Publ. RIMS, Kyoto Univ.
19 (1983), 107-115

On the Existence of Solutions to Time-
Dependent Hartree-Fock Equations

By

Hiroshi IsozAKI*

§1. Introduction and Summary

The approximate methods in the quantum mechanical many body problems
lead us to interesting non-linear equations. Consider an N-body Schrédinger
equation (N=>2)

(1.1 z‘ai T)=Hy¥@),
t
Hy— % (—A QN+ TV (xi—x,),

where x,=(x}, x% x})eR? Aj:g(a/ax;'z and Q(x), V(x) are real functions

such that V(x)=V(—x). If the system obeys the Fermi statistics, it is natural
to treat (1.1) in the anti-symmetric subspace of L%*(R®*Y). Taking note of this
anti-symmetry and using the variational principle, Dirac ([3J, [4]) has derived
the following time-dependent version of Hartree-Fock equation in order to
obtain an approximate solution of (1.1):

(1.2) i%u(t)ZHu(tHK(u(t)),

where the unknown u(t)="(u,(x, ), ---, un(x, t)) is a C¥-valued function of x=
(x1, X2, x5) €ER® and >0,

(L3) H=—A+Q(x),

(14 Ka@®)x)={, V(x—3)U(x, 5, 05, Dy,

(1.5) Ulx, v, D=U(x, ¥, 1)) (the NXN matrix),

(1.6) Ujr(x, y, )=u,(x, ur(y, )—uulx, Duiy, 1).

Chadam and Glassey [2] have proved the existence of global solutions to
(1.2), when Q(x), V(x) are Coulomb potentials: Q(x)=—Z/|x|, V(x)=1/|x]|,
which is practically most important. In this paper, we show that their results
can be extended to the more general class of potentials.
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Let L?=L?(R?®) and 4 ™=4™(R®) denote the usual Lebesgue space and the
Sobolev space of order m, respectively. Their norms are written as |-|.» and
|-l4m. For Banach spaces X and Y, B(X;Y) denotes the totality of bounded
linear operators from X to Y. Now, we shall state the assumptions imposed
on Q(x) and V(x):

(A-1) Q(x) is a real function and is split into two terms Qy(x) and Qx(x): Q(x)
=Q1(x)+Q:(x), where Q,€ L% Q,= L™

(A-2) V(x) is a real function such that V(x)=V(—x), and is split into two parts:
V(x)=V(x)+V(x), where Vi€ L? V,e L.

(A-3) As the multiplication operator, V belongs to B(H*; L?).

Here we should note that any f=L? can be split into two parts f=f;+f,
where f,e LN\ L? for any p such that 1<p=<2 f,=eL>=. Indeed, we have only
to take fi(x)=f(x) (|f(x)|=1), f1(x)=0 (|f(x)|<1) and f,(x)=f(x)—f:(x). This
fact can be written formally as

L4+ L>=L*NLP+ L~ (1=p=2).
Let p (1<p=<2) be arbitrarily fixed, and feL?+ L= Then, as above, one can
easily see that for any £>0, f can be split into two parts f; and f,, where
f =f 1+f 2,
Ifilleetlfille<e,  foE L™
We shall frequently use this relation in the later arguments.

Under the assumption (A-1), the differential operator H restricted to Cy(R?)

(the smooth functions of compact support in R?®) is essentially self-adjoint and

the domain of its self-adjoint realization, which we also denote by H, is equal
to 4% Then the equation (1.2) can be transformed into the integral equation

w7 u(t)=e‘“”u(())—Z'S:e‘“‘“s’HK(u(s))ds .

By the solution of (1.2), we mean an J42-valued continuous function of ¢=0
verifying the integral equation (1.7).
The result of this paper is summarized in the following

Theorem. (1) Under the assumptions (A-1) and (A-2), for any Cauchy data
u(0)e 42, there exists a unique local solution of (1.2).

(2) Under the assumptions (A-1), (A-2) and (A-3), for any Cauchy data
u(0)e 42, there exists a unique global solution to (1.2).

