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Spline Solutions for Nonlinear Fourth-Order
Two-Point Boundary Value Problems

By

M. SAKAI* and R. USMANI**

Abstract

Methods of order 2 and 4 are developed for the continuous approximation of the-
solution of a nonlinear fourth-order two-point boundary value problem. Numerical results
are briefly summarized to demonstrate the practical usefulness of the methods.

§ 1. Introduction and Description of Methods

We shall consider smooth approximation of the solution of the following twa
point boundary value problem:

(1.1) *w(0=/«, *(0),

(1-2) MO
x'(0) *"(!)

=d,

where d is a 4-vector, and M0, MI are constant 4x4 matrices. The function
f ( t , x) is defined and four times continuously differentiable in a region D of
(£, z)-space intercepted by two lines £=0 and t=l.

The problem of this type arises in the plate deflection theory. Finite dif-
ference methods and collocation methods are developed and analysed for the
restrictive linear case by Papamichael [1] and Usmani [4, 5].

In this paper we shall assume that the problem (1.1)-(1.2) has an isolated
solution x(f) satisfying the internality condition

(1.3) U={(t, x}: \x-x(t)\^d, fe[0, 11}dD for some <5>0.

The object of this paper is to show the existence and convergence of spline
approximations to the solution of (1.1) - (1.2) on this assumption. The solution
x(t) is isolated if and only if
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(1.4) G=Mo<P(0)+M1(P(l)=M0+M1(P(l)

is nonsingular, where 0(t) is the solution of the initial value problem:

0 1 0 0

0 0 1 0
0, 0(Q)=E,

0 0 0 1

a 0 0 0,

(0(t)=fx(t, x(t)) and E is the unit matrix).

(1.5)

m / m - 4 - \
Now making use of 5-spline Qm+i(0=(l/m!) S (-l)M 7 )(*-/)+, we con-

i=0 \ 2 /

sider a quintic spline function of the form :

(1.6) xh(t)="i±atQe(t/h--i) (nh = l)

with undetermined coefficients (a_5, a_4, ••• , an_i). The above %^(0 will be an
approximate solution to the problem (1.1)-(1.2) if it satisfies

(1.7)

subject to the same boundary conditions (1.2). Here Pl is an operator defined

by (Pig}(t)= S giLi(t), where Lt(t) is a piecewise linear function with the prop-
i=0

erty Li(tj)=dtj, tj—jh. Any two piecewise linear functions coincide with each
other if and only if they coincide at the nodes, therefore we see that equation
(1.7) is equivalent to the following n+1 equations:

(1.8) ^(«)-(l//i4)(
-f(tt,

The boundary conditions give four equations towards the determination of the
unknowns :

(1.9)

-d=Q.

The number of undetermined coefficients is n+5 and the conditions (1.8) - (1.9)
give the requisite number of equations. Corresponding to x(t\ one can determine
uniquely a quintic spline function of the form
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(1.10) **®

so that
xh(ti) = x(

(1.11)
*JL4)(fi) = *C4)(*i), i=0, 1, n-1, n.

On using consistency relation :

(1.12) (1/120) {*£>fo+,)+26^^

we have

mf<)=*w(fi)+0(A8), i=0(l)n.
from which follows

(1.13) | |Jcim)-JccmMI=max|;ciTO)(0-Jccm)(OI=0(/i6-m), ro

by the repeated use of Rolle's theorem. Hence we have the estimate of
of the form

(1.14) \\F(6)\\ = 0(h*) ,

where, for any finite dimensional vector, we shall denote its maximum norm

by Ml-
Next we consider a sextic spline function zh(t) of the form

(1.15) ^(0=iS
1

flj8i07a/A-0

with undetermined coefficients (/3_6, /3_5, ••• , fin-i)> The above zM will be an
approximate solution if it satisfies

(1.16) *A4)(0=ft/(f, **(0) , Q^t^l ,

subject to the same boundary conditions (1.2). Here P2 is an operator defined by

-i) so that

(1.17)

