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Necessary Conditions for Well-Posedness
of the Flat Cauchy Problem and the
Regularity-Loss of Solutions

By

Takeshi MANDAT*

§0. Introduction

It is well-known that for some weakly hyperbolic operators, the regularity-
loss of solutions depends largely on lower order terms. For example, if P has
the principal part 0:—it?%02 and the Cauchy problem for P with the initial
surface t=0 is well-posed, then the lower order terms have the form ad;+
t¥-1p0,+c where a, b, ¢ are C>-functions. And the regularity-loss depends on
[Re b(0, x)|. In this paper, we pay attention to the behavior of the principal part
with respect to the time variable ¢, and we give a result of the following type
(cf. [2], [3] and their references).

Assume that the (flat) Cauchy problem is well-posed. Then, the lower order
terms satisfy some conditions, and the regularity-loss of solutions depends on
certain quantities, which are determined by lower order terms.

We observe another example. For the operator P=0%—10%+a0,+bd,+c
where a, b, ¢ are C>-functions, the regularity-loss of solutions does not depend
on lower order terms. But, if we consider the operator P=0?—10%-+a0,--t"/2h0,
~+c¢, then the regularity-loss depends on |Re b(0, x)|. We want also to deal
Fuchsian operators. So, we consider the operators whose coefficients may have
fractional or negative powers of ¢. For these operators, we can consider the
flat Cauchy problem to which the non-characteristic Cauchy problem for operators
with C=-coefficients can be easily reduced.

Our program is as follows. In Section 1, we state definitions, the result
and some examples. Our result consists of three theorems. In Section 2, we
consider two transformations of operators which reduce the theorems to easier
situation. In Section 3, we study an elementary fact on Newton polygons and
apply it. In Sections 4, 5 and 6, we prove the theorems.
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§1. The Result and Examples
First we introduce some notations.
¢, x)={, x’, xp)=, X1, =+, Xn-1, Xp)ER™,
(¢, §)=(z, &, §a)=(z, &1, =+, En-1, E)ER™.
0,=0/ot, 0,;=0/0x;, D,=—1i0;, Dy=—10,,
Dz=Dzi - Dzz,
where a=(ay, '+, a,) is a multi-index. For an open set £ in R™*, put
Qr={t, x)e; t=0}, L2i={¢ x)eL; 0=t<6}.
Ey(@N)={ft, x); f@t*, x)EC™(2")}
where M is a positive integer, and
E(Q+)=Mk>j0EM(.Q+) .
H2H={gsC=(2*); g is flat at (=0}
={geC=(2); g, x)=0 if t=<0}.
Let P be a differential operator on [0, T]XR" (T'>0) and

@y P= % a,ot, ©DIDE= 3 Pnalt, x5 Dy, Da),

Jj+lalsm

where P,_, is the homogeneous part of degree m—h.
For a positive integer M and a positive rational number g, where g, M is an
integer, we consider the following condition:

aj, qEtitEa-m B ([0, TIXR™),

Am,ot, x)=1 on [0, T]JXR".
In other words,
t"PQt, x;7, 6= 3 ¢t x)(tr)(EHg)*,
where a},.€Ex([0, TIXR"™, an.t, x)=1.

Thus, we consider the operators of Fuchsian type with C>-coefficients with
respect to (#V¥, x).

For these operators, we can consider the flat Cauchy problem; for feC3(£2%),
seek the solution usCHR*) of Pu=f.

(A—M, po)

(A—M, po)’

Definition 1.1. We say that the flat Cauchy problem for P is (uo)-well-posed
at the origin in R™*!, if there exist an open neighborhood £ of the origin and
a positive constant C, such that the following two conditions are satisfied.

(E) For any feCH(2+), there exists u=CH(2*) such that Pu=f in 2.

For any (, £)eQ* which satisfles I'=I7(f, £; C,)C2*, the conditions

0 {ueC‘jF(.Q*) and Pu=0 in I" imply that #=0 in I.
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Here, I,(¢, ; C)={t, x)eR™*; |x—%| =Cy(ir0—t™), 0=t={}.
When p,=1, the condition (U) is the existence of a finite propagation speed
and when pg,<1, (U) is a weaker condition.

