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Infinite Dimensional Lie Algebras Acting
on Chiral Fields and the Riemann-

Hilbert Problem

By

Kimio UENO*

§ 0. Introduction

The purpose of this article is to construct the transformation theory for the
reduction problem of SU(2) Chiral field and SU(ri), S0(n) Chiral field by using
the Riemann-Hilbert problem, and to study the structure of the infinite dimensional
Lie algebra of the infinitesimal transformations.

The equation of motion of SU(n) (S0(ri)) Chiral field

(0.1) dx(g-1dyg)+dy(g'1dxg)=0,

where g=g(x, y) is an S£/(n)-valued (resp. SO(n)-valued) matrix function. This
equation has been studied by many physicists from the viewpoint of the inverse
scattering method [13], [14]. Dolan [17] has recently found, by using the
method of variations that the infinitesimal transformation group

(0.2) Su(n)(g)/2D]

acts on the totality of solutions of SU(ri) Chiral field. But she did not discuss
the reduction problem of SU(2) Chiral field. In this paper we show that the
Lie algebras

(0.3) 8u(2)®tf[f, r1] , 3u(n)<8)jR[ff r1] , So(n)®«[f, r1]

infinitesimally act on the solutions of the reduction problem of SU(2) Chiral field
and SU(ri), S0(ri) Chiral field, respectively. Our transformation theory is much
indebted to the results of Kinnersley-Chitre et al. [1], [2], [3], [4] and Hauser-
Ernst [5], [6], [7] and Zakharov-Mikhailov [9] (the Kinnersley-Chitre theory
will be briefly described in the appendix of this paper). The relationship be-
tween the results of Dolan [17] and ours will be considered in the forthcoming
paper [18].

This paper is planned as follows: First of all, we consider the transfor-
mation theory for the reduction problem of SU(2) Chiral field. In Section 1,
following the discussion of Kinnersley-Chitre [1], [2], we introduce a potential
E, which is an analogue of the Ernst potential, and also show the existence of
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infinite number of potentials f/Vcmi7°}m;so,7isa. In Section 2, introducing a gener-
ating function F(f)f we show that the reduction problem is equivalent to the
linear problem for a generation function (Theorem 2.7). In Sections 3 and 4, in
accordance with the method exploited by Hauser-Ernst [5], [6], we construct
the transformation theory by means of the Riemann-Hilbert problem. The infinite
dimensional Lie algebra (0.3) is found to act infinitesimally on the solutions of
the problem (Theorem 4.3). In Section 5, we discuss the Lie algebras for SU(ri),
S0(n) Chiral fields.

The author wish to thank Professor Mikio Sato and Professor Masaki
Kashiwara for their continuing encouragement. Especially he is grateful to
Doctor Yoshimasa Nakamura for stimulating discussions.

§ 1. The Reduction Problem of SU(2) Chiral Field

The field equation of SU(2) Chiral field is

where g=g(xf y] is SC7(2)-matrix function, and x, y denote the light cone
coordinates

(1.2) jc^U0-*1), 3>=yU0+*1), (*°, Jc^eJZ'.

By the reduction problem we mean that we solve the equation (1.1) with the
algebraic constraints for the field g

(1-3) g2-!, g=g*, trg=Q.

Here * denotes the hermitian conjugate. These conditions are consistent with
the original equation (1.1). The field equation now reads

(1.4) dy(gdxg)+dx(gdyg)=Q,

The reduction problem of SU(ri) or SO(n) Chiral field was considered by
Zakharov-Mikhailov [9].

It is well known that the reduction problem of SU(2) Chiral field is equivalent
to 0(3) non-linear <7-model
(1.5) dxdyg+(dxg-dyg)g=Q

where g is a vector function of x and y valued on the unit sphere of R3, i. e.
g2=l. From the equation (1.4) we get the following lemma.

Lemma 1.1. There exists a twist potential <p uniquely up to integration
constants ir, fe§it(2), such that

(1.6) idx(p=gdxg, idy<p=—gdyg,

(1.7) ^*=^, tr^=0.

Here §u(2) is the Lie algebra of SU(2).

Proof. Since the equation (1.4) is an integrability condition for (1.6), it is
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clear that there exists a twist potential <f). And then $*—$ and tr</> are constant
because of (1.3), (1.6). Hence we get (1.7) with choosing appropriate integration
constants. D

Following the discussion in [1], we introduce a potential E through

(1.8) E=g+i00

This is an analogue of the Ernst potential in the case of the gravitational field
equation.

Proposition 1.2. The Potential E satisfies the following equations :

(1.9) d x E = x , , ~

(1.10) det (l-(

(1.11) tr£=0.

Proof. From g2=l, it follows that

gdxE=gdxg+igdx(f>

The second equation of (1.9) is also obtained in the same way. The equations
(1.10) and (1.11) follow from (1.3), (1.7). n

The equation (1.9) corresponds to the Ernst equation in the gravitational
field equation. Conversely, starting from the equations (1.9), we can get the
original field equation (1.4).