Since the coefficient matrix of (1.17) is nonsingular, the operator P2 is well-
defined. By a simple calculation, any two quadratic spline functions coincide
with each other if and only if they coincide at the mid points £1+1/2, i=Q(T)n—1
and the end points tiy i=Q, n. Since z#(t) and P z f ( t , zh(i)) are quadratic spline
functions, we have the following determining equations G(/3)=0 from (1.16):
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-f(tc, (l/720)(/3-1+57/3_2+302£-3+302j3_4+57£-6+J3-e)) ,

;, (l/46080)(|8,+722;8(-1+10543j9i_,+235480,-,
+10543/3i-4+722^-6+/3<-6)), i

(1.18)

The boundary conditions give four equations:

(G.,03)

(1.19) G'^ = M0

lGn+iQ3)J

((l/720)(/3-1+57/3_2+302/3-3+302/3-4+57/3-5+/3-6)

-d.

The number of undetermined coefficients is n+6 and the conditions (1.18)-(1.19)
precisely give the requisite number of equations. Corresponding to x(t\ one^can
determine a sextic spline function zh(t) of the form

i=-6

so that
f Zk(ti+i/J=x(ti+l/2), z=0(l)n-l,

(1.21)
i=0(l)2f n-3(l)n-l.

Since ^(O^C8[0, 1] due to the assumption that f ( t , x)^C\,x(D\ it is valid that

(1.22)

Here we shall consider the above sextic interpolation errors. By the consistency
relation of the sextic spline function :

(1.23)

we have

(1.24)
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By the means of the consistency relation at the end point:

(this relation can be proved by substituting the terms : 1, t, -• , f, (t—t^i, (t—t2}+,
••• , (t—t5)

6+), we have

(1.25) zP(tQ)=xw

Similarly we have

(1.26) W(tn}=xw

On combining (1.24) - (1.26), we consider the estimation of \\z^~ x w\\. Since
2^4)W-^c4)(0=^^W-A(^c4))W+(/-P2)^C4)(0, let us treat zp(t)-P2(x

w)(t) and
(/— P2)x

 (4)(0, separately. First, we have

so that

Hence we have

(1.27)

Next we shall consider the error of the quadratic spline interpolation. Let s(t)
=P2(x

w)(V, then we have

from which follows

Since s"(?) is constant on £tt, ?<+1], by Taylor series expansion we have

By the means of Rolle's theorem, we have

(1.28) ||(/
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Combining (1.27) and (1.28) yields

(1.29) W-*<«|I = 0(A").

By the repeated use of Rolle's theorem, we have

(1.30) \\z^-xw\\ = 0(h7-m), 77z=0(l)4.

This completes the proof of (1.22). Hence we have the estimate of ||G(/3)|| of
the form

(1.31)

Here we remark that the preceding argument can be also applicable to the
general fourth order differential equations :

(1.32) x^(t)=f(t, *(f), x'(t), x"(t), *<»(0) , Org^l ,

subject to the boundary conditions (1.2).

§ 2. Existence and Convergence of Spline Approximations

In this section we shall consider the case using the quintic spline function,
since the similar analysis can be applicable to the method using the sextic spline.

Let /(a) be the Jacobian matrix of F(a) with respect to a=(a-5, a_4, • • • ,
an-i\ In order to investigate the property of /(#), we consider a linear system :

(2.1) /(*)£=?

where £=(f_B, ?-4, — , ?n-i) and r]=(r]-2, 7j-1} ••• , 77^+2). Corresponding to ? and
77, we consider quintic and piecewise linear functions <j>(£) and <p(t), respectively

(2.2) #(0=2fi06«/A-i) and ^(t)= rjtLt(ti=-5 i=0

From (2.1), we have

, i=0(l)n ,

(2.3)
#'(0) 37-1

Since two piecewise linear functions 0C4)(0 and P\(0<j>)(t)-\- <!>(£) coincide at the
nodes ti} f=0(l)n, we have

that is,

(2.4) (j)w — (r^=—(I—P1)(ff^+^ (I the unit operator).

By using the assumption that the problem (1. !)-(!. 2) has the isolated solution.
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there exists the Green function H(t, s) such that

(2.5)

Here the Green function H(t, s) is given by

(2.6) H(t, s)=\

(E the unit matrix).

