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On Essential Selfadjointness, Distinguished
Selfadjoint Extension and Essential Spectrum of
Dirac Operators with Matrix Valued Potentials

By

Masaharu ARATI*

§1. Introduction

The Dirac operator with a 4xX4 symmetric (i.e. Hermitian symmetric) matrix
valued measurable potential Q(x) is given by

(L H= 3 ap+6+Q) (xR

where p;=—id/0x; (=+/—1), and a;, f=a, are 4X 4 constant symmetric matrices
satisfying the anti-commutation relations

(12) oz,-ak—l—akaj:25jkl (]., kzl, 2, 3, 4)

We denote by H, the operator H with Q(x)=0.

We denote by <, > and | | the usual inner product and norm in C*, respectively,
and by (,) and || | the inner product and norm in the Hilbert space 4 =[ L,(R*)]%,
respectively. We also denote by | | and || | the operator norm of a 4X4 matrix
and a bounded linear operator in 4, respectively. We denote by [ the 4x4
identity matrix, which at times implies the 2X 2 identity matrix, but no confusion
will occur. For a closable operator T in 4, we denote by T its closure. For
an (formal) operator T, we denote by T the restriction of T to the domain

(1.3) P=[C5(R*\0)]*,

except L(k) defined in Section 2. It is evident that the operator H is symmetric
in 4 if
(1.4) [Q(x)] € L. 1oc(R\O) .

We shall consider the following problems with special emphasis on (P. 1) and
(P. 4).
(P.1) Is H essentially selfadjoint ?
(P.2) If (P.1) is affirmatively answered, dose the domain of the unique self-
adjoint extension of H coincide with that of H,? If this is true we have
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(15) D(H)=a9(H,)=the Sobolev space [H]¢.

(P.3) If (P.1) is negatively answered, does H has any selfadjoint extension ?
(P.4) If (P.3) is affirmatively answered, can we select a selfadjoint extension
which has a certain clear physical meaning among selfadjoint extensions of H ?
(This extension will be called distinguished after Schmincke [14], Wiist [18]
[197 and Nenciu [97.)

(P.5) Does the essential spectrum of the unique selfadjoint extension or the
distinguished selfadjoint extension, if any, coincide with that of H,?

Remark 1.1. One may consider, instead of H, the restriction H to 9=
[C3(R®)T4, which will be denoted by H for the time being. Even if we replace
H by H in the above problems, nothing new will occur if

1.4y |Q(x)] € Lz 10c(R?),

which will be assumed throughout this paper. Indeed, under the assumption
(1.4Y, the operators H and H are symmetric in 4% and their closures coincide
with each other. In order to prove this, it is sufficient to prove HCH. The
rest is obvious. Let ¢ be a real valued C* function in R®, which vanishes in
|x|=<1 and equals 1 in |x|=2. Put ¢.(x)=¢(x/e). Let g€9. ¢.0=9 tends
strongly to ¢ in 4 as € 0.

1 s
B

H(gp)=—i— > a,-%(x/s)-gb—!—@ﬁgb.

Jj=1
The #-norm of the first term in the right hand side of the above equation is

of order &'/?, since ¢ is bounded, so that it vanishes as ¢} 0. The second term
tends to H¢, which yields HCH.

Let us sketch some results already known and what our main interests are
in connection with (P.1). At first we note that only the local behavior of Q(x)
affects (P.1):

Lemma 1.2 (Chernoff [3]). Assume that for any y € R®, there exists a potential
Qy()E L 1oc such that Q(x)=Q,(x) in some neighborhood of y and that HO—I—Q,,
is essentially selfadjoint. Then H=H,+Q is also essentially selfadjoint.

Thus our consideration will be concentrated on the local singularities of
Q(x). But if the singularities are so weak that for any constant ¢>0 there
exists a constant b such that

(1.6) lQul=allHoul+bllull  for any u€9,

then we can apply the following well-known theorem with T,=H, and V=Q to
see that (P.1) and (P. 2) are affirmatively answered. (As to sufficient conditions
for (1.6) see [2; §2.0)
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Lemma 1.3 (Kato [5]; Theorems 4.4 and 4.6 in Chap. V). Let T, be an
essentially selfadjoint operator and V be a symmetric operator such that D(T,)C
DV). Put T=T,+V.

(1) Assume that there exist positive constants a and b such that a=<1 and
(L.7) IVul=allToul|+blul  for any usd(T).

Then T is essentially selfadjoint.
) If in addition a<1, then D(T)=D(T,).
Let Q(x)=r"%I (rz(ile)”z, «: positive constant). Then each sufficient
£

condition for (1.6) listed up in [2] requires the same condition «<1. Thus the
simplest case to be considered next is

1.8 Q(x)sz (e: constant).

Kato ([5]; p. 307) shows that H is essentially selfadjoint if |e|<1/2, using the
well-known inequality

1 - 3 | ou |2 . ,
(1.9) S72-lu| d,x§45jz‘,=l 5;;1 dx<A|Hul? (Yuc9)

and Lemma 1.3. Since this result is based on (1.7) and (1.9), we can easily extend
to the case when the potential Q(x) is matrix valued, that is, we have if

(1.10) sup7|Q(x)|=e=1/2,

then H is essentially selfadjoint. Moreover, if ¢<1/2, then (1.5) holds.

Now we return to the case (1.8). Weidmann [17] (see also Rellich [107] [117])
shows by separating out the angular variables that H is essentially selfadjoint if
and only if |e]<+/3/2. The “f part” of this assertion is extended to the case
of a scalar potential

(1.11) Q(x)=qg(x)I
by Schmincke [13], who shows that the assumption
(1.12) sup rigx)|<~'3/2

implies the essential selfadjointness of H and (1.5). (Strictly speaking, his assump-
tion is more general than (1.12) and he does not state explicitly (1.5).)

Since Kato’s result is extended to the case of matrix potentials, and Rellich-
Weidmann’s to the case of a scalar potential (1.11) as above, one might expect
that, also in the case of matrix potentials, the assumption sxiprIQ(x)l <32

is sufficient for H to be essentially selfadjoint. But this is not true. On the
contrary, Arai [1] showed that the number 1/2 in the assumption (1.10) is best
possible in the following sense.

Theorem 1.4. For any constant e>1/2, there exists a matrix valued potential
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Q(x) with
(113) |Q(x)|=e/r
such that H is not essentially selfadjoint and H has selfadjoint extensions.

This will be re-proved in Section 2.

Remark 15. It is also true that for any e=0 there exists a potential Q(x)
satisfying (1.13) such that H is essentially selfadjoint. This is easy to see by
putting Q=0 and g=elogr in the next lemma.

