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On a Holomorphic Fiber Bundle with
Meromorphic Structure

By

Akira FUJIKI*

Introduction

Let / : X-+Y be a proper surjective morphism of compact complex manifolds.
Let U^Y be a Zariski open subset over which / is smooth. Let Xu=f~1(U)
and let fn: Xn^U be the induced morphism. Assume that fn is a holomorphic
fiber bundle with typical fiber F and the structure group H. Let Gu-*U be the
holomorphic fiber bundle associated with fn with typical fiber H with the adjoint
action of H on itself so that Gn acts naturally on Xn over U. Let lu-^U be
the principal //-bundle associated to fu- Then GU acts naturally on In over U
also. We say that fn is a holomorphic fiber bundle with meromorphic structure
if there exists a compact complex space G* (resp. /*) over Y containing GU
(resp. In) as a Zariski open subset such that the action of Gn on Xn (resp. In)
extends 'meromorphically' to that of G* on X (resp. /*). Then in this paper
we shall prove the following: Suppose that fu is a holomorphic fiber bundle
with meromorphic structure for some G* and /* as above. Then

1) there exists a 'generic quotients' X/G* of X by G* over Y, and
2) X/G* is bimeromorphic to the product space (F/H)xY where F/H is

a generic quotient of F by H.1*
Actually in this paper, these results are obtained in a more general setting

of comparing two proper morphisms fi: Xi->Y', i=l, 2, over Y having isomorphic
general fibers (cf. Theorems 1 and 2); the above special case corresponds to the
case where one of the ft is isomorphic to the projection p: FxY-*Y. (This
generalization is in a sense parallel with Grothendieck's generalization [7] of
the theory of fiber bundles to the theory of general fiber spaces with structure
sheaf.)

Section 1 is preliminary, and in Section 2 we prove Theorems 1 and 2
mentioned above. Then in Section 3 we shall give some general examples which
appear naturally in the study of the structure of compact complex manifolds in
C [5]; indeed, the application to these examples is the principal motivation for
this paper. Finally in Section 4, as a reference for [5], we gather some results
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1) The assumption on Iu is unnecessary for the assertion 1).
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related to the subject of this paper.
In this paper a complex variety means a reduced and irreducible complex

space. Let /: X-+Y be a proper surjective morphism of complex varieties.
Then we write f^C/Y if there exist a proper Kahler morphism g: Z—>F (cf.
[4]) and a surjective meromorphic F-map ^: Z-+X.

§ 1. Preliminaries and Basic Definitions

1.1. a) Let Y be a complex space. Then a relative complex Lie group
over Y is a complex space G over Y with a holomorphic section e: F—>G (the
identity section) and F-morphisms fi=/jtG/Y: GxYG—»G, and i—txiY\G-*G
(relative group multiplication and inversion) satisfying the usual axioms of group
law (cf. [11], Def. 0.1). Then a relative complex Lie subgroup of G is a complex
subspace H of G which itself is a relative complex Lie group over Y with
respect to the 'restrictions' of e, fj, and c to H. Let /: X-+Y be a morphism of
complex spaces and G a relative complex Lie group over Y. Then a relative
(biholomorphic) action of G on X over Y is a F-morphism o: GXYX-*X satisfy-
ing the usual axioms of operation (cf. [11], Def. 0.3).

b) Let /: X-+Y and /': X'-*Y be proper surjective flat morphisms of
complex spaces. Let (An/F) be the category of complex spaces over F. Then
we define the contravariant functor IsomF(Z, X ' ) : (An/F)—KSets) by the follow-
ing formula; IsomF(Z, Z')(F): =the set of F-isomorphisms <p: XxYY-*X'XYY
where Fe(An/F). Let Dz*Yz>/Y-+Y be the relative Douady space associated
to the morphism f X Y f : XxYX'-^Y. Then IsomF(Z, X'} is represented by a
Zariski open subset IsomF(Z, X') of DX*YX>IY (cf. Schuster [13]). We set
AutYX: =lsomY(X, X). Then AutYX has the natural structure of a complex
Lie group over F, acting naturally on X over F.

When F is a point, we write Isom (X, X'} and Aut X instead of I$omY(X, X')
and AutF^sT respectively. Aut X is thus the automorphism group of X as a
complex Lie group in the usual sense.

For any Fe(An/F) we have the natural isomorphisms lsomY(X, ^')XFF
sIsom?(X, X') and (AutYX}xYY=AutYX where X=XxYY and X'=X'XYY
(cf. [8], [13]). In particular we have for each y^Y, IsomF(Z, Z7)y=Isom (Xy, X'y)
and (AutYX)y^AutXy.

c) AutFZ and AutYX' act naturally on IsomF(Z, X'} over F (from the right
in the case of AutYX). In relation to these actions we shall define the notion
of principai subspace of IsomF(J^, X'} in a rather primitive way.

i) When F is a point, then with respect to this action Isom (X, Xf] becomes
a principal homogeneous space under either of Aut X and Aut X', i. e., for any
h<^lsom(X, X'} the induced maps oh' Aut Z-»Isom(X, X'}, ah(g}=hg, and
of

h : Aut Z7—>Isom (X, X'}, o'h(g'}—g'h, are isomorphic where geAut.Y and
'. We shall call any isomorphism Aut Z-^Isom (X, X'} obtained in
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this way admissible. The composition h*'.~af
h~

lah\ Aut X-*Aut X' is an
isomorphism of complex Lie groups, and is given by h*(g)=hgh~1, g^AutX.
Hence h(gx)=h*(g)h(x) for any g^AutX and x^X. Now let I^lsomX be a
subspace. Then / is called principal if there exist complex Lie subgroups
Gi=AutJ£and G'^AutZ' such that G^I and £'=/ under some admissible
isomorphisms. In this case G and G' are said to be associated to I.

ii) In the general case let Ji=IsomF(^r, X') be any analytic subset. Assume
that X and Y are varieties. Then / is called principal if there exist relative
complex Lie subgroups G^AutYX and G'<=AutFZ' such that for each y^Y, Iy

is principal with the associated subgroups Gy^AutXy and Gy^AutXy. In
this case we call G and G' associated to I.

