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Derivations in C*Algebras Commuting
with Compact Actions

By
Akio IKUNISHI*

Abstract

Let (A4,G,a) be a C*-dynamical system such that G is compact, and let § be a
closed *-derivation in A commuting with a. If A2N\9D(5) Ckerd and A is contained in
the center of A, then 6 is the generator of a strongly continuous one-parameter group
of *-automorphisms of A commuting with a.

§1. Introduction.

We shall consider the problem of whether a closed *-derivation in a C*-
algebra commuting with an action of a locally compact group is the generator
of a strongly continuous one-parameter group of *-automorphisms of the C*-
algebra.

S. Sakai [14] first proposed this question and proved that a non-zero closed
derivation in C(T) commuting with translations by elements of T is a constant
multiple of differentiation. The same result for C,(R) has been obtained by
C.J. K. Batty [4] and F. Goodman [8]. F. Goodman [9] and H. Nakazato [13]
generalized it to every locally compact group and compact group, respectively.
In [9] the case that a locally compact group acts on its homogeneous space has
also been considered.

In the present paper we answer this problem in the affirmative for every
ergodic action of a compact group. We shall also give some related results on
non-ergodic actions of compact groups.

§2. Notation and Preliminaries

Let «@ be a strongly continuous representation of a locally compact group G
on a Banach space X which is bounded. Then « induces a continuous representa-

tion of L*G) on X defined as follows: for f€L¥G), a=X and ¢ X*

|
Ca(f)a, $={1(@)ala), $dg, |

where dg denotes a left Haar measure of G; see [3].
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Suppose that G is compact. Let 7 be an element of G, the set of all equi-
valence classes of irreducible continuous unitary representations of G, and let
U’ey. Since the representation space of U7 is of finite dimension, U} may
correspond to a unitary matrix (u};(g)), so that u}; are continuous on G. Tr (U?),
denoted by X, is called the character of 7 and coincides with ;uli- We denote

a(Z;)X by X*(7) and call this a minimal spectral subspace. C(G)*(7) is spanned
by u}; and C(G) is topologically spanned by C(G)*(y) with all 7 in G, where 2
denotes the left regular representation of G on C(G). It follows from these
facts that the X4*(y) span X. If, moreover, X is a *-algebra and the a, are *-

automorphisms, then > X“%(7) is a dense *-subalgebra of X, because Z‘C(G)X(r)
TEG reé

is a *-subalgebra of C(G); see [11]. If T is a closed linear mapping in X com-
muting with «, then 7 commutes with «(¥,) and hence a(X,)D(T)CX*()ND(T)
and T(aX)D(T))CX*(y). Moreover the X X*()N9D(T) is dense in the Banach
space 9(T), that is, a core for T. <

By a C*-dynamical system we mean a triplet (4, G, a) of a C*-algebra A,
a locally compact group G and a strongly continuous representation & of G by

*.automorphisms of A. If G is compact, then Sagd g is a faithful projection of

norm one onto the fixed-point algebra A% under «, denoted by E.

A linear mapping ¢ in a C*-algebra A is said to be a derivation if its domain
D(0) is a dense subalgebra of A and if d(ab)=ad(b)+0(a)b for any a, b= D).
A derivation ¢ is said to be a *-derivation if 9(0) is self-adjoint and d(e*)=0d(a)*
for any a=9(9). If a *-derivation is a generator in A, then it is clearly the
generator of a strongly continuous one-parameter group of *-automorphisms of A.

Let ¢ be a G-invariant state of A and {m4, 44, &4} the GNS-representation
associated with ¢. By a? and U? we denote a strongly continuous representa-
tion of G on 74(4) and a continuous unitary representation of G on 44 such
that afeng=rn4oa,, Ulafs=al(a)és and af(a)=UfaU%* for any acmys(A). We
note that the fixed-point algebra of m4(A) under a? coincides with Tg(A%),
provided that G is compact.

If 0 is a derivation in A and ¢ is a state of A with ¢-0=0, then ¢ induces
a derivation d4 in w4(A) with the domain 74(2D(0)) such that d4(m4(a))=m4(0(a))
for any a€9(0). In fact, for any a€ker 7;ND(0), b€ D) and c€D(d)*,

(mg(0(a))my(D)sg | mg(c)Eg)
=¢(c*0(a)b)=¢(d(c*ab)—c*ad(b)—0d(c*)ab)
=—¢(c*ad(b))—p(0(c*)ab)
=—(ws(@)ms(0(b)E 4| wg(c)Eg)—(my(a)mg(b)E 4| w4(3(c*)*¥)Ep)
=0,
and so d(ker 74 N\D(9))Cker 4.
Throughout this paper, let (4, G, a) denote a C*-dynamical system with a
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compact group G.