Remark 1.2. (i) The non-characteristic Cauchy problem for operators with
C>-coefficients can be reduced to the flat Cauchy problem as follows. By means
of Pu=f and Diu(0, x)=g;(x) (j=0, ---, m—1), we can determine the Taylor
expansion of u with respect to ¢ at {=0. We take a C~-function v with this
Taylor expansion. Then, by the definition of v, g=f—Pv is flat at {=0. Thus,
by putting fi=u—v, the Cauchy problem “ Pu=f on [0, TIXR", Diu(0, x)=
gi(x) (=0, -+, m—1)” is reduced to the flat Cauchy problem “ Pii=g on [0, T']
X R", i is flat at t=07.

(i) If the flat Cauchy problem for P is (u,)-well-posed at the origin, then
P,(t, x; 7, &) is hyperbolic in a neighborhood of the origin when ¢>0. That is,
there exist a positive number ¢ and a neighborhood U of x=0 such that the
equation Pn(f, x; z, £ =0 has only real roots with respect to z, when (¢, x; &)
(0, e)XUXR™ This follows from the fact that for sufficiently small #,>0,
the Cauchy problem for P with the initial surface t=t, is C*-well-posed.

Now, for simplicity, we consider the direction (0, ¢,)={0, 0, ---, 0, 1) R™*1,
We define

pim, =sup{pcR; there exist a neighborhood £ of the origin and g€ E,(2%)
such that 070 Pn_s(t, x; 0, en)=t#g(t, x) in £2+} e R\ {oo},

where 2=0, ---, m and j+|a’| Em—h. We plot the points (J, %) (=0, ---, m),
and draw the Newton polygon 91 in (j, p)-plane. We will review on the Newton
polygon. We define v(k) = §ig_lsfm()u}??,—/c 7) for a real number « and p(j)=

sup{j+u(r); keR}. Put j=max{j; pih=oco for k<j}. Then, we have

(1.2) p(P=co if j<j,  p(<eo if j=j.

We call 1={(j, p)€[0, mIX (R {o}); p=pu(/)} the Newton polygon drawn by
{(7, p3%); 7=0, ---, m}. The non-vertical sides p=p(y) (féjém) consists of a
finite number of segments L.; p=v,—&,j (/,=<7=<j,.,), where »=1, ---, [ and
(1.3) B <kl <k, ME=v<py< <y, M=Jy> > > =].

Note that

(1.4) pja=pe (=0, -, ).

Put m,=j,.i—j, (r=1, -, and k= &5 =k, £h = Ehjim,=rs, -,
K ermy 1= - =K% _7=f;. Then, we have

m=j a4 4
ﬂ(]’)Z,Z_lﬁf (7=7, J-F1, =, m).

Since ; and ¥, -, k%5 determine 71 completely, we denote J1=91{7; &%, -,
k%-7}. As for the meaning of ¥, see Lemma 3.1 in Section 3. Now, we can
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state our result.
Theorem 1. We assume (A—M, p,) and that the flat Cauchy problem for P
is (uo)-well-posed at the origin. Then,
(1.5) G+la'|+h, g +r+Q—pla’ e for any (5, &', h).
Especially, the Newton polygon Jl, drawn by {(j, ui®%); j=0, ---, m—h} is con-
tained in the translation of Jl to the direction (—h, —h).
Next, we pay attention to one side L,; p=v,—x,j=v—kj. If (1.5) holds,
then in a neighborhood £ of the origin we have
(1L6) B0 Proalt, %3 0, ea)=jl o’ | PrecHa e hsubiatph) (1, ),
where b{%, =b". {P; v, £} €Ey(£2%).
We put
[ @)=F@ bl ; j=0, -, m—h—|a’|}(2)
m-h~la’l )
=" gm0, 00
j=0
and take a root 7, of f{®(¢)=0 with multiplicity d. Put

By =Bl fro; I, 5=0, -, )
h-

=Ll

A E 1 .. 14
J 1 os=0 p=0 geJ(h,s,p (1 g1t R

@

a3

h-s

xaph-srnf (e 11 {ele—1) - (e—ga+2)},

where J(h, s, p)=1{g=(g1, -, g4); go is an integer, go=2 and g+ - +g,=
h—s-+u}.

Theorem 2. Under the assumption of Theorem 1, we have

(1.7) B, =0  if h+j+|a’|<d—L

Note that Bg{g:%as FO(c0)0.
Finally we take the roots A, ---, ¢ of
& g, (1 L) (1 4B
(1.8) 33 B2 Z) (2 . )=0.
The following theorem is an extention of Theorem 3.3 in [3].

Theorem 3. We assume (A—M, o), (1.5), (1.7). Then, there exists a constant
C which depends only on M, po, m, v and & such that the energy inequality (1.10)
implies
(1.9) mhax(-—Im ) =Clg+m—p).