1.2. a) We use the following terminology. Let h : Z-^Y be a proper
morphism of complex varieties and V^Y a Zariski open subset. Let A^h~\V)
be an analytic subset whose closure A in Z is analytic. Then the essential
closure A* of A in Z (over Y) is the union of those irreducible components of
A which are mapped surjectively onto Y. Clearly, if V'^V is another Zariski
open subset, then the essential closure of Ac\h~l(Vf) in Z coincides with A*.
Moreover, if A is proper over Y, there exists a Zariski open subset U^Y such
that for any y^U, Ay^A* and A$ is the closure of Ay. In fact, since A* is
the closure of Ar\A*, it suffices to show the assertion with A* replaced by A.
In this case the proof is standard.

b) Let / : X-*Y and /' : X'-+Y be proper surjective morphisms of complex
varieties (not necessarily flat). Let U 9 Y be a Zariski open subset over which
both / and /' are flat [1]. Then lsomu(XU} X'u) is Zariski open in DXxYx>/Y

Definition 1. IsomKZ, X') is the essential closure of Isom^(^, X'n) in
DXXYX>IY over Y. We set AutJZ:= Isom^Z, X}. When Y is a point, we
simply write Isom*(Z, X'} and Aut*Z.

Remark 1. 1) Isomf (Xy X'} and Aut$X is independent of the choice of U
as above and depends only on / and /' (cf. a)).

2) Let cp : Xu-^X'u be a F-isomorphism represented by a unique holomorphic
section s : U-*\sam.u(Xu, Xu). Then <p extends to a bimeromorphic F-map
9* : X-*Xf if and only if s extends to a meromorphic section s* : F-»IsomJ(Z, X'}.

3) The relative group multiplication /% : Aut^Z^ X v Aut^Z^ AutuXu and
inversion cv ' AutuXu-^AutuXu of relative complex Lie groups AutuXu over U,
and the natural relative action GU\ AutuXu XuXu-^Xu of AutuXu on Xn over U
extend to meromorphic maps //* : Aut$XxYAut$X-+AutYX, :* : Autf X-*Aut$X
and (7* : Aut*^XFZ->Z respectively. Moreover the identity section en : U-^AutnXu
extends to a meromorphic section e* : Y-+Aut$X.

4) Let v : Y—>Y be any proper surjective morphism of complex varieties.
Set X=XXYY and X'=XfXYY. Then we have the natural isomorphisms
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, X') and AutfXxYY ^
5) Suppose that /, ff^C/Y. Then for any relatively compact open subset

any irreducible component of Isom^(^F, X'v} and Aut*Xv is proper over
Y. This follows from [4].

1.3. a) Let / : X-+Y be a proper morphism of complex varieties.

Definition 2. Let G*EAut*^ be an analytic subset such that any irreducible
component of G* is mapped surjectively onto Y. Then we call G* (by abuse
of language) a relative quasi-meromorphic (Lie) subgroup of Aut*^T if there
exists a Zariski open subset U^Y such that / is flat over U and that Gn

;=G*r^AutuXu is dense in G* and is a relative Lie subgroup of Aut^Xu over U.
If, further, G* is proper over Y, we call G* a relative meromorphic (Lie) sub-
group of

Remark 2. 1) If Y reduces to a point, G*, or more properly, G=G*nAut X,
is called a (quasi-)meromorphic subgroup of Aut*Z (cf. [3]).

2) If G* is a relative quasi-meromorphic subgroup and Gn is as above, then
the relative group law GuXuGu^Gu, Gu-^Gn (cf. 1.1) and the relative action
GU : GU X uXu-^Xu extend to meromorphic F-maps G*XFG*— »G*, G*— »G* and
a*: G*XYX-^X respectively. Moreover the identity section en: U-^Gn extends
to a meromorphic section e* : Y-^G*. This follows from Remark 1, 3).

b) Let / : X— >F and /' : Xr-+Y be proper surjective morphisms of complex
varieties.

Definition 3, Let /* be any analytic subspace of IsomJ(Z, X'}. Then we
say that /* is a quasi-meromorphic principal subspace if there exist relative
quasi-meromorphic subgroups G*GAut?Z and G*'<=AutJZ' and a Zariski open
subset £/<= F over which both / and /' are flat, such that In : =/*nIsomC7(Zc/, X'u)
is dense in /* and In <= lsomu(XU} X'u) is principal with the associated relative
Lie subgroups Gn : = G*r\A\&uXu and G'u : = G*'nAut^Z^ (cf. 1.1 c)). In this
case we call G* (resp. G*') associated to /*. /* is called a meromorphic principal
subspace if further it is proper over Y. In the latter case the associated G* and
G*x are also proper over Y and hence are relative meromorphic subgroups of
AutfX and AutJZ' respectively.

Remark 3. 1) Let G* be a relative meromorphic subgroup of Aut*X Then
the following conditions are equivalent, a) G* is associated to some meromorphic
principal subspace /*. b) Let I$(X, X'} : = IsomJ(Z, Z')/G* be a relative generic
quotient of IsomJ(^, X'} by G* over Y with the natural projection e : I$(X, X'}
->F (cf. Definition 5 and Theorem 1 below). Then e admits a meromorphic
section s : Y-*I$(X, X'}. Moreover in this case I* is given by J*=7r~1(s(F)) and
G* is given by the union of those irreducible components of p^F^Aut^X

which are mapped surjectively onto Y, where n : IsomJ(Z, X'}
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, Xr) is the natural meromorphic projection, FgAutJZxFIsom£(Z, X')
, Xf) is the closure of the graph of the action of Aut^Z^ on

lsomu(XUt X'u) and p± is the projection to the first factor Aut$X. In particular
/* and G* determine each other uniquely. The analogous fact holds of course
for a meromorphic subgroup G*'^Aut*X

c) We consider the special case of b) where X'=YxF for a compact
complex variety F and /' : YxF^Y is the natural projection. Then we have
the natural isomorphisms

and

Definition 4. Let /* be a (quasi-)meromorphic principal subspace of
lsom$(X, X'\ and G*gAut?Z and G*'£AutjM^' the associated relative (quasi-)
meromorphic subgroups. Then we call /* admissible (with the associated
meromorphic subgroup H*) if G*' is of the form G*'=YxH* for some (quasi-)
meromorphic subgroup H*^Aut*F.

Suppose that /* is admissible as above and set H=H*r\Aut F. Take a
Zariski open subset U^Y as in Definition 3. Then it is immediate to see that
fu : Xu-*U is a holoinorphic fiber bundle with structure group H. In this case
we say that / is a holoinorphic fiber bundle over U which is (quasi -)ineromor phi c
with respect to f and with (quasi-}meronwrphic structure group H. We note
that in this case the natural map Iu~>U is the principal bundle associated to

fu.

