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§ 1. Introduction

In this paper we will investigate asymptotic behaviors of random orbits of
dynamical systems with random parameters. In many biological models (for
example, May's model [13]), the dynamical systems have parameters. Asymptotic
behaviors of orbits of such dynamical systems depend on the parameters very
sensitively. But usually it is not easy to decide values of parameters theoreti-
cally. They are decided only experimentally. Hence, it seems to be natural to
think that the parameters of the dynamical system are chosen randomly at every
time of its iteration.

More precisely we will explain the idea of dynamical systems with random
parameters. Let ft, l^A, be a family of maps from a set M into itself. The
randomness of the parameter 1 is governed by a probability measure 7 on the
parameter space A. Let ln(o)\ n — l, 2, • • • , be a sequence of independent, identi-
cally ^-distributed random variables on A. Then we think that the orbits of
the dynamical system fx may be determined according to the random sequence
Zn(co). Namely, the state of the system at time n started from the point xeM
is given by

Xn(o>}=fjLn^^°fxn-^^° '•• "/J^CaoU)

which is, of course, a radom point.
It is easy to see that X%(a)) becomes a (time homogeneous) Markov chain
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(which we call 77) with the initial point X0(a)) = x and the transition probability

where 1^ denotes the indicator function of the measurable set A. Hence the
theory of Markov chains is applicable to the study of behaviors of dynamical
systems with random parameters.

The random sequence {Xn(o>)} mentioned above is defined as follows. Let
(Q, b)=(AN, ?N) be the infinite product probability space of the copies of the
space (A, fl(N={l, 2, •••}), and let a)(ri) denote the n-th coordinate of <ye Q.
Then An(o))=a)(ri) is a random variable and {Zn((*>)} constitutes a sequence of
independently identically ^-distributed random variables.

Define the shift operator a of Q by

for all n^l.

Then we get another representation of the dynamical system with random
parameters

T(x, a>) = (/a,ci)X, 00)),

which is called a skew product transformation in ergodic theory. Actually,
Tn(x, a)) = (XZ(a)), ana>).

S. Kakutani [8] investigated the relation between the Markov chain U and
the transformation T under the assumption that each fx preserves a fixed prob-
ability measure v on M. In this situation the product measure uXb is invariant
with respect to T and the measure v becomes a stationary measure of the
Markov chain 77. He proved that the stationary Markov chain 77 under the
initial measure v is ergodic if and only if the transformation T is ergodic
under vX6. In this paper, we assume only that the transformation T preserves
the product measure vXb without the assumption of the measure-preserveness
of each transformation fx, and we prove Kakutani's result mentioned above.

Our investigation of dynamical systems with random parameters is suggested
by the studies of deterministic dynamical systems, such as one-dimensional
dynamical systems (see [1] [2] [3] [4] [5] [6] [7]) and dynamical systems
with hyperbolic structures (see [10] and [11]). We will see that there are very
similar phenomena in dynamical systems with random parameters as in the
deterministic dynamical systems metioned above.

Section 2 is the preliminary part, where we define the Markov chain 77 and
the skew product transformation T precisely and study the relations between a
stationary probability measure of the Markov chain 77 (a 77-invariant measure)
and an invariant probability measure of the transformation T (a T-invariant
measure). In Section 3, we prove that a 77-invariant probability measure v is
77-ergodic if and only if yx5 is T-ergodic.

In the rest of the paper, we make some smoothness assumptions on the
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phase space M, the parameter space A and the family of transformations {/^},
which is described in Section 4. We will show under these assumptions, that
any 77-invariant measure is absolutely continuous with respect to the Riemannian
volume on M. In Section 5, we will study the exactness and the cluster prop-
erty of II and T. We will get some topological condition for exactness and
show that any ergodic invariant measure can be represented by an exact
invariant measure. In Section 6 we will investigate the condition for the
uniqueness of 77-invariant measure and asymptotic behavior of random orbits
of such random systems. We will also see that the randomized system of May's
model is uniquely ergodic. In Section 7, we will study the relations between a
deterministic dynamical system and systems with random parameters. We con-
sider a deterministic dynamical system as a limit of random systems when the
parameter spaces tend to one point. Especially we are interested in the dynamical
system which is given as a limit of uniquely ergodic systems. Lastly we will
give a simple two dimensonal example in such case.