Lemma 1.6. Let g(x) be a real valued C* function in R*\O. The operator
H with the potential Q(x) is unitarily equivalent to the operator H, with the

potential Ql(x)EQ(x)—§ ajaang by means of the unitary operator of multiplica-
tion by exp[—ig(x)].
Recently, Arai and Yamada [2] have shown the following result: Put
V)=Qu)—ia/ @) (= 3 i/,
and assume that there exists a constant m, such that

(1.14) r*V(x)*V(x)=m,<1.

Then H is essentially selfadjoint and (1.15) holds.

Note that in the case of (1.11), (1.14) is reduced to (1.12).

In Section 2, we shall treat a certain class of potentials which allows us to
apply the separation of variables and we shall give a necessary and sufficient
condition for these H’s to be essentially selfadjoint (Theorem 2.7) and the proof
of Theorem 1.4. We shall also consider (P.3) there (Theorem 2.9). In Section 3,
we shall discuss (P.1) and (P.2) for more general potentials and generalize the
above mentioned result of Arai-Yamada [2] (Theorem 3.1). In Section 4, we
shall treat (P.4) and (P.5) (Theorem 4.1).

§2. Separation of Variables

Almost all lemmas stated in this section are well known. Some of them
will be proved here for the sake of completeness.
We define the matrices ¢; ({=1,2,3) by

2.1) o1=—10,0p (J, k, D=(, 2, 3) in the cyclic order.
Then they are symmetric and unitary and satisfy

(@) oj0r=io} (7, k, D=1, 2, 3) in the cyclic order,
(2.2) (b) ojortore;=20,, (5, k=1, 2, 3),

(©) o;8=p0; (7=1, 2, 3).
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Lemma 2.1. There exists an orthonormal basis of C* in terms of which aj,
o; and B are represented as follows:

23) a=(y T o=(5 ) e=(5 _7)  G=L2),
where
(2.4) o= o) o=() 2) a=(5 _0)

Proof. (1.2) with j=k=4 implies p*=I so that the eigenvalues of 8 are
+1, whose eigenspaces will be denoted by C(+). Again, (1.2) implies that a;
maps C(ZF) onto C(7F) bijectively so that dim C(+)=dim C(—)=2. The eigen-
spaces C(+) reduce o; by virtue of (2.2-c). We denote by ¢; the part of ¢} in
C(+). Then (2.2) implies

{ (@) ojor=io; (J, k, D=, 2, 3) in cyclic order,
(b) a,ak+akaj=25,~k (], k:]., 2, 3).

The same argument as above shows that the eigenvalues of ¢; are 41 and its
eigenspaces are of dimension 1 and are mapped by o, onto each other. Let &,
be a normalized eigenvector of ¢, belonging to +1 and &,=¢.2;, which is a
normalized eigenvector of o; belonging to —1. In this co-ordinate system, the
ojs are represented as (2.4), where we have used (2.2-a)’ to obtain the repre-
sentation of o, from the others. We define p=—ia,a,a;=p~*, which is symmetric
and unitary, and maps C(+) onto C(F). (1.2) and (2.1) imply

(2.2

(2.5) a;=po,=0j5p .

Put é;=pé, and é,=pé&,. Then {2, &,, &, &} is an orthonormal basis of C*. It
is obvious that j is represented as in (2.3) and that

0 I
@9) o=(r o)
in terms of this basis. (2.5) and (2.6) yield the representations of «; and ¢} in
(2.3), since C(=*) reduce 7. P

We put d=(ay, as, as), £=(x1, X4, X4), 5:(171; D2, D),

2.7 a,=a-x/r, pr=r"&-p—i)=—1i(d/or+1/r),
(2.8) L=%X}p=(Ly, Ly, Ly)

and

(2.9) K=B@’-L+1).

Then L; commutes with the multiplication operator X, and K with H,, a,, 85,
p- and X at least in 9. We regard the Hilbert space 4 as

(2.10) H=C'QLy(R*)=C'Q LS Q Lo(R ; 7*d7),
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where S? denote the unit sphere in R® and R,=(0, ). Then &, a,, B8, ¢’, L
and K can be regarded as operators in the Hilbert space $=C*Q L2(S?).

Lemma 2.2, The Hilbert space § can be decomposed into an orthogonal direct

sum of two-dimensional spaces $(k, m) (k==+1, £2, --- and m=—\k|, —|k|+1,
VIS Y

2.11) @2%@@(1@, m)

such that

(i) each H(k, m) reduces a,, B and K,

(ii) K=kX on H(k, m),

(iil) each D(k, m) has an orthonormal basis {@*(k, m)} consisting of C*-
valued C= functions on S%, in terms of which a, and B are represented as

e w(? ) (3 0

7

Proof. Let {Y(, m); [=0,1, 2, --- and m=—1I, —I+1, ---, [} be the totality
of the spherical harmonic functions, which is a complete orthonormal system of
L,(S?), so that we have the decomposition

(2.13) =3 B{CHRYOIBICIRYOTL,

where C(Z) are those defined in the proof of Lemma 2.1, and 4(/) is the linear
hull of {Y(l, m); m=—I, —I+1, ---, {} for each fixed [. We adopt the same
basis as in the proof of Lemma 2.1 for C(4) and C* The image of the general

element Z}(Cl’m)Y(l, m) in C(+)QRY(l) by the operator G-L+I is
m 2, m

VUFm+DU=m) Co. ms1+m+1)Cr,m
m(\/mcl,m_ﬁ(l—m)cz.m
where we used (2.4), the well-known identities
LY, m)
— LIV Y, me D/ A= T Y, m—1)]

)Y(l, my,

(2.14) LY, m)
=%W TFmtDU—m) Y, m+1)—v T—mFDAFm) YU, m—1)]

LY, m)=mY(, m)

and conventions Y (/, m)=0, C; »=0 for |m|>/ Thus &-L+1 restricted to
C(+)@Y(]) has an eigenvalue /[+1 with orthonormal 2/42 eigenvectors

1 (\/l—}—m—i—l Y, m)

= (m=—I1—-1, =, -, 1—1,0)
N2\ T Y, m—i—l))
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and the other eigenvalue —/ with 2/ orthonormal eigenvectors
1 (—\/l—m Y, m)
VUL I\ VIFmF1 Y, m+1D)
For k==1, =2, --- and m=—|k]|, ---, | k|—1, we put
1 (\/k—i—m Y(k—1, m)
V2k—1\/E=m=1 Y(k—1, m+1)
(2.15) Ok, m)=
Com (—vlkl—mY(lkl,m) ) 0

L a— o > s

V2RIV TR FmF1 Y (| k], m+1)
where C,, , are constants with modulus one, which will be determined later.
Then we have
(2.16) (&-L+Dg(k, m)=kd(k, m).
An elementary calculation shows the anti-commutation relation

0/&-L+N=—@-L+Do,  (0,=6-%/r),
which implies that o,¢(k, m) is a linear combination of ¢(—k, m’) with fixed k.
On the other hand it is shown that the first component of ¢,¢(k, m) is an
eigenfunction of L, belonging to the eigenvalue m, so that we have o.¢(k, m)

=C & m(—k, m), where c x m 1S a constant with modulus 1. We choose constants
Ci m in (2.15) so as to yield C;, n=—: for £>0. Then we have

) (m=—I{, —Ii+1, -, [—1).