% 2. Relative Generic Quotients and Related Results

2.1. We generalize the generic quotient theorem by a meromorphic group
in [3] to a relative case.

Theorem 1. Let f : X-+Y be a proper surjective morphism of complex
varieties. Let G*^AutJJ^" be any relative meromorphic subgroup over Y. Then
there exists a unique subspace X^Dxnr* having the following properties: Let
p:Z->X be the universal family px/Y: Zx/Y-+Dx/Y restricted to X, i.e.,
Z = Zx/YXDz/YX. Then: 1) the natural Y -morphism TZ: Z^-X is bimeromorphic,
and 2) there exists a Zariski open subset V^X such that for any v<^V, the cor-
responding subspace Zv^Xy is a closure of an orbit Z% of the group Gy acting
on Xy, where y—f(v) (f: X-+Y being the natural map] and Gy =

Proof. Define a meromorphic F-map 0 : G*XYX-*XXYX by
=(a*(g, *), *). Let R : = 0(G*XYX)^XxYX. Let p : R-+X be induced by the
second projection pz: XxYX-+X;

2) the relative Douady space associated to /.
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Let T : X-+DXIY be the universal meromorphic F-map associated to this diagram
where r is holomorphic exactly on the Zariski open subset over which p is flat
(cf. [2], Lemma 5.1). Let X be the image of T. Let T : X-+X be the resulting
meromorphic F-map. We claim that this X has the desired property. Take a
Zariski open subset U^Y such that both / and G*-»F are flat over U, and that
for each y&U, Gy is dense in G^ (cf. 1.2 a)). Now we consider 0 as a mero-
morphic map over X where XxYX is over Xby p2. Take a Zariski open subset
W^X such that for each x<=W, if we set y=f(x), then y^U, and with respect
to the natural identification (G*XYX)X=G^ and (XxYX)x—Xy, 0 induces a
meromorphic map 0X : G^-*Xy. Then we have for x^W, Rx=®x(G:$)

= @x(Gy)=Gyx as a subspace of Xy, where Gyx is the orbit of x under Gy and

Gyx its closure. In particular for any w7er(W), Z^ is a closure of an orbit of
Gy. Since r(W) contains a nonempty Zariski open subset, say V, 2) follows. It
remains to show that TT is bimeromorphic. Restricting W if necessary we may
assume that pw:Rw-»W is flat [1] so that for any x^W, we have
dim(Gf(X)x}=m for a fixed integer m^O. (PF is a union of 'regular orbits'.
cf. [11]) Then just as in the proof of the absolute case (cf. Theorem 4.1 of
[3]) we can show that x is isomorphic on p~\V)r\K~lW}> Thus TT is bimero-
morphic.

It remains to show the uniqueness of X. In fact, from 1) and 2) alone we
deduce easily the following: 1) There exists a Zariski open subset Wi^X such
that a) for every x^Wi with f(x)=y, the point d(x}^DXiY,y corresponding to
the subspace Gyx belongs to X, and b) the set {d(x); x^Wi} forms a Zariski
open subset of X. Uniqueness clearly follows from this. q. e. d.

Definition 5. We call the commutative diagram

X - q—»X q=x-1

or simply, the meromorphic F-map q : X—*X, or X itself, the relative generic
quotient of X by G* over F. We often denote X symbolically by X/G*.

Proposition 1. Let f : X-+Y and G*^Aut£Z be as in Theorem 1.
1) Let Y-*Y be a surjective morphism of complex varieties. Let X=XXYY

and G*=G*XFF. Then G* is a relative meromorphic subgroup of Aut$X
=Aut$XxYY and the relative generic quotient X/G* of X by G* over Y is
isomorphic over Y to the pull-back (X/G*}XYY.

2) Suppose that Y is a complex variety over another complex variety T with
a surjective morphism h: Y-+T. Then there exists a Zariski open subset
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such that for any t&U i) G* is a relative meromorphic subgroup of
over Yt and ii) (X/G*)t = Xt/Gf as a subspace of (Dx/Y)t=Dxt/Yt, where we
consider any complex space over Y naturally as a complex space over T via h.
In particular if Y=T then for each y^U^Y, (X/G*)y is the generic quotient
of Xy by Gf . As a special case of this, if X/G*-+Y is bimeromorphic, then there
exists a Zariski open subset W^X with f(W)^U such that if y^U then Gy

acts almost homogeneously on Xy and its unique Zariski open orbit coincides with
wv.

3) // G*=Gy is a complex torus for y^U, and Gy acts freely on Xy then
qy'.Xy^Xy/Gy is a holomorphic fiber bundle and hence qn: Xu^(X/G*)u is
holomorphic and smooth.

Proof. In view of the uniqueness assertion of Theorem 1 the verification
of 1) is straightforward. For the first assertion of 2) it suffices to take U in
such a way that for any t^U, xt: Zt-^Xt is bimeromorphic and V^—Xt where
VT is the closure of Vt in Xt in the notation of Theorem 1. Here, restricting
U if necessary, we may assume further that Gn is smooth over U. Then, when
X/G*-^Y is bimeromorphic, if we set A-={x^Xu; dim Gu(x)>t— r} (t=dimGu/U,
r=dim/) where Gn(x) is the stabilizer of Gu>f^x^ at x^Xf<.X), then W: —Xn—A
is easily seen to satisfy the above condition. In 3) that q is a fiber bundle is
due to Holmann [10], § 5. Since dim Xx is constant on XUf from this follows
the last assertion.

2.2. Let / : X-^Y and /' : X'-+Y be proper surjective morphism of complex
varieties. Let U^Y be a Zariski open subset over which both / and /' are
flat. Then by the universality of the relative Douady space we have the natural
transformation of functors </> : Isom^Xu, Xu)-*Iaomu(Dx/u, Dx>iu\ Let /*
^Isom*(^Y", Xf) be an analytic subset such that Iu\ =/*nIsom.o-(J^7, Xu) is dense
in /*. Let B^=DXiY and B'^DX>/Y be analytic subspaces which are proper over
Y and are flat over U. Now we assume the following condition ; (*) the image
of lu^lsom^Xu, X'u] by <p is contained in the subfuctor Isom^((JDx,r/^7, BU\
(Dxuiu, B'u)) (cf. 3.1 a) below for the notation) where we identify Isom^Z^, X'u)
with the functor it represents. Then composed with the natural projection
Isomu^Dxu/u, BU\ (DX'u/Uf B'u)) -> Isom^(5^, B'u) we get a LT-map <f> : Iv

— >lsomu(BU} B'u). It is immediate to see that </> is indeed a morphism of complex
spaces and that <p extends to a meromorphic F-map $* : /*->Isom?(B, B'). The
condition (*) is fulfilled if for each y^U and for each h^IUiy^lsom(Xyf Xy]
we have Dyh(By)=By where Z^/ielsom (DXy, Dx-} is the element canonically
induced by h.

Theorem 2. Let /*^IsomJ(J^, X') be a meromorphic principal subspace with
the associated relative meromorphic subgroups G*^Aut*^ and G*'SAut*JY'/. Let
X—X/G^ and X' = X' /G*' be the respective relative generic quotients over Y,
Then there exists a natural bimeromorphic Y-map X-^X' which is isomorphic
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over some Zariski open subset of Y.

