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On the Existence of Solutions to Time-
Dependent Hartree-Fock Equations
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§ 1. Introduction and Summary

The approximate methods in the quantum mechanical many body problems
lead us to interesting non-linear equations. Consider an Af-body Schrodinger
equation (N>_2)

(1.1) i-

where Xj=(x], xj, xj)ei2s, Aj= ^ ( d / 3 x j ) 2 and Q(x\ V(x) are real functions

such that V(x) = V(—x). If the system obeys the Fermi statistics, it is natural
to treat (1.1) in the anti-symmetric subspace of LZ(R3N). Taking note of this
anti-symmetry and using the variational principle, Dirac ([3], [4]) has derived
the following time-dependent version of Hartree-Fock equation in order to
obtain an approximate solution of (1.1) :

(1.2) i-jj-u(t)=Hu(t)+K(u(t)),

where the unknown u(t) = t(ul(xt t), ••• , UN(X, 0) is a C^-valued function of x =
(*i, x2, xs)^R3 and £>0,

(1.3) #=-A+Q(x),

(1.4) K(umx)=EV(x-ymx, y,

(1.5) U(x, y, t)=(UJk(x, y, 0) (the NxN matrix),

(1.6) U J k ( x , y, t)=Uj(x, t } u k ( y , t ) — u k ( x , t)uj(y, 0 .

Chadam and Glassey [2] have proved the existence of global solutions to
(1.2), when Q(x\ V(x) are Coulomb potentials: Q(x)=-Z/\x\, V(x) = l/\x\,
which is practically most important. In this paper, we show that their results
can be extended to the more general class of potentials.
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Let LP=LP(RS) and Mm=Mm(R3) denote the usual Lebesgue space and the
Sobolev space of order m, respectively. Their norms are written as \\-\\LP and
IHUm. For Banach spaces X and Y, B(X\ Y) denotes the totality of bounded
linear operators from X to Y. Now, we shall state the assumptions imposed
on Q(x) and V(x) :

(A-l) Q(x) is a real function and is split into two terms Qi(x) and Qz(x) : Q(x)
= Qito+Qt(x), where Q^L2, Q2^L°°.

(A-2) V(x) is a real function such that V(x)=V(—x), and is split into two parts:
V(x}=V1(x)+V2(x\ where V^L2, VZ^L".

(A-3) As the multiplication operator, V belongs to B(JClm, L2).

Here we should note that any /eL2 can be split into two parts f=f1+fz

where f^L2r\Lp for any p such that l<.p<2, /2eL°°. Indeed, we have only
to take /!(*)=/(*) (| /(*)|>1), /iU)=0 (|/(*)KD and f * ( x ) = f ( x ) - f i ( x ) . This
fact can be written formally as

L2+ L°°= L2n L?+ L00 (l<p<2).

Let p (l<p<2) be arbitrarily fixed, and /eL2+L°°. Then, as above, one can
easily see that for any e>0, / can be split into two parts /i and /2, where

/=/!+/»,

We shall frequently use this relation in the later arguments.
Under the assumption (A-l), the differential operator # restricted to C™(RB)

(the smooth functions of compact support in R3) is essentially self-adjoint and
the domain of its self-adjoint realization, which we also denote by H, is equal
to M2. Then the equation (1.2) can be transformed into the integral equation

(1.7) utt^e-

By the solution of (1.2), we mean an ^T2-valued continuous function of t>_Q
verifying the integral equation (1.7).

The result of this paper is summarized in the following

Theorem,, (1) Under the assumptions (A-l) and (A-2), for any Cauchy data
u(Q)^M2, there exists a unique local solution of (1.2).

(2) Under the assumptions (A-l), (A-2) and (A-3), for any Cauchy data
, there exists a unique global solution to (1.2).

The proof of the above theorem is carried out along the line of Chadam
and Glassey [2]. For the local existence, it suffices to show that the non-linear
term K(u) is locally Lipshitz continuous in M2. As for the global existence, we
have only to obtain some a-priori estimate of the solution u(t\ which can be
proved by using the energy conservation law.



TIME-DEPENDENT HARTREE-FOCK EQUATIONS 109

We shall end this section by giving an example of V satisfying (A-3).

Example. Let V(x) be split into three terms:
where \ V^x}] <C/\x\ for a constant C>0, V^U andV^L". Then Vt=B(JCl; L2)
as the multiplication operator.

Indeed, by the well-known inequality, we have

II Vi/lk.<C||/(*)/ I x | |U2<Const||V/L2<Const.||/|Ui .

