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§1. Introduction

In this paper we will investigate asymptotic behaviors of random orbits of
dynamical systems with random parameters. In many biological models (for
example, May’s model [13]), the dynamical systems have parameters. Asymptotic
behaviors of orbits of such dynamical systems depend on the parameters very
sensitively. But usually it is not easy to decide values of parameters theoreti-
cally. They are decided only experimentally. Hence, it seems to be natural to
think that the parameters of the dynamical system are chosen randomly at every
time of its iteration.

More precisely we will explain the idea of dynamical systems with random
parameters. Let f;, A€ 4, be a family of maps from a set M into itself. The
randomness of the parameter 2 is governed by a probability measure y on the
parameter space 4. Let 1,(w), n=1, 2, ---, be a sequence of independent, identi-
cally r-distributed random variables on 4. Then we think that the orbits of
the dynamical system f; may be determined according to the random sequence
An(w). Namely, the state of the system at time » started from the point xeM
is given by

Xﬁ(w):fzn(m "fx,,_1<w)° °f21(w)(x)

which is, of course, a radom point.
It is easy to see that Xi(w) becomes a (time homogeneous) Markov chain
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(which we call II) with the initial point X,(w)=x and the transition probability
P(4, =] L findra,

where 1, denotes the indicator function of the measurable set A. Hence the
theory of Markov chains is applicable to the study of behaviors of dynamical
systems with random parameters.

The random sequence {1,(w)} mentioned above is defined as follows. Let
(2, b)=(AY, r¥) be the infinite product probability space of the copies of the
space (4, N(N={1, 2, ---}), and let w(n) denote the n-th coordinate of wes.
Then A,(w)=w(n) is a random variable and {1,(w)} constitutes a sequence of
independently identically y-distributed random variables.

Define the shift operator ¢ of 2 by

(cw)(n)=w(n+1), for all n=1.

Then we get another representation of the dynamical system with random
parameters

T(x, ®)=(fowx, ow),

which is called a skew product transformation in ergodic theory. Actually,
T (x, w)=(Xi(w), c"w).

S. Kakutani [8] investigated the relation between the Markov chain I and
the transformation 7 under the assumption that each f, preserves a fixed prob-
ability measure v on M. In this situation the product measure vXb is invariant
with respect to 7 and the measure v becomes a stationary measure of the
Markov chain 7I. He proved that the stationary Markov chain I/ under the
initial measure vy is ergodic if and only if the transformation 7 is ergodic
under vXb. In this paper, we assume only that the transformation T preserves
the product measure yXb without the assumption of the measure-preserveness
of each transformation f;, and we prove Kakutani’s result mentioned above.

Our investigation of dynamical systems with random parameters is suggested
by the studies of deterministic dynamical systems, such as one-dimensional
dynamical systems (see [1] [2] [3] [4] [5] [6] [7]) and dynamical systems
with hyperbolic structures (see [10] and [11]). We will see that there are very
similar phenomena in dynamical systems with random parameters as in the
deterministic dynamical systems metioned above.

Section 2 is the preliminary part, where we define the Markov chain I7 and
the skew product transformation T precisely and study the relations between a
stationary probability measure of the Markov chain I7 (a Il-invariant measure)
and an invariant probability measure of the transformation 7 (a T-invariant
measure). In Section 3, we prove that a I7-invariant probability measure v is
IT-ergodic if and only if vXb is T-ergodic.

In the rest of the paper, we make some smoothness assumptions on the
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phase space M, the parameter space A and the family of transformations {f;},
which is described in Section 4. We will show under these assumptions, that
any Il-invariant measure is absolutely continuous with respect to the Riemannian
volume on M. In Section 5, we will study the exactness and the cluster prop-
erty of II and T. We will get some topological condition for exactness and
show that any ergodic invariant measure can be represented by an exact
invariant measure. In Section 6 we will investigate the condition for the
uniqueness of I7-invariant measure and asymptotic behavior of random orbits
of such random systems. We will also see that the randomized system of May’s
model is uniquely ergodic. In Section 7, we will study the relations between a
deterministic dynamical system and systems with random parameters. We con-
sider a deterministic dynamical system as a limit of random systems when the
parameter spaces tend to one point. Especially we are interested in the dynamical
system which is given as a limit of uniquely ergodic systems. Lastly we will
give a simple two dimensonal example in such case.