) (R>0)

2.17) o p(k, m)=—i(sgn R)p(—Fk, m)
by virtue of o¢,.2=I. We put
@k, m) 0
DD (k, m)= 0 , O (k, m)= 0
0 (sgn k)p(—k, m)
and let $(k, m) be the linear hull of @ (k, m) with fixed £ and m. The above
arguments show that the $(k, m)’s satisfy the required properties. ®
Now, since

2.18 G-p=a >
(2.18) a-p—a,{j%):lr x,a,akpk}

zar{r‘lﬁ -pFart 23) oi(% Xﬁ)t}
=1
:ar{pr+i7_1,8K}>
we have
(2.19) Hy=o,p,+ir o, 8K+,

which is reduced by J(k, m)=9(k, m)QL.(R. ; r*dr) by virtue of Lemma 2.2 (i).
Let Q(x) be a linear combination of I, &, 8 and ia,8 with coefficients which
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are functions of » only. Then H is also reduced by %(k, m). But the term
f(a, has no influence on (P.1) by Lemma 1.6. (Let g=g(») be a primitive
function of f(r).) Our central interest is in the potential Q(x) satisfying (1.13).
Hence we assume

(2.20) Q(x)z%]—}— %a,ﬁbﬂuﬁj—bz (a, by, by: real constants)

in this section. Since we consider (P.1), we may omit the bounded operator f
from H and assume

_ K a1 B
(2.21) H=a,pr+—afK+—+—afbitbs.
An element u in 4(k, m) can be expressed as
(2.22) u=%¢1(7)@<+>(}3, m)—}—%gziz(r)@(‘)(k, m)

=Usnl@), ¢=4¢s, ¢)E[L(R)]?,
and H in this reducing subspace becomes

a-+b, _ k+b1

<¢) _¢2’+ 7 ¢1 r ¢2
(2.23) LR)(" )= ('=d/dr),
¢2 , a—bg k+b1

N et

where we used (2.7), Lemma 2.2(ii) and (2.12). We denote by L(k) the restriction
of L(k) to 9,=[C(R.)]%. Each L(k) is a symmetric operator in the Hilbert
space [L,(R,)]2. Since O (k, m)C=(S? by Lemma 2.2 (iii), the orthogonal
projection P, . onto %(k, m) maps 9 onto the totality of the functions u=
Ui n(@), $€ 9.

Lemma 2.3. H is essentially selfadjoint if and only if all L(k) are essentially
selfadjoint.
Proof. Assume that some L (k) is not essentially selfadjoint. Then there
exists a non-trivial vector ¢ €[ L,(R.,)]* satisfying
(2.24) (L(k)p, p)=i(p, ¢)  for any ¢ D,
We put v=Ups, n(}). Let g€ and put u=Ppnd=Us n(@). Then ¢=9,. We
have (H@, v)=(Ps nH@, v)=(HPs, np, v)=(L(k), ))=i(¢, ®)=i(u, v)=i(P}, n, v)
=z'(g$, v) for any 555_61'), which implies that H is not essentially selfadjoint.
Conversely, assume that H is not essentially selfadjoint. Then there exists
a non-trivial vector ¢4 such that
(2.25) (H, $)=i($, §)  for any Fe 9.
There exists (k, m) such that v=P, ,d=U, n(d)#0. Let §=U; n(¢), s 9D;.
Then (2.25) reduces to (2.24), which shows that this L(k) is not essentially self-
adjoint. L
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As to the operator L(k), the analogue of Weyl’s alternative theorem on the
second order differential euqations holds:

Lemma 2.4 ([17]; Sitze 1.4 and 1.5, see also [12]). i) Assume that for
some A€C all solutions of the equation

(2.26) L(k)g=2¢  (k: fixed)
satisfy
@.27), S: |glrdr<oo.

Then for any 2€C all solutions of (2.26) also satisfy (2.27),. (In this case we
say that L(k) is in the limit circle case at 0, and otherwise, in the limit point
case at 0.)

i) The above assertion is also true when the condition (2.27), is replaced by

2.27) Ti $|2dr<oco.

—

(We define similarly “limit circle case at oo ” and “limit point case at co”.)

ii) For any non-real 2, (2.26) has at least one non-trivial solution satisfying
(2.27), and also has at least one non-trivial solution satisfying (2.27).

iii) The operator L(E) is essentially selfadjoint if and only if L(k) is in the
limit point case at both end points 0 and co.

Lemma 2.5 (Evans [4]; p. 538, Weidmann [17]; Satz 5.1). L(k) is in the
limit point case at co.

Combining the above three lemmas, we have

Corollary 2.6. H defined by (2.21) is essentially selfadjoint if and only if all
the equations

2.28) LUJg=0  (k=:t1, 2, -)

have at least one solution which does not satisfy (2.27),.

Now, let us solve (2.28). We put p=(k+b,)?*—a’+b,* and s.=k+b,=+p .
Direct calculation shows that the following pairs are systems of linearly inde-
pendent solutions of (2.28).

(i) ¢:r*“’5<a:b2) if p#0 and a#b,,

(ii) ¢:rwﬁ(af:b) if p#0 and a-+b,#0,
2

, (G0, (a—by)log r e
(iii) q)~<k+bl>’ ((k—{—bl)log . __1> if p=0 and a=+b,,
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@ #=( ) (aromgr )

(v) ¢:(r’=(;b1)’ (r-<(’3+”1)) if a=b,=0.

Thus, L(k) is in the limit point case at 0 if and only if |Rev/p |=1/2, which
is equivalent to

(2.29) (k+0.)"+b = a*+1/4.

if p=0 and a-+b.+0,

Summing up, we have

Theorem 2.7. The operator H with Q given by (2.20) is essentially selfadjoint
if and only if (2.29) holds for all k==+1, £+2, -

Let b;=b,=0 in this theorem. Then we have the result of Weidmann [17]
mentioned in Section 1.

