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On a Holomorphic Fiber Bundle with
Meromorphic Structure

By

Akira FuJkr*

Introduction

Let f: X—Y be a proper surjective morphism of compact complex manifolds.
Let USY be a Zariski open subset over which f is smooth. Let Xp=f"'U)
and let fy: Xy—U be the induced morphism. Assume that fy is a holomorphic
fiber bundle with typical fiber F and the structure group H. Let Gy—U be the
holomorphic fiber bundle associated with fy with typical fiber H with the adjoint
action of H on itself so that Gy acts naturally on Xy over U. Let Iy—U be
the principal H-bundle associated to fy. Then Gy acts naturally on Iy over U
also. We say that fy is a holomorphic fiber bundle with meromorphic structure
if there exists a compact complex space G* (resp. I*) over Y containing Gy
(resp. Iy) as a Zariski open subset such that the action of Gy on Xy (resp. Iy)
extends ‘meromorphically’ to that of G* on X (resp. I*). Then in this paper
we shall prove the following: Suppose that fy is a holomorphic fiber bundle
with meromorphic structure for some G* and I* as above. Then

1) there exists a ‘generic quotients’ X/G* of X by G* over Y, and

2) X/G* is bimeromorphic to the product space (F/H)XY where F/H is
a generic quotient of F by H™

Actually in this paper, these results are obtained in a more general setting
of comparing two proper morphisms f;: X,—Y, i=1, 2, over Y having isomorphic
general fibers (cf. Theorems 1 and 2); the above special case corresponds to the
case where one of the f; is isomorphic to the projection p: FXY—Y.(This
generalization is in a sense parallel with Grothendieck’s generalization [7] of
the theory of fiber bundles to the theory of general fiber spaces with structure
sheaf.)

Section 1 is preliminary, and in Section 2 we prove Theorems 1 and 2
mentioned above. Then in Section 3 we shall give some general examples which
appear naturally in the study of the structure of compact complex manifolds in
C [5]; indeed, the application to these examples is the principal motivation for
this paper. Finally in Section 4, as a reference for [5], we gather some results
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related to the subject of this paper.
In this paper a complex variety means a reduced and irreducible complex

space. Let f:X—Y be a proper surjective morphism of complex varieties.
Then we write feC/Y if there exist a proper Kéhler morphism g: Z—Y (cf.
[4]) and a surjective meromorphic Y-map ¢: Z—X.

§1. Preliminaries and Basic Definitions

1.1. a) Let Y be a complex space. Then a relative complex Lie group
over Y is a complex space G over Y with a holomorphic section e: Y—G (the
identity section) and Y-morphisms p=pey: GXyG—G, and ¢=txy: GG
(relative group multiplication and inversion) satisfying the usual axioms of group
law (cf. [11], Def. 0.1). Then a relative complex Lie subgroup of G is a complex
subspace H of G which itself is a relative complex Lie group over Y with
respect to the ‘restrictions’ of e¢, ¢ and ¢ to H. Let f: X—Y be a morphism of
complex spaces and G a relative complex Lie group over Y. Then a relative
(biholomorphic) action of G on X over Y is a Y-morphism o¢: GXyX—X satisfy-
ing the usual axioms of operation (cf. [11], Def. 0.3).

b) Let f:X—Y and f’: X’—Y be proper surjective flat morphisms of
complex spaces. Let (An/Y) be the category of complex spaces over Y. Then
we define the contravariant functor Isomy(X, X’): (An/Y)—(Sets) by the follow-
ing formula; Isomy(X, X’)(?): —=the set of ?-isomorphisms p: X Xy?-—)X ’><Y17
where Ye=(An/Y). Let D xxpxy—Y be the relative Douady space associated
to the morphism fXyf’: XXy X'—Y. Then Isomy(X, X’) is represented by a
Zariski open subset Isomy(X, X’) of Dx.pxv (cf. Schuster [13]). We set
Auty X : =Isomp(X, X). Then AutyX has the natural structure of a complex
Lie group over Y, acting naturally on X over Y.

When Y is a point, we write Isom (X, X’) and Aut X instead of Isomy(X, X’)
and AutyX respectively. Aut X is thus the automorphism group of X as a
complex Lie group in the usual sense.

For any Y<(An/Y) we have the natural isomorphisms Isomy(X, X)Xy ¥
=~Isomp(X, X" and (AutYX)Xy}N’zAut;)? where )?=X><Y17' and X'=X’'x,¥
(cf. (8], [13]). In particular we have for each y €Y, Isomy(X, X'),=Isom (X,, X3)
and (AutyX),=Aut X,.

¢) AutyX and Auty X’ act naturally on Isomy(X, X’) over Y (from the right
in the case of AutyX). In relation to these actions we shall define the notion
of principai subspace of Isomy(X, X’) in a rather primitive way.

i) When Y is a point, then with respect to this action Isom (X, X’) becomes
a principal homogeneous space under either of Aut X and Aut X', i.e., for any
helsom (X, X’) the induced maps o;: Aut X—Isom (X, X’), o.(g)=hg, and
o} Aut X'—Isom (X, X"), o1(g’)=g’h, are isomorphic where g=AutX and
g’eAut X’. We shall call any isomorphism Aut X—Isom (X, X’) obtained in
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this way admissible. The composition hy:=o0} 'os: Aut X—»Aut X’ is an
isomorphism of complex Lie groups, and is given by h4«(g)=hgh™!, geAut X.
Hence h(gx)=hx(g)h(x) for any geAut X and xX. Now let /SIsom X be a
subspace. Then [ is called principal if there exist complex Lie subgroups
GZSAut X and G’'SAut X’ such that G=I and G’=I] under some admissible
isomorphisms. In this case G and G’ are said to be associated to I.

ii) In the general case let ISIsomy(X, X’) be any analytic subset. Assume
that X and Y are varieties. Then I is called principal if there exist relative
complex Lie subgroups GEAutyX and G’'SAutyX’ such that for each ye€v, I,
is principal with the associated subgroups G,SAut X, and G,SAut X,. In
this case we call G and G’ associated to I.