§2. Skew Product Transformation and Markov Chain

In this section we set up our objects. Let (M, dy) and (4, d4) be compact
metric spaces and f a continuous map from MX A4 to M. We denote f*()=
fi(x)=f(x, A) for xeM and 1€ .

Given a Borel probability measure 7 on 4, we call the system (f, M, 4, 7)
a random dynamical system with phase space M and random parameter space
(4, 7). Let 2=A4% and b=y" the product measure on 2 where N={l, 2, ---},
and let ¢ be the shift operator defined on £ by

(cw)(n)=w(n+1), neN, wef,
where w(n) denotes the n-th coordinate of we£.
Define a skew product transformation T on MX 2 by
T(x, 0)=fow(x), cl®)), xeM, wef.
The x-coordinate of the n-th iteration T"(x, w) is given by
(2.1) Xi@)="(x)=fumrfun-v° oo (x) .

For each fixed (x, w), the sequence {XZ(w)} =1 is an orbit of our random system
(f, M, 4, 7). 1t is easy to see that the random sequence {XZ(w)} governed by
the probability measure b forms a time homogeneous Markov chain with the
initial point X§(w)=x, which we call II. The transition probability is given
by the image measure f(7):

P(A, x)=f i(r)(A)=S a5 dr (@,

where 1,(x) is the indicator function of the measurable set A in M. Let P be
the transition operator of I7 :
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PXx)=| s0)PWy, 0= gfsxNdrd, gecD).

Let P* be the dual operator of P defined by P*(v)(g)=v(P(g)) for a probability
measure v on M.

A probability measure v on M is called I1-invariant if P*(v)=v. The set of
all I7-invariant probability measures is denoted by ;. Let 4% denote the set
of all T-invariant probability measures of the form vXb, where v are probability
measures on M. Then we have

Lemma 2.1. A probability measure v on M belongs to I if and only if
m=yXb belongs to I%.

Proof. For any geC(Mx ), put

8=\ g(x, a)db(),
then we have

(P)@) =P @)={{[2(£:0, wadb@arn)dr
:Sgg(fwu)(x), olw))dm(x, w)

={[erex, opdmz, o).
Hence P*y=v if and only if m is T-invariant.
Lemma 2.2. 9I7+0 and hence I4+0.

Proof. This follows from Tihkonov’s fixed point theorem.

§3. Ergedicity

In this section we will prove the equivalence of the ergodicity of the Markov
chain I and that of the transformation T defined in the previous section. Let
yedy be given. A measurable set ECM is called (/I, v)-invariant if P(lgp)=1g
(a.e. v). The measure v is called Il-ergodic if every (II, y)-invariant set has
yv-measure 0 or 1. We denote by & the set of all [l-ergodic probability mea-
sures. We also denote by &; the set of all T-invariant ergodic probability
measures, and we put €4=&rNJ%. Then we have

Theorem 3.1. A probability measure v on M belongs to & if and only if
the product measure m=yXb belongs to &%.

Remark 3.1. S. Kakutani [8] gave an elegant proof of this theorem under
the assumption that each f, preserves the probability measure ». But it can be
seen that in his proof it does not need to use the above assumption. Nevertheless
we give a proof of the theorem for the completeness.
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Proof of the “if” part. Let m=yXbe&%. Suppose that there is a (I7, v)-
invariant measurable set B with 0<y(B)<1. Then by Lemma 2.1, v|zXb is
T-invariant. This contradicts to the T-ergodicity of the measure m.

In order to prove the only if part, we use the following lemma. We denote
E*={w; (x, w)€E} for ECMX2 and x<M.

Lemma 3.1. Let v be a probability measure on M and m=yXb. For any
measurable set ECMX2 with m(E)>0 and any ¢>0, there exists an n(e)>0
such that

v({xeM; b(T"E)*)>1—e})=1—e)m(E)
for all n=n(e).