Proof of Theorem 1.4. Since ({a,8b;4Bbs)*=(b®+b,»I and ia, b, b, is not
a scalar times I if b,°4-b,2#0, the eigenvalues of ia,Bb,+Bb, are ++/b,*4b.%.
Thus Q(x) defined by (2.20) satisfies

r|Q(x)|=la|+vb+b? .
Let b,=0, b;=1/2 and a>0. Then r|Q(x)|=a+1/2 and (2.29) does not hold for

b=—1 so that H is not essentially selfadjoint by virtue of Theorem 2.7, which
with the next theorem yields the result. -]

Now, let us consider (P. 3).
Theorem 2.8. H with Q given by (2.20) has a selfadjoint extension.

Proof. Let 9 be the totality of finite linear combinations of U, (@) (see
(2.22)) with ¢=[Cs(R.)]* and H be the restriction of H to 9. It is obvious that
HcHCH, so that H=H, which implies that H has a selfadjoint extension if and
only if H does. We define the operator J by J: U m(@)—Ups n(é). Then Jcan
be extended uniquely to a conjugation on 4. This conjugation commutes with
H since the coefficients of L(%) are real valued functions so that H has a self-
adjoint extension. ]

By the way, let us give a theorem which guarantees the existence of a
selfadjoint extension of a certain type of H with Q not necessarily given by
(2.20). For a 4x4 matrix A we denote by A the matrix whose (j, k)-element
is the complex conjugate of the (j, k)-element of A in the remaining part of
this section only. Mimicking Veselié [16]; Lemma 1, we have

Theorem 2.9. Represent the matrices in terms of the basis in C* introduced
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in Lemma 2.1. Assume that Q(x) satisfies
(2.30) Aley, €s, €)Q(e1X1, €5X3, E3Xs)=Q (X1, Xa, X5)A(es, €2, €3)

for some ey, €, es=, (€1, €5, €3)F(+, +, +), where Aley, €5, €5) are constant

matrices defined by
A(+, +, —‘):azasﬂ

A(+; ) +):‘B
A(+, —, =)=ciast+c.ana
(2‘31) A<—y +; +):ala2‘8

A(—, +, =)=cl+c.on0:05

A(—, —, H)=cia1+caza;

A=, —, —)=a:f

where c; and ¢, are such constants that guarantee the unitarity of A’s. Then H
has a selfadjoint extension.

Proof. (2.3) with (2.4) implies

(232) c'(lzta'l:a'l B &2:%(2:'—“2 » &Zzta3:a3 >
B='p=8,

which with (1.2) shows that each A satisfies

(2.33) A='A.

We define the operator J by J: ¢— Aley, €3, €5)p(e1X1, €2Xs, €3%,), Which is a con-
jugation by virtue of the unitarity of A and (2.33). H—ﬁ commutes with J if
(2.34) Ales, 2, €);=—¢,0;A(ey, &5, €5)  (7=1, 2, 3)

and (2.30) hold. The latter is assumed now. We can ascertain one by one that
each A defined by (2.31) satisfies (2.34) using (2.32) and (1.2). This completes
the proof. H

Another proof of Theorem 2.8 using Theorem 2.9. This @ satisfies (2.30) for
any A in (2.31) commuting with 8, since (2.34) implies A i, (e1%x1, €aX32, €3X35)=
io (%1, X2, X3)A. B

§3. Essential Selfadjointness

Let us consider more general potentials than those in Section 2. Let b;, by,
and s be real numbers. We put

(31) A(bly bZ; S)—_—A(X, bl} b2; S)
7 1 7
—7arﬁb1+7ﬁbz+7a73 ’

(r=lx!, a,= i} @, x,/7)
J=1



44 MASAHARU ARAI

(3.2) V(bsy by )=V (x; by, bay $)=Q(x)—A(x ; by, by, ),

and

(33) (b, bsy 5)= Min v/ (E L6 T b7 +5——,
kEZ\ 0} 2

where Z is the totality of integers. The condition of Theorem 2.7 is equivalent
to the inequality

1
2<C 1 2 2
a'S Mg kb +ort— g
So, it might be conjectured that the estimate
(34) 72V (by, bs, 0)’=my*< Min (k+b1)2+b22—}—
kEZ\0} 4

with some real constants b;, b, and m, would imply the essential selfadjointness
of H with the potential Q. It has not yet been proved. (C.f. Corollary 3.2.) Our
main result is

Theorem 3.1. (1) Assume that there exist real numbers by, by, s and m,
satisfying the following conditions:

(35) Is|=1/2,
(3.6) m(bly bZ: S)>O )
3.7) 7V (by, b, $)*V(by, by, $)=mo®<m(by, b, 5)°.

(Here and in the sequel an inequality including operators is in the sense of
quadratic form on 9X9.) Then the operator H is essentially selfadjoint and the
domain preserving property (1.5) holds.

(2) Assume

(3.6) m(by, by, 0)>0
and
3.7y 2V (x ; by, bg, 0)*=m(b;, bs, 0)*.

Then H is essentially selfadjoint.

Note that the assumptions of this theorem imply that
(3.8) 1Q(x) | =Cy/r
for some constant C;, so that Q(x) satisfies (1.4)’. Before proving this theorem
we will give some applications. First, put b,=b,=0 and s:%‘ Then (3.5) and

(3.6) are satisfied and (3.7) is nothing but (1.14), so that we have the result of
[2] mentioned in Section 1. Secondly, we can give a partial answer to the
conjecture mentioned above.

Corollary 3.2. Assume that there exist real constants by, b, and m, satisfying
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the following conditions:

(1) (by, bo)#(k, 0) for any ke Z\{0},
(ii) V(by, bs, 0) commutes with o,
(iii) (3.4) holds.

Then H is essentially selfadjoint and (1.5) holds.

Proof. Let s=-§—. Then (3.5) and (3.6) are satisfied by virtue of (i), and
1 ) ..
V(bl, bs, —2-)=V(b1, bs, 0)——%;0:1 implies

1\* 1 1
PV (s, bi =) V(b by =)=V by, b, 09+
by virtue of (ii). Thus (3.4) implies (3.7) with s=—1— so that we can apply

2 ’
Theorem 3.1(1) to obtain the result. B

Corollary 3.3. (1) Assume that Q(x)=Q.(x)+Q:(x), Q, satisfying the con-
ditions of Theorem 3.1(1) and Q, being of class Ls,1oc Such that for any e>0 and
R>0 there exists a constant C(e, R) such that

3.9) IZeQoull=elHoul+Cle, R)ul  (Vus9),

where g is the characteristic fnnction of the ball {x&R?*; |x|<R}. Then H is

essentially selfadjoint. In particular, if C(e, R) does not depend on R, then (1.5)
holds.

