the same
as those of Theorem 3.1(1), so that we have H=H in this case.

Example. Assume that

(4.4) r\Q(x)\^m0<l.

Put bi=b2=Q and s=a. Then F(0, 0, Q)=Q and m=l/2+a, so that (4.2) is
satisfied for a sufficiently near 1/2. The other assumptions of Theorem 4.1 are
obviously satisfied in this case. (Cf. [9].)

We denote by G the multiplication operator rax in jc. Then G=G and G
maps 4) onto itself bijectively. We put f=GTG for any operator T in M. It

is easy to see that H0=(H0
J
r— ar(?)G2 and

(4.5) A(bl9 bz, s)=A(bl9 6a, s)G2

so that we have
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(4.6) S±(b1; &„ s-«7)=5±(61, ft,, s)G2.

Lemma 4.2. Assume (3.5), (3.6) and (4.1). Then there exists a positive con-
stant C depending on bit bz, s and a such that

(4.7) §±(blt bt, s-a)*§±(b!, bt, s-<7)^C(r4 '-2+r4ff),

(a) ||S±(fc1;62, s-ff)u||^C||M||,
(4.8)

(b)

Proof. (3.5), (3.6) and Lemma 3.4 imply

$±(fti, 62, s)*$±(ft,, ft,, s)^

for some positive constant C, which with (4.6) shows (4.7). (4.7) and (4.1) show
(4.8). m

Lemma 4.3. Assume (3.5), (3.6) and (4.1). Then S±(b1} bz, s — a) are closable
and its closures have a bounded inverse and it holds that

(4.9) ®(S±(b1} bz, s-a»=£)(§±(Q, 0, -*)) .

Proof. Using (4.5) and (4.6), an argument similar to the proof of Lemma
3.6 shows that it also holds with S±(b'lt b'2, s') and S±(blf bz, s) replaced by
S±(b[f b'2, s'— 00 and §±(blf bz, s— a], respectively. The argument in the proof of
Lemma 3.7 reduces the proof of the present lemma to the case of b1=bz=

::s=Q.
Since G2 maps 3) onto itself and the range of S±(0, 0, &)=H0—p±i is dense, so
is the range of S±(0, 0, — <7)=S±(0, 0, 0)G2 (see (4.6)). This fact and (4.8-a) of
Lemma 4.2 show that 5±(0, 0, —a) have the desired properties, which yields the
present lemma. B

Decompose H±i as in (3.21) with s replaced by s — a and put

(4.10) H1±(b1} bJ=H±i-B2(bl9 W

= S±(b1, bz, s — a^ + B-JJbi, bZt s — a).

Lemma 4.4. lender the assumptions of Theorem 4.1, Hi±(blf bz) is closable
with its closure possessing a bounded inverse and

(4.11) S)(Hl±(bl9 6,))=5)(S±(0, 0, -

Proof. An argument similar to the proof of (3.22) shows, by using (4.2)
instead of (3.7), that

i, bz, s)u\\

for some 5<1. Put u — Gzu and note (4.5) and (4.6) to obtain

l9 bz, s-a}u\\ (
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which with Lemma 3.5, (4.10) and Lemma 4.3 yields the^present lemma. B

In the sequel, we denote H1±(blf b2) and S±(blf b2, s — a) by H1± and S±(s—a},
respectively, in short.

Lemma 4»5. Under the assumptions of Theorem 4.1, there exists a positive
constant C depending on blf b2, s and a such that

(a) \\G2u\\ ^

(4.12) (b) \\S±(s-a)u\\^C\\fi1±u\\,

(c) \\Gu\\^C\\fil±u\\\\n\\

Proof, (a) is an immediate consequence of (4.8-b) of Lemma 4.2 and the
closability of S±(s—a) (Lemma 4.3). (b) follows from the boundedness of
S±(s—a)S1±~1

} which follows from Lemma 4.4 and the closed graph theorem,
(c) follows from (a), (b) and \\Gu\\z=(G2u, u)^\\G2u\\\\u\\. •

Lemma 4.6. Assume the assumptions of Theorem 4.1. Put

(4.13) Hl± = G~lftl±G-1.