(1.10) lullp, e =C’l[Pullg. 0
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for any ueC(2*) and any 6<[0, T], where T >0, 2 is a neighborhood of the
origin, p, q are integers, C’ is a constant independent of u and 0, ||-|p.¢ denotes
the Sobolev norm of order p on QF and C¥(2+)={f €CT(R™*); supp f CR2+}.

Remark 1.3. (i) In Theorem 1 and 2, main interest lies in the case a’=0.

(ii) As for sufficient conditions, there exist many references. Here, we
only note [4], [5]. (See also the references of [3].) We can prove the necessity
of Sakamoto’s conditions in [4] under the assumption (A—M, u,), as a corollary
of Theorem 1.

(iii) As for the meaning of B{®),, see Proposition 2.4. Here, we only note
that B{®,=b™.(0, 0) if 7,=0. B, for =0, 1 are as follows.

1 ..
Bju= 7& D(z0),

Bt SO PO P )

(iv) In Theorem 3, if (1.10) holds, then g+m—p=1.

We will give some examples. In the following examples, n=1 and &’s are
rational numbers.

Example 1.
Ppn=Py=(c—t"1E)(z—1"2E)(r —173E)
:,L.S___(tml+tm2_l_tx3)f25+(tlc1+/c2+tm1+rc3+tm2+x3>,z.62_txl+/.:2+/c3sa’
where k3 >k, >k >—1.
Then, (1.5) claims that the lower order terms have the following forms:
P,= At~z Btr1- 1z Crrrtre-1£2,
P,=Dtz+Et17%
P0:Ft_3,
where A, B, -+, FEE([0, T1XR). For this operator, it is already known that

the flat Cauchy problem is (&;+1)-well-posed. (See [4].) In this case, the result
of Theorem 2 is included in Theorem 1, and the equations (1.8) are

1
—2(1—7)+B(o, 0)A-+E(0, 0)=0,

2k 1
7

A--A(0, 0)4B(0, 0)-+
2--C(0, 0)=0,
—2—15;——}—3(0, 0)+C(0, 0)=0.

=0,

Example 2.
= (r—t"1E)(c—172E) {r— (11 +1"2)E} o
:z.4_2(tlcl+tlc2)785+(tZIcl_l_gtlcl-ch_E_tZ/cz)TZEZ_ (tZr:l—ch_}_t/cl-{-Z:cz)z.Ea ,
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Where E2>IC1>"‘1.
Then, (1.5) claims that the lower order terms have the following forms:

PS____At—11.3+thl—ITZE_}_Ctzlcl—ITEZ+Dt2x1+K2—IES s
Py,=Et %+ Ft12c& - G262 |
P,=Ht*c+11173¢,
P=]t1,
where A, B, -, JEE(0, TIXR). In this case, Theorem 2 claims that

A0, 0)+B(0, 0)+C(0, 0)+ i;-=o.
And the equations (1.8) are
z(z—%)Jrcw, 0)2-+G(0, 0)=0,
1
(=) +az+p=0,

6k,

— and
7

where a=3A4(0, 0)4-2B(0, 0)+C(0, 0)+
B="1{3A0, 0)+B(0, 0} +EO, 0+F (0, 0+G(0, 0)—8rt+2s,

—A-+D(0, 0)=0,
2+C(0, 0)+D(, o>+—'f;—=o.

Further, Theorem 2 can be applied to any xR, so if we put
R, x)=A(t, x)+B(t, x)+C(t, x)+%,

then we have R(0, x)=0. This means that there exist a positive number ¢ and
SeE([0, TIXR) such that
R(t, x)=tS(, x).
As a matter of fact, by coordinate transformation and Theorem 1, we can prove
that the following condition is necessary for well-posedness;
R, x)st» 1 x E([0, TIXR).

And it can be also proved that this condition is safficient.

§2. Two Transformations of Operators

In this and the next sections, we state some preliminary results which are
necessary to prove the theorems.
First, for a positive real number p, we define T,; CHR*)—C3(3*), where
R={@, x); @7, x)eQ}, by
(Tpu)t, x)=u(t'?, x).

The next lemma is almost trivial. So the proof is omitted.
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Lemma 2.1. T, satisfies the following properties.
(1) T7'=T,1.

(ii) T;leatoTp=—Zl)—t“”at, where P-Q denotes the composition of operators P

and Q.