Proposition 1.3. Suppose that E satisfies the equation in Proposition 12, We
set

(1.12) g=~(E+E^).

Then g is a solution of the reduction problem.

Proof. From the definition (1.10), (1.12), it follows that g is an hermitian
matrix whose eigenvalues are ±1. Hence we obtain (1.3). Next define a potential
<p by

(1.13) icb=^(E-E*) .

Then <p is a trace-free, hermitian matrix because of (1.11). Next we show

(1.14) idx(p=gdxg, idy0=-gdyg0

Note that the first equation in (1.9) reads

(1.15) dxg+idx(p=g

Taking trace of the above equation, we get

(1.16) tr(£3*0)=
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from which we further obtain gdx0=—dx(/)-g. Compairing the hermitian part
and the anti-hermitian part of (1.15), we get the first equation of (1.14).
The second one can be obtained in a similar way. The compatibility condition for
(1.14) leads to (1.4). The proposition is proved. D

Thus the original field g corresponds to the potential E, and vice versa.
Next we introduce an infinite number of potentials. For technical reasons,

we work in the coordinates

(1.17) z=

Let 7 be the gradient, V the formal dual operator

(1.18) 7=(9, 3), 7=(d, -9)

where 9=92, d—d-z. The equation (1.9) is now written as

(1.19)

or equivalently,

(1.20) 7

According to the discussion of Kinnersley-Chitre [2], we introduce potentials
Wcm '^}mso,n,i through
(1.21)

(1.22)

(1.23)

Proposition 1.4. The potentials {A^771-70}™^, n>i are determined uniquely up
to integration constants.

This proposition can be obtained by induction. To the end, we need the
following lemma.

Lemma 1.5. The potentials {£(7°} nso exists uniquely up to integration con-
stants, and satisfy

(1.24) 7£^=^(£+£*)7£(7° for n^O.

Proof. The proof is done by induction. When n =1, the claim of the lemma
is nothing but the equation (1.9). Suppose that we have proved the n-th in-
duction step. We show that there exists JV'1'70 given by (1.19). Noting that
7° 7=0, and (1.19), (1.20), we have

(1.25) 7 -
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from which we obtain V°CE*V£cn))=0. fbis guarantees the existence of JV( l i r°

and £C7l+1>. Next we show that V£c*+1)=y(£+£*)V£C7i+1). From (1.23), it

follows that

In the last step of the above equations, we have used the fact that
On the other hand, V£cn+1) = (£+£*)V£w+V£-£C7°. Hence we obtain the
desired result. This completes the induction step. D

The proposition 1.4 can be proved in the same way so that we omit it.
There are remarkable relations among the potentials.

Proposition 1.6. When choosing appropriate integration constants, the following
recursive relations hold;
(^26) jycm.

(1.27) N<m.n+»-N<im+i.

Proof. Since N<m-n>=E™*VE™, and Ncn 'm)*=V£cm)*-ECB), we have
V(Nw.n)+N<n.m^=y(Ew*Ew)9 which impiies (1.26). Next we shall prove

(1.27). From (1.21), (1.22), and (1.26), it follows that

This completes the proof.

2. Generating Function

The concept of a generating function of the Ernst potential was originated
in the gravitational field theory [2]. In our case it is defined by

(2.1) F(t)= 2 £< n >f n

71 = 0

where {EC70}nSo are the potentials given by (1.23).
In this section we shall show that the reduction problem is equivalent to a
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system of linear differential equations with several algebraic constraints satisfied
by a generating function. Such a method was presented by Hauser-Ernst [6].

First we obtain the follwing proposition.

Proposition 2.1. A generating function F(t] (2.1) solves the following system
of linear differential equations;

(2.2)

(2.3)

Proof. By virtue of (1.24), one can easily obtain (2.2). To show (2.3), we
note that we obtain from (1.22)

Multiplying tn+1 to the both sides, and summing over n, we have

By making use of (2.2), this is rewritten as

dF-2itdF=tdE-F, 2it

which leads to (2.3). D

The system (2.3) reads
(2.4) dF(t}=Q(t}F(t} ,

where d denotes the exterior differentiation with respect to x, y, and Q(t] is a
1-form given by

(2.5)

As a corollary of Proposition 2.1, we have

Corollary 2.2,
(2.6) d(detF(f))=0.

To rewrite the equation (1.9), we introduce A(t) through

(2.7) A(f) = l-(E+E*)t

Lemma 2.3= The equations (1.9) are equivalent to

(2.8) tdE=A(f)Q(t) .

This lemma follows from

tdE-A(£)Q(t)

Next we show that the integrability condition for (2.4)
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(2.9) 3x

can be derived from (2.8) (Proposition 2.5). For the purpose, we need the follow-
ing lemma.

Lemma 2.4. We have

(21.0) 3yE*>dxE=Q, dxE*-dyE=Q.