1.2. a) We use the following terminology. Let h:Z—Y be a proper
morphism of complex varieties and VEY a Zariski open subset. Let AShA-Y(V)
be an analytic subset whose closure 4 in Z is analytic. Then the essential
closure A* of A in Z (over Y) is the union of those irreducible components of
A which are mapped surjectively onto Y. Clearly, if V'SV is another Zariski
open subset, then the essential closure of ANA~}(V’) in Z coincides with A*.
Moreover, if A is proper over Y, there exists a Zariski open subset UZSY such
that for any yeU, A,S A} and A% is the closure of A,. In fact, since A* is
the closure of AN A*, it suffices to show the assertion with A* replaced by A.
In this case the proof is standard.

b) Let f: X—Y and f’: X’—Y be proper surjective morphisms of complex
varieties (not necessarily flat). Let UZY be a Zariski open subset over which
both f and f’ are flat [1]. Then Isomy(Xy, Xy) is Zariski open in Dxypxy

QDXUxUX'U/Y-

Definition 1. Isom$(X, X’) is the essential closure of Isomy(Xy, X7) in
Dxspxy over Y. We set AutfX:= Isom$(X, X). When Y is a point, we
simply write Isom*(X, X’) and Aut*X.

Remark 1. 1) Isom¥(X, X’) and AutfX is independent of the choice of U
as above and depends only on f and f’ (cf. a)).

2) Let ¢: Xp—X{ be a Y-isomorphism represented by a unique holomorphic
section s: U—Isomy(Xy, Xz). Then ¢ extends to a bimeromorphic Y-map
p*: X—X' if and only if s extends to a meromorphic section s*:Y—Isom¥(X, X’).

3) The relative group multiplication py: AutyXyXyAutyXy—Auty Xy and
inversion ¢y: AutyXy—Auty Xy of relative complex Lie groups AutyXy over U,
and the natural relative action oy : Auty Xy Xy Xp— Xy of Auty Xy on Xy over U
extend to meromorphic maps p*: AutFXXyAutfX—Aut§X, o*: AutFX—AutiX
and o*: Auti} XXy X— X respectively. Moreover the identity section ey : U—Auty Xy
extends to a meromorphic section e*: Y—AutyX.

4) Let v: Y—Y be any proper surjective morphism of complex varieties.
Set X=Xx,¥ and X'=X'x,¥. Then we have the natural isomorphisms
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Isom#(X, X")Xy¥ =Isom¥(X, X’) and AutiXx,¥=AutiX.

5) Suppose that f, f'ec/Y. Then for any relatively compact open subset
VEY any irreducible component of Isom#(Xy, X)) and Aut}jX, is proper over
Y. This follows from [4].

1.3. a) Let f: X—Y be a proper morphism of complex varieties.

Definition 2. Let G*S Aut¥X be an analytic subset such that any irreducible
component of G* is mapped surjectively onto Y. Then we call G* (by abuse
of language) a relative quasi-meromorphic (Lie) subgroup of AutfX if there
exists a Zariski open subset USY such that f is flat over U and that Gy
:=G*NAuty Xy is dense in G* and is a relative Lie subgroup of AutyXy over U.
If, further, G* is proper over Y, we call G* a relative meromorphic (Lie) sub-
group of Aut¥X.

Remark 2. 1) If Y reduces to a point, G*, or more properly, G=G*NAut X,
is called a (quasi-)meromorphic subgroup of Aut*X (cf. [3]).

2) If G* is a relative quasi-meromorphic subgroup and Gy is as above, then
the relative group law GyXyGy—Gy, Gy— Gy (cf. 1.1) and the relative action
oy GuyXyXy— Xy extend to meromorphic Y-maps G*XyG*—G* G*—G* and
o*: G*XyX—X respectively. Moreover the identity section e¢y: U—Gy extends
to a meromorphic section e¢*:Y—G*. This follows from Remark 1, 3).

b) Let f: X—Y and f’: X’—Y be proper surjective morphisms of complex
varieties.

Definition 3. Let [* be any analytic subspace of Isom#(X, X’). Then we
say that I* is a quasi-meromorphic principal subspace if there exist relative
quasi-meromorphic subgroups G*SAut§yX and G* S Auty X’ and a Zariski open
subset UZSY over which both f and f are flat, such that Iy: =I*"\Isomy(Xy, X7)
is dense in I* and IySIsomy(Xy, Xy) is principal with the associated relative
Lie subgroups Gy:= G*NAutyXy and Gp:= G¥NAuty Xy (cf. 1.1 ¢)). In this
case we call G* (resp. G*') associated to I*. I* is called a meromorphic principal
subspace if further it is proper over Y. In the latter case the associated G* and
G* are also proper over Y and hence are relative meromorphic subgroups of
Aut(X and Aut}X’ respectively.

Remark 3. 1) Let G* be a relative meromorphic subgroup of AutfX. Then
the following conditions are equivalent. a) G* is associated to some meromorphic
principal subspace I*. b) Let [$(X, X’): =Isom#(X, X’)/G* be a relative generic
quotient of Isom#(X, X’) by G* over Y with the natural projection ¢: I3X, X
—Y (cf. Definition 5 and Theorem 1 below). Then ¢ admits a meromorphic
section s: Y—I#(X, X’). Moreover in this case I* is given by I*=z"(s(Y)) and
G* is given by the union of those irreducible components of p,(I'"\(AutiX
Xyl*XyI*)) which are mapped surjectively onto Y, where =:Isom#(X, X’)
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—I%X, X') is the natural meromorphic projection, I'S AutfXXylsom$(X, X’)
Xylsom#(X, X’) is the closure of the graph of the action of AutyXy on
Isomy(Xy, X4) and p, is the projection to the first factor AutfX. In particular
I* and G* determine each other uniquely. The analogous fact holds of course
for a meromorphic subgroup G* S AutfX.

¢) We consider the special case of b) where X'=Y XF for a compact
complex variety F and f’:Y XF—Y is the natural projection. Then we have
the natural isomorphisms

Auty X' =Y X Aut F and AutjX’'=Y X Aut*F.

Definition 4. Let I[* be a (quasi-)meromorphic principal subspace of
Isom#(X, X’), and G*S Aut§)X and G* S AutfX’ the associated relative (quasi-)
meromorphic subgroups. Then we call [* admissible (with the associated
meromorphic subgroup H*) if G* is of the form G*=Y XH* for some (quasi-)
meromorphic subgroup H*Z Aut*F.