From above, we have

(2.7) U0II^C[| | i7l | + ||0||] for h<h0 ([3])

provided that hQ is sufficiently small, where C is a generic constant independent
of h. Since ||0||^C||f|| and ||c£||^C|M|, we have

(2.8) l l f l l ^ C l l j y l l for h<h0.

By (2.1), this inequality implies the nonsingularity of /(#) and in addition

(2.9) U^Wll^C for h<h0.

By (1.13), we can choose hi such that \\xh-x\\^d0<d for h<h1(^h0). Let

= {a: ||a—($||^5—50} and xh(t)=
nJ}aiQ6(t/h—i) with aeflftl, then

Thus we have, by the means of the mean-value theorem,

(2.10) ll/W-/(/3)||^C||a:-/3|| for a-,

By (1.14), we have already had

(2.11)

Thus all the conditions (2.9), (2.10) and (2.11) of Newton-Kantorovitch's
theorem are fulfilled. Therefore F(a)=0 has one and only one solution a in the
neighbourhood of a (see Rail [1]). Hence we have

Theorem 1. In a sufficiently small neighbourhood of the isolated solution x(t\
there exists the quintic spline approximation of the form

(2.12) xh(t)=
i=-5

so that

(2.13) \\xh-*\\

For the derivative of the error, we have
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Corollary.

(2.14) \\x^-x™\\ = 0(hz), m=l(l)4.

Proof. Since *&4)fo)=/fo, xh(ti)\ we have

By the means of the well-known inequality:

ll^m)II^C[|lg]| + ||̂ ||] for any £eC4[0, 1],

we have the desired result.
For the sextic spline approximation, we have

Theorem 2. In a sufficiently small neighbourhood of the isolated solution x(t\
there exists the sextic spline approximation :

(2.15) 5*a)=n2j5i07tf/A-0i=-6

so that
(i) j8=G9_6 , £-5, •" , 0n-i) « ^ so/ttfrVw o/ G(j8)=0,
(ii) ||^TO5-jecm5|| = 0(/z4), m=0(l)4.

The proof of Theorem 2 is quite similar to that of Theorem 1. For this
reason we omit further details.

§ 3. Numerical Illustration

The following numerical examples are chosen for experimentation.

Example 1.

x(0)=*(l)=0, *'(0)=1, *'(!)=-*.

The exact solution x(t) is t(l—t}el.

Example 2.

This problem has two isolated solutions such that x(t)=4/(l+t)z and jc(0.5)
==—10.53. We have listed the numerical results for the larger solution x(t)=

All the computations were performed in double precision arithmetic in order
to keep the rounding errors to a minimum. The observed maximum errors in
absolute value for Examples 1 and 2 are displayed in Tables 1 and 2. We
remark that by using Richardson's ^-extrapolation technique the accuracy of
our computed solution can be improved at the knots. In Tables 3 and 4, the
errors mean the absolute values of the followings :
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for quintic splines,

{16*fc/8(l/2)-*ft(l/2)}/15-*(l/2) for sextic splines.

Table 1 (Example 1)

/i =1/4
1/8

1/16
1/32
1/64

quintic

0. 689-3*
0. 172-3
0.429-4
0. 107-4
0. 268-5

sextic

0. 380-5
0. 222-6
0. 137-7
0.854-9
0. 536-10

* We write 0.689 xlO'3 by 0.689-3.

/i = 1/4

1/8
1/16

1/32
1/64

Errors based

A = l/4

1/8

1/16

1/32

1/64

Errors based

A = l/4

1/8

1/16

1/32

1/64

Table 2 (Example 2)

quintic

0.209
0. 478-1
0. 117-1
0. 290-2
0.724-3

Table 3 (Example 1)

sextic

0. 200-1
0. 144-2
0. 933-4
0. 590-5
0. 369-6

on Richardson's extrapolation at t = l/2.

quintic

0. 859-6

0. 452-7

0. 269-8

0. 158-9

Table 4 (Example 2)

sextic

0. 168-7

0. 168-9

0. 177-11

0.853-13

on Richardson's extrapolation at £ = 1/2.

quintic

0. 569-2

0. 417-3

0. 270-4

0. 170-5

sextic

0. 201-3

0. 337-5

0. 535-7

0.858-9
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