One can also see that

l|F2/||L2<||F2||LB||/||L6<Const.|[F2||L3||/bn,

where we have used the well-known Sobolev inequality

ll/llL.<Const||/|Ui,

(see e. g. [6] p. 12). These observations show that V verifies the assumption (A-3).

§ 2. Existence of Local Solutions

Let A(W ; /, g, h) be the operator defined by

(2.1) A(W;f, g, h)W=f(

Lemma 2.1. We have the following estimates :

(1) \\A(W;f, g, K)\\L*<\\W\\L~\\f \\M\v\\h\\L*,
(2) \\A(W;f, g,
(3) \\A(W;f, g, A
(4) \\A(W;f, g, h)h*<V<

where | [ - ] lB(^r i ;L2) denotes the operator norm of W as the multiplication operator
from Ml to L\

Proof. Let

B(W; g,

Then we have only to estimate \\B(W; g, A)||£».
(1) easily follows from the Schwarz inequality.
To show (2), we note the Sobolev inequality:

[[^]
Then we have

\B(W;g,

(3) follows from the Holder and Sobolev inequalities :
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(4) can be proved as follows:

\B(W; g, h}(x}\<\\W(x--}g(-}\\L*\\h\\L*

where we have used the fact that \\W(x---)g(-)\\^=\\W(-}g(x--}\\L2<\\W\\BiX1.,L^
v\\g\\J(1. n

We introduce the following notations

(2.2) />i(/,*, /OHI/

(2.3) pz(f, g, h}=\\f\\^\\g\\

Lemma 2.2. We have :
(1) \\A(V;f, g, A)||jr^<Const.(|]71||1,+ ||V'1|L./»+||71||L.)#1(/, g, h).
(2) \ \ A ( V ; f , g, A)||*^<Const.(||71||t»/i+||y,|U-+||7||aUriiiB)/>»(/, g, /»).

Proof. Let 7/7) (; = !, 2, ••• , 6) be defined as follows:

I1(V)=A(V;Af,g,h'),

h(V)=2±A(V; df/dxt, 3g/dxt, h) ,

g,

)=2 S A(V ; f, dg/dxi, dh/8x{) ,

I6(V)=A(V;f,g,Ah).
Then we have

Lemma 2.1 (2) implies that

(2.4)

(2.5)

(2.6)

Also Lemma 2.1 (3) shows that

(2-7)

(2.8)

(2-9)
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We have, therefore,

(2.10) \\A(Vs, f, g,

Using Lemma 2.1 (1), we can show as above that

(2.11) \\A(V2;f, g, h)\\^<C\\V2\\L~p2(f, g, h) .

(2.10) together with (2.11) proves the assertion (1).
In view of Lemma 2.1 (4), we have

,W\\L*<C\\V\\BW'.L»P*(f, *, A),S
.7=4.6,6

which together with (2.7) and (2.8) shows the assertion (2). D

Lemma 2.3, Under the assumption (A-2), the non-linear term K is locally
Lipshitz continuous in M*. That is, for any bounded set B in Jf2, there exists a
constant C=C(B}>Q such that

if u,

Proof. Let K3(u) be the j-th component of K(u\ Then Kj(u) can be
written as

Kj(u)= ^{A(V ', Uj, uk, uk)-A(V; uk, ujt u k } }

(see (1.4)). Thus to prove the Lipshitz continuity of Kj(u\ we have only to
show that of A(V ; ujf uk, uk} and A(V '; uk, ujt uk}, which can be proved by
using the multi-linearity of A(V '; •, •, •)• For example,

A(V '; uj} uk, uk}—A(V, vjf vk, vk}

=A(V; uj—Vj, uk, uk)+A(V; vj, uk—vk, uk)+A(V; vjf vk, uk—vk}.

The Lipshitz continuity then follows from Lemma 2.2 (1). D

The assumption (A-l) shows that Q is infinitesimally small with respect to
HQ=—A. That is, for any £>0 there exists a constant C£>0 such that

(see e.g. [7]). Therefore, for sufficiently large ^>0, we can find a constant
C>0 such that

(2.12)
In view of (2.12), one can easily see that e~itH is uniformly bounded and strongly
continuous in Mz for t^R. Thus using the Lipshitz continuity of K(u\ one can
solve the integral equation (1.7) locally.

Theorem 2.4 (Local Existence). Assume (A-l) and (A-2). Then for any
bounded set B in M2, there exists a constant T=T(5)>0 such that the solution
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of (1.2) exists uniquely for £e[0, T] // w(0)eJ3.