(iii) Tp'ealt, x)-Tpo=a(t?, x), where a(t, x) is considered as a multiplication
operator.

(iv) For any positive integer j, there exist constants el (k=1, -, j) such that
ef?=1 and

] o J B .
T3l Ty=p 3 eft*275}.

For a differential operator P and a positive rational number p, we put
T p(P)y=p™tm@=DT e PoT .

Proposition 2.2. (i) If P satisfiess (A—M, po), then ﬁzgp(P) satisfies
(A——]\7I, o) with fo=7pu,, M:%n, where n is a positive integer such that M

is an integer.

(ii) If the flat Cauchy problem for P is (uo)-well-posed at the origin, then the
flat Cauchy problem for P is (fio)-well-posed at the origin.

(i) If

(2.1) BI0F Pr-n(t, £ 0, eq)=tmeHI/ s brtnIen g0, (1),
where d{®, C°[0, T, then

(2'2) aﬁa?/ﬁm_h(t, 9?; 0’ en):z;—f(jﬂa'\+h)—h+(ﬁo—1)1a'|5](fz;,(t) s

where d§m, eC°[0, TY?], ¥=pv+(p—1)m and E=pe+p—1. Further, d{% ()=
p™ 0. (7). And for fixed o and d, if d".(0)=0 for h-+j<d, then d{".(0)
=0 for h+j5<d.

(V) T p-1(T p(P))=T H(T y-1(P))=P.

Proof. We compute P by means of (iii), (iv) of Lemma 2.1. If
P= 3 a;.(t x)DiD3,

JjHialsm
then -
P= 3> a, .t x)DiD%,
k+laism
where
m=-lal I .
(2.3) G a(t, x)= Ek a; «(t?, x)p’In‘Jeng)tkvm+p(m—J) .
j=

So, (i) is trivial. If

Gpall, £)= sy PR am A DIa | I8, (7),

jla’l
then
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dk,a(t, x.):_E]/-_'_tﬁ—ﬁ(m—an)—m+k+m)+(ﬂo—-1)|a'|
m=lal ] Uy g tmed
) —.Tj)m']ek”dj?ﬁﬁ"'“”(tp) .
j=k ]
So, (2.2) holds and
- k+n Pl L. .
)= 3~y p"ePdi ().

(iii) follows from this. To prove (ii), we have only to check the condition (U).
If f(t, x)=0 in I ("%, £; C,), then (T,f)(t, x)=f("?, x)=0 in

{(t, DS R™; | x— 2| SC{(FH7)lo—(p17)i}, 0117 <2}

=1, £;Co).
And conversely, if (T,u), x)=0 in F,,O(f, %; Co), we can prove that u(¢, x)=0
in I, (£Y?, £; C). Thus, (ii) is proved. (iv) is trivial.

Remark 2.3. If :1={(j, ); p=p(7)} is the Newton polygon drawn from P,
then the Newton polygon drawn from ﬁ:f[p(P) is
T=1{(j, 1); p=pp(j)+(p—1)m—j}.
Next, assume that P satisfies (A—M, p,) and (1.6). Define f{, take a root

7, with multiplicity d and define B{"), as in Section 1. And perform the fol-
lowing coordinate transformation in a neighborhood £ of the origin:

s=t,

yj:xj+t#°+€fj(t, x) (]:1: Tty 71_1),

JE— 1 1 E+15
VYn=Xn+ IC+1t =, x),

where ¢ is a positive number such that ¢M is an integer and f; (=1, -+, n—1),
e Ey(£2*). Let P(t, x; D, D) be transformed into P(s, y; Ds, D,). Then, the
following proposition holds.

Proposition 2.4. P satisfies (A—M, u,) and there exist b, € Ey(2%) such
that there holds

¥l (2.4) 0305 Prons, 33 0, en)=j1 @' | s¥r0Hie itm-nstuo-nia’ (G0 (s, y) .
We put f&=f® b5, ; =0, -+, m—h—|a’|}, then o,=7,—7%(0, 0) is a root of

FO(0)=0 with multiplicity d. We put ﬁ}fl;,:B},"&,{ao; F®, s=0, -, h}. Then,
B =B (h=0, -, m; j+|a’| Sm—h).
Especially, if %0, 0)=t,, then 5.(0, 0)=B§"..
Proof. By a straight computation of P we get (2.4) and

- -1 E,8-h
@5) 5.0, 0=— 3 'S O, O
Jl E=o gm0 gerimrem pl gil e gyl
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X @4 )EO, O) IT {sle—1) + (—go+2).