Suppose that [* is admissible as above and set H=H*"\Aut F. Take a
Zariski open subset USY as in Definition 3. Then it is immediate to see that
fv: Xy—U is a holomorphic fiber bundle with structure group H. In this case
we say that f is a holomorphic fiber bundle over U which is (quasi-ymeromorphic
with respect to f and with (quasi-)meromorphic structure group H. We note
that in this case the natural map Iy—U is the principal bundle associated to

fo

§2. Relative Generic Quotients and Related Results

2.1. We generalize the generic quotient theorem by a meromorphic group
in 3] to a relative case.

Theorem 1. Let f: X—Y be a proper surjective morphism of complex
varieties. Let G*SAuty X be any relative meromorphic subgroup over V. Then
there exists a unique subspace XS Dyxy® having the following properties: Let
p:Z—X be the umiversal family pxyw:Zxy—Dxyy restricted o X, i.e.,
Z=ZyxixXpy ,YX Then: 1) the natural Y-morphism n: Z—X is bimeromorphic,
and 2) there exists a Zariski open subset VS X such that for any veV, the cor-
responding subspace Z,=X, is a closure of an orbit Z§ of the group G, acting
on X,, where y=f(v) (f: X—Y being the natural map) and G,=G¥NAutX,.

Proof. Define a meromorphic Y-map @:G*XyX—XXyX by &(g, x)
=(o*(g, x), x). Let R:=@(G*XyX)S XXy X. Let p: R—X be induced by the
second projection p,: XXy X—X;

2) the relative Douady space associated to f.
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RE XXy X
p\l 12
X

Let z: X—Dy,» be the universal meromorphic Y-map associated to this diagram
where = is holomorphic exactly on the Zariski open subset over which p is flat
(cf. [2], Lemma 5.1). Let X be the image of . Let 7: X—X be the resulting
meromorphic Y-map. We claim that this X has the desired property. Take a
Zariski open subset USY such that both f and G*—Y are flat over U, and that
for each yeU, G, is dense in G¥ (cf. 1.2 a)). Now we consider @ as a mero-
morphic map over X where XXyX is over X by p,. Take a Zariski open subset
WE X such that for each xW, if we set y=f(x), then yeU, and with respect
to the natural identification (G*XyX),=G} and (XXyX),=X,, @ induces a
meromorphic map @.:G}—X,. Then we have for xeW, R,=0.G})
=0,(G,)=G,x as a subspace of X,, where G,x is the orbit of x under G, and
Gyx its closure. In particular for any wec(W), Zg is a closure of an orbit of
G,. Since (W) contains a nonempty Zariski open subset, say V, 2) follows. It
remains to show that m is bimeromorphic. Restricting W if necessary we may
assume that py: Rp—W is flat [1] so that for any x&W, we have
dim (G pyx)=m for a fixed integer m=0. (W is a union of ‘regular orbits’.
cf. [11]) Then just as in the proof of the absolute case (cf. Theorem 4.1 of
[3]) we can show that = is isomorphic on p V)Nz~*(W). Thus « is bimero-
morphic.

It remains to show the uniqueness of X. In fact, from 1) and 2) alone we
deduce easily the following: 1) There exists a Zariski open subset W;S X such
that a) for every xW, with f(x)=y, the point d(x)eDy,y,, corresponding to
the subspace G,x belongs to X, and b) the set {d(x); x€W,} forms a Zariski
open subset of X. Uniqueness clearly follows from this. g.e.d.

Definition 5. We call the commutative diagram
X -1

\L/_
fy f

or simply, the meromorphic Y-map ¢: X—X, or X itself, the relative generic
quotient of X by G* over Y. We often denote X symbolically by X/G*.

X qg=px

Proposition 1. Let f: X—Y and G*SAutyX be as in Theorem 1.

1) Let Y=Y be a surjective morphism of complex varieties. Let X=Xx,Y
and G*=G*x,Y. Then G* is a relative meromorphic subgroup of AutiX
= Auti XX Y and the relative generic quotient )Z'/é* of X by G* over ¥ is
isomorphic over Y to the pull-back (X/G*)Xy?.

2) Suppose that Y is a complex variety over another complex variety T with
a surjective morphism h:Y—T. Then there exists a Zariski open subset UST
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such that for any teU i) Gf¥ is a relative meromorphic subgroup of Aut¥, X,
over Y, and ii) (X/G*),;=X./G¥ as a subspace of (Dx;x):=Dx,v, where we
consider any complex space over Y naturally as a complex space over T via h.
In particular if Y=T then for each yeUZY, (X/G*), is the generic quotient
of X, by G}. Asa special case of this, if X/G*—Y is bimeromorphic, then there
exists a Zariski open subset WS X with f(W)SU such that if yeU then G,
acts almost homogeneously on X, and its unique Zariski open orbit coincides with
w,.

3) If G¥=G, is a complex torus for yeU, and G, acts freely on X, then
gy: X,—X,/G, is a holomorphic fiber bundle and hence qy: Xy—(X/G*)y is
holomorphic and smooth.

Proof. In view of the uniqueness assertion of Theorem 1 the verification
of 1) is straightforward. For the first assertion of 2) it suffices to take U in
such a way that for any t€U, r,: Z,—X, is bimeromorphic and V;=2X, where
Vi is the closure of V, in X, in the notation of Theorem 1. Here, restricting
U if necessary, we may assume further that Gy is smooth over U. Then, when
X/G*—Y is bimeromorphic, if we set A= {xe Xy ; dim Gy(x)>t—r} (t=dim Gy/U,
r=dim f) where Gy(x) is the stabilizer of Gy, ;s at x X, then W: =Xp—A4
is easily seen to satisfy the above condition. In 3) that ¢ is a fiber bundle is
due to Holmann [107, §5. Since dim X3z is constant on Xy, from this follows
the last assertion.

2.2. Let f: X->Y and f’: X’—Y be proper surjective morphism of complex
varieties. Let UZY be a Zariski open subset over which both f and f’ are
flat. Then by the universality of the relative Douady space we have the natural
transformation of functors ¢: Isomy(Xy, Xg)—Isomy(Dx/y, Dx ). Let I*
Clsom*(X, X’) be an analytic subset such that Iy : =I*N\Isomy(Xy, X{) is dense
in I*, Let BEDy,y and B’SDy./y be analytic subspaces which are proper over
Y and are flat over U. Now we assume the following condition; (*) the image
of IySlsomy(Xy, Xy) by ¢ is contained in the subfuctor Isomy((Dx,/y. By),
(Dxyw, Bp)) (cf. 3.1 a) below for the notation) where we identify Isomy(Xy, X7)
with the functor it represents. Then composed with the natural projection
Isomy((Dxy/w, Bu), (Dxyw, By)) — Isomy(By, By) we get a U-map ¢: Iy
—Isomy(By, By). It is immediate to see that ¢ is indeed a morphism of complex
spaces and that ¢ extends to a meromorphic Y-map ¢*: [*—Isom#(B, B’). The
condition (*) is fulfilled if for each yeU and for each hely ,Slsom(X,, X3)
we have D,h(B,)=B where Dyh€lsom (Dyx,, Dx;) is the element canonically
induced by hA.