Proof. Take Zariski open subsets V^X and V'^X' as in 2) of Theorem
1. Restricting V and V we may assume that the following conditions are
satisfied: 1) f(V}=f'(V'), and if we denote this set by U, then U is nonsingular
and Zariski open in Y, where /: X-*Y and /' : X'-*Y are the natural morphisms,
2) both / and /' are flat over U, and 3) for each y^U, a) G* is a meromorphic
subgroup of Aut*Xy and Xy is the generic quotient of Xy by GJ, and the
similar condition for Gf and Xy is true (cf. Proposition 1), b) Vy is dense in
Xy and c) the induced map ny : Zy-*Xy is bimeromorphic where Z is as in
Theorem 1. Let /^=Isom^(^7, Xu)r\I*- Take any y^U and any h — hy^Iy

: = IUty^Isom(Xy, Xy). We shall first show that Dyh(Xy)=Xy where Dyh is
defined just before the theorem. Let Xf

y=Dyh(Xy)<^Dx>y and V'y=Dyh(Vy}<^X'y.
Then h induces an isomorphism of the following diagrams

7Ty f n'y

Xy < Zy Xy < Zy '. = Z x IY X DX /Y ^V

I J.
Xy Xy

By the uniqueness of the generic quotient in Theorem 1 it suffices to show that
X'y satisfies the conditions of that theorem for fy and Gf '. Since ny is bimero-
morphic as well as 7cy, 1) is satisfied. We set G2/ = GfnAut Xy and Gy =
GJ'nAut Xy. For 2) it suffices to show that for any point v"^Vy, Z%. is a closure
of an orbit of Gy when Z£ is considered as a subspace of Xy via ny. In fact,
take v<=V with Dyh(v)=v". Then Z%.=h(Zv), which is the closure of fc(Zg)
where Zg is a Gy-orbit on Xy. Then, since hy is (Gy, G^-equivariant with
respect to the homomorphism hyt: Gy^G'y (cf. 1.1 c)), /i(ZJ) is an orbit of Gy
as was desired.

Thus Dyh induces an element of Isom (Xy, X'y) which we shall denote by the
same letter Dyh. Hence by the remark just before the theorem we have obtained
a U"-morphism 0 : lu^lsom^Xu, X'u) which extends to a meromorphic F-map
^* : /*->Isom?(Z, X'). Next we show that Dy(h)=Dy(h') for any h,h'^Iy,
y^U. It suffices to show that Dyh(v)=Dyh'(v) for any v^Vy since Vy is dense
in Xy. In fact, since g(Zv)=Zv for any g^Gy and h'-lhs=Gy, h(Zv) = h'h'-1h(Zv)
= h'(Zv), or equivalently, Dyh(v)=Dyh

f(v) as was desired. Since Iu-+U is sur-
jective it follows that ^(/^) iH Isonif/C^, X^) gives a holomorphic section to
Isom^C^, X'u)-»U, U being nonsingular, and hence, ^*(/*)gIsom£(Z, J^O a
meromorphic section to Isom?(Z, ZO-^F. Hence by Remark 1,2) X and J^x are
bimeromorphic over Y by a bimeromorphic map which is isomorphic over U.

q. e. d.

In Theorem 2 assume that there exists a y-isomorphism <^>: Z'-^FxF for
some compact complex variety F. Let #* £j Aut*F be a meromorphic subgroup.
Then we say that 0 is admissible with respect to (/*, #*) if ^ induces an
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isomorphism G*' = YxH*. Then, if </» and $' are y"-isomorphisms X' = YxF
which are admissible with respect to (/*, //*), then cjjf(f}~1 induces a F-auto-
morphism of pi\YxF-+Y, i.e., gives a holomorphic map F-»Aut F, whose
image is contained in H where H=H*f^AutF. This implies that the set of
admissible F-isomorphisms is naturally a principal homogeneous space under the
group Hoi (Y, H), the space of holomorphic maps of Y to H. From this obser-
vation we get the following:

Lemma 1. Suppose that there exists a Y-isomorphism (p: X'-^-YxF which is
admissible with respect to (/*, H*), so that we have the natural isomorphism
X'/G*'^YX(F/H*). Then the composite meromorphic map X-+X/G* = X'/G*'
= Y X (F/H*)-+F/H* is independent of the choice of the admissible isomorphism

<}>.

Definition 6. We call the meromorphic map X-+F:=F/H* defined in the
lemma, or any meromorphic map which is bimeromorphic to it, a canonical
meromorphic map associated to / and to H*.

Clearly we have dim F=dim p where p: X/G*-*Y is the natural map.

§3. Examples of Relative Quasi-Meromorphic Subgroups

3.1. Isom£((*, A), (X', A')) and AutY(X, A). Let /: X-*Y and /': X'-*Y be
proper morphisms of complex varieties. Let A=(Alf • • • , Am) and A'=(A{, • • • , Af

m)
be sequences of analytic subspaces of X and X' respectively.

a) Suppose first that / and /' are flat and that A'a are all flat over Y with
respect to /'. Then we define a subfunctor IsomF(( Jf, A], (X', A'}}: (An/F)->
(Sets) of IsomF(Z, X'} as follows; IsomF((Z, A), (Xf, A'))(Y)= {99eIsomF(^C X')(Y);
(p induces isomorphisms of AaXYY and Af

aXYY for all a}.

Lemma 2. IsomF((J£, A), (Xf, A'}} is represented by a unique analytic subspace
IsomY((X, A), (X', A'}} of IsomF(Z, X'\

Proof. Let 7=IsomF(Z, X'} and <?: XxYI—>X'XYI the universal /-isomor-
phism. Let Aa,2 : = £ ( A a X Y I ) . Then by [12] Prop. 1, there exists a unique
analytic subspace T<=/ such that for any morphism u: T'-*I of complex spaces
Aa,IXIT

/=A'a,IXIT
/
) where Aa>1: = A'aXYI, as a subspace of J^X/T' if and

only if u factors through T. (In fact, apply [12] Prop. 1 to the morphism
X'XYI-»I and to the coherent analytic sheaves £ :=<V a / and £F: = O/a / n2a i / .)
Then it is easy to see that T represents the functor IsomF((Z, A), ( X ' , A')).

We then set AutF(X, A)=lsQmY((X, A), (X, A}}. AutY(X, A) is a relative
complex Lie subgroup of AutYX over Y.

b) In the general case, let U^Y be a Zariski open subset such that X, X',
and A'a are all flat over U [1].
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Lemma 3. The closure I" of Isom^((^, AU\ (X'Ut AU)} in DXxyXiY is analytic,

where Au=(AltU, ••• , Am>u) and Ah=(Af
llUf - , A'ntU).