The proof of the above theorem is carried out along the line of Chadam
and Glassey [2]. For the local existence, it suffices to show that the non-linear
term K(u) is locally Lipshitz continuous in 42 As for the global existence, we
have only to obtain some a-priori estimate of the solution u(¢), which can be
proved by using the energy conservation law.
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We shall end this section by giving an example of V satisfying (A-3).

Example. Let V(x) be split into three terms: V(x)=Vi(x)+V(x)+Vy(x),
where |Vi(x)| <C/| x| for a constant C>0, Vo, L® and Vo= L=. Then Ve B(4*; L?)
as the multiplication operator.

Indeed, by the well-known inequality, we have

[Viflle=Cl f(x)/| x| L2=<Const.| V| L2<Const.| || s .

One can also see that

Vol le=<IValsll fll s =<Const.| Vol rsll f ll a1,

where we have used the well-known Sobolev inequality

| fllze=<Const.| fll 41,

(see e.g. [6] p. 12). These observations show that V verifies the assumption (A-3).

§ 2. Existence of Local Solutions

Let A(W; f, g, h) be the operator defined by
2D AW f, g h(x)=f (x)SR3W(x—y)g(y)ll(y)dy .

Lemma 2.1. We have the following estimates:

O 1AW f, g, Dl=IWle=l fllzalgllzallRlze,

@) 1AW [, g, Wz2=Const.|[W| 2l |2l gllszll 2ll 2,
@) 1AW f, g, Mlz2=Const.[W| szl fl 22l gl Allacr ,
@ NAW; f, g, Mle=IWlscs ol fllzell glall 2l ze,

where ||| ges; 12y denotes the operator norm of W as the multiplication operator
from 4* to L2

Proof. Let

BW; g, W(w=| W(x—»g0)ht)dy.

Then we have only to estimate [|[B(W; g, h)l|r~.
(1) easily follows from the Schwarz inequality.
To show (2), we note the Sobolev inequality :

[ gllz=<Const.|| gll .
Then we have

IBW; g, h)(x)| =[Wllzel gllz=l Al ze
=Const.[|W| sl gllscll 2l 2 -

(3) follows from the Hélder and Sobolev inequalities:
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|BW; g, h)(x)| =Wl zsrliglsll 2l zs

=Cont.[|Wls2l gl sl All g1 .
(4) can be proved as follows:

| BW ; g, ()| <IW(x—-)g()zellAl e
=W lewen eollglall2lize,
where we have used the fact that |[W(x—-)g()e=IW()glx— ) =[Wllpcsr; r2

Nlglx— =Wl 2ol gl - O
We introduce the following notations

(2.2) (/s g W=Ifllsllgllazllhllse,

(2.3) polf, g W=If sl gllarll hlloes 1 F il gl seell 2L gex

F1f sl gllaall 2l sz -

Lemma 2.2. We have:
Q) AWV f, g Mllee=Const.(|Villze+I1Vill L3211Vl z=)p:(f, g, B).
@) VAWV £, g Wlae=<Const.(|V | zs24- IVl o4V | esrs; L) pel S, &5 B).

Proof. Let I1V) (=1, 2, ---, 6) be defined as follows:
IL.(V)=A(V; Af, g, b),

I(V)=2 3 AV ; 9f /0%, 0g/0%s, h),

I(V)=2 3 AV ; 3f/0x:, g, 0h/ox),
I4(V):A(V H f) Ag) h) )
I(V)=2 3 AWV ; £, 3g/0x:, 0h/0).

I(V)=A(V; f, g, Ah).
Then we have
AA(V; f, g, h)= ; ).

Lemma 2.1 (2) implies that

2.4 IV 2 =ClV il 22l fleoll gll ezl Al 2
(2.5) 1LVl e =CIV ill el f | 2l g lacell All 2 ,
(2.6) sV 2 =ClIVill zall fll zell gl ezl 2l e -
Also Lemma 2.1 (3) shows that

@.7) IV o=ClIV il zsr2]l fll sl g ezl Pl 1
(2.8) IVl 22 =ClV il a2l f | gll | ALz

(2.9) (Ve =ClVillzar2] 22 gl sezl 2l e -
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We have, therefore,

(2.10) 1A(Vy; £, g Mllaee=CIl1—A)A(V1; [, g h)lr=
=CUVilla+1Villzs2)pi(f, g B) -

Using Lemma 2.1 (1), we can show as above that

(2.11) 1AV y; £, g P ae=C|Vellz=po(f, g, R).