Proof. Let A, be the o-fleld generated by the first n coordinates w(l), ---,
o(n) of 2. Let E(w)=b,(BNw,), where o,={0'€2; o' (1)=w(l), -, o'(n)=w(n)}
and bnzkﬂ+lr(dw’(k)). Then it is easy to see that ¢ is a version of b(B|A,),

and so ¢E—lp for a.e.w. Let Ei={weR; ¢ (w)>1—¢} and Fr={(x, w)€E;
weEzZ}. Then we have

lim m(Fn)zl'lxolchb(Fﬁ)dv(x)

T —>00 n

=tim{ [ B(E*| @) dbl@)duin)
n- ) MJEy

:S B(E®)dv(x)=m(E).
M

From the relation b(¢™(BNw.))=¢%(w) we obtain that for any y<M such that
(T™(F,))¥+0, there exist x€M and an atom w, of A, with ®,CEZ such that
(T™F)'Do™(FiNw,). Hence we have

b{{T (F)})=b(o™(FiNwn)
=i ()
=1pz(0)b(E*| A)(@) a.e.0€w,
=b(E*| An)(w)>1—¢.

Let G, be the projection of F, to Mi.e. G,={xeM; (x, w)EF, for some w2},
then G,C{xeM; b(T"E)*)>1—e}. Since v(G,)=zm(F,)=1—e)m(E) for suffi-
ciently large n, we obtain the lemma.

Proof of the “only if ” part of Theorem 3.1. Take a measurable set E in
MxQ with T-Y(E)=E and m(E)>0. Let F={xeM; b(E®)=1}. Then Lemma
3.1 implies v(F)=m(E). Then the relation

m(B)=[bENdm)y=s(P)+{_bEo)dun)

shows that x¢& F implies b(E*)=0 for v-a.e. x. On the other hand, since
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b(E‘)=b((T"E)”)=SAb(E“"’)dT(l) ,

x€F if and only if fi(x)EF for a.e. 4, and x&F if and only if fi(x)EF for
a.e. A, which means

P(lp)(x)=SA1F(fx(X))dT(2)=1F(X) .

Since (11, v) is ergodic, we have m(E)=y(F)=1.

§4. Assumptions for Further Investigations

We assumed only the continuity of the system so far. From this section
on, we assume the smoothness of the random dynamical system (f, M, 4, 7)
described as follows. Assume that M and A=A°+/, are compact connected
Riemannian manifolds where /4, is the boundary of 4°. We denote the metrics
of M and 4 by dy and d 4 respectively. The map f is assumed to be a C'-map.
We put the following assumptions.

Assumption 4.1. We assume that dim(M)=dim(/4)>dim(4,).
Define
o . 0 _
S _{zeA, det(ﬁf(x, 20)=0pU4s,
S= U ({x} xS%).
zeM
The second assumption is

Assumption 4.2. The sets S® and S are finite sums of connected submani-
folds whose co-dimensions are positive.

Thirdly we put the following natural

Assumption 4.3. The every probability measure 7 on /4, which we consider,
is absolutely continuous with respect to the Riemannian volume d2 of 4 and its
density (Radon-Nikodym derivative) 6(2)=dy(2)/dA is positive everywhere and
continuous.

Under the above assumptions we have

Lemma 4.1. The transition probability P(-, x) of the Markov chain II is
absolutely continuous with respect to the Riemannian volume p on M, and it has
a density p(y|x) which is lower semicontinuous with respect to (x, y).

Proof. For each xM, we have a finite partition £&*={U?} of A\S?, such
that each U¥ is open and connected, /° is a diffeomorphism on each U¥ and &*
moves smoothly with respect to x. Let f7 denote the restriction of f* to UfF.
Then it is easy to see that a version of the transition density is given by
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0, if (f970INS*+e,
pylx)= _
ZIDUDTWI-0UDTN, i (fI70INST=0,

where the summation is taken over all 7 such that (f*)"*(y)N\Uf#0. By the
implicit function theorem, p(y}x) is continuous on {(x, y); p(y|x)>0}. This
completes the proof of the lemma.