Proof. Take a proper modification a : Y-+Y such that a gives an isomorphism
of a~l(U) and U and that the strict transforms X and Aa (resp. X' and A'a) of
X and Aa in XxYY (resp. of X1 and A'a in X'XYY) respectively are all flat
over Y [9]. Then by Lemma 2 I=lsomY((X, 1), (*', I')), A=(Al9 ••• , Ij,
Jl'=(,4i, ••• , Jim), is realized as an analytic subspace of Isom?(X, X'). Let / be
the union of those irreducible components of / whose images in Y intersect
with a~l(U}. Then the image of / in DZ*YZ>IY by the natural proper morphism

Y'x'/Y=DzxYz'/YXYY-+DzxyX,/Y is nothing but /".

Definition 7. lsomY((X, A), (X1, A')} is the essential closure of IsomMXu, A/),
(X'u, A'u}} in DXxyX,/Y. We set AutRX, A)=lsx>mY((X, A}, (X, A}). When Y is
a point, we write Aut*(X, A) for AutY(X, A).

Remark 4. AutY(X, A) is a relative quasi-meromorphic subgroup of AutYX,
and I*=IsomY((X, A), (X' , A'}} is a quasi-meromorphic principal subspace with
the associated quasi-meromorphic subgroups Aut*(^T, A} and Aut*(J£x, A'}. This
follows immediately from the definitions.

c) In b) assume further that X' is of form X'—YxF for some compact
complex variety F and /' : X'-*Y is the natural projection as in 1.3 c). Suppose
that there exists a sequence B=(B1} • • • , Bm) of subspaces of F such that
A'a=YxBa£X'. ThenAut^Z'^O-FxAut^F,^). Thus Isomf ((Z, A), (X'} A'}}
is admissible, if it is not empty (Definition 4). In general, let /*<=Isomf(Z, X')
be a meromorphic principal subspace. Suppose that /* is admissible with the
associated meromorphic subgroup #*gAut*Fand that /*glsom?((Z, A), (X' , A'}).
Then fx,A> (X, A)-*Y is a holomorphic fiber bundle over U in the sense that
for each y^U there exist a neighborhood y<=V and a trivialization Xv=VxF
which sends Aa onto VxBa isomorphically. In this case we say that / j r .^ isa
holomorphic fiber bundle over U which is meromorphic with respect to / (and
with meromorphic structure group H}.

3.2. Isom?(Z, *')»,«' and AutYX0.
a) Let /: X-*Y and /': X'-*Y be proper smooth morphisms of complex

varieties. Let o)^F(Y, R2f*R) and &'&r(Y, Rzf*R) be fixed elements. Then
we define a subfunctor IsomF(Z, X'}^^, of IsomF(Z, X'} as follows,
Isomy(X, Jf0ai,«'(y)={^elsomr(j?, J?7)(^); 9*o>^=fl^} where COY (resp. a>f) is
the pull-back of CD (resp. a/) to ZxF? (resp. Z'XF7).

Lemma 4. IsomF(J^, J^O^.w is represented by a unique analytic subspace

IsomF(JY, X')a,lQt' of J=IsomF(^, X'} which is a union of connected components.

Proof. Let £ : XxYI-*X'XYI be the universal /-isomorphism. Let y<=Y

be any point and Iy>r be any connected component of Iy. For t<=Iy let c« : Xy-*X'y
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be the isomorphism induced by f. Then if f*0tw/,t0=tw/,t0 for some to<=Iy,r,
then £*(o'I,t=ct)i,t for all t<^Iy,r. From this the assertion follows readily.

We set AutYXa=l$omY(X, X)m.m.
b) In general let g : Z-+Y be any proper smooth morphism of complex

varieties. Then any real closed C°° 2-form a on Z determines a unique section
a^F(Y, R2g*R) such that the class of ay equals ay in H2(Zy, R).

Proposition 2. Let f, /', co, a)' be as in a). Suppose that there exists a real
closed C°° 2-form ft (resp. /)') on X (resp. X'} with /J=o> (resp. j8'=a>'), which
restricts to a Kdhler form on each fiber of f (resp. /')• Then the closure I of
Isomy(^, J^Oco.o)' in DXxYx>iY is proper over Y.

For the proof we need a general result. Let / : X-+Y be a smooth morphism
of complex varieties and /3 a C°° 2-form on X which restricts to a positive (1, 1)-
form on each fiber of /. Let DX/Y be the relative Douady space of X over Y
and A^DXIY an analytic subset. Let d: A-+Y be the natural morphism. Then
we say that A is bounded with respect to ft if there exist a dense Zariski open
subset V^A, a positive constant R and an integer <?^0 such that for any d^V
the corresponding subspace Z^Xg^-) is reduced and is of pure dimension q and

that if vol (Zd) : =1 5fCcn is the volume of Zd with respect to /35cd) (the restric-
J % d

tion of to Aicd)), then vol(

Proposition 3. Let A^DXIY be as above. Suppose that for any relatively
compact open subset U^Y, the restriction Au—Ar\DXu,u of A over U is bounded
with respect to fa. Then A is proper over Y.

Proof. Follows immediately from Propositions 4.1 and 3.4 of [2]. (The proof
there clearly applies also to /3 as above.)

Proof of Proposition 2. In view of a) it is clear that / is a union of
irreducible components of DXXYX,/Y. To show the properness we shall apply
Proposition 3 to A=I, by considering fXYf : XxYX'-*Y and C°° 2-form
j}0: = jl+j}' on XxYX' instead of / and /3 in the proposition respectively.
Here /3 and ft' are the natural pull-backs to XxYX' of /3 and /3' respectively.
Then we have to show that on any relatively compact open subset of Y, I is
bounded with respect to $<,. Let F: = Isom(Z, X')m,mi^L Then for any d^V
the associated subspace Zd^XyxXf

y} y =d(d\ equals the graph Fh of the isomor-
phism h — hd: Xy-+Xy corresponding to d, where d:I-*Y is the natural mor-
phism. Hence Zd = Xy. Moreover, since h%a)y=Q)y we calculate easily that

Jzd •""

where q=dimXy (cf. the proof of Theorem 4.8 in [3]). Thus vo\(Zd) depends
only on y=d(d) and is a continuous function of y. Hence it is bounded on any
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relatively compact open subset of Y as was desired. q. e. d.

c) In general let g : Z->Y be a proper morphism of complex varieties.
Then we call a<^F(Y, R2f*R) a relative Ka'hler class if the restriction
ay^Hz(Xy, R) of ay to each Xy is a Ka'hler class, i.e., represented by a Ka'hler
form. Using Proposition 2 we have shown in [6] the following:

Proposition 4. Let f, /', a), a)' be as in a). Suppose that co and co' are
relative K'dhler classes. Then I is proper over Y.