(2.10) together with (2.11) proves the assertion (1).
In view of Lemma 2.1 (4), we have

11:(V) ||L2+]=425 MWD =ClIV | pess; p(f, g, h),
which together with (2.7) and (2.8) shows the assertion (2). |

Lemma 2.3. Under the assumption (A-2), the non-linear term K is locally
Lipshitz continuous in K% That is, for any bounded set B in %, there exists a
constant C=C(B)>0 such that

. | K(u)— KW) || a2 =Cllu—vl| g2
if u, vEB.

Proof. Let K,(u) be the j-th component of K(u). Then K;(u) can be
written as

N
Kiu)y= kZ=)1 {A(V; uyy up, @) —AV 5 us, uy, @4}

(see (1.4)). Thus to prove the Lipshitz continuity of K;(u), we have only to
show that of A(V; uj, us, #,) and A(V; u,, uj, #), which can be proved by
using the multi-linearity of A(V; -, -, -). For example,
AV 5 ug, ug, p)—AWV, v, Vs, Up)
=A(V; uj—vj, up, @) +AWV ;v ur—ve, @p)+AV; vj, Vi, Ur—va) .
The Lipshitz continuity then follows from Lemma 2.2 (1). O
The assumption (A-1) shows that Q is infinitesimally small with respect to

H,=—A. That is, for any >0 there exists a constant C.>0 such that

1Qflre=<elHoflot+Cel fllze  (fEHA?)

(see e.g. [7]). Therefore, for sufficiently large A>0, we can find a constant
C>0 such that

(2.12) Clf lsee=N(HADf [ 2=C| | 2 -

In view of (2.12), one can easily see that ¢ **# is uniformly bounded and strongly
continuous in 42 for tR. Thus using the Lipshitz continuity of K(u), one can
solve the integral equation (1.7) locally.

Theorem 2.4 (Local Existence). Assume (A-1) and (A-2). Then for any
bounded set B in 4% there exists a constant T=T(B)>0 such that the solution
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of (1.2) exists uniquely for t<[0, T] if u(0)=B.

§ 3. Existence of Global Solutions

In this section, we shall assume that the solution u(¥)="%(u,(), ---, ux(t)) of
(1.2) exists for 1[0, T) and derive its properties. In the followings, (,) denotes
the inner product of L? and also (L?)?, and C’s denote various constants inde-
pendent of T.

The first important property has already been obtained by Dirac [4].

Theorem 3.1. %(uj(n, wy)=0  for any j, k.

Proof. Using the equation (1.2), we have

i%(uf(t)’ (@)= {(Hu @), ur@)—(u,®), Hu,@)}
H{(K (), uat)—(ust), Ke(u(®))}.

The first term of the right-hand side vanishes because of the self-adjointness of
H. In view of (1.4), we have

(K@), ws®)={[V =y, 00 D, Dl*dxdy

N — JE—
—EISSV(x—y)un(x, Hu(x, Hu(y, Hu(y, dxdy .
Therefore we have

(us(®), Kp(u@))=(K(u(®), us)

=([vex—yyuate, Bustx, Dluey, nltdzdy

—éISSV(x—y)un(x, Duix, Hur(y, Hua(y, t)dxdy .

If we interchange the variables x and y, and take into account of the property :
V(x)=V(—x), we can see that (u;(f), K,(u@)=(Kju(t)), u,(t)), which shows

that %(uj(z‘), u(2)=0. (I

Corollary 3.2. lu;Ollce=lu;Olze (=1, ---, N).
We also prepare the following lemma.

1 d

T i (K(u(t)), u(t)), where Re means the

Lemma 3.3. Re(K(u(?)), %u(z)):
real part.

Proof. (K(u(t)), %u(t)) is split into two parts I, and I,, where
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Il—ESSV(x u,(x, t)( u,(x, t))lu(y, Hl*dxdy,

Ii=— 5 ([Vir—yuats, ur, 01205, Dgrustx, Ddsdy

Therefore, we can see that

ReIl———SSV(x y)(a |utx, 1?) (s, Dl*dxdy.