This shows that 5{.(0, 0) depends only on #(0, 0) as for the coordinate trans-
formation. Further,
F®(0)=1®(a+%0, 0)),
(2.6) -
M0, 0=B®m, i #0, 0)=r,.
Now, we consider another coordinate transformation;
u=s (=1),

w;=y; (=xt0f,¢, x) (G=1L, -, n—1),

wn:yn+ If_l“]. SE+1(TO_E(O: 0))
(zx +o L enee =20, 0)4r ))
n IC+1 3 s 0 .

~ ~
~ ~

Let E be transformed into Izj(u, w; Dy, Dy) and put b,‘-fl;,:!),‘,";,{lg; v, £}, f&=
F (b3, 5 j=0, -, m—h—|a’|}. Then, 2=0 is a_root of f{(2)=0 with multi-
plicity d. Applying (2.6) for P and P, we have b{".(0, 0)=B",, and applying

(2.6) for P and P, we have 5{.(0, 0)=B{".. So, we get the desired result.

§3. Some Remarks on the Newton Polygon
We define
F={f@®; feC0, T], f0)+0} (reR),
F.={feC0, T]; for any reR, t"f()C[0, T]}.

The following lemma states the meaning of the Newton polygon.

Lemma 3.1. We consider f(t, )= i]aj(t)fj, where a,Eij, ¢ €RY {oo}
7=

(7=0, -+, m) and an()=1. We draw the Newton polygon J: by {(j, p#;); =0,
-, m} and get 7,6 £%-7 as in Section 1. Then, there exist 0, EF (r=1, -,
m—7) and ¢,€F. (r=m—j+1, -, m) such that

(3.1) £, =11 e,

Proof. We can determine g, < <k, me,=v,<---<y, m=]'o>j1>-~->jz=f
as in Section 1. We will prove this lemma by induction on /. If /=0, then j=m
and gq;eF., (=0, ---, m—1). For any k=R, the polynomial

filt, D=t £ (L, t51)= 3 56 g (f)cd
j=0

has continuous coefficients. On the other hand, there exist ¢,=C°[0, T] (r=1,

m

..., m) such that f(t, ©)=II (t—o.()) and so, fi(t, 7)= f[l(r—t'”ar(t)). Thus, we

=1
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have o,€F..
Next, we assume that /=1 and the lemma holds for /—1. We consider

3.2) filt, D=1, tir)= g a(tyri-n

- % bj(t)fj .
j=0

By the definition of i, x;, we have b,eC°[0, T] (=0, -+, m), bn({)=1 and
b;(0)#0. So, there exist ¢,€F, (k=1, ---, my=m—7;) and a monic polynomial
g.(t, 7) of degree j; with C’-coefficients such that

£t 9= T c—240)aitt, ).
So, we have

(3.3 £, D=trifitt, )= 11 c—98,)gl, ),

j
where g(t, 7)= ﬁ,;d,-(t)r" is a monic polynomial of degree j; and d;=C%0, T]
=

(y=0, -+, 71). We claim that

(3-4) djEFﬂj—nﬂu (]:O: ) ]1)

Set

(3.5) ﬁ (c—1915 () = 3: f1m1=D ()73 |
! p

where ¢,€C°[0, T], en,(t)=1 and ¢,(0)#0. Then, by (3.3),
(3.6); a,(t)y= 2 trmMPe,(t)d (1),
p+g=j

where j=0, -, ji.

From (3-6),, we have ao(f)=t1"1¢,()d(t). Since e,(0)#0, we have d,()=
te g (eo(t) EFy o rymy-

Assume that 0=A=j,—1 and (3.4) holds for j<h. From (3.6).+:, we have

t1™Me()dp)=ana()— 20 11T Pey()d (1) .
p+%=2ti+1

Now, e,(t)d (f)ettarmx [0, T] and
ﬂq>[1h+1+ﬁ1(h+1”“4) (g=0, -+, h).
So, we have dni1EFp,, -sym,
Thus, we have proved (3.4). And this means that the Newton polygon
drawn from g is determined by j and K%+1, -, £mo7. So, by induction hy-
pothesis, we get the desired result.

The following proposition will be used to prove the case =0 in Theorem
1 and 2. We fix £€R"™.