Then

(4.13)' H1±dG-1'GHl±™

and Hi±+i coincide with each other, which will be denoted by Hld, and are
essentially self adjoint. The operator Hd defined by

(4.14) Hd=Hld+B2, B2=B2(b1}b2)

is an essentially self adjoint extension of H.

Proof. At first let us prove (4.13)' and coincidence of Hl±+i. Note that
GH1± is closable since GH1±d(H^G}*. Let u^£)(fil±G-1}. Then there exists a
sequence {vn}d3)(Hl±} = S) such that

f (a) vn->G~lu
(4-15) { - • •

I (b) H1±vn=GH1±Gvn-^H1±G-1ua

(4.15) and (4.12-c) of Lemma 4.5 imply that {Gvn} converges to GG~1u = u,

which with (4.15-b) shows that u^£)(GHl±] and GH1±u=H1±G~1u so that we
have (4.13/. (4.15-b) and (4.12-a,b) of Lemma 4.5 imply that

(4.16) G*vn-*G*G-1u = Gu.

(4.15-b) and (4.16) imply that fi^vn=Hl±vn+2iGzvn-*fil±Gu + 2iGu, which with

(4.15-a) implies that G'lu^3)(5^ and

(*) We can prove that Hi± = G~lGHl±. But (4.13)x is sufficient for our purpose.
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(4.17) ^G-1u=

Assume moreover that u(E£)(H1±) (CL2)(fil±G~1}}. Then the right hand side of
(4.17) belongs to ^(G'1) and we have Hl±+iC.H^±i9 and hence the coincidence
of them.

Hid is symmetric since Hld=H1+—ic:(H1-
Jr2)^=Hld^. It is obvious that

HteHHix so that Hd is a symmetric extension of H. Since Bz is bounded and
symmetric, Hd is essentially self ad joint if and only if so is Hid, or equivalently,
if and only if the ranges of Hld±i(/c-}-l}=H1±±i/c are dense in M for some
constant £>0. Let it be sufficiently small. Then in view of (4.12-a, b) of
Lemmas 4.5 and 4.4, we can apply Lemma 3.5 to obtain that the operators

are closed and have the property

(a)
(4.18)

(b)

(4.12-c) of Lemma 4.5 and (4.18-b) show that

which with (4.18) implies

On the other hand, G-1D±G-1=G-1S1±G-1±iK = H1±±2K, so that we have
which is dense in JC. This proves the present lemma. H

Proof of Theorem 4.1. We shall prove later

(4.19)

and

(4.20)

On the other hand, it is known ([5] ; p. 307) that

(4.21) ^(|#0]1/2)C.0(r-1/2).

The above three formulas imply (i) , (ii) and H—Hd whose selfadjointness is
already proved in Lemma 4.6. The assumption in (iii) implies H'd.H, since a
self ad joint extension of H is a restriction of H*. The fact that a self ad joint
operator is maximal symmetric reduces this inclusion to the equality. Thus we
obtain (iii). (iv) will be proved after proving (4.19) and (4.20).

At first, let us prove

(4.22)

There exists a positive constant C such that
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-+r*a+l) in r^

by (4.1) so that we have

On the other hand (4.7) of Lemma 4.2 implies

with some constant C>0. These two inequalities and (4.12-b) of Lemma 4.5
imply that

\\r-llzu\\^C\\Hl±G-lu\\=C\\GHl±u\\
so that we have

(4.23) \\r-u

Let g(r) be C°° function of r>0 such that Og^(r)gMin(l, r" f f) in r^O, £(r) =
in O^r^l/2 and g(r}=r~a in r^2. For any u<^3)(GHl±}, we have
and

(4.24) GH1±(gu)=g GHl±u-iarr
agfu

by virtue of the boundedness of # and r° ' g* '. Now, using (4.23), (4.24) and (4.13)'
of Lemma 4.6, we have

which implies 2)(Hd}CL3)(r-llz}, and hence (4.22) since HaHdciH*.
Next, let us prove that the restriction of H* to ^(//*)n-^(^~1/2) is sym-

metric, or equivalently, that

(4.25) ]m(H*u, u)=Q for any Me^(//*)n^(r"1/2).