Theorem 2. Let [*CSIsom$(X, X’) be a meromorphic principal subspace with
the associated relative meromorphic subgroups G*S AutiX and G* SAutiX’. Let
X=X/G* and X'=X'/G* be the respective relative generic quotients over Y.
Then there exists a natural bimeromorphic Y-map X—X' which is isomorphic
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over some Zariski open subset of Y.

Proof. Take Zariski open subsets VEX and V'SX’ as in 2) of Theorem
1. Restricting V and V'’ we may assume that the following conditions are
satisfied: 1) F(V)=F'(V’), and if we denote this set by U, then U is nonsingular
and Zariski open in Y, where f: X—Y and f': X’—Y are the natural morphisms,
2) both f and f’ are flat over U, and 3) for each y<U, a) G¥ is a meromorphic
subgroup of Aut*X, and X, is the generic quotient of X, by G¥, and the
similar condition for G}’ and X}, is true (cf. Proposition 1), b) V, is dense in
X, and c¢) the induced map =z,: Z,—X, is bimeromorphic where Z is as in
Theorem 1. Let Iy=Isomy(Xy, Xy)N\I*. Take any yeU and any h=h,<l,
:=1Iy,,Slsom (X,, X;). We shall first show that D, h(X,)=X}, where D h is
defined just before the theorem. Let Xy=D,h(X,)S Dy, and Vi=D,h(V,)S X}
Then h induces an isomorphism of the following diagrams

"

Ty v —
Xy<— 2, Xy<— 29 =ZxixXpgyXy
4 J
Xy Xy

By the uniqueness of the generic quotient in Theorem 1 it suffices to show that
X satisfies the conditions of that theorem for f! and G¥. Since x is bimero-
morphic as well as x,, 1) is satisfied. We set G,=GinAut X, and G,=
G¥ NAut X7. For 2) it suffices to show that for any point v” €V, Z;. is a closure
of an orbit of Gj when Z;. is considered as a subspace of X} via xy. In fact,
take veV with D, h(w)=v". Then Zj=h(Z,), which is the closure of A(Z3)
where Z$ is a G,-orbit on X,. Then, since h, is (G,, Gj)-equivariant with
respect to the homomorphism h,,: G,—Gy (cf. 1.1 ¢)), h(Z}) is an orbit of G}
as was desired.

Thus D,k induces an element of Isom (X,, X;) which we shall denote by the
same letter D,h. Hence by the remark just before the theorem we have obtained
a U-morphism ¢: Iy—Isomy(Xy, X4) which extends to a meromorphic Y-map
¢*: [*>lsom$(X, X’). Next we show that D,(h)=D,(h’) for any h, h'EI,,
yeU. It suffices to show that D, h(v)=D,h’(v) for any vV, since V, is dense
in )?y. In fact, since g(Z,)=Z, for any g€ G, and h' *heG,, k(Zy)=h"h"""h(Z,)
=h'(Z,), or equivalently, D,h(v)=D,h’'(v) as was desired. Since [y—U is sur-
jective it follows that ¢(Iy)SIsomy(Xy, X4) gives a holomorphic section to
Isomy(Xy, Xy)—U, U being nonsingular, and hence, ¢*([*)SIsom#(X, X') a
meromorphic section to Isomj(X, X')—Y. Hence by Remark 1,2) X and X’ are
bimeromorphic over ¥ by a bimeromorphic map which is isomorphic over U.

g.e.d.

In Theorem 2 assume that there exists a Y-isomorphism ¢: X'—Y XF for
some compact complex variety F. Let H*ZAut*F be a meromorphic subgroup.
Then we say that ¢ is admissible with respect to (I*, H*) if ¢ induces an
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isomorphism G* =Y X H*. Then, if ¢ and ¢’ are Y-isomorphisms X'=Y XF
which are admissible with respect to (/*, H*), then ¢’¢~! induces a Y-auto-
morphism of p,: Y XF-Y, i.e, gives a holomorphic map Y—AutF, whose
image is contained in H where H=H*NAut F. This implies that the set of
admissible Y-isomorphisms is naturally a principal homogeneous space under the
group Hol (Y, H), the space of holomorphic maps of ¥ to H. From this obser-
vation we get the following:

Lemma 1. Suppose that there exists a Y-isomorphism ¢: X'—Y X F which is
admissible with respect to (I*, H*), so that we have the natural isomorphism
X'/G¥ =Y X(F/H*). Then the composite meromorphic map X—X/G*=X'/G*
=Y X(F/H*—-F/H* is independent of the choice of the admissible isomorphism
.

Definition 6. We call the meromorphic map X—F:= F/H* defined in the
lemma, or any meromorphic map which is bimeromorphic to it, a canonical
meromorphic map associated to f and to H*.

Clearly we have dim F=dim p where p: X/G*—Y is the natural map.

§3. Examples of Relative Quasi-Meromorphic Subgroups

3.1. Isom¥((X, A), (X', A)) and Aut¥(X, A). Let f: X—>Y and f': X'—Y be
proper morphisms of complex varieties. Let A=(A4,, +--, An)and A’=(A3, ---, An)
be sequences of analytic subspaces of X and X’ respectively.

a) Suppose first that f and f’ are flat and that A are all flat over ¥ with
respect to f’. Then we define a subfunctor Isomy((X, A), (X’, A")): (An/Y)—
(Sets) of Isomy(X, X’) as follows ; Isomy((X, A), (X', AN Y)= {pelsomy(X, XY
¢ induces isomorphisms of AuXyY and AL %Y for all a}.

Lemma 2. Isomy((X, A), (X’, A")) is represented by a unique analytic subspace
Isomy((X, A), (X', A) of Isomyp(X, X’).