Remark 4.1. In the sequel of this paper, we use the transition density
p(ylx) given above.

Theorem 4.1. Every vedyp is absolutely continuous with respect to the
Riemannian volume p on M and a version of the density function of v is given by

1) .= b1 D)),
which is lower semicontinuous and satisfies
[ p0p0 1 DduD=0.0) .
Proof. For any measurable set ACM, we have
ud={ P, navn={ | s010dmdus),

which implies the theorem.

We introduce
Definition 4.1. a) We define p™(y|x) inductively by
PP I0)=p01x),
P 0= polDpmElDduE),  n=12, -,

and denote by I7™ the Markov chain with the transition probability density
™ (y|x).
b) We denote x—>y if p™(y|x)>0. For a subset B of M, we also denote

B-">y if x—>y for some x€B and x—>B if x—>y for some yeB. We

put Ri={y; B—>y} and Lj={x; x—>B}. If B={x} we denote R%, by R=
and L%, by L2 In the above notations, if n=1 we don’t write 1 (e.g. x—>y

instead of x—1->y, Rz=R}% and so on).
c) For vedy, define S,={x; ¢.(x)>0}.

Remark 4.2. 1) x——>y if and only if y=f;(x) for some 2 A\S*. 2) The
sets S,, R} and L} are open because ¢i(x) and p™(y|x) are lower semicon-
tinuous.
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Lemma 4.2. For any vedy, we have R, CS,.

Proof. If x&S, then

| #0100 9)dp)=gu0)=0,

and so u(L,NS,)=0. Since L NS, is open, L;N\S,=0 and so x&Rgs,. This
proves the lemma.

§5. Exactness and Cluster Property

In this section, we will investigate the properties of z-ergodic probability
measures. The notations and the assumptions are the same as in the preceding
sections.

The limiting measures defined in the following play an important role in
the study of relations between the asymptotic behavior of w-orbit {f*“(x); n=0}
and II-invariant measures.

Definition 5.1. For (x, ®)eMX 2, we denote by IT2(II,) the set of all
limit points of the family of probability measures {n 'Xf 07t (5 ; n=1}
({n"*PP**(0,); n=1} respectively) on M in the weak topology, where 6,
denotes the point mass at a.

Remark 5.1. Since M is compact, every II¢ and I, are not empty. More-
over, if ve&y then II,={»} for any x€S,.

Let us define a bounded linear operator @ on L'(y) by

QW ={g)pxlndpn), gL,
We denote by | gl: the norm of ge Li(p).

Theorem 5.1. If vedy is II™-ergodic for all n=1, then there exist C>0
and 0<p<1 such that
[ P*™(9)(g)—v(g)| <Cp™

for any n>0, any measurable g with | g|le.=supz|g(x)| =1 and any probability

A

measure ¥ on S,.
In order to prove the theorem we prepare the following

Lemma 5.1. Under the same assumption as in Theorem 5.1, there exist
0<a<l and m>0 such that

Q™A =l <alh—¢.ll:
for any mnon-negative function h with {x; h(x)>0}CS, and |Al,=1.

Proof. Let x€S, and yeR, By Remark 51, \J,R3DS, a.e. and since
they are open we have \J,R}DS,. On the other hand, we have L,NS,#@
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and hence \U,R?NL,#0. Thus there exists an n>0 such that yeL}. Hence
{L*} .., are increasing open sets. We claim that \J,L%**'DS,. Indeed, if z€S,
we have R,N\S,#@. By the assumption of the lemma and Remark 5.1, we have
\U:RE"DS, a.e. and hence there exists a 2 such that R L, +g@, which implies
that ze L¥*

Now, by the compactness of S,, we have L™DS, for some m>0. This
means that p™(y|z)>0 for any ze<S,. By the lower semicontinuity of
p™(y|z), there exists f>0 and 0>0 such that p™(y’|z)>8 for zeS, and
y'€Bs(y)=1{y"; du(y, y)<0}. Thus

Q’"(h)(y’)Zgh(zm"”’(y’IZ)du(Z)zﬁSSVh du,
for y’eB;s(y). Let ﬁzh—h/\gb, and ¢,=¢,—hA¢,, then we have
10™R)— . 1,i=1Q™(h—g),=1Q™(h—.):
=[Q™(h)— Q™A Q™)+ Q™) —Q™Rr) A Q™)
=[Q™MW+1Q™@) 1 —21Q™A) A Q™)
<1AlL+18u—BeBsyNU AL+ 1.0
=(1—BuBs(yMIh—.l; -

This implies the lemma.