§3. Derivations Commuting with Ergodic Actions

Lemma 3.1. Let 0 be a derivation in A commuting with a and E such that
A*ND(0)Cker 4.

Then every G-invariant state ¢ of A is invariant under 0, i.e., ¢-0=0, and
hence 0 and 04 are closable and these closures are derivations in A and mws(A)
commuting with a and a®, respectively.

Proof. The assumption implies that for any a<9(9),
$(d(a))=¢-E(d(a))=p(d(E(a)))=0.

Since there is a separating family of G-invariant states of A, it follows from

[13] Corollary 2.3 that d is closable. It is clear that the closure of ¢ is a

derivation in A commuting with a. These facts are therefore valid for dg.
Q.E.D.

Theorem 3.2. Let 0 be a closed *-derivation in A commuting with a such
that A*N\D(B)Cker . Suppose that for any r<G, A%(y) is of finite dimension.
Then 0 is a generator.

Proof. We shall prove that [(14+29)(@)|=lla] for any ¢=9(0) and A<R.
Let ¢ be a G-invariant state of A, so that ¢-d=0 by Lemma 3.1. Defining H
by Hafs=—i04(a)é,, it is easy that H is a symmetric operator commuting with
U? and 64(a)=[/H, a] for any a€D(3y). Since m4(a@)a)és=U?@;)(r4(a)éy) for
any ac A, U?(L)n4(A)E, is of finite dimension, and so coincides with Jl{%”(r).
Since U¢(X,)9(H) is contained in 9(H) and dense in ﬂg¢(7), we have 5[2{"’(7’)
COUH). Hence, by the injectivity of 1+iH, (1-+iH)&3@)=%%°@) or
(-+:H) Eéﬂ[g‘é(r): zéﬂz%). Since z@gg*‘(r) is dense in 4, it follows that H

7€ 7€ rEe

is self-adjoint. (Ad %) is therefore a ¢-weakly continuous one-parameter group
of *-automorphisms of #(4,4). Denoting by ¢’ its generator, we have [|(1+20")(a)|
=|la| for any a=9(d’) and A€R. Since 5¢(a):[z'l7, al=0'(a) for any ac9(0y),
we have |74((1+20) @) =ll7s(@)| for any a=D() and 2€R.

Now there exists a separating family (¢,) of G-invariant states of A, so that
@ my, is faithful. It follows from the above facts that for any € 9(0) and 1€R,

I0+20)@I=1D 74 (1+20)@)ll
= sup [z, (1+20) (@)
= sup 7z (@)

=llall .

Since a(Z,)D() is dense in A*(y) and A*(y) is of finite dimension, A*(7)=
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aX)90)C D). For any A=R, since 1410 is injective, we have (1+218)A%(y)
=A%(y) and so (1420)9(0) is dense in A. Thus it follows from the Hille-Yoshida
theorem that § is a generator. Q.E.D.

Corollary 3.3. Under the same assumption as in Theorem 3.2, if 0 is a closed
derivation in A commuting with a such that A*N\D(0)Cker 8, then the *-deriva-
tions 1/2(6+0%) and 1/2{(0—0*) are pregenerators and & coincides with the closure

of 1/2(0+0%)+1/2(0—0%), where 0*(a)=0d(a*)* for acD()*
Proof. As in Theorem 3.2, we obtain > A%(y)C9D(d). Since > A%(7) is a
7EG reG¢

dense *-subalgebra of A, 1/2(640*) and 1/2:(0—d*) are densely defined *-deriva-

tions in A commuting with @« and E. By Lemma 3.1, they are closable and so

pregenerators. Since > A%(y) is a common core of all closed linear mappings
reG

commuting with «, 0 is the closure of 1/2(0+40%)+1/2(0—3d%). Q. E.D.

If either A=C(G/H) and « is the left regular representation, where H is a
closed subgroup of G, or G is abelian and « is ergodic, then it is well known
that each minimal spectral subspace is of finite dimension. In fact, in the
former, dim A%(y)<(dim 7)* because C(G/H) can be embedded in C(G). In the
latter, each minimal spectral subspace is zero or one dimensional. But, for any
ergodic action «, [12] Proposition 2.1 assures dim A%(y)=<(dim 7)®.. Therefore
we obtain the following theorem:

Theorem 3.4. Let 0 be a closed *-derivation in A commuting with a. If @
is ergodic, then 0 is a generator.