Proof. Let I=Isomy(X, X’) and &: XXy[—X’'XyI the universal [-isomor-
phism. Let A, ;:=£&A.Xyl). Then by [12] Prop. 1, there exists a unique
analytic subspace TS such that for any morphism u: 7'—I of complex spaces
Ay 1 X T'=A, X, T, where A, ;:= A.XyI, as a subspace of X;x,T’ if and
only if u factors through T. (In fact, apply [12] Prop. 1 to the morphism
X’'XyI—I and to the coherent analytic sheaves £€: =04, ;and F: =04, ;n4,, ;)

Then it is easy to see that T represents the functor Isomy((X, A), (X’, 47)).

We then set Auty(X, A)=Isomy((X, A), (X, A)). Auty(X, A) is a relative
complex Lie subgroup of AutyX over Y.

b) In the general case, let USY be a Zariski open subset such that X, X’,
and A, are all flat over U [17.
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Lemma 3. The closure I~ of Isomy((Xy, Av), (Xu, Ap)) in Dx«px v s analytic,
where Ay=(Ayy, =+, Am.v) and Ap=(ALy, -, An.v).

Proof. Take a proper modification ¢ : ¥—Y such that ¢ gives an isomorphism
of ¢73(U) and U and that the strict transforms X and f~la (resp. X’ and 21;) of
X and A, in Xxy? (resp. of X’ and A/ in X'Xy?) respectively are all flat
over ¥ [9]. Then by Lemma 2 I=Isomy((X, A), (X', A), A=(4,, -, An),
ﬁ'z(ﬁ{, -, AN;,L), is realized as an analytic subspace of ISOID?(X, X . Let I be
the union of those irreducible components of / whose images in ¥ intersect
with ¢~%(U). Then the image of [ in D xxyx¥ Dy the natural proper morphism
1S D%.3%13=Dxxyx v Xyr¥—Dxyx v is nothing but I-.

Definition 7. Isom¥((X, A), (X’, A")) is the essential closure of Isomy((Xy, Ap),
(X4, Ap)) in Dxypxp. We set Auti(X, A)=Isom¥(X, A4), (X, 4)). When Y is
a point, we write Aut*(X, A) for AutH(X, A).

Remark 4. Aut¥(X, A) is a relative quasi-meromorphic subgroup of Aut§X,
and I*=Isom¥((X, A), (X’, A")) is a quasi-meromorphic principal subspace with
the associated quasi-meromorphic subgroups Autj(X, A) and Aut(X’, A’). This
follows immediately from the definitions.

¢) In b) assume further that X’ is of form X’'=Y XF for some compact
complex variety F and f’: X’—Y is the natural projection as in 1.3 ¢). Suppose
that there exists a sequence B=(By, ---, Bn) of subspaces of F such that
AL,=Y XB,S X’. Then Aut§(X’, A")=Y X Aut*(F, B). Thus Isom$((X, A), (X', A")
is admissible, if it is not empty (Definition 4). In general, let [*SIsom$(X, X’)
be a meromorphic principal subspace. Suppose that I* is admissible with the
associated meromorphic subgroup H*S Aut*F and that I*SIsom$((X, 4), (X’, A")).
Then fx, 4: (X, A=Y is a holomorphic fiber bundle over U in the sense that
for each yeU there exist a neighborhood y=V and a trivialization X,=V XF
which sends A, onto V X B, isomorphically. In this case we say that fx 4isa
holomorphic fiber bundle over U which is meromorphic with respect to f (and
with meromorphic structure group H).

3.2. Isom#F(X, X')y. o and Aut}X,.

a) Let f: X—Y and f’: X’-Y be proper smooth morphisms of complex
varieties. Let wel'(Y, R*f«R) and o'l (Y, R*f4R) be fixed elements. Then
we define a subfunctor Isomy(X, X’), . of Isomy(X, X’) as follows,
Isomy (X, X’)m,w!(?)Z{gDEISOmy(X, X’)(f’);go*w%zw;} where wy (resp. w}) is
the pull-back of @ (resp. @’) to XXy¥ (resp. X’ Xy ¥).

Lemma 4. Isomy(X, X'),. . is represented by a unique analytic subspace
Isomy(X, X")y, o of I=Isomp(X, X’) which is a union of connected components.

Proof. Let &: XXyI—X'XyI be the universal I-isomorphism. Let yeY
be any point and /,,, be any connected component of I,. Fortel, let &,: X,—X},
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be the isomorphism induced by & Then if &fw}.=w; ., for some t,&l,,;,
then &fwr,i=wy,. for all tel,,,. From this the assertion follows readily.

We set Auty X,=Isompy(X, X)u, o

b) In general let g: Z—Y be any proper smooth morphism of complex
varieties. Then any real closed C* 2-form a on Z determines a unique section
asl'(Y, R*g«R) such that the class of @, equals @, in H(Z,, R).

Proposition 2. Let f, f/, w, ' be as in a). Suppose that there exists a real
closed C* 2-form B (resp. B’) on X (resp. X') with f=w (resp. B’=w’), which

restricts to a Kdhler form on each fiber of [ (resp. f’). Then the closure 1 of
Isomy(X, X")o,o in Dxxpx v is proper over Y.

For the proof we need a general result. Let f: X—Y be a smooth morphism
of complex varieties and §a C* 2-form on X which restricts to a positive (1,1)-
form on each fiber of f. Let Dx,» be the relative Douady space of X over Y
and ASDyg,y an analytic subset. Let 0: A—Y be the natural morphism. Then
we say that A is bounded with respect to 8 if there exist a dense Zariski open
subset VS A, a positive constant R and an integer ¢=0 such that for any deV
the corresponding subspace Z,< Xjq is reduced and is of pure dimension g and

that if vol (Zd)::Sz B3csy is the volume of Z, with respect to Bscay (the restric-
d
tion of B to Xjc»), then vol (Z,)<R.

Proposition 3. Let ASDx,y be as above. Suppose that for any relatively
compact open subset USY, the restriction Ay=ANDxyw of A over U is bounded
with respect to By. Then A is proper over Y.

Proof. Follows immediately from Propositions 4.1 and 3.4 of [2]. (The proof
there clearly applies also to 3 as above.)