Proof of Theorem 5.1. First we assume that 9 is absolutely continuous with
respect to ¢ and has the density ¢;. Then

P*(9)(g)=5(P"(g))

=([eerm oI ndue)gmdum

=m0 @amdu.

Put p=a'™ where « and m are given in Lemma 5.1. Noting that |Q*(g—d.):
are decreasing, we have

g0 @00 —{grpu)duty)

<[1e"go—g.1du<cor

for some positive constant C which is independent of ¥ and g. When 9 i3 not
absolutely continuous, we may consider P*(9) in place of 9.

Theorem 5.2 (Cluster property). Under the same assumption as in Theorem
5.1, we have
(P g)h)—v(gv(h)| =Cp" | glle- [ All--

for any non-negative continuous functions g and h on M, where C>0and 0<p<1
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are the same constants as in Theorem 5.1.

Proof. 1t is easy to see that

AP ) ={ [ ™ (| Ddp()hDx)dp(x)

(s trgdu).

Hence, using an analogous argument to the one in the proof of Theorem 5.1, we

have
[v((P™g)h)—u(g)v(h)]

=) [(€)Q (hg )/ d () —(8) |
=Cp"v(h)lgll-=Cp"lgllw"lIAlos . g.e.d
It seems natural to make the following

Definition 5.2. a) If vy satisfies the conclusion of Lemma 5.1, then v
is called Il-exact.

b) If vedy satisfies the conclusion of Theorem 5.2, then v is said to have
the cluster property.

¢) A probability measure medy is called T-exact, if lim, .m(T*E)=1 for
any measurable set E with m(E)>0.

Lemma 5.2. Let vedy. If S, is connected then vy satisfies the assumption
of Theorem 5.1 and hence it is Il-exact and has the cluster property.

Proof. Let v, v,e&pm. If there exists a point xegplmgyz, then R3CS,,
NS,, and so v;=v, by Remark 5.1. This implies that if v;#v, then 5, \S,,=0.
Assume that y=Xltaw™, viPe&pm. Then 5,=U;iS,m (disjoint sum).
Since S, is connected, y=y{® for some k. Thus ve&ym for any n=1.

Lemma 5.3. If vedy is Il-exact then m=yXb is T-exact.

Proof. Take a measurable set E with m(E)>0 and any ¢>0. Define E*=
{xeM; b(T"E)*)>1—e¢}. Then by Lemma 3.1, there exists an n(e) such that
V(Er®)>(1—e)m(E). Take a sequence of positive numbers {¢,} such that
Dier<oo. Then writing ny=n(e;) and E,=E;* we have lim;..v(\zz:E)>0.
Hence lim sup;..E;#@. Let us take a point xlim sup;.~E;. Then it is easy
to see that lim supr..T™*(E)D{x} X2 a.e. Hence we have lim sup,..T"**(E)
DRiX 2 a.e, and so there exists my; such that T™(E)DRLX a.e. Since
y(RY)=limy . P**(0,)(R:) uniformly in x and 7 by Theorem 5.1, we have
lim;.. v(R%) = 1. Therefore we obtain that lim;..m(T™(E))=1 and so
lim,..m(T"(E))=1 because m(T™(E)) is increasing in .

We will make the following remark about exactness.
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Remark 5.2. a) If vedy is IT-exact then it is IT™-ergodic for all n=1.
The same fact holds also for medJy.

b) If medyr is T-exact then the natural extension of (T, m) is a Kolmo-
gorov transformation.

¢) If medr is T-exact, (T, m) is mixing of £k-th order, that is if
min;|n;4;—n;|—oo then

k
lim m(T"ENT™E;N - NT"E,)= 1;[1771(E1-)
for any measurable sets E,, E,, -, E;, for all £=1.