Proof. By virtue of (1.9), we obtain

dyE*-dxE=~dyE*-(E+E*)dxE

= -dyE*-dxE,

which leads to the first equation of (2.10). The second one of (2.9) can be
obtained in the same way. D

Proposition 2.5. The equations (2.8) yield the integrability condition for
(2.4)

(2.11) dQ(t}=Q(t}*.

Proof. Form the previous lemma, it follows that

= -tdE-Q(t).

Noting that d(A(t)Q(t))=0 which follows from (2.8), we have A(t)dO(t)
=A(f)Q(t)*. Since A(t) is invertible when t is small, (2.11) is proved. D

It should be noted that the equation (1.9) cannot be derived from the
integrability condition (2.9) since (2.9) is an equation of second order. Proposition
2.5 means that the equation (1.9) is a special class of (2.9).

The equation (2.8) is rewritten as

(2.12) A(t}dF(t)=tdE-F(t).

By virtue of this we obtain

Lemma 2.6. We have
(2.13) d(F(OM(f)F(f))=0

where F(ty=F(t)*, t denotes the complex conjugate of t.

These preparations enables us to convert the equations (1.9), (1.10) and (1.11)
into those satisfied by a generating function.
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Theorem 2.7. Suppose that the potential E is a solution of the equations
(1.9), (1.10) and (1.11). Then there exists a fundamental solution matrix F(t)
subject to the five equations below :

(2.14) dF(t)=Q(i)F(t)

(2.15) A(t}dF(t}=tdE-F(t],

(2.16) F(t)=l+Et+ - , as t-*Q ,

(2.17) detF(f)=(l-4fs)-1/£,

(2.18) F(WA(t)F(t)=l.

Here Q(t) and A(t) are given by (2.5) and (2.7), respectively. Conversely E
satisfies the equations (1.9), (1.10) and (1.11) provided that there is a fundamental
solution matrix F(t) subject to the above equations (2.14)— (2.18).

Proof. First suppose that E satisfies the equations (1.9), (1.10) and (1.11).
From Lemma 2.3 and Proposition 2.5, (2.10), it follows that there exists a funda-
mental solution matrix F(f) of (2.14) and (2.15) satisfying (2.16). Moreover
Lemma 2.6 shows that F(t) satisfies (2.18) at the same time under a suitable
choice of a gauge of F(t). Since det ,4(0=1 -4*2, one has |detFW]2-(l-4^2)-1.
Use of Corollary 2.2 leads to det F(f)=(l— 4f2)-1/Viac*) where a(f) is real valued
when t is real. Since (2.16) gives det F(t}=l+0(t2) as f->0, one can find a(t}
such that fl(0)=d(0)=0. Thus F(t}e-ia^ satisfies all of the requirements. Next
we show the converse. The equations (2.14), (2.15) yield (2.8) which is equivalent
to (1.9). The equation (1.12) follows from (1.15) and (1.16). Finally we verify
(1.11). The expansion (2.16) gives

det F(f)=l+(tr £)*+••• as f->0.

On the other hand, (2.17) yields

detF(0=l+0a2) as f->0 .

Compairing these expression, one obtains (1.11). D

From now on, a function F(t) satisfying the conditions of Theorem 2.7 will
be simply called a generating function.

Now we shall express the potentials {7Vcm>7l)} introduced in the previous
section in the language of a generating function. Set

(2.19) G(s, t)=-^:-{s-tF(srlF(t}} .
s n

The function of this type was originally considered in [2] and [16]. Expand
G(s, 0 into a power series of s, t

(2.20) G(s, 0= 2 G c m- n )smr .
m, 7i=0

Note that Gc m '0 ) for m^l. First we obtain a proposition correspoding to
Proposition 1.7.
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Proposition 2.8. Suppose that F(t) is a generating function. Then the
recursive relations

(2.22) g

are valid for m^§, n^l. Here we set Gco>7l )=Fcn).

Proof. From the definition of G(s, 0, it follows that

(2.23) t~1{G(s> t}-l}-s-1{G(s> t}-F(t)}=dwG(s, w}\

Substituting the expansions of F(t) and G(s, t) into the both sides of (2.23),
and collecting all terms of the same order in s, t, equating the resulting coeffi-
cients, we have (2.21). Setting m=0 in (2.21), we obtain

(2.24) ^(ra+l) _ £(1, TO _

To prove (2.22), it is sufficient to show

(2.25) G(s,

The definition of G(s, f) leads to

G(s, t)+G(t, sy = l+

Since F(sYl=F(s^A(s\ we get (2.25). D

The equations (2.21), (2.22) and (2.24) correspond to (1.27), (1.26) and (1.22),
respectively. In closing this section, we shall show the relations corresponding
to (1.21).

Proposition 2.9. The differential recursive relations

(2.26) dGtm.v=Fw*dF™
hold for ??2^0, n^l.

Proof. By means of (2.18), G(s, 0 is rewritten as

Differentiating the both sides of the above identity, we have

dG(s, 0 = t—s—t

_ t
~ s—t

{r1sF(sYA(t)dF(t)-F(sYA(s)dF(t)} .
s-t

Therefore
(2.27) dG(s,f)=F(s?dF(f).