In particular, for abelian groups we have the following:

Proposition 3.5. Suppose that A has a unit, a is ergodic and G is abelian.
If 6 is a closed derivation in A commuting with «, then there exists a unique
homomorphism d of (ker a)* into C such that 0 is the multiplication by id(y) on
AX(y) with ye(ker a)*; moreover, when 0 is a *-derivation, d is the generator of
(ag,) for some continuous one-parameter subgroup (g.) of G.

Conversely, if d is a homomorphism of (ker a)* into C, then there exists a
unique closed derivation 0 in A such that 0 is the multiplication by id(y) on A%(y)
with ye(ker a)*.

Proof. Since a is ergodic, if yEsp a, then A*(y)=Cu, for some unitary u,.
Since A*(7)A*(r )T A*(r+7"), spa is a subgroup of G. Therefore, by [6] Lemma
238, we have spa=(ker a)*. With d(y)=—id(u,)u¥, d is a homomorphism
of spa into C. For, wu, € A*(r+r") and d(uup) = u,00u,) +0(u)u, =
W(d@)+d@ Nuup.

If 7 is a *-derivation, then d is real-valued, and hence, ¢4 =(sp a)"~G/ker «
for any t=R. Therefore, by [2] Lemma B, there exists a continuous one-
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parameter subgroup (g;) of G such that {g;, ¥>=¢*?®. § is then the generator
of (ag,). In fact,
to < " n < "
eur= 3, 0™(uy)= 2

=0 n! n=0 n!

@d()"uy
=My, =g, PPur=a,,(u,).

Conversely, suppose that d is a homomorphism of spa into C. Defining ¢
on X A%(y) by o0(XZ Au,;)=i X d(7)2u,, we see easily that ¢ is a derivation com-
reG 7 T

muting with @ and the projection E. By Lemma 3.1, 0 is closable and can be
uniquely extended to a closed derivation in A commuting with a. Q.E.D.

§4. Non Ergodic Cases

Throughout this section, let J denote a closed *-derivation in A commuting
with a.

We first of all note that A*N\9(0)Cker ¢ implies A*Cker d and that a G-
invariant state of A is the only one if a is ergodic. The former is derived
from A*=E(9(0)) and the closedness of ker d, and the latter from the fact that
¢(a)1=E(a) for any G-invariant state ¢ and any a<A.

Lemma 4.1. The following three conditions are equivalent :

(i) there exists a separating family of G-ergodic states of A for which af
is ergodic on mws(A);

(i) «f is ergodic for any G-ergonic state ¢ of A;

(ili) A® is contained in the center of A.

If one of the above conditions is satisfied, then the set & of all G-ergodic
states of A is closed in the state space of A, and hence locally compact with
respect to o(A*, A)-topology, and A* is isomorphic to Cy(€) in a natural way;
moreover the function €3 ¢—|wg(a)ll is upper semi-continuous for any a<A.

Proof. Let (¢,) be a separating family of G-ergodic states of A such that
a’s is ergodic, so that @y, is faithful. Then for any acA* and be A, we
have

D 74,(0h)= B $ ()74, (b) =By, (b0),

and so ab=ba. Hence (i) implies (iii).

Suppose the condition (iii). If ¢ is a G-ergodic state of A, then m4(A)N
{U%1geG}'=C1 and so m4(A*)CCl. Since r©4(A%) coincides with the fixed
point algebra of m4(A) under a®, we obtain that a? is ergodic.

The set of all G-invariant states of A is separating, and so also is the set
of all G-ergodic states of A. Thus the conditions (i)-(iii) are equivalent.

Suppose the condition (iii), so that A% is commutative. The transposed
mapping of E is a weakly continuous and affine bijection between the compact
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set of positive forms on A® of norm =1 and the compact set of G-invariant
positive forms on A of norm =£1. Therefore & is homeomorphic to the spectrum
of A% so that & is locally compact and A% is isomorphic to Ci(€). Moreover,
considering the C*-algebra obtained from A by the adjunction of the unit, it
follows that & is closed in the state space of A.

For each ¢=& we have that {¢-m4|¢ is a state of w4(A)} coincides with
the intersection of ‘E-*(¢) and the state space of A, where ‘E denotes the
transposed mapping of E in A* If, in fact, a state ¢ of A belongs to *E~Y(¢),

then Sgb(ag(a))d g=¢-E(a)=¢(a)=0 for any positive element acker =4. Since the

function g—¢(a,(a)) is continuous and non-negative, it follows that ¢(a)=0 for
any positive element a€ker w4 and also for any acker 74, and so that ¢g=¢’em,
for some state ¢’ of z4(A).