Any ergodic invariant probability measure can be represented by exact
invariant measures as follows.

Theorem 5.3. a) For any ve&y, there exist a positive integer n=n(y) and
a measure vEIgm which is IT™-exact and

1nz1 o
y=— 3 P*(D).
n =0

b) For any me&, there exist a positive integer n=n(m) and a measure
medyn which is T™exact and

m=L S Trim)
n

=0

.

where T* is the dual operator of T defined by T*(m)(B)=m(T *(B)).

Proof. a) If v is II‘™-ergodic for all n=1, then v itself is I7-exact (Lemma
5.1). If v is not IT™-ergodic for some n, let n; be the minimum of such n.
Then there exists y;&&pmy such that S, CS,. Let i=ny I3 msipP*i(y,), then ©
is Il-ergodic with S;CS,, which shows =v. And also we obtain that

{Spriay; =0, 1, ---, n,—1} are disjoint. If v, is II?-exact, then we obtain
the assertion a). If v, is not II™™-ergodic for some n, we obtain n,>n; and
v,E&Eny such that v=mnyz* 3P 1P*(y,) and {Sp*z(yz),z—O 1, -, n,—1} are

disjoint. And inductively we obtain n,>n,_, and v,E&p=r as above until v,
becomes II™®-exact. If v, is Il ¥ -exact, then we obtain the assertion a). Now
take an connected open subset O of S,. From the relation yv=n;* 224 1P*(y,),
we have that S,=\Ulk1Spi, and v(Sprie,)=n;'. Because {Spic, ;i=0, 1,
-+, nr—1} are disjoint and O is connected, we have that OCSp*i(,,, for some
7, so we obtain that n,<1/v(0). So vy, must be IT*#-exact for some £, which
shows the assertion a). The assertion b) follows from a) and Lemma 5.3.

Bowen [2] conjectured that if one-dimensional smooth map has an absolutely
continuous invariant probability measure then the measure will have a loosely
Bernoulli property. The above theorem shows that any ergodic invariant prob-
ability measure of any smooth random dynamical system is “loosely exact”.
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§6. Asymptotic Behavier of w-Orbit and Unique Ergodicity

In this section, we will investigate the uniqueness of [/-invariant measure
through the consideration of the asymptotic behavior of w-orbit O(f; (x, w))=
{f™@(x); n=0}. The notations and the assumptions are the same as in the
preceding sections. Especially I7¢ and I, are the ones defined in Definition 5.1.

Lemma 6.1. Assume that there exists a point (x, w) EMXL such that
O(f; (x, w)) is dense in M. Then |9;|=the cardinality of =1 and the unique
invariant probability measure vEdyg is Il-exact. Hence |9%|=1 and vXb is
T-exact.

Proof. Take any vedp. We may assume that xS,. By Lemma 5.2, it
is enough to prove that S,=M. For any yeM and any &>0, there exists an
n such that du(f"“(x), y)<e/2. By Assumption 4.2, we can choose w’ such

that x—>f*@(x) and du(f*@(x), f*@x)<e/2. Thus du(f*@"(x), y)<e,
and f*@?(x)eS, by Lemma 4.2. Hence y€S, and so S5,=M.

Lemma 6.2. For any veé&p and any x€<S,, we have IT¢={v} for almost
all w.

Proof. By Theorem 3.1, m=yXb is T-ergodic. Using the ergodic theorem

for (T, m), we get that
Iirni WZ—: Orice, 0y =M, for a.e. (x, w).

n-o0 N 1=
Since T(x, w)=(f**(x), o*(x)), we obtain that I7¢=1{y} for a.e.(x, ). Let
Q.={w; II¢={v}}, then b(2,)=1 for a.e. x. On the other hand, for any x&S,,
we have b(2;,)=1 for a.e.2€ 4, because f%(y) is absolutely continuous with

respect to ¢ Hence b(.Qx):SAb(Qf 1@)dr(A)=1 for any x€&S,.