Expanding the both sides into a power series in s, t, we obtain (2.26).
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Thus {£<">} can be identified as the potentials {N<-m'n>}. Among the
above equations (2.21), (2.22) and (2.26), (2.22) is essential to construct the trans-
formation theory,, We emphasize that this equation is an immediate conclusion
of the definition of G(s, t}.

§ 3. Riemann-Hilbert Problem

In this section, following Hauser-Ernst [6], and Zakharov and his coworkers
[9], [10], we shall present an algebraic approach to construct transformations
for solutions of the reduction problem of SU(2) Chiral field. The transformations
are achieved by use of the Riemann-Hilbert problem. We call them the Riemann-
Hilbert (RH) transformations. Our aim is to investigate the algebraic structure
of the Lie algebra of the infinitesimal RH transformations, so that the details
of analytic aspects of the transformation theory are not considered here.

Begin with a generating function F0(0 such that

(3.1) dFo(0=fl0(OF0(0,
(3.2) A0(t)dFQ(t)=tdE0'F0(t),

(3.3) F0(0)=l, F0(0)=JE0,

(3.4)

(3.5)

Here the dot in (3.3) denotes the differentiation with respect to t, and AQ(t),
QQ(f] are respectively defined by (2.5), (2.8) for the potential EQ. Let C be a
small circle in the complex if-plane whose center is the origin, such that F0(t) is
holomorphic in CUC+. Here C+(C_) denotes the inside (outside) of C.

Note that F0(t) is not uniquely determined by the above conditions. In fact,
if v(t) is a 2x2 matrix depending on only t and holomorphic in CUC+ such that

(3.6) v(OMO = l, detv(f) = l,

(3.7) v(0)=l, t>(0)=0,

then FQ(t)v(t) is also a generating function for the potential E0. Let u(f) be an
2x2 matrix depending on only t, analytic on C, such that

(3.8) u(ffu®=l,

(3.9) detM(0 = l-

Consider the Riemann-Hilbert problem

(3.10) Z-(s)=JT+(s)#(s) (seC)

(3.11) H(t}=F,(t}u(t}FQ(tYl,

with the normalization condition

(3.12) *+(0)=l,

where X^.(f) is holomorphic in C± and continuous on C, and invertible in
respectively. We assume that one can uniquely solve this problem.
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This hypothesis is not so strong, since there is a fundamental solution
matrix if u(t) is very close to the unit matrix. It is also noted that X±(f) con-
sequently is analytic on C from the analyticity of H(t). Set

in
(3.13) F(t)=\

( X-WFMu®-1 in C_ ,

(3.14) X(t)=X+(t) i n C + , = X.(t) in C_,

(3.15)

(3.16)

(3.17) _ _ : B _ _

By a similar method as in [6], one can show that E is a solution of the reduction
problem and that F(t) is a generating function for E.

Proposition 3.1. The following equation hold:

(3.18) detX(f)=l,

(3.19)

(3.20) det 4(f)=

(3.21) dX(t)=Q(f)X(f)-X(f)Q0(f),

(3.22) ^(f)dX(

From this proposition, we obtain

Theorem 3.2. F(f) is a generating function; that is, F(f) satisfies the defining
relations
(3.23) dF(f)=Q(f)F(t],

(3.24)

(3.25)

(3.26)

(3.27) A ( t ) d F ( t ) = t d E - F ( f ) .

Proof. The above equations except the last one are derived, respectively,
from (3.1) and (3.21), (3.3) and (3.14), (3.20) and (3.18), (3.5) and (3.19). Finally we
show (3.27). The equations (3.22) and(3.13) give

^WdFW^Wf-*:*^]^

=tdE-F(f)

since A(t}X+(t}QQ(t}=tlX+(t}^-ldEQ-FQ(t) from (3.2) and (3.19). This completes
the proof. D

Next we show Proposition 3.1.
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Proof of (3.24). First we show

(3.28) [*+(0T]-Mo(0*+(0~1=same + replacing - .

From (3.5) and (3.11), it follows that

the left-hand side of (3.28)

Hence \_X(t}^~lAQ(t)X(tYl is an entire function of t. Since AQ(t) is a linear
function of t, this function is also linear in t,

(3.29) lX(tY]-lAQ(t}X(tYl=B+Ct .

Considering the expansion of the left-hand side at t=Q, we have B — l and
. D

Proof of (3.20). It is obvious from (3.18), (3.19). D

Proof of (3.21). We can easily show

(3.30) dX..(t}'X-(tYl+X-(t)QQ(t}X-(tYl=$zmz + replacing -.

Hence, taking the simple poles of QQ(t) into account, we can set

C dy .

By the same argument as in the proof of (3.19), we obtain B=dxE, C—dyE.
n

Proof of (3.22). First we show

(3.31) A(t}dX.(t}'X.(tYl+tlX.(t}^-ldEQ-X.(t}=^mQ + replacing -.