Proof. See [6], Proposition 4.

d) Let / : X-*Y and f : X'-*Y be generically smooth proper morphisms of
complex varieties. Let U^Y be a Zariski open subset over which both / and
/' are smooth. Let co^r(Y, R2f*R) and co'e=r(Y, R%f'R) be fixed elements.

Definition 8. IsomJ(Z, X')^,^ is the essential closure of
in Isom?(Z, X'). We set

Remark 5. Isom*(JY, Xf)mt<0i and Aut*^ are unions of irreducible components
of IsomJ(Z, X') and Aut$X respectively (cf. Lemma 4).

Proposition 5. Suppose that o)Uf w'u are relative K'dhler classes, and that
/, f'e=C/Y. Then IsomJ(Z, X')miet, is proper over Y. Thus Aut?Zw and
AutJZ^> are meromorphic subgroups of Aut$X and Aut$X' respectively and
IsQm*(X, X'^to,^ is a meromorphic principal subspace with the associated mero-
morphic subgroups Aut^Xu and

Proof. By Proposition 4 Isom^CZ^, Xu)mUttolu has only finitely many irreduci-
ble components, say 7llZ7, ••• , Ik,u> which are mapped surjectively onto U. Then

is the union of the closures Ij of IjtU. Since /, f'^C/Y,
, and hence each // are proper over Y by [4]. Thus the first

assertion follows. The second assertion then follows readily from the definition
of these spaces.

3.3. a) Let /: X-+Y, f'\ X'-*Y, U^Y, a) and co' be as in Proposition 5.
Let A=(Alf - f Am\ A'=(A(, - , A'm} be as in 3.1.

Definition 9. We set

Isom?((Z, A), (X'} Af))Ulta,: = lsom$(X, ZO^.^nlsom^U, A), (X' , A')}
and

Autf (Z, A)m : = Au\$Xar\ Aut?(Z, A} .

Remark 6. 1) Isom*((y¥, A), (X' , A'}}^,®' is a meromorphic principal subspace
with the associated meromorphic subgroups Aut$(X, A)^ and Aut$(X', A')^-

2) There exists a Zariski open subset U^Y such that

CY, A\ (X', A'^,\=lwm*((Xv, Ay), (X'y, A^,
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for any y<=U.
3) Let \*: Y—>Y be a surjective morphism of complex varieties. Let

X=XxYY and A=(A^YY9 • • • , AmXYY). Let & be the pull-back of o> to X.
Then AutY(X, A)Q)XYY=Aut^(Xf A)w with respect to the natural isomorphism
Aut*YXxYY=Aut*X.

In fact, since Isom*(^T, X') <„,<,>, is a union of irreducible components (Remark 5)
it follows that Isomf((Z, A}, (Xf, A'))mtm. is the essential closure of
lsomu(Xu, J£tf)a^,<^nIsomtf((Ztf, An\ (X'Ut AU)). From this together with Remark
4 and Proposition 5, 1) follows. 2) is standard (cf. 1.2 a)). For 3) it suffices to
see that Aut$(X, A)XYY=Autf(X, A) and (Aut$Xw)XYY=Aut*Xw. Since v is
surjective, this follows from the isomorphisms Autu(Xu> Au)XuU = Autu(Xu, AU)
and (AutuXu^XuO^ (AutuXu)^ where U=v~1(U).

b) Consider the special case where X'~YxF for some compact complex
variety F and /': X'-*Y is the natural projection. Let B=(Blt • • • , Bm) be a
sequence of subspaces of F as in 3.1 c). Suppose that CD' is of the form a)'=p*a)0

for some Kahler class a)0 on F where p : X'-+F is the natural projection. Then:

Proposition 6. // Isom*((J£, A), (X', A'))a),Q)>^0, then f X,A is a holomorphic
fiber bundle over U which is meromorphic with respect to f and with meromorphic
structure group Aut(F, B)Q)Q in the sence of 3.1 c).

Proof. We have Aut?(*', ^Oc,'-^xAut*(F, B)^ and hence IsomJ((Z, A),
(X', Af))mt(0, is admissible. Thus the proposition follows from 3.1 c).

3.4, Let /: X-+Y be a proper flat morphism of complex varieties. Let
AutF)0^ be the unique irreducible component of AutYX which contains the
identity section e(Y). Then it is easy to see that AutF,0^ is a relative complex
Lie subgroup of AutYX.

Lemma 5. Suppose that f^C/Y. Then there exists a Zariski open subset
U^Y such that (AutF,o^Oy=Auto^7/ for each y^U where Aut0^y is the identity
component of Aut Xy.

Proof. Let ^: Auty,0^—>Y be the natural morphism. Let r=dim^, and
V={y<=Y; dime^fjt~1(y)=r) and Y is smooth at y}. Then V is Zariski open in
Y. Moreover /* is smooth at every point of e(V) and hence AutF(0^ is smooth
along e(V). Let y4=AutF>0^ and n: A-^A the normalization. Since n is iso-
morphic along e(V\ e lifts to a meromorphic section e to p.: A-*Y. On the other
hand, since f^C/Y, p. is proper [4]. Let b: A-^Y} c : Y^Y be the Stein factori-
zation of p.. Then be gives a meromorphic section to c. Hence the fiber of p.
is connected. Since A is normal, this implies that the general fiber of p, and
hence of //, is irreducible. Thus for general y^Y, Ay is the closure of Aut0^.
Hence the assertion follows.

Let /: X-+Y be a proper surjective morphism of complex varieties. Let



130 AKIRA FUJIKI

U^Y be a Zariski open subset over which / is smooth. Then we denote by
Aut$,QX the closure of Autu^Xu in Aut$X. This is independent of the choice
•of U as above. Aut$,0X is a relative meromorphic subgroup if f^C/Y.

Proposition 7. Let f : X-^-Y be a proper morphism of complex spaces. Let
U^Y be a Zariski open subset. 1) Suppose that f is smooth over U with each
fiber a complex torus and that f admits a holomorphic section en : U->Xn on U.
Then fu : Xu-»U has the unique structure of a complex Lie group over U with
&u the identity section. 2) Suppose further that X, Y are varieties, f^C/Y and
that % extends to a meromorphic section e* : Y-+X. Then the group law of Xu
over U extends meromorphically over Y.

Proof. 1) Restricting the natural relative action ov : ( Autj/, 0Xu) X uXu-^Xu
to (Auttf.o^)Xtf %(£/) =Autz7,0^7 we get an isomorphism 7]u\ Ai&u^Xu^Xu
(cf. Appendix). Hence 1) follows. (For the uniqueness see [11], Cor. 6.6.)
2) Similarly, restricting <r*: Aut$,QXxYX->X to Aut$,QXxYe(Y), which is
bimeromorphic to Aut*,0^ we get a natural bimeromorphic map Aut*,0^— >X
extending rju. Then 2) follows from Remark 1, 3). q. e. d.