Theorem 6.1. For any xM and for almost all w2, there exists a v(x, )
€&y such that IT2={v(x, w)}.

Proof. Take a yell,. The measure v is represented as v=>3}av;, a;>0,
v;e&y. Since S,=\:S,; a.e. (¢) and
Iil'l'l'l i P*k(az)(sy)zly

n k=1

-0

for a.e.w there exist n and 7 such that f*“(x)&S,,. Then, from Lemma 6.2,
we have that I72={y;}.

Definition 6.1. Let X be a closed subset of M. The set X is called a
U-attractor of the random system (f, M, A4, 7), if 1) for any open set G+o
there exists an we R such that
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lim du(/*(G), X)=0,

where the metric dy(A, B) of A and BCM is defined by
du(A, B)=sup inf dy(x, y)—!—suf in}fg du(x, y),
ZE. IS

YyEB €A

and 2) there exists an (x, @) XX £ such that O(f; (x, 0’))=X.

Theorem 6.2. If the random system (f, M, A, r) has a U-attractor X, then
|9n|=1 and for the unique Il-invariant probability measure we have S,DX.

Proof. Let ve&p. Since S, is open, there exists an w2 such that
du(f*(S,), X)—0. Therefore for any ¢>0 there exist an #>0 and an xS,

such that dx(f*(x), X)<e. We can choose w'=£2 such that x—n—>f"<"'"(x)
and dyu(f*“"(x), X)<e. Hence by Lemma 4.2, S,nX#0. Take a yeS,nX
and let U=Rpg, then UNnX+#0 and Ry=R,CS,. By the definition of U-attractor
there exist an w2 and a zeU which satisfy O(f; (z, w))=X. Hence for any
x=X and any e>0. there exists an o’ such that d,(f"®?(z), x)<e and

z—>fm@)(z). This means that 5,OX. If v and v'e&y are distinct then S,N

S, =0. Hence |&;z|=1 and so |Iy|=1.

Example 6.1. Let f(x, )=Ax(1—x). If A, A, satisfy 1<2;<A,=4 and
(M—1/4=1%(f2,(1/2)), then we can take M=[f;,(f1,(1/2)), f2,(1/2)] and A=
[41, 2:]. Let 7 be any probability measure on /4 with a continuous positive
density. Then it is easy to see that the random system (f, M, 4, y) satisfies
Assumptions 4.1-4.3. We claim that this random system is uniquely ergodic.

Indeed, Guckenheimer [5] proved that for a fixed A, f; has an attractive
periodic orbit or the partition {[0, 1/2), [1/2, 11} is a generator of f;. He also
proved that if there is an attractive periodic orbit in [0, 1] then it absorbs
almost all points in [0, 1]. Hence if f;(x) has an attractive periodic orbit for
some A€[A4;, A,], then the periodic orbit becomes a U-attractor of the random
system. Thus, in this case |J;;=1 by Theorem 6.2. If f; has a generator for
some A, then for any open interval I there exists an n such that f#(I) contains
1/2. Hence for any vy, 1/2€8S,. This means that |Jy|=1.

§ 7. Stability of Invariant Measure under Random Perturbation

Let (f, M, A) be the one as in Section 4. Fix a },&4. We consider an
infinite family {4;; 6>0} of submanifolds of 4 such that 2,4 for all >0
and d(4s5)=supa, z-es3d4(2, 7)<d. The restriction f|y«z; of f to MX 4; is also
denoted by f. We assume that a probability measure 75 on A; is given and
(f, M, 45, 15) satisfies the assumptions in Section 4 for each 6>0. We will
investigate the asymptotic behavior of random systems (f, M, 4;, 15) as 0—0.
Especially we will prove that the invariant measure is stable if f;, has an



96 Tanro OuNo

attractor, which is defined as follows.

Definition 7.1. A closed subset X of M is called an attractor of f,,, if
there exists an open set UDX such that fZF(U)C(the interior of fZ(U)) for
all n>0 and X=["\nxof5U).