Using (3.1), (3.2), (3.5) and (3.10), (3.11), we have

(3.32)

(3.33)

(3.34)

Substituting these into the left-hand side of (3.31) we obtain (3.31). The rest'of
the proof can be done in a similar way as above, so that we omit it. D

In [6], it has been shown that the totality of the RH transformations is
equipped with group structure under natural composition of matrices. Precisely
we have

Proposition 3.3 (cf. [6]). Suppose that Ui(t], uz(t), which satisfy the conditions
(3.8), (3.9), transform F0(f) to F&), and Fjtf) to F2(t}. Then u^u^t] transforms

to Fz(tY
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§4. The Infinitesimal Riemann-Hilbert Transformations

It is known that the Riemann-Hilbert problem (3.10) is rewritten to the
integral equation

(4.1) F-(1-K)=F0

(see [6], [11]). The integral operator K is defined by

(4.2) (0'K)(t)=-^-{ ds <$>(s)K(s, t}, s,

where the kernel function is

(4.3) K(s, t) = 0 0

We remark that (4.1) actually gives the solution of the Riemann-Hilbert problem
(3.10) if u(f) is very close to the unit matrix (when u(t) = l, K is a null operator).

In what follows, the infinitesimal form of (4.1) will be called the infinitesimal
Riemann-Hilbert (RH) transformation (the precise definition will be given later).
The discussion in this section corresponds to the converse of the procedure
exploited by Hauser-Ernst [5].

Assume that
(4.4) M(f)=expv(0

where v(f) satisfies the conditions that v(ty~\-v(t)=Q, and trv(£)=0. Substituting
(4.4) into (4.1), and neglecting the higher order terms with respect to v(£), we
have the infinitesimal form of (4.1)

2m Jc s(s-t)

Since the integrand of the last equation is analytic at s=t, we may analytically
continue t into G+. Then we have

(4.5)

S, 0-1) -- rs(s—t)

where G0(s, t) is defined by (2.19) where F(t) is replaced with F0(t).
Expand G0(s, 0 and F0(t) into power series of s and t

(4.6) G0(s, 0= S Gcm

m, n=0

Also define

(4.7) tfc»=_L
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Noting that t/s(s— 0= S tn/sn+1, and inserting (4.6), (4.7) into (4.5), we obtain
71 = 1

the infinitesimal RH transformation (associated with v(t))

(4.8) pan^_>pan^Jr J] /TU»>vCP+fl)£CS, ?O _ 2 j^CP^CP-rc) ̂

p,g=0 p=0

We remark that (4.8) actually expresses an infinitesimal form of the RH trans-
formation associated with u(t) when v(t) is very close to the null matrix.

Next consider the generators of the infinitesimal RH transformations. Set

(4.9) v(t)

Then we have the generators

(4.10)* GCO.n)_>G(0.

for k^
and
(4.10)_* Gco,n )_> (o(o1r i)_Gco1n-ft) rc-^ for k^l,n^l.

We denote these generators by f^r*. We set the totality of the infinitesimal
RH transformations as Q. That is,

(4.11) £=span of {r<*>r*|£eZ, rcft)^§u(2)} .

Next we consider the action of Q on the totality of the potentials G^m'n\
We have the following proposition.

Proposition 4010 For any &^0, y^t~k infinitesimally acts on the totality of
potentials {Gcra>ri)} as follows:
(4.12) y(k)-[.-k. Gtm.ni^Qtm.nij^ytklQtm+k.n) _ Q<.m,n + k)y<ik)

_l_ 2 G^m>

.7=1

Proof. The proof is carried out by induction. The claim of the proposition
is true for n^l when m=§. Assume that (4.12) holds for n^l when m—l.
The recursive formula (2.21) and the assumption of induction give
(4.13) £(m,w)_£cm-l .n+i)_£(m

Here we neglect the higher order terms with respect to p^. Note that the
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last three terms of the above equation read
k-i k

G(nt- i , .7+i)v(fc)GC*-.7,w) _ 2] G^^'^G^'-^
j=o

k-i

and that
0, k) —-/~<(m, k)

Substituting these into (4.13), we complete the induction step. D

Before proceeding to the next proposition, we note that (4.10)_fe is rewritten
as

(4.14) G < ° ' n > « — > G < ° - B > + if dOJr^^dk-jin+r^k'G^k'^-G^n-^r^k^
j=Q

Here we have set
(4.15) G^'-^ = -Gc-^ = l for any p^l ,

and Gcm>r i :>=0 for other negatives indices. Then the recursive formula (2.21) is
valid for ?n^0 or n^l.

Proposition 4.2. For any k^l, j^~k^t~k infinitesimally acts on the totality of
potentials {GCOT>71)} as follows:

(4.16) r'~^tk: G c m - n ) i — >G c m ' ^+ ^ dm jT'-^Sk-jn

Proof. The proof is done by induction. Assume that the (m— l)-th induction
step holds. Then, by a similar way as in Proposition 4.1, we obtain

r(-k)tk £_!