§ 28 Skew Product Transformation and Markov Chain

In this section we set up our objects. Let (M, dM) and (A, dA) be compact
metric spaces and / a continuous map from MxA to M. We denote fx(X)=

/*(*)=/(*, ft for *eM and 2^A.
Given a Borel probability measure p on A, we call the system (/, M, A, j]

a random dynamical system with phase space M and random parameter space
(A, 71). Let Q—AN and 6=7^ the product measure on Q where N={1, 2, •••},
and let a be the shift operator defined on Q by

where o>(n) denotes the n-th coordinate of a)<=Q.
Define a skew product transformation T on MxQ by

T(x, cy)=(/wci)(x), a(aj)), zeM,

The %-coordinate of the n-th iteration Tn(x, aj) is given by

For each fixed (x, a)}, the sequence {X^cofin^ is an orbit of our random system
(/, M, A, f). It is easy to see that the random sequence {X£(a))} governed by
the probability measure b forms a time homogeneous Markov chain with the
initial point XS(co)=xf which we call II. The transition probability is given
by the image measure /$(rt:

P(A, x}=j

where \A(x) is the indicator function of the measurable set A in M. Let P be
the transition operator of 77:
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=\ g ( y ) P ( d y , x ) = \ e ( f i ( x » d r ( X ) ,
JM JA

Let P* be the dual operator of P defined by P*(v)(g)=v(P(g)) for a probability
measure \> on M.

A probability measure v on M is called ZZ '-invariant if P*(y)=v. The set of
all 77-invariant probability measures is denoted by Su- Let c5^ denote the set
of all T-invariant probability measures of the form vxb, where v are probability
measures on M. Then we have

Lemma 2.1. A probability measure v on M belongs to $u if and only if
m=vXb belongs to S\.

Proof. For any g^C(MxQ), put

then we have

c, <s)}}dm(x, a)).

Hence P*p=y if and only if m is T-invariant.

Lemma 2.2. Jn^0 and hence £\^®.

Proof. This follows from Tihkonov's fixed point theorem.

§ 3. Ergodicity

In this section we will prove the equivalence of the ergodicity of the Markov
chain H and that of the transformation T defined in the previous section. Let
u^Jn be given. A measurable set £cM is called (II, ^-invariant if P(!E)=IE
(a. e. v). The measure v is called II-ergodic if every (II, y)-invariant set has
v-measure 0 or 1. We denote by 8n the set of all /7-ergodic probability mea-
sures. We also denote by GT the set of all T-invariant ergodic probability
measures, and we put 6b

T—£rrVr- Then we have

Theorem 3=1. A probability measure v on M belongs to GE if and only if
the product measure m—vXb belongs to Q\.

Remark 3.1. S. Kakutani [8] gave an elegant proof of this theorem under
the assumption that each fi preserves the probability measure K But it can be
seen that in his proof it does not need to use the above assumption. Nevertheless
we give a proof of the theorem for the completeness.
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Proof of the "if" part. Let ?n=vX&e£^ Suppose that there is a (II, i;)-
invariant measurable set B with OOCB)<1. Then by Lemma 2.1, p| sx6 is
T-invariant. This contradicts to the T-ergodicity of the measure m.

In order to prove the only if part, we use the following lemma. We denote
Ex={(o; (x, o>)e£} for EdMxQ and x^M.

Lemma 3.1. Let u be a probability measure on M and m=vXb. For any
measurable set EdMxQ with m(F)>0 and any e>0, there exists an n(e)>Q
such that

for all n^n(e).

Proof. Let JLn be the a-field generated by the first n coordinates <y(l), ••• >

o)(n) of Q. Let <p%(o))=bn(Br\a)n), where o)n—{o)f^Q'} G/(l)=<w(l), ••• , w' (ri)=o)(ri)}

and bn= fi r(dco'(k}}. Then it is easy to see that (p% is a version of b(B\JLn),
k=n+l

and so cp%->lB fora.e.cy. Let E^={co^Q\ (pix(a))>l— e} and Fn= {(x,
. Then we have

lim m(Fn)=lim\ b(F

=lim( [ ,71->ooJ M J E

= f b(Ex)dv(x)=m(E).
JM

From the relation b(an(Br\o)n^—^n((^) we obtain that for any y^M such that
(Tn(FJ)y^0, there exist zeM and an atom a)n of Jw with o)nC.El such that
(Tn(Fny)y-Dan(Fx

nr\a)n}- Hence we have

Let G^ be the projection of Fn to Mi.e. Gn={x<^M; (x, a)}^Fn for some a)^Q}f

then G^CJ^eM; 6((T71E)a;)>l-£}. Since v(Gn}^m(Fn}^(l-e}m(E} for suffi-
ciently large n, we obtain the lemma.