Let us denote by II; the Markov chain corresponding to the random system
(f; M; AE; 75)-

Lemma 7.1 (Stability of attractor). If fa, has an attractor X, then for any
e>0 there exists a 0,>0 such that for all 6<d, we have a vs€ &y, satisfying
dM(S,,a, X)<E B

Proof. Let U be an open set stated in the definition of the attractor X.
Take an n such that du(f3(U), X)<e and an & >0 such that &’ <dx(f%*),
(the interior of fZ(U)%)). By the continuity of f and the compactness of M,
there exists a d,>0 such that d(f*(4;)<e’ for all x€M and 6<d,. Then for
any x€f}(U) and ye R, (about A;), we have that dy(y, Fa,(x)<e’ and fr,(x)
efiri(U). Hence yef3U). Thus for some y;&ll; S,;Cf}(U) and hence
du(S,; X)<e.

Lemma 7.2. If v;E9; converges weakly to v as 0—0, then v is f-invariant.
Proof. For any continuous function g on M, we have
tim g1, (0= (1,2 ()
By the continuity of f, we have
tim| {gC£a,0Ndsate)—[{ g FatmNdrstadustan)| =0.
Hence we obtain
tim| {2/ 1,00~ (a1 drs@dvatn)| =0
and so
(e andsin=(gmadsn).

Theorem 7.1. Let {(f, M, 45, 75), 6>0} be a family of random systems such
that each (f, M, As, 15) satisfies Assumptions 4.1-4.3, 2,€ 45 for a fixed 2, and
for all 6>0, and d(A;)<08. Assume that each (f, M, A;, 15) has a U-attractor
and fi, has an attractor X. Then for any 0>0 |Ig;|=1 and writing Igz= {vs}
we have that any limiting measure v of {vs} is fiinvariant and the support of
v s included in X.

Proof. The theorem follows from Theorem 6.2, Lemmas 7.1 and 7.2.

Corollary 7.1. Let X be an attractor of f;, and each random system
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(f, M, 45, 15), 6>0, have a U-attractor. If fi|x is uniquely ergodic and has
the invariant measure v, then for any sequence v;EJIyq; the limit measure is v.
Especially, if X is an attractive periodic orbit:

X: {xpy flo(xp): T ffo—l(xp)}; ffo(xp):xp 3

then the limit measure is

@) PRI

1
D i
where 6(x)=0;.

Remark 7.1. In the situation given in Corollary 7.1, we obtain

hm-— Z} O(f ke (x))

T —>c0

for a.e.ws;€Q5 (w.r.t.b;) for each >0, by Theorems 6.1 and 6.2. Then by
Corollary 7.1 ys converges weakly to (7.1).

To summarize these, we introduce the product measure b=II;>b; on 2=
TI550025, where b;=yf. Then for all x&M and for almost all w=(w;) (W.r.t.b)
we have

1 2 .
(7.2 tim lim-- 5 0 0 ()= 5 2S5

Thus we may think the right hand side of (7.2) as an asymptotic measure of
fi,» The notion of asymptotic measures was introduced by D. Ruelle.

Definition 7.2. If an attractive periodic point x, satisfies (7.2), we call it a
representative periodic point of 1.

Example 7.1. Let us consider two dimensional map F,(x, y)=(pox(1—x)+
exy, py+exy), where 0<p, <1 and 0<p<4. Notice that the x-axis and the
y-axis are invariant under F, and the restriction of F, #, the x-axis is g,(x)=
px(l—x). Let M=[g, 11X[—1, 1] for 0<6<1. We will show that if g,(x) has
an attractive periodic point x, for a fixed parameter p then x, is a representa-
tive periodic point of F,.

Let (f, M, 4,, 7.), n=1, be a sequence of random systems. Assume that
there exists a common value A,E4, for all n=1 such that f;,=F, with the
parameter p mentioned above. It is easy to see that for any open set U in M
lim.ed (FEU), x-axis)=0. Therefore for any VnEJ,, §Hnr\(x-axis);&0, and so
V=S, N(x-axis)#o. By the property of g, there exists . such that gk(V)
contains 1/2. Hence |J7,|=1. Moreover S,, contains the point (x,, 0). Thus
we get

lim v = 5 0P iz, 0)

which implies (7.2).
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