(2) Assume that Q(x)= %0 Q,(x—a,), Q, being as above, each Q;(x) 1=7=N)
=

satisfying the assumptions of Theorem 3.1(1) and a; being distinct points in R®.
Then H is essentially selfadjoint. If C(e, R) in (3.9) does not depend on R, then
(1.5) holds.

Remark. As to sufficient conditions which guarantee (3.9), see e.g. ([2]; § 2).

Proof of Corollary 3.3. At ﬁrit, Ie_:t us prove (1). Put H;=H,+Q,. Then
H1 is essentially selfadjoint and H, (H1+i)‘1 is bounded by virtue of Theorem
3.1(1) and the closed graph theorem. Thus (3.9) implies

(3.10) 122Qoul| < & || Ho(Hy+i)(Hy+4)ul|+Cle, R)|u]
<e| Ho(H,+0) | Hyul| +Le| Ho(H,+0) | +Cle, R)l|u],
for any ucd.

Let ¢ be so small that one can apply Lemma 1.3 to obtain that H,+Q;+%zQ
is essentially selfadjoint. Since Q.< L1, as was noted after Theorem 3.1, we
can apply Lemma 1.2 to obtain the first assertion. If C{e, R) does not depend
on R, then (3.10), Lemma 1.3(2) and Theorem 3.1(1) yield (1.5).

Next, let us prove (2). (3.8) which holds for Q; (I=<7=<N) implies that
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Q;(x—a;) is bounded outside a neighborhood of a; Thus the first half is an
immediate consequence of Lemma 1.2 and (1). We can apply Landgren and
Rejto’s method [8] to obtain the second assertion. |

Now let us prepare some lemmas to prove Theorem 3.1. We define the
operators H,. and S.(b;, by, s) by

(3.11) Hoi——:Ho'_‘ﬁiZ. N
(3.12) Ss(b1, bay S)=H,u+A(by, by, 5).
Lemma 3.4. Assume (3.5) and (3.6). Then S.=S.(by, by, s) satisfy
(3.13) S.*S.=7"2m(by, by, s)2+(1—4s?).
If s=+1/2, we also have
(3.13) S.ES.=r 2 mi—e/d4e(r—1/2)%] 0=Ye<1).
Proof. Since
S.=anprt a8+ B byt Layseti
r r r
by virtue of (2.19), (3.1) and (3.12), their formal adjoint is
Si*zarpr",_%ar,@(K‘i‘b])'!‘gbz—';—a’rs'?i ,
where we have used the fact that X commutes with «, and 8, and p, with a,.
Note that pré—% pr=1r"% Direct calculation shows

1
472

(3.14) $.x8.=(p— 5 )+ 2.,

where we put
142 1
——2 - 2__9, P -1
Zo=r{BUcHb)+5— S} b 2ianB(s— 5 )b | £2r s +1.
Let ¢(r) be a real valued smooth function of »>0. Then

0= (pr—ig)ul*=(p-2u, u)—(d'u, w)+(d%u, u) (u€9I),

so that we have p,’=¢'—¢% Put ¢(r)=——2%;+a, where a is a constant, to
obtain
1 a
1 'rz'_' =——a’.
(3.15) b =, ¢

Lemma 2.2 shows that Z. are reduced by each subspace $(%, m) and that they
are represented there by the matrices
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r'z[(k —}—bl—i—s—%)z-i—bf]—}—l —(1—25)byr2F2isr™*

—(1—28)byr-2+2isr1 r—Z[(k+b1—s+%)z+b22]+1

in terms of the basis {®*(k, m)}. The smallest eigenvalue of them is

. +r-2[(k+b1)2+b;+(—;——5)2—2\/ (e +b1)2+b22](-;——5)2+52r2] :

which is equal to

ro| VBT 45— | 1251

+27-2[«/m(% —s)—l— |s| r—«/[(k+b1)2+b22](%_s>2+52r2] .

The last term of this is non-negative by virtue of (3.5). The first term is esti-
mated from below by r~#n(b;, b, s) by virtue of (3.3) and (3.6). Thus, in view
of (3.14) and (3.15), we have

(3.16) S*S.zrm(by, by, s)+ra—2]s))+(1—a?.

Put ¢=2|s| in (3.16) to obtain (3.13). If s=j—_%, adding (3.13) multiplied by
1—¢ and (3.16) with a=0 multiplied by ¢, we have (3.13)". H

The following lemma will be used repeatedly.

Lemma 3.5 (Kato [5]; p. 190 and p. 196). Let T be a closable operator in
I with its closure possessing a bounded inverse. Let B be a closable operator in
I such that D(T)CD(B) and there exists a constant 0 (0<d<1) such that

(3.18) |Bul|<0o|Tul for any ue(T).

Then T+B is also closable, T+B=T+B has a bounded inverse and 9(T+ B)=
oT).

Lemma 3.6. Let b, by and s’ be real numbers such that

(@) they satisfy (3.5) and (3.6) with by, b, and s replaced by bi, b; and s’,
respectively,

() S.(b;, b, s) are closable operators with its closure possessing a bounded
inverse,

(c) mbs, by, s>V (b,—b)2+(b,—bs)? +|s—s’|. Then S.(by, by, s) are also
closable operators with its closure possessing a bounded inverse and it holds that

DS (b, be, SN=D(S.(b1, b3, 8) -

Proof. By virtue of Lemma 3.5, it sufficies to show (3.18) with T=
S.;, by, sy and B=A(b,—bl, by—bj, s—s’), that is, to show
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(3.19) A(by—b1, by—bs, s—s")*A(b,—b1, by—b3, s—s)
=0°S.(b1, by, s")*S.(b1, b3, 5)
for some d<1. The identities
Ay, by, )*AGy, by, $)=r"2[024b,2 428 +ia,b,)3+3%]
and
(51+z'a752)*(51+z'a752)-——512—i—522
show that
Ay, by, §*AGy, by, H=r-2(VE2+b,2 +51)2,
which with b5;=b;—b} (j=1, 2) §=s—s’, (3.13) of Lemma 3.4 and (c) imply (3.19)
for some 0<1. This proves the present lemma. |

Lemma 3.7. Assume (3.5) and (3.6). Then S.(by, by, s) are closable operators
with its closure possessing a bounded inverse and

(3.20) D(S.(by, b, )=DH,).