Proof of Proposition 2. In view of a) it is clear that [ is a union of
irreducible components of Dy, x,». To show the properness we shall apply
Proposition 3 to A=I, by considering fXyf’: XXyX’—Y and C= 2-form
Bo:=p+pf on XXyX’ instead of f and B in the proposition respectively.
Here f and §’ are the natural pull-backs to XXyX’ of B and S’ respectively.
Then we have to show that on any relatively compact open subset of ¥, I is
bounded with respect to B, Let V:=1Isom (X, XewSI. Then for any deV
the associated subspace Z,SX,X X}, y=0d(d), equals the graph I of the isomor-
phism h=h,: X,— X} corresponding to d, where 0: /=Y is the natural mor-
phism. Hence Z,=X,. Moreover, since hfw,=w, we calculate easily that

vol(Zo={, B =G+1 53
v

where g=dim X, (cf. the proof of Theorem 4.8 in [3]). Thus vol(Z,) depends
only on y=d(d) and is a continuous function of y. Hence it is bounded on any
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relatively compact open subset of ¥ as was desired. g.e.d.

¢) In general let g: Z—Y be a proper morphism of complex varieties.
Then we call acl(Y, R*f.R) a relative Kéihler class if the restriction
a,eH¥X,, R) of a, to each X, is a Kihler class, i.e., represented by a Ké&hler
form. Using Proposition 2 we have shown in [6] the following:

Proposition 4. Let f, f/, w, o be as in a). Suppose that w and o’ are
relative Kdhler classes. Then I is proper over Y.

Proof. See [6], Proposition 4.

d) Let f:X—Y and f’: X’—>Y be generically smooth proper morphisms of
complex varieties. Let USY be a Zariski open subset over which both f and
f’ are smooth. Let wsl(Y, R?fx+R) and o’ I'(Y, Rif’R) be fixed elements.

Definition 8. Isom#(X, X’), . is the essential closure of Isomy(Xy, Xi)ay, oy,
in Isom#(X, X’). We set Aut*X,=Isom¥(X, X)o, 0

Remark 5. Isom#F(X, X'),. . and AutfX, are unions of irreducible components
of Isom¥#(X, X’) and AutfX respectively (cf. Lemma 4).

Proposition 5. Suppose that wy, wy are relative Kdhler classes, and that
f, f'ec/Y. Then Isom$(X, X')y,o is proper over Y. Thus AutiX, and
Aut(X,, are meromorphic subgroups of AutfX and AutFX’ respectively and
Isom#(X, X")o.or 1S @ meromorphic principal subspace with the associated mero-
morphic subgroups Aut$X, and Autd

Proof. By Proposition 4 Isomy(Xy, Xi)wy, o, has only finitely many irreduci-
ble components, say I1,p, -, Iy, which are mapped surjectively onto U. Then
Isom#(X, X)y, o is the union of the closures I; of I;y. Since f, f'ecC/Y,
fXyf'ec/Y, and hence each I; are proper over Y by [4]. Thus the first
assertion follows. The second assertion then follows readily from the definition
of these spaces.

3.3. a) Let f: XY, f/: X'-Y, USY, w and o’ be as in Proposition 5.
Let A=(A4,, =, An), A'=(41, ---, Ap) be as in 3.1.

Definition 9. We set

Isom3((X, A), (X', A))o. o : =IsomF(X, X))o, wNIsomF(X, A), (X', A))
and
Auti(X, A),: = AutiX,NAuti(X, A4).
Remark 6. 1) Isom¥((X, A), (X', A"))e,« is a meromorphic principal subspace
with the associated meromorphic subgroups Aut$(X, A), and AutF(X’, A"),.
2) There exists a Zariski open subset USY such that

(Isom#((X, A), (X', Ao, o )y=Isom*((Xy, Ay), (X}, Ay)ay. e,
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for any yeU.

3) Let »:Y—Y be a surjective morphism of complex varieties. Let
)?zXXYI’ and 171=(A1><y)7, -, Amxyf’). Let & be the pull-back of w to X.
Then Aut¥(X, A),,,ny';Aut;';(X, 171),,-; with respect to the natural isomorphism
Aut*y XXV = AutiX.

In fact, since Isom#(X, X’),.. is a union of irreducible components (Remark 5)
it follows that Isom3¥((X, A), (X', A))w.» is the essential closure of
Isomy(Xy, X7)ay, w'UmIsomU((XU, Ay), (X4, Ap)). From this together with Remark
4 and Proposition 5, 1) follows. 2) is standard (cf. 1.2 a)). For 3) it suffices to
see that Autj(X, A)XY?zAut§()?, A) and (Auti‘}Xw)xy}’sAutﬁ)?m. Since v is
surjective, this follows from the isomorphisms Auty(Xy, AU)XUU' zAutﬁ()?ﬁ, /Nlﬁ)
and (AutyXp)ey XU = (AutyXp)ey where OF=y-1(U).

b) Consider the special case where X’'=Y XF for some compact complex
variety F and f’: X'—Y is the natural projection. Let B=(B,, -, Bn) be a
sequence of subspaces of F asin 3.1 ¢). Suppose that o’ is of the form o’ =p*w,
for some Kihler class w, on F where p: X’—F is the natural projection. Then:

Proposition 6. If IsomF((X, A), (X', A))e.o #9, then fx 4 is a holomorphic
Sfiber bundle over U which is meromorphic with respect to f and with meromorphic
structure group Aut(F, B),, in the sence of 3.1 c).

Proof. We have Autf(X’, A"y =Y X Aut*(F, B),, and hence IsomF((X, A),
(X', A))w, o is admissible. Thus the proposition follows from 3.1 c).

3.4. Let f: X>Y be a proper flat morphism of complex varieties. Let
Auty X be the unique irreducible component of AutyX which contains the
identity section e(Y). Then it is easy to see that Auty X is a relative complex
Lie subgroup of AutyX.

Lemma 5. Suppose that feC/Y. Then there exists a Zariski open subset
UZCY such that (Auty, X),=Aut,X, for each yeU where Aut X, is the identity
component of Aut X,.

Proof. Let p: Auty,X—Y be the natural morphism. Let r=dim g, and
V={yeY; dim,,p *(y)=r, and Y is smooth at y}. Then V is Zariski open in
Y. Moreover g is smooth at every point of e(V) and hence Auty,X is smooth
along e(V). Let A=Auty X and n: A—A the normalization. Since n is iso-
morphic along e(V), e lifts to a meromorphic section & to f: A—Y. On the other
hand, since fecC/Y, fis proper [4]. Let b: A—Y, ¢: Y-Y be the Stein factori-
zation of #. Then b& gives a meromorphic section to c. Hence the fiber of i
is connected. Since A is normal, this implies that the general fiber of #, and
hence of g, is irreducible. Thus for general yeY, A, is the closure of Aut,X,.
Hence the assertion follows.