(4.17) G < » • » > • - »Gf»-»'+ S ^-^r'-^-^i
J = 0

H-7 c~ f e 5GC 7 7 l~ f e > 7 1 5 _ G (m'n~ k^ r^~ k^

Note that the following identities hold:

*2 3ra- l i< /r
C"* )3*-j.n+i= 2|^m,,rC-"^^J,n, for m^l, n^l.

Substituting these into (4.17), we complete the m-th induction step. n
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We obtain the main theorem in this section.

Theorem 4.3. The Lie algebra Q is isomorphic to

(4.18) 3ii(2) (g)JRD, r1].
R

Namely the commutation relation

(4.19) [r'^r*, rcZ)r']=[ra), r^J~k~l

holds for any k, I. The bracket of the right hand side is the usual one of §u(2),
and that of left hand side is the bracket among the infinitesimal transformations,

Kinnersley-Chitre [2] showed that the infinite dimensional Lie algebra
§1(2, R)§§R[t, r1] acts on the totality of solutions of the stationary axially-
symmetric gravitational equation (refer to the appendix). The proof of Theorem
4.3 can be done in the same manner as in [2]. However Kinnersley-Chitre give
no proofs there. Hence we would like to give the proof in detail.

Proof of Theorem 4.3. The proof is subdevided into four cases. The first
case is
(4.20) [ra)r*, T^'r'INCT''*', r^~]t~k~l for any k, /^(K

By making use of Proposition 4.1, for any non-negative integer k, I, we have

k k
2 Gcm>J"+Z)rc* )7'c* )+ S
j=l j=0

2 G(m>;'+*)7<a)r(*)G!c*~i7''70~~ 2

ak^ r(0l

l+k l+k
2 (^cm,.7)^c*)vc i )G ( i" f&~<7" i7 i : ) _ S Gc m >

This implies (4.20). The second case

(4.21) [rc-*}^, rc'l)^] = Crc'*), rc 'f>]**+l for any *,

can be proved in a similar way. In fact we obtain

*S 3m.A^»-z+ 2

- JS a»-l.^*-/.»+ S am.
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(-*) rC-Dl

Next we proceed to the third case

(4.22) W>t-*, rc"l)rI]=Crc*), rc-"]r *+£ for any 0<l^k .

The proof of this case is rather complicated than those of the previous two
cases. Neglecting higher order terms with respect to f c f e ) and 7C~°, we have

(*•*) + (*•*•*).

Here the last three terms are computed as follows :
1-1 i-i

(+\— v ^ .vC^)r c~Z : )^ _ V ^ vC-^rC*)^ —0^; — Zj Vm+k,jl f Ul-j,n Z-i Om,j/ I Ol-j,n+k — u

3=0 J=0

because dm+k,j=dl-j,n+k=Q for any 0</^&, and m^O, n^l, Ogy^/-l. The
rest of the terms are

(*.*)= 2 S G^-^r^Sk-j tf^di-t n+ S G^'
j=o i=o ' j=i

= S G^'*-0^*^-'^-* ,,+ s' Gcm- / )rc*)7'
i=0 ' j=l

y» f;c
Zj ^
.7=0

+ S

s s 3m. ir
c"' )^-.

Hence we obtain

Qdm,n^l _ ^ T ^ C ) v C - Z ) ~ l ^ C m - Z + f t , 7 i ) _ £(ro, ra-+*)pvC*) v(

+ *S Gc

The last case
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(4.31) [ra)r*, rc"')^]=Crc*), rc-Z)]r
can be proved in the same way. D

§ 5, The Riemann-Hilbert Transformations
for SU(ri) and S0(n) Chiral Field

In this final section we consider the RH transformations for SU(n), S0(n)
Chiral field. Zakharov-Mikhailov [9] found that SU(n), (S0(n)) Chiral field
equation
(5.1) dy(g-1dxg)+3x(g-1dyg)=0

is equivalent to the compatibility condition for the following linear problem;

(5.2) d7(0=fl(07(0

where d denotes the exterior differentiation with respect to x and y, and Q(t)
is a 1-form given by

(5.3)

(5.4) A=A(x, y], B=B(x, ^)eSu(n) (resp. §o(n)).

Since, for any fundamental solution matrix 7(0 of (5.2),

(5.5) d(7(0T7(0)=0, d(det7(0)=0

hold, we see that there exists a fundamental solution matrix 7(0 such that

(5.6) det 7(0 = 1 , 7(0*7(0=1 , 7(0)=1 .

Here ? has benn defined in Section 2. In the case of S0(n) Chiral field, the first
equation in (5.5) and the second equation in (5.6) must be replaced with
d(*7(07(0)=0, and '7(07(0=1, respectively. Here *7(0 denotes the transposed
matrix of Y(f). Conversely, if there exists a fundamental solution matrix 7(0
of (5.2) subject to the condition (5.6) (we call such a solution a generating
function for the 1-form Q(f}\ the coefficients A and B in (5.4) are §u(n) (resp.
§o(n)) matrices.