§3. Existence of Global Solutions

In this section, we shall assume that the solution M(f)={(wi(0, ••• , uN(t)) of
(1.2) exists for fe[0, T) and derive its properties. In the followings, (,) denotes
the inner product of L2 and also (LZ)N ' , and C's denote various constants inde-
pendent of T.

The first important property has already been obtained by Dirac [4].

Theorem 3.1. -r-(uj(t), uk(t))=Q for any j, k.

Proof. Using the equation (1.2), we have

The first term of the right-hand side vanishes because of the self-adjointness of
H. In view of (1.4), we have

(u(t», uk(t}}=\\V(x-y}u3(x, t)l^(x~T)\u(y} t)\*dxdy

- S {(V(x-y)un(x, t ) u k ( x , t)uj(y, t)un(y, t)dxdy .
n=lJJ

Therefore we have

Kk(um=(Kk(u(t)), Uj

, f)\u(y,

-y)un(x, t)uj(x, t ) u k ( y , t ) u n ( y , t)dxdy .
n=lJJ

If we interchange the variables x and y, and take into account of the property :
V(x)=V(—x\ we can see that (uj(t), Kk(u(t)))=(Kj(u(t)), uk(t)\ which shows

that - - ( w X O , M*(0)=0. D

Corollary 3.2. \\uffl\\ L*=\\uM\L* (/=!, - , W .

We also prepare the following lemma.

Lemma 3.3. Re(K(u(t)), — wW)=— -:-(K(u(t}}, u(t)\ where Re means the
at 4 at

real part.

Proof. \K(u(t)\ -=-u(t)j is split into two parts /i and J2, where
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Ii= 5.

y ) u k ( x , t)uj(y, t)uk(y, t ) - - U j ( x , t)dxdy .

Therefore, we can see that

Exchanging the variables x and y suitably, we can rewrite this as

Similarly,
1

, t)uj(y, t}uk(y, t } - U j ( x , t)dxdy

— k , t)u3(y, t)uk(y, t)—Uj(x, t}dxdy

Thus we have

u(t». D

We can now prove an important theorem concerning the conservation of
energy.

Theorem 3.4 (The Energy Conservation Law). Let E(t) be defined by E(t)

= (Hu(f), u(W+(K(u(t», u(t}\ Then, E(f)=E(Q) .

Proof. By the equation (1.2), we have

Taking the real part, we have

Since Ref^M(?), u(t)=— —7-(Hu(t), u(t)), in view of Lemma 3.3, we have

(t}} + ̂ (K(u(t}\ u(t))}=Q . D

Lemma 3.5, Under the assumption (A-l), /or sufficiently large A>Q, there
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exists a constant C>0 such that

Proof. We have only to show that for any s>Q there exists a constant
•C«>0 such that

(3-D \(Qf, /)| <£(#<>/, /)+C.||/||i,

{//o=— A). By the Holder and Sobolev inequalities

KOiA/JI^IIOillL'^l l / l l l -^CIIOill^l l / l l i i .
We also have

!(Q2/,/)]<]|Q2|IHI/l!l2.

Since HQilL 3 / 2 can be made arbitrarily small, we see (3.1). n

Lemma 3.6 (A-priori JC1 Bound). // we assume (A-l) and (A-2), w
i^C for a suitable constant C>0.

Proof. Theorem 3.4 and Corollary 3.2 show that

((H+Z)u(t], u(t}}+^(K(u(t}}, Ma))

Choosing /I large enough and taking note of Lemma 3.5, we have

where we have again used Corollary 3.2. Now, K(u(t)) can be divided into two
parts K™(u(t)) and K™(u(t)), where

Lemma 2.1 (1) shows that

l l /f ( 2 )(
Lemma 2.1 (3) implies that

Since ||Fi||L3/2 can be made arbitrarily small, we have for small s>0

proving the present lemma. D

We can now obtain an a-priori bound of 11^(011^2.

Lemma 3.7 (A-priori M2 Estimate). The assumptions (A-l), (A-2) and (A-3)
imply that

for a suitable constant M>0.
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Proof. Since e~UH is uniformly bounded in Mz, we have by the integral

equation (1.7),

In view of Lemma 2.2 (2) and Lemma 3.5, we have

HK(Wa))iu2<ciu(oii^iU(oi
We have thus obtained the integral inequality

The assertion of the lemma now follows from the well-known Gronwall's

inequality. D

Since we have obtained the apriori estimate of u(t\ we can easily prove

the global existence of solutions to (1.2) by the standard arguments.

Theorem 3.8 (Global Existence). Assume (A-l), (A-2) and (A-3). Then for

any Cauchy data w(0)e^T2, there exists a unique global solution to (1.2).
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