Proof of the "only if" part of Theorem 3.1. Take a measurable set E in
MxQ with T-\E}=E and m(£)>0. Let F={xeM; &(£*) = !}. Then Lemma
3.1 implies v(F)=m(E). Then the relation

shows that ^^F implies 6(E*)=0 for ^-a. e. x. On the other hand, since
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JA

x<=F if and only if f z ( x ) ^ F for a. e. 2, and x<£F if and only if fi(x)£F for
a. e. ̂ , which means

Since (/7, v) is ergodic, we have m(E)=i>(F)=l.

§4. Assumptions for Further Investigations

We assumed only the continuity of the system so far. From this section
•on, we assume the smoothness of the random dynamical system (/, M, A, j}
described as follows. Assume that M and A=A°+Ab are compact connected
Riemannian manifolds where Ab is the boundary of A°. We denote the metrics
of M and A by dM and d,A respectively. The map / is assumed to be a C'-map.

We put the following assumptions.

Assumption 4.1. We assume that dim(M)=dim(-4)>dim(.46).

Define

The second assumption is

Assumption 4.2. The sets Sx and S are finite sums of connected submani-
folds whose co-dimensions are positive.

Thirdly we put the following natural

Assumption 4.3. The every probability measure f on A, which we consider,
is absolutely continuous with respect to the Riemannian volume dl of A and its
density (Radon-Nikodym derivative) 0(X)=dY(X)/dA is positive everywhere and
continuous.

Under the above assumptions we have

Lemma 4.1. The transition probability P(-, x} of the Markov chain H is
absolutely continuous with respect to the Riemannian volume ft on M, and it has
a density p ( y \ x ) which is lower semi continuous with respect to (x, y}.

Proof. For each x<^M, we have a finite partition £*={£/?} of A\SX, such
that each Uf is open and connected, fx is a diffeomorphism on each Ux and £*
moves smoothly with respect to x. Let ff denote the restriction of fx to Uf.
Then it is easy to see that a version of the transition density is given by
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0, if (f*rl(y)r\S**v,
P(y\x)=\

^ __

where the summation is taken over all i such that (fxYl(y}r\U*3=0. By the
implicit function theorem, p ( y \ x ) is continuous on {(x, y); p(y #)>()}. This
completes the proof of the lemma.

Remark 4.1. In the sequel of this paper, we use the transition density
P(y\x) given above.

Theorem 4.1. Every veJ// is absolutely continuous with respect to the
Riemannian volume p on M and a version of the density function of v is given by

(4.1) «W30=( P(y\x)dv(x),
M

which is lower semi continuous and satisfies

\ <
J M

Proof. For any measurable set AdM, we have

which implies the theorem.

We introduce

Definition 4.1. a) We define £(7l)(;yU) inductively by

JM

and denote by /7(7° the Markov chain with the transition probability density
P™(y\x).

b) We denote x-^y if p™(y\x)>0. For a subset B of M, we also denote

B-^>y if x—^>y for some x^B and x-^B if x-^>y for some y^B. We

put R%={y; B-^->y} and Ll={x] x-^B}. If B={x} we denote R?x} by Rn
x

and Lfx} by Ln
x. In the above notations, if n — 1 we don't write 1 (e.g. x — >y

instead of x-^>y, RB=KB and so on).
c) For ye^/7, define Sv={x'} (/>v(x)>0}.

Remark 4.2. 1) x — >y if and only if y=f*W for some 2^A\SX. 2) The
sets Sv, RB and L% are open because <f>i(x) and p ™ ( y \ x ) are lower semicon-
tinuous.
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Lemma 4.2. For any u<^Jn, we have RSvdSv.

Proof. If x£Sv then

and so fjt(Lxr^S»)=Q. Since Lxr\Sv is open, Lxr\Sv=0 and so x£RSv. This
proves the lemma.

§ 5. Exactness and Cluster Property

In this section, we will investigate the properties of zr-ergodic probability
measures. The notations and the assumptions are the same as in the preceding
sections.

The limiting measures defined in the following play an important role in
the study of relations between the asymptotic behavior of co-orbit {fn^(x} ; n^O}
and 77-invariant measures.