3.5. In concluding this section, as an application of Theorem 2 combined
with the consideration of this section, we shall prove a proposition which is
used in [5].

Let g '. X-+Y, h : F-»T be fiber spaces3) of complex varieties. Let
A=(Alf ••• , Am) be a sequence of analytic subspaces of X. Suppose that 1)
there exist Zariski open subsets U^T, V^=Y with /i(F)<=£7 such that for any
u&U, gu=gu,xu,Au' (Xu, AU}-*YU is a holomorphic fiber bundle over FU£FM

which is meromorphic with respect to gu (cf. 3.1, c)) and 2) there exists a holo-
morphic section s: T-»F with s(T)n^:^0- Suppose further that g is Kahler
(cf. [4]) so that in particular we can find a relative Kahler class co&r(Y, Rzg*R)
over Y. Then by Proposition 6 if s(u}<^V we can take G*(M) : — Aut*(ZsCM),
^4scu))<wgcU) as a meromorphic structure group of gu (considering (Xs^, As^) as
a typical fiber of the bundle). Then we shall prove the following :

Proposition 8. Under the above situation there exists a commutative diagram

a
X - ^Z

h
Y

where a is a surjective meromorphic map and b is a fiber space of complex
varieties, such that if we restrict U smaller, then for each u^U, Zu is a generic
quotient Xu/G*(u) of Xu by G*(w) and a induces a canonical meromorphic map
au: XU-*ZU associated to gu and G*(w) (cf. Def. 6).

3) A fiber space is a proper surjective morphism with general fiber irreducible.
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Proof. Let X: = XxYT where T is over Y via s. Let X': = XXTY and
g': X'-+Y the natural map. Let & (resp. a/) be the pull-back of o> (resp. a)) to
X (resp. J£')- Then g' is a Kahler morphism with a relative Kahler class
o/erCT, R*g*R). Let ^: = ̂ xFTgZ and ^: = ̂ XrFgZ'. Let
/*: = Isom?((X, /I), (*', -A'))..., where 4: = (A1} - , An) and A': = (A(, - , ^).
Then by Remark 6, 1) 7* is a principal meromorphic subspace to which G*
: = AutY(X, ,4), and G*7: = Aut£(Z', A%> are associated. Let X=X/G* (resp.
X'=X'/G*') be the relative generic quotient of X by G* (resp. JT by G*7) over
Y. Then by Theorem 2 there exists a canonical bimeromorphic map T? : X-+X*
over 7. On the other hand, by Remark 6, 3) G*'=G*XrF where G*
: = Aut*(J?, A)z, A=(Ai, • • • , Am). Further we have the natural meromorphic map
7i: X'-*X/G* over T (cf. Proposition 1, 1)). Let Z: =X/G* and define a : X-^Z
by the composite meromorphic map nyq: X-*Z where q: X—>X is the quotient
meromorphic map. Let b: Z-*T be the natural surjective morphism. Then we
have hf—ba. We claim that the resulting diagram meets the requirement of
the proposition. In fact, restricting U smaller, we have that for each we[7, GJ
is a relative meromorphic subgroup of Aut*uXu over Yu and XU=XU/G* (cf.
Proposition 1, 2)), where XU/G* is a relative generic quotient of Xu by GJ over
Yu. Further we have Gf(u) — G*(M) and Zu : = (X/G*)u = Xs^/G*(u). Combining
these facts we see readily from our construction that for sufficiently small U,
the induced meromorphic map au: XU-+ZU is a canonical meromorphic map
associated to G*(w). q. e. d.

§ 4. BHol?(JT5 X'}

a) Let /: X—>Y and /': X'—>Y" be proper fiat morphisms of complex
varieties. Let HolF(Z, Z') be the contravariant functor (An/F)->(Sets) defined
by HoIF(A', Z')CP): = the set of f-morphisms $: XxYY-*X'xYY. Then
HoIF(,Y, X') is represented by a unique Zariski open subset Ho\Y(X, X') of the
relative Douady space Dx*Yx>iY with IsomF(Z, X')<^HolY(X, X') (cf. [13]).

Suppose for simplicity that both / and /' are smooth with connected fibers.
Let BHolF(Z, X'): = U BHolF(Z, X')y where BHolF(Z, X')y: ={ht=Ho\Y(X, X')y;

h(y] is bimeromorphic}, where h(y)\ Xy-^X'y is a morphism corresponding to h.
Then BHolF(J^, X') is Zariski open in DX*YX>IY (cf. [2], Lemma 5.5). We see
that for any open subset W^Y there is a natural bijective correspondence
between the set of holomorphic sections of BHolF(Z, X')-*Y on W and the set
of bimeromorphic morphisms X-+X' over W.

Let A^X and A'^X' be any analytic subspaces. Suppose that A' is fiat
over Y. Then the subfunctor HoIF((Z, A), (Xf, A')) of HolF(^, X') defined by
HoIF((Z, A), (Z7, AO)(?)={<^HoIF(Z, X')(Y)',(P(A)=A'} is represented by a
unique analytic subspace HolF((Z, A\ (X', A')} of HolF(Z, Xf\ This can be
shown just in the same way as for Lemma 2. We set BHolF((^, A), (Xf, A')):
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=HolF((Z, A), (Xf, ,4'))r\BHolF(Z, Xf).
b) Let / : X-+Y and /' : X'-*Y be generically smooth proper surjective

morphisms of complex varieties with connected fibers. Let U^Y be a Zariski
open subset over which both / and /' are smooth. Then BHol^(^, Xu) is
Zariski open in DXxYx'/Y = DXuxuX^/u. Let BHolJ(Z, X') be the essential closure
(1.2 a)) of BHolu(Xu, X'u) in DX*YX>IY which is independent of the choice of U.
Let A^X and A'^X be analytic subspaces. Restrict U smaller so that A' is
flat over U. Then the closure of BHol^((^, AU), (XUt Aft) is analytic in
DxxYx'/Y (cf. the proof of Lemma 3). We shall denote the essential closure of

ft) m DX^X,IY by BHol?((*, A\ (Xf , A'}).

Remark 7. 1) A bimeromorphic morphism (p : Xu — > Xu defined on U
extends to a bimeromorphic map fy* : X-+X' over Y if and only if the correspond-
ing holomorphic section U-^BHol^Xu, Xu) extends to a meromorphic section
r-»BHol?(X, X').