Next we consider the RH transformations (Zakharov-Mikhailov constructed
the transformation of this type in [9]). Let 70(0 be a generating function for
the 1-form Q0(t) with the coefficients AQ and B0, and C a small circle whose
center is the origin such that 70(0 is holomorphic in CWC+ (as for the
notations, see Section 3). And let u(t] be an nXn matrix function of t, analytic
on C such that
(5.7) M(O fM(0 = l, detu(0=l.

For S0(ri) Chiral field, the first equation in (5.7) must be replaced with
*M(OM(O = I. As in Section 3, we consider the Riemann-Hilbert problem

(5.8) X.(s)=X+(s)H(s) ,

(5.9)
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with normalization condition X+(ty = l. For the solution of the problem, we
define Y(t) and Q(t] as follows;

(t)Y0(t) in C,,
(5.10) Y(t) = \

' i n C _ ,

(5.11)

Then we have

Proposition 5.1 (cf. [9]). Y(t) is a generating function for the I- form Q(t]
(5.11).

The infinitesimal RH transformation for SU(ri), S0(ri) Chiral fields can be
obtained in the same way as in Section 4. We only show the results. As in
Section 2, define the potentials {G ( m > 7 l )}m^o,r^i by

(5.12) c(s,0=— ̂ -{s-^o(s)-1lro(0}= S G<n-n>smt».
S — t m,7i=o

In Section 4, we have only used the relation (2.21) and the integral equation (4.1)
to show the propositions in Section 4. Notice that (2.21) directly follows from
the definition of G(s, t), and that (4.1) also represents the Riemann-Hilbert
problem in this case. Hence we can define the infinitesimal RH transformations
just as in Section 4. The generators f^r^'s of the infinitesimal transformations
are defined by (4.10) where f c*5 >s belong to §tt(n) (resp. So(n)). Let Q be the
totality of the infinitesimal RH transformations

(5.13) £=span of {r^t~k\k^Z, rc f t )e§u(n) (resp. 8o(n))} .

Then we have

Theorem 5.2. The Lie algebra Q is isomorphic to the graded Lie algebra

(5.14) 3ii(n)®/2p, r1] (resp. §o(n)(g>/2p, r1]) .

Namely the bracket relations

(5.15) [r^r*, r^t-li
hold for any generators p^r*, j^t~l of Q.

The reason why the algebra of SU(2) Chiral fields is isomorphic to that of
the reduction problem is that the Riemann-Hilbert problems for these equations
are formulated in the same manner (compare (3.8), (3.9) and (5.7)).

Appendix. Kinnersley-Chitre Theory

In the references [1], [2], W. Kinnersley and D. M. Chitre constructed the
so-called Geroch group. This is an infinite dimensional transformation group
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acting on the manifold of solutions of stationary axially symmetric vacuum
gravitational field equations (ASVG). In this short note, we shall review the
essence of their theory.

First of all we define ASVG. Consider a 4-dimentional metric form expressed
by
(A.I) -dsz=ezr(dp2+dzz)-gabdxadxb (a, b=Q, 1)

where (XQ, xl) = (t, 0), and JT, gab are functions depending on only p and z.
Furthermore we assume that

(A.2) g-(gab) is real, symmetric and detg=—pz.

We demand that the metric form (A.I) satisfies the Einstein equations Rtj=Q.
The essential part of these equations is

(A.3) V-dtr^V^M)

where V=(9p, 92) is the 2-dimensional gradient, and V=(9a, —d0) is the dual
/O 1\

operator of V, and where a=\ . This is ASVG.
\-l O/

Kinnersley-Chitre observed two internal symmetries hidden behind the
equations (A.3), which do not commute to each other, and composed them. The
Geroch group is generated by these symmetries.

The first symmetry is immediately found:

(A.4) £-—>*£g£, fe=SL(2, R), constant.

The equations (A.3) are obviously invariant under the above transformations.
We denote by ^(0) the Lie algebra of this transformation group, which is iso-
morphic to §1(2, R).

In order to find another internal symmetry, we must introduce the so-called
Ernst potential. First we note that there exists a twist potential $ defined by

(A.5) ^<p=p

The Ernst potential is given by

(A.6) E=
and satisfies the equation
(A.7) VE^i

Let En be the (1, 1) component of E. Then En satisfies

(A.8) (Re £„)*£„=(VEu)1,

where A is the 3-dimensional Laplacian. (A.8) is called the Ernst equation.
Since other components are regained from En, the symmetry of the Ernst
equation becomes important.

Proposition A.I. (The second symmetry}. The Ernst equations has the three
symmetries below:
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(A.9) En i — >• En—ia (a gauge transformation),

(A.10) Ell . — > ££„ (resettling) ,

(A.11) £„_ > "

Here a, /3, 7" are real constants. The last transformation (A.ll) is not trivial,
and is called the Ehlers transformation. These second symmetries do not commute
with (A.4).