Definition 5.1. For (x, oj)eAfxfi, we denote by n%(IIx) the set of all
limit points of the family of probability measures {n^S^iS/ac^c*) ; n^l}
({n~1^k=iP^k(ox)', n^l} respectively) on M in the weak topology, where da

denotes the point mass at a.

Remark 5.1. Since M is compact, every 77 £ and 77^ are not empty. More-
over, if v^Gn then IIx={v} for any

Let us define a bounded linear operator Q on L1^) by

We denote by \\g\\± the norm of

Theorem 5.1. // u^^n is IJ^-ergodic for all n^l, then there exist C>0
and 0</3<1 such that

for any n>0, any measurable g with ||^||oo=supa; g(x}\^l and any probability
measure v on Sv.

In order to prove the theorem we prepare the following

Lemma 5=1. Under the same assumption as in Theorem 5.1, there exist
0<a<l and m>0 such that

for any non-negative function h with {x ; h(x)>Q}c:Sv and ||/i||i=l.

Proof. Let x^Sv and y^Rx. By Remark 5.1, \JnR^"DSv a. e. and since
they are open we have \JnR^Sv. On the other hand, we have
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and hence \JnR^c\Lyi^Q. Thus there exists an n>0 such that y^Ly. Hence
{Lk

y
n} *;>! are increasing open sets. We claim that \JkL

k
y
n+1l3Sv. Indeed, if zeSv

we have Rzr\Sv^&. By the assumption of the lemma and Remark 5.1, we have
\JkR

k
z
n~DSv a. e. and hence there exists a k such that Rk

z
nr\Ly^®, which implies

that *eL*n +1.
Now, by the compactness of Sv, we have L™ZDSy for some m>0. This

means that pw(y \z) >0 for any zeSj,. By the lower semicontinuity of
p™(y z), there exists /3>0 and <5>0 such that £cm)(/k)>£ for zeS, and
y'^B8(y)={y';dM(y,y')<d}. Thus

for y' e Bs(y}. Let h = h — h/\<f)v and $v—(pv—hf\<pv, then we have

This implies the lemma.

Proof of Theorem 5.1. First we assume that $ is absolutely continuous with
respect to fji and has the density fa. Then

=\\g(y)P™

Put p = al/m where a and ??z are given in Lemma 5.1. Noting that \\Qn(g—fa)\\i
are decreasing, we have

for some positive constant C which is independent of $ and g. When $ is not
absolutely continuous, we may consider P*(£) in place of £.

Theorem 5.2 (Cluster property). Under the same assumption as in Theorem
5.1, we have

for any non-negative continuous functions g and h on M, where C>0 and 0< /o<l
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are the same constants as in Theorem 5.1.

Proof. It is easy to see that

Hence, using an analogous argument to the one in the proof of Theorem 5.1, we
have

\v((Png)h}-v(g}v(h}\

\g\\^\\h\\^ . q. e. d.

It seems natural to make the following

Definition 5.2. a) If yej// satisfies the conclusion of Lemma 5.1, then v
is called II -exact.

b) If v^Su satisfies the conclusion of Theorem 5.2, then v is said to have
the cluster property.

c) A probability measure m^JT is called T-exact, if limn^00m(THE)=l for
any measurable set E with ra(£)>0.

Lemma 5.2. Let v^<3n- If Sv is connected then v satisfies the assumption
of Theorem 5.1 and hence it is U-exact and has the cluster property.

Proof. Let vlf y2e<?#(n). If there exists a point x^SVlr\SV2, then
»2 and so ^i=y2 by Remark 5.1. This implies that if i^vg then

Assume that y=S25a*yin>, ^n )e<f?/y(n). Then SJ,=\J*SS^n) (disjoint sum).
Since Sv is connected, n=i;in) for some k. Thus ye<?/7(n) for any n^l.

Lemma 5.3. // v^3n is TI-exact then m=vXb is T-exact.

Proof. Take a measurable set E with m(E)>0 and any e>0. Define £^=
; b((TnEY} >1— s}. Then by Lemma 3.1, there exists an n(e) such that

l— e)m(E). Take a sequence of positive numbers {s*} such that
Then writing nk=n(£k) and Ek=E"% we have lim^oXU*^*)^.