Proof. Put X=R?x[—1/2, +1/2] and induce a metric d on X by d(P, P’)
=4/(b;—07)%+(b,—b3)? +|s—s’| for P=(by, by, s) and P’=(b3, b3, s’). Let G be
the totality of (by, bs, s)= X satisfying (3.6). G is connected and open in X and
contains the origin (0, 0, 0). For any (b, b,, s)eG, draw a curve C in G from
0, 0, 0) to (b4, bs, s) and put

dy=d(C, 0G)= Min m(b], b3, s")>0,

(b3, 05, 5" )ec

where 0G denotes the boundary of G in X (not in R?®). The minimum in the
above exists and is positive since C is compact and m is continuous. The com-
pactness of C implies that there exist finite points P,=(0, 0, 0), Py, -, P;=
(6,9, by, s@P), -+, Py=(by, b, s) on C such that the open balls with centers P;
and Pj,; and radius do/2 have non-void intersection, so that d(P;, Pji1)<d,=
m(b,?, b, s@) for 0=j=<N—1. This means that (¢) in Lemma 3.6 with
(b1, by, s )=(b,P, b, s@) and (by, b, s)=(b,9*V, b9+ s¥+D) holds. (a) is obvious
since P;eCCG. Thus the induction and Lemma 3.6 show that the present
lemma is valid if (b) in Lemma 3.6 with b{=b;=s’=0 holds, which is obvious
since S.(0, 0, O)=Ho—ﬁii and H, is essentially selfadjoint as is well known.

Proof of Theorem 3.1(1). Let Xz be the characteristic function of the ball
{xeR?; |x|<R}. We split H=4-7 into three parts:

3.21) H+i=[H,— B+ A(b, by, s)*1]
+Xr{Q—A(bs, b, 0)} — A0, 0, 5)]
+{1—2r} {Q—A(by, bs, 0)} +5]
=S5.(b1, by, $)+Bi(by, bs, s)+Bs(by, bs) .
By=B,(b, b;) is symmetric and bounded by (3.8). Thus H is essentially self-
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adjoint if H—B, is, and thus if the closures of S.(by, by, s)+Bi(by, by, s) have a
bounded inverse. This follows Lemmas 3.5 and 3.7, if it holds that

(3.22) Bi(bs, ba, $)*Bi(by, bs, $)=0°S.(by, by, 8)*S.(by, bs, )

for some d<1. In view of (3.1) and (3.2),

Bi=XgV (b, by, s)—(1—%r)AQ0, 0, s),
so that we have

(3.23) By*By=r~?[Argme’+{1—Xr)s*],

where we used (3.7). If |s]<1/2, in view of (3.13) of Lemma 3.4 and (3.23), in
order to prove (3.22) it is sufficient to show

Yemo2+ (1—Xg)s2Z0*[m(b,, by, s)2+(1—4s¥)r?] in x€R?
for some <1, which is obvious for large R by virtue of (3.7) and 1—4s*>0.
If |s|=1/2, in view of (3.13)’ of Lemma 3.4 and (3.23), to prove (3.22) it sufficies
to show

(3.24) XR71102+(1——XR)711—é&z[m(bl, b., s)z—a/4+s(r——%)2] in xeR®

for some ¢ (0<e<1) and 0 (0<d<1). Let ¢ be so small that mZ<m(b,, bs, )
—e/4, which is possible by virtue of (3.7), and let J be so near 1 that m,’<
02 [m(b,, by, s)2—e/4]. Then (3.24) holds in |x|=R for any R and in |x|=R
for large R. Thus we have proved (3.22) so that H is essentially selfadjoint.
(1.5) follows from (3.20) of Lemma 3.7, (3.22) and Lemma 3.5.

Proof of Theorem 3.1(2). Note that A=A(b;, by, 0) and V=V (by, b,, 0) are
symmetric. Lemma 3.7 implies that Hy+A— ‘B=5‘i(b1, bs, 0)F1 is essentially self-
adjoint. (3.7)" and (3.13) of Lemma 3.4 show that

V2§T_27n(b1, bz, 0)2§Si(bl; bz: O)*S:(bly bZ: 0)'_1
:(Si(bly b2) 0)$Z)*(Si(b1) bZ, 0)$l) >

so that we can apply Lemma 1.3(1) to obtain that S.(bs, bs, 0)Fi+V=H,+Q—pj
is essentially selfadjoint and so is H=H,+Q.

§ 4. Distinguished Selfadjoint Extensions and
Invariance of the Essential Spectrum

In this section we shall consider (P.4) and (P.5). Schmincke [14] and Wiist
[18] [19] have constructed a selfadjoint extension H of H called distinguished,
which has the property that all states in .@(ﬁ) have finite potential energy:

o aer1);

on the other hand, Nenciu [9] has called )il distinguished when all states in
@(ﬁ ) have finite kinetic energy:
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o(H)ca(| Hy 12

and has shown the unique existence of such an extension. Klaus and Wiist [6]
have shown under an appropriate condition that these definitions coincide. Klaus
and Wiist [7] have also obtained the invariance of essential spectrum. Their
assumptions are respectively different and it is difficult to state them shortly.
We note only that in the simplest case (1.8) all of them are reduced to the same
condition |e|<1. (Cf. Example after Theorem 4.1.) The all authors mentioned
above except Nenciu [9] treated the case of scalar potentials.

Our aim is to consider these problems in the case of the matrix potentials
and to prove the following theorem.

Theorem 4.1. Assume that there exist constants by, by, s, ¢ and m, Such
that they satisfy (3.5), (3.6),

4.1) 0=o< —;—,

and

4.2) 72V (b1, by, s—0)*V(by, by, s—0)=m®<m(by, by, S)2.
(As to the notations, cf. (3.1)-(3.3).) Then (i) we have

43 DHHNDr =D HHND(| Ho| ).

(ii) The restriction of H* to the above domain, which will be denoted by )28
s a selfadjoint extension of H.

(ii) Let H’ be a selfadjoint extension of H whose domain is contained in
D) or in D(|Hy|"2). Then H'=H.

(iv)  Gess(H)=0ess(H)=R\(—1, +1).

Remark. Assume o=0. Then the assumptions of Theorem 4.1 is the same
as those of Theorem 3.1(1), so that we have H=H in this case.

Example. Assume that
(4.4) r|Q(x)| E=m,<1.

Put b,=b6,=0 and s=o¢. Then V(0,0, 0)0=Q and m=1/24+0, so that (4.2) is
satisfied for ¢ sufficiently near 1/2. The other assumptions of Theorem 4.1 are
obviously satisfied in this case. (Cf. [9].)