Exchanging the variables x and y suitably, we can rewrite this as

1

Re I,= T :iitggV(x Wlulx, H12uly, t)|2dxdy .

Similarly,

Re I,=— Vix—y)uw(x, huy, us(y, 1) tu;(x, tdxdy

Ve D, Ditaly, (5, Dy

G ,,ESSV(" Pz, Dy, BE, Dy, Ddxdy .

Thus we have

Re(K(u(t)), 9 u(t))

r—d,\ul

diSSV(x —y)u(x, HU(x, y, huly, Hdxdy
d

= 57 K@), u@). O

We can now prove an important theorem concerning the conservation of
energy.

Theorem 3.4 (The Energy Conservation Law). Let E(t) be defined by E(t)
=(Hu(t), u(f))-!—%(K(u(f)), u(t)). Then, E(t)=E(0).

Proof. By the equation (1.2), we have

(2 u®), 2w ®)=(Hu(t, -2u@)+{(Kw®), Suw).

Taking the real part, we have

Re( Hu(t), o u(®)+Re( Kw(®), o u(®))=0.

Since Re(Hu(z‘), ot u(t)) %%(Hu(t), u(t)), in view of Lemma 3.3, we have
& o), wo)+ 5 ), ui)=0. .

Lemma 3.5. Under the assumption (A-1), for sufficiently large 2>0, there
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exists a constant C>0 such that
ClAI5=(H+f, NZCf%:.

Proof. We have only to show that for any ¢>0 there exists a constant
C.>0 such that

(3.1) HQf, NI=e(Hof, /)+Cefie
(Hy=—A). By the Hélder and Sobolev inequalities
[Q1f, HI=ZNQullzer2l FI=<CllQull /2!l f %1 -

‘We also have
[(Q:f, NI=ZNQallz=l fZ2

Since [|Q,]lz3/2 can be made arbitrarily small, we see (3.1). O

Lemma 3.6 (A-priori 4* Bound). If we assume (A-1) and (A-2), we have
lula1=<C for a suitable constant C>0.

Proof. Theorem 3.4 and Corollary 3.2 show that
(H+2u@), u(t))—}—%—(K(u(t)), u(t)=E0)+2[u(0)[%:.

Choosing 2 large enough and taking note of Lemma 3.5, we have
lu@ o <CA+| Ku@)lze),
where we have again used Corollary 3.2. Now, K(u(¢#)) can be divided into two
parts K (u(t)) and K®(u(t)), where
K‘”(u(t))zSVj(x—y)U(x, ¥, Du(y, t)dy .

Lemma 2.1 (1) shows that

[K® ) e=<C| V| L=l u@®)|L.=Cl Vsl 1.
Lemma 2.1 (3) implies that

1K D @) Le<Cl| Vil vzl (@)l zoll e (@) ]| oex

=C|Villzorelu@)e .
Since ||Vi|13/2 can be made arbitrarily small, we have for small ¢>0
lu@®) i =<elu@®ls:+C.,

proving the present lemma. ]

We can now obtain an a-priori bound of [u(z)|se.

Lemma 3.7 (A-priori 4% Estimate). The assumptions (A-1), (A-2) and (A-3)
imply that
u@®| we<M exp(Mt),

for a suitable constant M>0.
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Proof. Since e *¥ is uniformly bounded in 42 we have by the integral
equation (1.7),

Ol e<O(1+{ I Kl snds)

In view of Lemma 2.2 (2) and Lemma 3.5, we have
I K@) s =Cllu@) | 5| u®) | e =Cll ()] 2 -

We have thus obtained the integral inequality
t
Ol e <M(1+{ u(5) | eds)

The assertion of the lemma now follows from the well-known Gronwall’s
inequality. ]

Since we have obtained the apriori estimate of u(f), we can easily prove
the global existence of solutions to (1.2) by the standard arguments.

Theorem 3.8 (Global Existence). Assume (A-1), (A-2) and (A-3). Then for
any Cauchy data u(0)s 4?2 there exists a unique global solution to {1.2).
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