Hence lim sup k_*00Ek^0. Let us take a point ^elim sup^^co^jfe. Then it is easy
to see that lim supk^00T

nk(E)lD{x}xQ a.e. Hence we have lim sup ̂ T71 *+'(£)
IDRixQ a.e., and so there exists mt such that T^E^RixQ a.e. Since
v(Ri

x)=limn^00P*n(dx)(R
i
x) uniformly in x and i by Theorem 5.1, we have

lim^oo *>(/?£) = 1. Therefore we obtain that lim^oom(Tm*(£)) = 1 and so
limn^00m(Tn(E))=l because m(Tn(E}) is increasing in n.

We will make the following remark about exactness*
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Remark 5.2. a) If v^Sn is //-exact then it is //(n)-ergodic for all n^l.
The same fact holds also for m<E.3T.

b) If m^ST is T-exact then the natural extension of (T, m) is a Kolmo-
gorov transformation.

c) If m^ST is T-exact, (T, m) is mixing of k-th order, that is if
i+i— ni|-»oo then

lim m(T^Eir\T
n*E,r\ - r\Tn*Ek) = TLm&j

for any measurable sets E1} E2, ••• , Ek, for all k^l.

Any ergodic invariant probability measure can be represented by exact
invariant measures as follows.

Theorem 5.3. a) For any v<^€n, there exist a positive integer n = n(v) and
a measure v^Jn

(n) which is II ^ -exact and

1 n-l
V=~ S

72 i=0

b) For any m^8b
Tj there exist a positive integer n = n(?n) and a measure

m^c$Tn which is Tn-exact and

m=— "S
n t=o

where T* is the dual operator of T defined by T*(m}(B) — m(T~l(By).

Proof, a) If v is //C71) -ergodic for all n^l, then v itself is //-exact (Lemma
5.1). If v is not //c?l)-ergodic for some n, let HI be the minimum of such n.
Then there exists i^e^//^) such that SV1C.SV. Let y^nr1 S?^1/3*^^), then v
is //-ergodic with S^CS^, which shows £=1;. And also we obtain that

) ', i=Q, 1, ••• , HI— 1} are disjoint. If i>i is //(7ll) -exact, then we obtain
the assertion a). If v± is not //C7lin) -ergodic for some n, we obtain n 2>ni and

2) such that ^=n21S?Jo"1/)*"(^2) and {Sp**Cj,2) ; / =0, 1, ••• , nz— 1} are
disjoint. And inductively we obtain nk>nk-i and i^e^//^) as above until y*,
becomes //C71^5 -exact. If vk is //C7iA) -exact, then we obtain the assertion a). Now
take an connected open subset 0 of Sv. From the relation v=nft12?=?

we have that Sv=\J^1SJ^t^k^ and v(SP*^Cyp)=n^1. Because {5p* ;̂ z=0, 1,
••• , n^— 1} are disjoint and O is connected, we have that OcSp*i(Vp for some
i} so we obtain that n*^lMO). So vfe must be //C7l^) -exact for some k, which
shows the assertion a). The assertion b) follows from a) and Lemma 5.3.

Bo wen [2] conjectured that if one-dimensional smooth map has an absolutely
continuous invariant probability measure then the measure will have a loosely
Bernoulli property. The above theorem shows that any ergodic invariant prob-
ability measure of any smooth random dynamical system is " loosely exact ".
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§ 6. Asymptotic Behavior of «>-Orbit and Unique Ergodicity

In this section, we will investigate the uniqueness of 77-invariant measure
through the consideration of the asymptotic behavior of co-orbit 0(/; (x, to))=
{fn(-^(x)\ n^O}. The notations and the assumptions are the same as in the
preceding sections. Especially 11% and 77 x are the ones defined in Definition 5.1.

Lemma 6.1. Assume that there exists a point (x,aJ)^MxQ such that
0(f \ (x, a))) is dense in M. Then \Jjj\=fhe cardinality of ^#=1 and the unique
invariant probability measure v^3n is II -exact. Hence \Sb

T\—l and vXb is
T-exact.

Proof. Take any yej#. We may assume that x^Sv. By Lemma 5.2, it
is enough to prove that S»=M. For any y^M and any s>0, there exists an
n such that dM(fn<i(o:>(x}, y)<e/2. By Assumption 4.2, we can choose CD' such

that x-^fn<*">(x) and dM(fn^'\x\ fn™(x»<e/2. Thus dM(fn^(x\ y)<e,
and fn«°'>W^Sv by Lemma 4.2. Hence y^Sv and so SV=M.