We denote by G the multiplication operator »°X in 4. Then G=G and G
maps 9 onto itself bijectively. We put 7=GTG for any operator T in 4. It
is easy to see that Floz(Ho—}—%a,a)G'z and

a .

(45) A(bly b?; s):A(bI; bZ; 3)62

so that we have
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(4.6) S(bs, bay s—0)=S8.(by, bs, 5)G*.
Lemma 4.2. Assume (3.5), (3.6) and (4.1). Then there exists a positive con-
stant C depending on by, b, s and o such that
4.7 S.(by, bs, s—0)*S.(by, by, s—0)ZCr*o-24747),
{ @ [1S:(bs, by, s—o)u|=Cllul,

(4.8) . . .
(B IS0y, bsy, s—)ull2CIG* ] (wE9).

Proof. (3.5), (3.6) and Lemma 3.4 imply
S‘:(bly b, 5)*Sz(b1; bs, $)=ZC(r 2+1),
for some positive constant C, which with (4.6) shows (4.7). (4.7) and (4.1) show
(4.8).
Lemma 4.3. Assume (3.5), (3.6) and (4.1). Then S‘t(bl, by, s—o) are closable

and its closures have a bounded inverse and it holds that

4.9) DSy, by, 5—0)=D(S.(0, 0, —0)).

Proof. Using (4.5) and (4.6), an argument similar to the proof of Lemma
3.6 shows that it also holds with S.(bi, b5, s”) and S.(by, b, s) replaced by
S.(b;, b, s’—a) and Si(bl, bs, s—o), respectively. The argument in the proof of
Lemma 3.7 reduces the proof of the present lemma to the case of b;=b,=s=0.
Since G* maps 9 onto itself and the range of S.(0, 0, 0)=H,— 8=+ is dense, so
is the range of S.(0, 0, —0)=S5.(0, 0, 0)G? (see (4.6)). This fact and (4.8-a) of
Lemma 4.2 show that S.(0, 0, —¢) have the desired properties, which yields the
present lemma. H

Decompose H=i as in (3.21) with s replaced by s—o¢ and put
(4.10) Hy:(by, bs)=H=i— By(b,, bs)
=S5.(b1, by, s—0)+Bi(by, by, s—0).
Lemma 4.4. Under the assumptions of Theorem 4.1, Hi.(by, by) is closable
with its closure possessing a bounded inverse and

4.11) Q(ﬁm(bl, bz)):Q(Si(O, 0, —a)).

Proof. An argument similar to the proof of (3.22) shows, by using (4.2)
instead of (3.7), that

| Bi(b1, b2y s—0)ull=9)|S.(by, bs, s)ul| (ued)
for some 6<1. Put =Gy and note (4.5) and (4.6) to obtain
”31(191, bs, S—U)ullét?lli(bl, bs, s—o)ull (ue9),
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which with Lemma 3.5, (4.10) and Lemma 4.3 yields the_present lemma. H

In the sequel, we denote H.(by, bs) and S.(bs, by, s—o) by H,. and S.(s—o0),
respectively, in short.

Lemma 4.5. Under the assumptions of Theorem 4.1, there exists a positive
constant C depending on by, by, s and o such that
@ Gl =CIS.(s—aul,
4.12) () [18.(s— o)l <CllHiuul,
© IGuP=ClAullul (D).
Proof. (a) is an immediate consequence of (4.8-b) of Lemma 4.2 and the

closability of S.(s—¢) (Lemma 4.3). (b) follows from the boundedness of

§i(s—a)ﬁ1;1, which follows from Lemma 44 and the closed graph theorem.
(c) follows from (a), (b) and |Gul*=(G?u, u)<|G%u| | u]. [ |

Lemma 4.6. Assume the assumptions of Theorem 4.1. Put

(4.13) H,.=GH,.G™.
Then
(4.13) H,.CGGH,,

and H..Fi coincide with each other, which will be denoted by His, and are
essentially selfadjoint. The operator H, defined by

(4.14) Hy=H,4+B,, B,=DB,b, b,)

is an essentially selfadjoint extension of H.

Proof. At first let us prove (4.13)" and coincidence of H,.Fi. Note that
GH,. is closable since GH,.C(H,-G)*. Let ucd(H,.G-Y). Then there exists a
sequence {v,} CD(H,.)=9 such that
{(a) vo—G lu

(b) ﬁlianGHItG'vnﬁﬁltG"u.
(4.15) and (4.12-c) of Lemma 4.5 imply that {Gv,} converges to GG u=u,

which with (4.15-b) shows that u=9(GH,.) and GH,.u=H,.G 'u so that we
have (4.13)’. (4.15-b) and (4.12-a,b) of Lemma 4.5 imply that

(4.16) G, —G*Glu=Gu.

(4.15-b) and (4.16) imply that ﬁl;vn:ﬁhvn$2z’G2vn—>ﬁltGuiZz'Gu, which with
(4.15-a) implies that G-'ueP(H,.) and

(4.15)

(*) We can prove that H1:=G"lG—H1i. But (4.13)’ is sufficient for our purpose.
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4.17) .G 'u=H,.GuF2Gu.

Assume moreover that u<9D(H,.) (C.ﬂ)(ﬁliG‘l)). Then the right hand side of
(4.17) belongs to 9(G™!) and we have H,.TFiCH,-+i, and hence the coincidence
of them.

H,; is symmetric since Hyg=Hy,—iC(H,.+1)*=H,z* It is obvious that
1:11:DH1= so that Hy is a symmetric extension of H. Since B, is bounded and
symmetric, H, is essentially selfadjoint if and only if so is H,4, or equivalently,
if and only if the ranges of Hldiz'(;c—i—l):ﬁli—_l—i:c are dense in 4 for some
constant £>0. Let x be sufficiently small. Then in view of (4.12-a,b) of
Lemmas 4.5 and 4.4, we can apply Lemma 3.5 to obtain that the operators

D.=H,.+ixG?

are closed and have the property

(@) RD.)=4
{ () DD)=9H.)D9.
(4.12-c) of Lemma 4.5 and (4.18-b) show that

R(G)=9(G)29(H)=9(D.),
which with (4.18) implies
R(G'D.CH=R(GHDD(D.)DI.

On the other hand, G‘lDiG‘lzG‘lﬁliG‘l—i_—z'/c=fv11¢iix, so that we have
R(Hy.+ik)D9, which is dense in 4. This proves the present lemma. iz}

(4.18)

Proof of Theorem 4.1. We shall prove later

(4.19) D(H)=DH¥NDF12)
and
(4.20) DHNCDHEHNND(| Hy |12 .