First we mix the symmetry (A.4) with Ehlers transformations (A.ll). Denote
/ 0 0 \

by \t~l the infinitesimal Ehlers transformation.
\o r, /

/ o o \
Theorem A.2. The infinitesimal transformation r1 acts on the field

g and the potential E as follows : \ u Ts /

gll gl2 \ / gll gl2
(A.12) . — > +2

I 0 0 \ / 0 0 \ 700
(A.13) Ei - >E+iEo\ \aE-\-i\ \aN-i(N+EaE}a\

\0 T* I \ 0

where N is defined by
(A.14)

0 0
Sketch of the proof. We only show that ]t~l transforms E2i to

0 T

From the definition of twist potential <p (A.5) and (A.12), we see that
0 0 \

]t~l transforms W2i as follows :
o n I

Since the right hand side of the above equation is V(<^2i—7 a RG (

we have
0 0

0 7

By the same way, we have

0 0
Im i

0

This completes the proof.

It is noted that §1(2, R) is isomorphic to §t)m(2, R) (algebra of 2x2 real
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symmetric matrices) as Lie algebra by

(2, R} .

The §t)tn(2, JR) bracket is given by [r, f^jof—j'ay.

Lemma A.3. Under the isomorphism (A.16), we identify 7*c(0e§ijtn(2, R)
with an element of ^C0). Then fCO) gives an infinitesimal transformation

We define -£a) as a class of infinitesimal transformations given by

0 0 \ 1 / 0 0
r1,^0'®

o ra /
It is noted that £cl) is canonically isomorphic to §tjm(2, R)^"1 as a vector space:

j ; rcl)

Lemma A.4. Under the isomorphism (A.19), r^r1 gives an infinitesimal
transformation

(A.20) r^t'1 : E i — > E+iEar^ffE+ir^aN~i(N+EaE)ar^ -

It should be noted that ^cl) is not closed as a Lie algebra. However this is
an important point. In fact we extend the group on the ground of this point.
We define

for k^l.

In order to represent £>c*), we must introduce new potentials.

Proposition A.5. There exist an infinite number of potentials {ATcm'n)}
defined by
(A.22) £cn+1)=zWcl

Lemma A. 6. Under a suitable choice of integration constants, the following
recursive relations hold]
(A.23) Nw,n)_Ntn,m)*=Ew*ffEw for m^0, n^l,

(A.24) Nw.n+»-Nw+i.v=jNtm.»ffEw for m^0, n^l

We observe that ^a) is canonically isomorphic to §tjm(2, R}(g)t~k asfa vector
space.
(A.25)

Theorem A.7. Under the isomorphism (A.25), y^t~k gives an infinitesimal
transformation

(A.26)
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- 2 N^'^ar^aN^-*'^ for ra^O, n^l .

And the commutation relations are given by

(A.27) [r^r*, r^r'iNCr'*', r^t-k~l for &^o, /^
Sketch of the proof. In order to verify the theorem, we need the following

lemma.

Lemma A.8. An infinitesimal transformation j^t~l^S^ acts on
cm'B)}»«.«i as follows:

(A.28)

This lemma is proved by induction with respect to m and n. Let us assume
that we have verified the n-th induction step for ra=0 or 1. Then, by using
(A.22), (A.24) and the hypothesis of induction, we can prove

Y™t~l : ATCO>71+1) i _ >
_ jy CD, n+2) ̂ CD

and

Thus we see that (A.28) is true for any n^O, and m=0 or 1. That the assertion
of the lemma is true for any ra^O can be also verified by induction. Theorem
A.7 is shown by using Lemma A.8 in the same way as in Theorem 4.3.

Next we define ^c"1} as a class of infinitesimal gauge transformations. If we
denote by j^^t an infinitesimal gauge transformation

(A.29) E - — > E+ir™ , rc~15 e§i}tn(2, R) ,

^c~1} is canonically isomorphic to §t)tn(2, /2)(g)£ as a vector space.

Lemma A.9. An infinitesimal transformation r^^t^g^^ acts on the potentials

{W"11'715}^,,.^! as follows:

(A.30) 7-'-1'* : #<m - n> - — > N^'^-dm,0r^dn>1
4_^c-i) (J j/ycwi-i,7i) _ jycm,w-i)0.vc-i) ̂

/ze potentials with negative indices are defined as

Let us define
(A.32) £<- *>=:[£<- *+1), ^C-X)] for jfc^

This vector space is isomorphic to §^m(2,
(A.33) ^c-*)^{ rc-*)^ : rc
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We have

Theorem A.10. Under the isomorphism (A.31), ^-k^>tk gives an infinitesimal
trans formation

<A.35) rc~*5^: Ncm 'n) ' — > 7V<«>- if dnijr<-k>3k-j.n

/z£ commutation relations are given by

(A.36) [r<-^fe, rc"Z)^]=Crc"*), rc~°
We set Lie algebra ^ as

(A.37) s= 0
& = -oo

The structure of Q is stated in our main theorem.

Theorem A.ll. As a graded Lie algebra, Q is isomorphic to §tjtn(2, R)®R[t, r1].
Namely the commutation relations

(A.38) [rc*>r*, rc^~']=[ra), r(Z)]r*-'
/z0W for any integers k and I.
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