Lemma 6.2. For any v^Gn and any x^Sv, we have II™— {v} for almost
all a).

Proof. By Theorem 3.1, m—vXb is T-ergodic. Using the ergodic theorem
for (T, m), we get that

lim — 2 STiax a>)=m , for a. e. (x, to).
n-*°o n i=0

Since T*(x, o)}^(fiw(x\ a^x}}, we obtain that /7j=H for a. e. (x, o>). Let
Qx={a)- n%={v}}} then b(Qx)=l for a. e. x. On the other hand, for any x<^Sv,
we have b(Qf^x^=l for a.e.2<=A, because /J(7") is absolutely continuous with

respect to p. Hence 5(£?J=\ ftCfl/jcaoWrW) — 1 for any

Theorem 6.1. For any x^M and for almost all a)^Q, there exists a v(x, to)
such that n%={v(x, of)}.

Proof. Take a u^Ux. The measure v is represented as v=
Since Sy=Ui5^ a. e. (//) and

for a. e. ty there exist n and z such that /ncao(*)eSj,r Then, from Lemma 6.2,
we have that 77?= {vj.

Definition 6.1. Let Z be a closed subset of M. The set Z is called a
U-attractor of the random system (/, M, A, 7), if 1) for any open set
there exists an toe £? such that
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where the metric dM(A, B) of ^L and J5cM is defined by
dM(A, J3)=sup inf dM(x, 30+sup inf dM(x, y} ,

y<=B z<EA x^A y<=B

and 2) there exists an (x, co^^XxQ such that O(f ; (x, o)'))=X.

Theorem 6.2. // the random system (f , M, A, j} has a U-attractor X, then
=l and for the unique II -invariant probability measure we have SV~DX.

Proof. Let v^Qn. Since Sv is open, there exists an o)^Q such that
dM(fn^(Sv], Z)->0. Therefore for any s>0 there exist an n>0 and an

such that dM(fn™(x), X)<e. We can choose o/efl such that x-^>fn

and dM(fn"°"*(x), X)<e. Hence by Lemma 4.2, S»r\X^0. Take a y^
and let U~RRy then Ur\X^0 and Ru=RyClSv. By the definition of U-attractor

there exist an o>e^3 and a ze£7 which satisfy 0(/; (z, a)))=X. Hence for any
xeZ and any s>0, there exists an CD' such that dM(fn^<0")(z^ x)<e and

z-^->/n(<u')(z). This means that SjX. If y and i/e£/7 are distinct then Svn
Sy,=0. Hence 1^1=1 and so

Example 6.1. Let f ( x , Z)=Zx(l—x). If ^i, ^2 satisfy 1<^<^2^4 and
Wi-DA^ A(/^2d/2)), then we can take M=[/Jll(/ia(l/2)), /^2(l/2)] and yl=
[/li, ^2]. Let y be any probability measure on A with a continuous positive
density. Then it is easy to see that the random system (/, M, A, 7) satisfies
Assumptions 4.1-4.3. We claim that this random system is uniquely ergodic.

Indeed, Guckenheimer [5] proved that for a fixed 2, fi has an attractive
periodic orbit or the partition {[0, 1/2), [1/2, 1]} is a generator of fx. He also
proved that if there is an attractive periodic orbit in [0, 1] then it absorbs
almost all points in [0, 1]. Hence if f i ( x ) has an attractive periodic orbit for
some Ae[^, lz], then the periodic orbit becomes a U-attractor of the random
system. Thus, in this case | Jn ! = 1 by Theorem 6.2. If fi has a generator for
some /I, then for any open interval / there exists an n such that fW) contains
1/2. Hence for any v^<3n, 1/2 eS,,. This means that \jn\=l.

§ 7. Stability of Invariant Measure under Random Perturbation

Let (/, M, A) be the one as in Section 4. Fix a XQ^A. We consider an
infinite family [ A 8 ; <5>0} of submanifolds of A such that 2Q<^A§ for all <5>0
and d(As)=supi,i,f=A8dA(h /O^d. The restriction f \ M x i s of / to MxAs is also
denoted by /. We assume that a probability measure ?§ on A§ is given and
(/, M, A$, Yd) satisfies the assumptions in Section 4 for each <5>0. We will
investigate the asymptotic behavior of random systems (/, M, AS, Yd) as 5->0.
Especially we will prove that the invariant measure is stable if /^0 has an
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attractor, which is defined as follows.