On the other hand, it is known ([5]; p. 307) that
(4.21) (| Hy |2,

The above three formulas imply (i), (ii) and I-I=I7d whose selfadjointness is
already proved in Lemma 4.6. The assumption in (iii) implies H ’Cﬁ, since a
selfadjoint extension of H is a restriction of H* The fact that a selfadjoint
operator is maximal symmetric reduces this inclusion to the equality. Thus we
obtain (iii). (iv) will be proved after proving (4.19) and (4.20).

At first, let us prove

(4.22) DHNCDHHNDr2) .

There exists a positive constant C such that
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1=C@***4r29*)  in r=0
by (4.1) so that we have
2 ulP=Clre ulP+lroul®  (uwe9).
On the other hand (4.7) of Lemma 4.2 implies
lro-tul+[roulP<ClSu(s—a)Gu|?  (ue9)
with some constant C>0. These two inequalities and (4.12-b) of Lemma 4.5

imply that o '
lr?u| =C|H:-G'u||=C|GH.ul|  (u€9),

so that we have

(4.23) I ul <CIGH aul,  (u€D(GH..)).

Let g(r) be C* function of »>0 such that 0=g(*)<Min(l, »~?) in »=0, g(n)=1
in 0<r<1/2 and g(r)=r"° in »=2. For any u€D(GH,.), we have guc D(GH,.)

and
(4.24) EITI&(gu):g —Cﬁfuu—iarr"g’u
by virtue of the boundedness of g and »?g’. Now, using (4.23), (4.24) and (4.13)"
of Lemma 4.6, we have
= ul =lr -2 gul+lr~**(1—g)ul
<C||GH,.(gu)l|+|r"*1—g)ul
<CLIG-*GHyuu|+7g ul I+ 21— g)u|
=Cl|Hyuu|+C|u]
=ClHaul+C"ul,  (u€D(H)=D(H),
which implies 9(Hz)CD(»~/2), and hence (4.22) since HCH,CH*.

Next, let us prove that the restriction of H* to DH*ND(F '?) is sym-
metric, or equivalently, that

(4.25) Im(H*u, w)=0  for any wuc9(H*ND(r 12,

Then, in view of (4.22) and selfadjointness of H,, we have (4.19). It is known
(see [4]; Lemma 9) that

(4.26) DHY)={uc sk ; uc[H(R\0O)], Huc i},
Integration by parts yields

4.27) Im(H *u, ”):711' C(H*u, w)—(u, H*u)]
.1
:hm—.—g [<Hu, uy—<u, Hudldx
o P=|Z SR

1
— 1 N |
= 2})1_)1}1[112 1,1,
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where we put
IR:SIJ\=R<aru’ uyds, IF:Sizl=p<aru, uydS.

Since the first member of (4.27) exists, the limits 1irrol I,=I, and lim [p=I.. exist
Py

1
R-o
separately. Assume [,#0. Then for a certain p, we have |/ plgillol for
0=p=p, and

[ weordsz]  cam wiszS LI 0=p=p0.
T|=p Ti=p
This inequality with the assumption ue9(»~'/%) yields

0
co>lritul'z| x|tttz 5 11| ptdp=co,
o0

|z

which is a contradiction. Next, assume I.#0. Then for a certain Ry>0, we
have

1 2
0<5II=I:l=|  ulds  (RzRY).

Integration from R, to oo leads to a contradiction. Thus we have [,=I.=0,
which with (2.27) yields (4.25), and hence (4.19).

Next, let us prove (4.20). By virtue of (4.26), (3.8), which is valid in view
of (4.2), and (1.9), we have

(4.28) DH)=[H*CH*).
On the other hand, (4.21) implies
(4.29) DH)CD(| Hy VDD,

which with (4.19) and (4.28) implies
(4.30) DHY)C D).

Let £ be a non zero real number. (4.19), (4.29), the closed graph theorem and
(3.8) show the boundedness of the operators »~/2(H,+ix)™?, »~Y2(H,+ix)"", their
adjoints

- Lo iy =T,
. (b) [r_”z(ﬁoiili)'lj*:(m’

and r@. The boundedness of these operators and (4.30) show the resolvent
equation

(Hy—ir) —(Hy—ir) ™
=(Hy—ir) " (Hy—ir)(Hy—ir) " — (Hs—ir) " (Hy—ir) Hy—ir)"*
=—(H;—ir) " r 2. 7Q- {r“”z(HTO——i/c)‘l} .

Noting (Hg—ik)- 42 =¢-12(H,+ix)"?, which follows from (4.31-a), and (4.31-b),
take the adjoint of the above expression to obtain
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(4.32) (Hytin) =(Hytin) " —HyHir) " r 2 r Q- {r~Y(H,+in) ).

In view of the relations R((H,~+ik)")=9(Hy)=9(| H,|)C (| H,|*?) and 9(H,)C
D(H*), in order to show (4.20), it is sufficient to show

(4.33) RUHot-in) -2 C D Hy |13 .

The closure of !ﬁol”z(ﬁo—}-z'lc)‘llﬁoil’z is bounded, so that we have

(Hortie) = | Ho| 0% | B Hoim) ™ Ha o 1 o] o,

which implies (4.33), and hence (4.20).

By Weyl’s theorem ([5]; Chap. IV Problem 5.38) and Hd——-ﬁ, (iv) holds if the
first factor of the second term of the right hand side of (4.32) or its adjoint
r‘”z(ﬁo—z’x)‘l is compact, since the other two factors there are bounded. Let
2r=C” be such that Xg(x)=1 (Jx|=ZR), Xz(x)=0 (|x|=R+1) and 0=Xx<1. It
sufficies to show that xR(X)T’_Uz(ﬁO—‘Z'A:)_I is compact, since it tends to r‘”z(ﬁo—i/c)“l
in operator norm as R—oo. The Hilbert space #=[L,]* is mapped boundedly
by (1-70—1'/:)‘1 onto the Sobolev space [H']4 which is mapped compactly by Xz
into [Lp]* (1<p<6) by virtue of the Theorem 2 of Sobolev [15]; §11. The
last space is mapped boundedly by Xz, V% into 4, if Xpy 7 €L, (g=1 and

l—|~i=2), by virtue of Holder’s inequality. It is obvious that Xg..,r **< L, for

b
g<6 so that we can choose p and ¢ satisfying the above conditions, which com-
pletes the proof. .|

In conclusion, the author wishes to express his sincere gratitude to Professor
T. Ikebe for his enduring encouragements and valuable advices and to Professor
0. Yamada for valuable discussions.
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