2) If F-»F is a surjective morphism of complex varieties, then it is
immediate to see that BHol?(Z, JnxFF^BHolJ(ZxFF, ^XFF)

3) If /e<?/F, then after replacing F by any relatively compact open subset
of F any irreducible component of BHolJ(^, X') (resp. BHol£((X, -A), (X', 4')) is
proper over F. In particular if X is compact, we need no restriction to a
relatively compact subset.

c) We shall include a standard application of Remark 7, 3) as a reference
to [5].

Let / : X-+Y and /' : X'—>Y be surjective morphisms of compact complex
varieties in C. Let U^Y be a Zariski open subset over which both / and /'
are smooth.

Proposition 9. 1) Suppose that f and /' admit meromorphic sections
s : Y-*X and s' : Y-+X' respectively. Suppose further that there exists a U-
isomorphism TJ\ Xu-+X'u with ^s\u—sf\u. Then if Aut0(^u, S(M))= {e} for all
u^U, then rj extends to a bimeromorphic Y-map r]*:X->Xf. 2) Suppose that
BHol (Xu, X'u] (resp. Isom (Xu, X'u}} are nonempty and discrete for all u<=U. Then
there exists a finite covering p: Y-+Y such that XxYY and X'XYY is bimero-
morphic over Y by a bimeromorphic Y-map which is holomorphic (resp. isomorphic]
over 0=fjt-1(lT).

Proof. 1) Let /*=Isom?((Z, s(F)), (X' ', s'(Y)» and 7zr=IsomZ7((Ai7, s(U)\
(Xu, s'(f/))). Then rj defines a holomorphic section a to /^— >C7. Let /* be the
irreducible component of /* containing a(U). Since /^,M=Isom((^TM, s(w)), (X'u,s'(u)))
=Aut(Xu, S(M)), from our assumption it follows that If is discrete over U.
Hence /*— »F is generically finite so that it coincides with the closure of a(U).
Namely, a extends to a meromorphic section F— »/*. Hence the proposition
follows from Remark 1, 2). 2) By our assumption we infer readily that there
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exists an irreducible component Y of BHolY(X, Xf) such that
is dense in Y and the natural morphism fj. : Y-+Y is generically finite and
surjective. Let X=X? and X'=X'Y. Since Y XYY gBHol?(Z, X')XYY
=BHolf(X, X'\ BHol*(l, X')-»Y admits a natural holomorphic section whose
image over U is in BHo\u(Xu, Jfgr). Hence /V and /f are bimeromorphic. Let
Y— >Yi— >y be the Stein factorization of /*. Then replacing Y by TI which is
bimeromorphic to Y we obtain 2). For Isom the proof is similar. q. e. d.

Remark 8. As is clear from the above proof the conclusion of 2) is true if
there exists an analytic subset ?'i=BHol?(^, X') (resp. IsomJ(Z, X')) such that
f'nBHoW^, Xb) (resp. f'nlsomzX^, X'u)} is dense in Y ' and that Y'y,
y^U, is discrete. Moreover these results (Proposition 9 and this remark) are
true even if the assumption is weakened to : /, f'^C/Y (Y may not be compact),
except that for 2) we have to replace Y by an arbitrary relatively compact open
subset in the conclusion.

Appendix

In this appendix we shall summarize some well-known results on the auto-
morphism group of a complex torus and its relative form.

a) Let T be a complex torus and o e T a fixed point. Then T has a unique
structure of a complex Lie group with identify o. Then we can identify T
with Aut0T naturally. Let r=Hl(T, Z) and #(T)gAutT the Lie subgroup of
isomorphisms of T as a complex Lie group. We note that #(T)=Aut (T, (0}).
Then we have the exact sequence

0 — > T — > Aut T -^> Aut r

and if H is the image of a, then a induces an isomorphism H(T) = H. Hence
we have the natural semi-direct product decomposition AutT=T-H(T).

b) Let / : X-*Y be a proper smooth morphism of complex spaces (not
necessarily reduced). Suppose that each fiber of / is a complex torus and /
admits a holomorphic section s : Y—>X. Then X has a unique structure of a
relative complex Lie group over Y. In fact we can identify X with AutF>0^
in the notation of 3.4 (cf. Proposition 7). Let HYX be the relative complex Lie
subgroup of AutYX defined by HYX=AutY(X, s(F)). Then we have (HYX}y

=H(Xy) for each y^Y. Let FF be the local system of abelian groups on Y
defined by the presheaf U-^H^Xu, Z) with U open subsets of Y. Let
r : AutYFY-+Y be the relative automorphism group of TY-*Y ; r represents the
functor K: (An/y)->(Sets) with #(7)= the set of Y -automorphisms of FxYY.
Auty/V is a relative complex Lie group over Y with r locally biholomorphic.
Then as in the absolute case we have the exact sequence

0 — > X — > AutYX -X AutYrY
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of relative complex Lie groups in the sense that each map is a morphism of
complex spaces over Y and induces an exact sequence of complex Lie groups on
each fiber. Hence aY induces an isomorphism of HYX with a relative subgroup
of AutYrY) and we have the semi-direct product decomposition

A\ltYX=X'HYX

over Y.

References

[ 1 ] Frisch, J., Points de platitude d'un morphisme d'espaces analytiques complexes,
Inventories math., 4 (1967), 118-138.

[2] Fujiki, A., Closedness of the Douady spaces of compact Kahler spaces, Publ.
RIMS, Kyoto Univ., 14 (1978), 1-51.

[ 3 ] , On automorphism groups of compact Kahler manifolds, Inventiones
math., 44 (1978), 225-258.

[4] , On the Douady space of a compact complex space in the category C,
Nagoya J. Math., 85 (1982), 189-211.

j- 5 ] f On the structure of compact complex manifolds in C, Advanced Studies
in Pure Math., 1, ed. S. litaka and H. Morikawa, (1982), 229-300.

[ 6 ] f Coarse moduli spaces for polarized compact Kahler manifolds and
polarized algebraic manifolds, to appear.

[7] Grothendieck, A., A general theory of fiber spaces with structure sheaf, Univer-
sity of Kansas, 1955.

[ g ] 9 Technique de construction en geometric analytique, Seminaire H. Cartan,
13e annee (1960/61).

[9] Hironaka, H., Flattening theorem in complex analytic geometry, Amer. J. Math.,
96 (1975), 503-547.

[10] Holmann, H., Quotienten Komplexer Raume, Math. Ann., 142 (1961), 407-440.
[11] Mumford, D., Geometric invariant theory, Berlin-Heidelberg-New York, Springer,

1965.
[12] Pourcin, G., Theoreme de Douady audessus de S, Ann. Sci. Norm. Sup. di Pisa,

23 (1969), 451-459.
[13] Schuster, H. W., Zur Theorie der Deformationen kompakter komplexer Raume,

Inventiones math., 9 (1970), 284-294.