Then, in view of (4.22) and selfadjointness of Hd, we have (4.19). It is known
(see [4] ; Lemma 9) that

(4.26) 3)(H*)={u^M;

Integration by parts yields

(4.27) Im(//*M, M) = --

p-*Q
R^OQ

—
L P^
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where we put

IR={ <aru,uydS,
J\x\=R

Since the first member of (4.27) exists, the limits lim/«=/0 and limJ^Joo exist
p

eparately.
^ ^ o a n d

p-o -*~

separately. Assume /0^0. Then for a certain ^o we have l / ^ l ^ l / o l for

~ J0
Z

This inequality with the assumption u^<D(r~1/2) yields

which is a contradiction. Next, assume /co^O. Then for a certain ^0>0, we
have

2 J\x\=R

Integration from ^0 to oo leads to a contradiction. Thus we have /0=/oo=0,
which with (2.27) yields (4.25), and hence (4.19).

Next, let us prove (4.20). By virtue of (4.26), (3.8), which is valid in view
of (4.2), and (1.9), we have

(4.28) &(H0

On the other hand, (4.21) implies

(4.29)

which with (4.19) and (4.28) implies

(4.30)

Let A: be a non zero real number. (4.19), (4.29), the closed graph theorem and

(3.8) show the boundedness of the operators r~llz(Hd±iK)~l, r~l'z(HQ±iK)~l
y their

adjoints

(a) " ^
(4.31)

(b)

and rQ. The boundedness of these operators and (4.30) show the resolvent
equation

Noting (Hd-iKr1r-llz*=r'1/z(Hd+iKr1
9 which follows from (4.31-a), and (4.31-b),

take the adjoint of the above expression to obtain
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(4.32) (Ht+iK)-^

In view of the relations Si((H0+iic)-:i)=3)(fi0)=3)(\H<i\)<^a)(\H,\il2') and
£D(H*\ in order to show (4.20), it is sufficient to show

(4.33) "*

The closure of !//0i1/2(^o+^)~1l^oi1/2 is bounded, so that we have

-^Htfol^

which implies (4.33), and hence (4.20).

By Weyl's theorem ([5] ; Chap. IV Problem 5.38) and Hd=H, (iv) holds if the
first factor of the second term of the right hand side of (4.32) or its adjoint

r~1/2(HQ—iK)~1 is compact, since the other two factors there are bounded. Let
%*eC°° be such that %*(x)=l (\x ^R}, XR(x)=Q (\x\^R+l) and O^gl. It

sufficies to show ihatXR(x}r~1/2(H0—'ifc)~1 is compact, since it tends tor~1/2(//0— z^)'1

in operator norm as R-*oo. The Hilbert space M — \_L^ is mapped boundedly

by (Ho—tic)'1 onto the Sobolev space E//1]4, which is mapped compactly by IR

into [Lp]
4 (!</>< 6) by virtue of the Theorem 2 of Sobolev [15]; §11. The

last space is mapped boundedly by IR+ir~1/2 into M, if %R+ir~1/2^Lq (q^l and

— I — —2), by virtue of Holder's inequality. It is obvious that IR+1r~112^Lq for

so that we can choose p and q satisfying the above conditions, which com-
pletes the proof. H

In conclusion, the author wishes to express his sincere gratitude to Professor
T. Ikebe for his enduring encouragements and valuable advices and to Professor
O. Yamada for valuable discussions.
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