Let f: X—>Y be a proper surjective morphism of complex varieties. Let
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UZY be a Zariski open subset over which f is smooth. Then we denote by
Aut¥ (X the closure of Auty, Xy in AutfX. This is independent of the choice
of U as above. Aut¥ X is a relative meromorphic subgroup if fecC/Y.

Proposition 7. Let f: X—Y be a proper morphism of complex spaces. Let
UZY be a Zariski open subset. 1) Suppose that f is smooth over U with each
fiber a complex torus and that f admits a holomorphic section ey:U—Xy on U.
Then fy: Xy—U has the unique structure of a complex Lie group over U with
ey the identity section. 2) Suppose further that X, Y are varieties, feC/Y and
that ey extends to a mervomorphic section e*:Y—X. Then the group law of Xy
over U extends meromorphically over Y.

Proof. 1) Restricting the natural relative action oy: (Auty, oXy) X Xv— Xy
to (Auty,Xy)Xpeg(U)=Auty, Xy we get an isomorphism 7y: Auty, X=Xy
{cf. Appendix). Hence 1) follows. (For the uniqueness see [11], Cor. 6.6.)
2) Similarly, restricting o*: Autf XXy X—X to Aut¥ XXype(Y), which is
bimeromorphic to Aut} ,X we get a natural bimeromorphic map Aut¥ X—X
extending 7y. Then 2) follows from Remark 1, 3). g.e.d.

3.5. In concluding this section, as an application of Theorem 2 combined
with the consideration of this section, we shall prove a proposition which is
used in [5].

Let g: X=Y, h:Y—>T be fiber spaces® of complex varieties. Let
A=(A,, -+, An) be a sequence of analytic subspaces of X. Suppose that 1)
there exist Zariski open subsets UST, VESY with A(V)SU such that for any
uelU, gu=gu x, 4, (Xu, Ax)—Y, is a holomorphic fiber bundle over V,EY,
which is meromorphic with respect to g, (cf. 3.1, ¢)) and 2) there exists a holo-
morphic section s: T—Y with s(T)N\V=+#0. Suppose further that g is Kidhler
(cf. [4]) so that in particular we can find a relative K&hler class wel(Y, R*g«R)
over Y. Then by Proposition 6 if s(u)eV we can take G*(u): = Aut*(X;cy,
Ascw)osyy @S a meromorphic structure group of g, (considering (X,cuw, Ascw) a8
a typical fiber of the bundle). Then we shall prove the following:

Proposition 8. Under the above situation there exists a commutative diagram

a
X—>7

g, b

Y—>T

where a is a surjective meromorphic map and b is a fiber space of complex
varieties, such that if we vestrict U smaller, then for each ucU, Z, is a generic
quotient X,/G*u) of X, by G*(u) and a induces a canonical meromorphic map
a,: Xy—Z, associated to g, and G*(u) (cf. Def. 6).

3) A fiber space is a proper surjective morphism with general fiber irreducible.
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Proof. Let X:=XXyT where T is over Y via s. Let X’:=Xx;Y and
g’': X’'—=Y the natural map. Let & (resp. w’) be the pull-back of @ (resp. @) to
X (resp. X’). Then g’ is a Kéihler morphism with a relative Kéhler class
o' el(Y, R?2giR). Let A;:=A;xyTSX and A}:=A;x;YSX'. Let
I*: =TIsom§((X, A), (X', A))e,o Where A:= (A, -+, An)and A’ := (4], -+, An).
Then by Remark 6, 1) I* is a principal meromorphic subspace to which G*
1= Aut¥(X, A), and G* := Aut¥(X’, A"), are associated. Let X=X/G* (resp.
X’'=X’/G*') be the relative generic quotient of X by G* (resp. X’ by G*') over
Y. Then by Theorem 2 there exists a canonical bimeromorphic map %: X—-X'
over Y. On the other hand, by Remark 6, 3) G¥=G*X,;Y where G*
= Aut#()'f, A)s, A=(4,, ---, A,). Further we have the natural meromorphic map
7: X'—X/G* over T (cf. Proposition 1, 1)). Let Z: =X/G* and define a: X—Z
by the composite meromorphic map z7g: X—Z where ¢: X—X is the quotient
meromorphic map. Let b: Z—T be the natural surjective morphism. Then we
have hf=ba. We claim that the resulting diagram meets the requirement of
the proposition. In fact, restricting U smaller, we have that for each ueU, G¥
is a relative meromorphic subgroup of Aut¥, X, over Y, and Xu=X,/G¥ (cf.
Proposition 1, 2)), where X,/G¥ is a relative generic quotient of X, by G§ over
V.. Further we have G¥.,,=G*u) and Z,: = (X/G*)u= Xycwy/G*(w). Combining
these facts we see readily from our construction that for sufficiently small U,
the induced meromorphic map a,: X,—Z, is a canonical meromorphic map
associated to G*(u). g.e. d.

§4. BHol#(X, X"

a) Let f:X-Y and f': X’>Y be proper flat morphisms of complex
varieties. Let Holy (X, X’) be the contravariant functor (An/Y)—{Sets) defined
by Holy(X, X)(¥):=the set of Y-morphisms ¢: XXy¥—X'Xy¥. Then
Holy (X, X’) is represented by a unique Zariski open subset Holy(X, X’) of the
relative Douady space Dy, xr With Isomy(X, X’)SHoly(X, X’) (cf. [13]).

Suppose for simplicity that both f and f’ are smooth with connected fibers.
Let BHoly(X, X’):zy\eijHoly(X, X"), where BHoly(X, X"),: ={h€Holp(X, X"),;

h(») is bimeromorphic}, where A(y): X,—X/ is a morphism corresponding to k.
Then BHoly(X, X’) is Zariski open in Dxpx,r (cf. [2], Lemma 5.5). We see
that for any open subset WEY there is a natural bijective correspondence
between the set of holomorphic sections of BHoly(X, X’)—Y on W and the set
of bimeromorphic morphisms X— X’ over W.