Denoting by S the intersection of ‘E-*(&) and the state space of A, which
is locally compact, we deduce from above facts that the self-adjoint portion of
A can be embedded isometrically in Cy(S). It follows from the compactness of
'E7Y(¢)NS that the function &3 ¢—sup{|f(P)||p*E-($)NS} is upper semi-
continuous for any continuous function f on S. Since |z4(a)l*=|z4(a*a)|=
sup{¢(mg(a*a)) | is a state of wy(A)}, we obtain the upper semi-continuity of
the function €2 ¢—|m4(a)|l for any ac A. Q.E.D.

Recently, Goodman and Jgrgensen answered our problem in the affirmative
for commutative C*-algebras, who also proved Theorem 3.4 independently [10].
The following theorem generalizes their rerult.

Theorem 4.3. Let 0 be a closed *-derivation in A commuting with a. If
A*ND(o)Cker 6 and A* is contained in the center of A, then 0 is a generator.

Proof. For each G-ergodic state ¢ of A, it follows from Lemma 3.1, Theo-
rem 3.4, and Lemma 4.1 that d; is a pregenerator, so that [[(14+204)(a)|=|all for
any a=9(0s) and any A<R. By Lemma 4.1, as in the proof of Theorem 3.2,
we have therefore that [|[(1420)(a)||=]a| for any a=9(d) and any A< R.

Now we show that (1+20)9(0) is dense in A for any A€ R. For £>0, let
K be the set of all G-ergodic states ¢ such that [z4(a)l=e, so that K is com-
pact. For ¢&¢&, since d, is a pregenerator, ||z4(a)—(14+20)m4s(b)[<e for some
bEeD(0). Hence, by Lemma 4.1, there exists a neighbourhood of ¢ on which
Ims(a—(1+20)(b))I<e. Since A*=C,(&), there exist a continuous partition (c;)
of unity corresponding to a finite open covering (V;) of K and a family (b;) in
D(9) such that ¢;€ A%, 3¢d(c;)=1 on K and |z4(a—(1+20)(b:))|<e on V,;. Hence
we have

sup leg(a—(1+0)(Sbico)l
= sup 12 @lei)mgla—(14-20)(ba))l
¢ i

<e,
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so that la—(1+20)(Xbici)|<e. Thus (1+20)D(0) is dense in A, which implies
that ¢ is a generator. Q.E.D.

Remark. Suppose that A% is contained in the center of A. Then, by Lemma
4.1 and [12], every G-ergodic state is a trace. Therefore A has a separating
family (¢,) of tracial states and (P =x4,)(A)” is a finite von Neumann algebra.
For further results, see [1], [12]. ‘

Remark. In [10], it was shown that a closed *-derivation ¢ in the C*-
algebra K(4) of all compact operators on a separable Hilbert space 4 is a
generator if it commutes with an action « of a compact group G on X(4) and
K na@)Cker 0. This is valid for non-separable Hilbert spaces. The follow-
ing proof is inspired by Kishimoto.

It suffices to show that the set ¥ of all unitaries which implement some «,
is weakly compact. Then @ induces an action on X(J) satisfying the same
hypothesis as (G, a). Clearly, the function U—UxU* is weakly continuous on
the unit ball of @(4) for any operator x of rank one, and hence for any com-
pact operator. Since a(G) is compact with respect to the topology of weak
pointwise convergence, it then follows that for any U9, U and U* implement
some a,, so that U is a unitary. Therefore U is weakly compact.

Appendix

A. Kishimoto showed, independent of [5], that for a C*-dynamical system
(A, G, @) with a compact abelian group G, a closed *-derivation d in A commut-
ing with « is a generator if A*N\9D(0)CKker 0.

We shall describe the outline of its proof. Any element of A*(;)N\D(0) can
be approximated by such an element a of A%(y)N9(0) that a=av*v for some
ve A*(r)ND(0). For this, consider the following functions f and g, and notice
ANAGHYCTA*(r+7): f@®)=0 on [0, €], e *(t—e) on (g, 2¢), and 1 on [2e, o0),
gt)=e"! on [0, e] and ¢* on (e, o0). Such an element a is analytic for d. For,
since av*e A*Cker 0, we have d(a)=av*d(v) and so 6"(a)=a(w*6(w))". Thus the
set of all analytic elements for ¢ is dense in A. By a slight modification of
Theorem 3.2, we then conclude that ¢ is a generator.
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