Definition 7.1. A closed subset X of M is called an attractor of /j0, if
there exists an open set U^X such that /?0

+1(LOc(the interior of /?„(£/)) for
all n>0 and X=^n

Let us denote by 77,5 the Markov chain corresponding to the random system
(/, M, As, ft).

Lemma 7.1 (Stability of attractor). If f*0 has an attractor X, then for any
£>0 there exists a <50>0 swc/i Zto /or all d<d0 we have a v^6nd satisfying

Proof. Let U be an open set stated in the definition of the attractor X.
Take an n such that dM(fiQ(U}, X)<e and an s'>0 such that sf <dM(fS£l(U),
(the interior of /J0(£/)c)). By the continuity of / and the compactness of M,
there exists a <50>0 such that d(fx(A8})<e' for all *eM and 3<30- Then for
any *e/J0(E7) and lye/?* (about 4j), we have that dM(y, f^(x))<e' and /j0(x)
e/?0

+1(£7). Hence ?e/70(£7). Thus for some vae/7a, S,5C/?0(£7) and hence

Lemma 7.2. // vs^Jns converges weakly to v as 5->0, ^/ien y is fiQ-invariant.

Proof. For any continuous function g on M, we have

o-»0

By the continuity of /, we have

lim
5-0

Hence we obtain

Um

and so

Theorem 7.1, Le£ {(/, M, AS, ft), <5>0} fee a family of random systems such
that each (f, M, A§} ft) satisfies Assumptions 4.1-4.3, AQ^A§ for a fixed 1Q and
for all <5>0, and d(A§)^d. Assume that each (/, M, As, Td) has a U-attractor
and fXQ has an attractor X. Then for any <5>0 \<$nd\=l and writing <3n8~(vd]
we have that any limiting measure v of {v§} is f xQ-invariant and the support of
v is included in X.

Proof. The theorem follows from Theorem 6.2, Lemmas 7.1 and 7.2.

Corollary 7.1. Let X be an attractor of /;0 and each random system
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(/, M, AS, 73), ̂ >0, have a U-attractor. If f x Q \ x is uniquely ergodic and has
the invariant measure v, then for any sequence i^ej 'n s the limit measure is v.
Especially, if X is an attractive periodic orbit :

then the limit measure is

(7.1) -J- *
P i— 0

where d(x}=dx.

Remark 7.1. In the situation given in Corollary 7.1, we obtain

lim— S'SC/ *<*«>(*))n-*oo n fc=o

for a.e.a)8^@3 (w. r. t. b§) for each <5>0, by Theorems 6.1 and 6.2. Then by
Corollary 7.1 vg converges weakly to (7.1).

To summarize these, we introduce the product measure b=H8>Qb§ on Q=
Tld>Q@d, where bs=T?- Then for all x^M and for almost all a)=(a)§} (w. r. t. b)
we have

(7.2) lim lim- "s 3(/*W(x))=-i- s' 3(/i0(xp)) .a-o TI-»OO n k=o p i=o °

Thus we may think the right hand side of (7.2) as an asymptotic measure of
/;i0. The notion of asymptotic measures was introduced by D. Ruelle.

Definition 7.2. If an attractive periodic point xp satisfies (7.2), we call it a
representative periodic point of /^0.

Example 7.1. Let us consider two dimensional map Fp(xt y)=(px(l—x) +
exy, py+exy], where 0</*, e<l and 0</?<4. Notice that the z-axis and the
3;-axis are invariant under Fp and the restriction of Fp t0 the x-axis is gp(x) =
px(l—x}. Let M=[3, 1]X[-1, 1] forO<3<l. We will show that if gp(x) has
an attractive periodic point xp for a fixed parameter p then xp is a representa-
tive periodic point of Fp.

Let (/, M, An, fn), n^l, be a sequence of random systems. Assume that
there exists a common value XQ^An for all n^l such that fxQ=Fp with the
parameter p mentioned above. It is easy to see that for any open set U in M
limk^00dM(Fk

f>(U), #-axis)=0. Therefore for any vn^JVn Snnr\(x-axis)^0, and so
V=SVnr\(x-axls)^0. By the property of gp there exists k such that gp(V)
contains 1/2. Hence \Jnn\=L Moreover SVn contains the point ( x p , 0). Thus
we get

p, 0))
Tl-*oo =

which implies (7.2).
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