Let ASX and A’S X’ be any analytic subspaces. Suppose that A’ is flat
over Y. Then the subfunctor Hely((X, A), (X’, A")) of Holy(X, X’) defined by
Hol, (X, A), (X', AN(Y)={¢pHoly(X, X')(¥); ¢(A)=A’} is represented by a
unique analytic subspace Holy((X, A4), (X’, A")) of Holy(X, X’). This can be
shown just in the same way as for Lemma 2. We set BHoly((X, A), (X', A")):
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=Holy((X, A), (X', A))NBHoly(X, X’).

b) Let f:X->Y and f’: X’>Y be generically smooth proper surjective
morphisms of complex varieties with connected fibers. Let USY be a Zariski
open subset over which both f and f’ are smooth. Then BHoly(Xy, Xp) is
Zariski open in DXxyxr/ygDXnyxb/U- Let BHol#(X, X’) be the essential closure
(1.2 a)) of BHoly(Xy, Xy) in Dxypx vy Which is independent of the choice of U.
Let ASX and A’S X be analytic subspaces. Restrict U smaller so that A’ is
flat over U. Then the closure of BHoly((Xy, Ay), (Xi, Ap)) is analytic in
Dxwyx v (cf. the proof of Lemma 3). We shall denote the essential closure of
BHoly((Xy, Ay), (X4, Ap)) in Dxypxy by BHolF((X, A), (X', A")).

Remark 7. 1) A bimeromorphic morphism ¢: Xy — Xy defined on U
extends to a bimeromorphic map ¢*: X—X’ over Y if and only if the correspond-
ing holomorphic section U—BHoly(Xy, X7;) extends to a meromorphic section
Y—BHol}(X, X").

2) If Y-Y is a surjective morphism of complex varieties, then it is
immediate to see that BHolH(X, X’)X ¥ =BHol(Xx ¥, Xx,Y)

3) If fec/Y,then after replacing Y by any relatively compact open subset
of Y any irreducible component of BHolf(X, X’) (resp. BHol¥((X, A), (X', A")) is
proper over Y. In particular if X is compact, we need no restriction to a
relatively compact subset.

¢) We shall include a standard application of Remark 7, 3) as a reference
to [5].

Let f: X—Y and f’: X’>Y be surjective morphisms of compact complex
varieties in €. Let USY be a Zariski open subset over which both f and f’
are smooth.

Proposition 9. 1) Suppose that f and f’' admit meromorphic sections
s:Y—>X and s':Y—>X’ respectively. Suppose further that there exists a U-
isomorphism n: Xy— Xy with ps|ly=s"ly. Then if Aut(X,, s(u))={e} for all
ueU, then 7 extends to a bimeromorphic Y-map n*: X—X'. 2) Suppose that
BHol (X, X3) (resp. Isom (X, X2)) are nonempty and discrete for all u€U. Then
there exists a finite covering p: Y—Y such that XXy¥ and X'Xy¥ is bimero-
morphic over ¥ by a bimeromorphic l7'-map which is holomorphic (resp. isomorphic)
over U= p ().

Proof. 1) Let I*=Isomy((X, s(Y)), (X', s’(Y))) and Iy=Isomy{((Xy, s(U)),
(Xy, s’(U))). Then 7 defines a holomorphic section ¢ to Iy—U. Let IF be the
irreducible component of I* containing ¢(U). Since Iy, ,=Isom((X,, s(u)), (Xz,s’(x)))
~Aut (X,, s(u)), from our assumption it follows that I¥ is discrete over U.
Hence I*—Y is generically finite so that it coincides with the closure of o(U).
Namely, o extends to a meromorphic section Y—I* Hence the proposition
follows from Remark 1, 2). 2) By our assumption we infer readily that there



HoromMmorPHIC FIBER BUNDLE 133

exists an irreducible component ¥ of BHol}(X, X’) such that ¥ \BHoly(Xy, X&)
is dense in ¥ and the natural morphism o Y—Y is generically finite and
surjective. Let X=X; and X’=X%  Since ¥ XyVZSBHoliX, X")Xy¥
EBHOI}&()?, X", BHoIﬁ()Z', X N—Y admits a natural holomorphic section whose
image over U is in BHolﬁ()Z'ﬁ, )?'5). Hence fy and f% are bimeromorphic. Let
Y—Y,—Y be the Stein factorization of u. Then replacing Y by ¥, which is
bimeromorphic to Y we obtain 2). For Isom the proof is similar. g.e.d.

Remark 8. As is clear from the above proof the conclusion of 2) is true if
there exists an analytic subset ?’gBHol#(X, X’) (resp. Isom¥(X, X)) such that
¥’ABHoly(Xy, X4) (resp. Y’NIsomy(Xy, X)) is dense in ¥’ and that Y/,
yeU, is discrete. Moreover these results (Proposition 9 and this remark) are
true even if the assumption is weakened to: f, f'C/Y (Y may not be compact),

except that for 2) we have to replace Y by an arbitrary relatively compact open
subset in the conclusion.

Appendix

In this appendix we shall summarize some well-known results on the auto-
morphism group of a complex torus and its relative form.

a) Let T be a complex torus and o7 a fixed point. Then T has a unique
structure of a complex Lie group with identify 0. Then we can identify T
with Aut,T naturally. Let I'=H(T, Z) and H(T)SAut T the Lie subgroup of

isomorphisms of T as a complex Lie group. We note that H(T)=Aut (T, {0}).
Then we have the exact sequence

0——>T—>AutT—i>AutF

and if H is the image of «, then « induces an isomorphism H(T)=H. Hence
we have the natural semi-direct product decomposition Aut T=T-H(T).

b) Let f:X—Y be a proper smooth morphism of complex spaces (not
necessarily reduced). Suppose that each fiber of f is a complex torus and f
admits a holomorphic section s:Y¥Y—X. Then X has a unique structure of a
relative complex Lie group over Y. In fact we can identify X with Auty X
in the notation of 3.4 (cf. Proposition 7). Let HyX be the relative complex Lie
subgroup of AutyX defined by HyX=Auty{X, s(Y)). Then we have (HyX),
=H(X,) for each yeY. Let I'y be the local system of abelian groups on Y
defined by the presheaf U—H,(Xy, Z) with U open subsets of Y. Let
r: Autyly—Y be the relative automorphism group of Iy—Y ; r represents the
functor K: (An/Y)—(Sets) with K(f;)zthe set of ?-automorphisms of I’ ><Yl~’.
Auty[y is a relative complex Lie group over Y with » locally biholomorphic.
Then as in the absolute case we have the exact sequence

0—> X —> Auty X > Aut, Iy
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of relative complex Lie groups in the sense that each map is a morphism of
complex spaces over Y and induces an exact sequence of complex Lie groups on
each fiber. Hence ap induces an isomorphism of HyX with a relative subgroup
of Autyly, and we have the semi-direct product decomposition

Auty X=X -Hy X
over Y.
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