Proposition 3.2. We assume (A—M, u,) and
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0iPn(t, £; 0, e)et " xC[0, T] (=0, -+, m).
If Py is hyperbolic when t>0, then we have
0108 Pn(t, %; 0, ey)Etr-ru+tabd+o-Dlalx COLQ, T7],
where j+|a| =m.
Proof. For neS*'={peR"; |p|=1} and p=R, we consider the equation
3.7 Pn(t, £; 7, eatpn)=0.

For fixed (¢, 5), the left-hand side is a polynomial with respect to (p, z) and
hyperbolic with respect to z. So, there exist m roots z,(, 5; p)of (3.7) which
are analytic with respect to p. By (A—M, po), we have |z,(t, 5; p)| =Ct#o~?
near t=0, p=0. On the other hand, we draw the Newton polygon J; from the
polynomial P,(t, £; 7, e,). Let I,=31{]; £¥, -, £X_5}. Put £k _p.,=-=cX=%,
where £ is sufficiently large. By Lemma 3.1, there exist ;¢ XC°[0, T]
(7=1, ---, m) such that

Pult, &7, en)= ,ﬁl (c—a,t).

From the above two facts, we can take o, 7; p) (=1, -+, m) such that

@ Pult, 237, eaton)= 1 (—0t, 7: o)),

(b) for fixed (¢, ), o,(t, ; p) is analytic with respect to p,

© oy, 5; 0| =Ct5, |o,i, p; p)| <Ct#%, near t=0.
By Cauchy’s integral formula and (c), we have

(d) |0%,(t, 7; p)i=Ct#o~* for any k and j.
So, the t-order of 0l0%(Pn(t, £; 7, eat0N))ip=0,r~ is not smaller than K=
m;z: kicﬁ—\—k(/,eo—l). Since the line p=y—kj lies below J1,, we have K =yv—k(j+k)
+(uo—Dk. So, by choosing 7 in a suitable manner, we obtain the desired
result.

§4. Proof of Theorem 1

By Proposition 2.2, without loss of generality, we may assume that M=1
and that g, v, and &, (*=1, ---, [) are positive integers and p,=2.

Remark 4.1. By the definition of 77, we have
0iPr(t, x; 0, en)=t9P g (t, x),

where g,€Ey(2%) (r=1[, ---, ), 2 is a neighborhood of the origin and g0, x)
%0 in any neighborhood of the origin.
Without loss of generality, we may assume the following condition:

(B) gT(O’ 0)/i0; 7':1, Tt l'
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(The proof is given in the appendix.)

We have to prove the followings:
[N 0I08 Pp_n(t, x; 0, eg) Efrsrd+iai+m-hequo-bia'i O
h=0, -, m; j+|a’'|S=m—h,
where r=1, ---, [, and
[N] I08 Pr_n(t, x; 0, e,) StHitei— Gt vy —ht o=l i i O

h=0, =, m; j+|a'|=m—h,
where £>k;,.
Of course, [N,] is trivial if 7=0.
For h=0, these follows from Proposition 3.2, so we have only to prove the
following proposition.

Propesition 4.2. We assume that v, &, v*, £*, m* and e(h, j, &’) are integers
and b{", €C>(2%), where the followings are satisfied.

(1) 008 Pn(t, x; 0, e,)=7!a/ | pprrdria'Druo-Diati ho (1 x) (j+|a’| Sm).

(2) 0908 Pr-n(t, x; 0, e,)=j @’ | fr-rd+ia’ism-hacuo-Diati=eth. foa"y s him) (t, x)
(h=1, =, m; j+|a’|=m—h).

B) 0<v*<y, p—1=k*<k, 0<m*=m, v¥—g*m*=y—rm*.

(4) b, stERmEItlah ) C(QY) if j+|a’| >m*

(B) bR 40, 0)==0 and b (0, x)70 in any neighborhood of x=0 if e(h, j, a)
>0.

©®) eh, j, d)S(E—e*)m*—h—j—|a’|), h=1, -, m; j+|a’'|Sm—h.

If the flat Cauchy problem for P is (po)-well-posed at the origin, then

eh, 7, @)=0, h=1, - ,m; j+la’'|=Sm—h.

When k,=p,—1, [N,] is satisfied by (A—M, g,). When ;> py,—1, we apply
Proposition 4.2 with k=&, vy=y,=km, £*=p,—1, v¥*=m(y,—1) and m*=m. All
the assumptions of the proposition is satisfied and so [N,] follows. We assume
[N.], then the assumptions of Proposition 4.2 are satisfiled with x=fr+1, Y=Vrsy,
£*=g,, v¥*=y,, m*=j,.. By Proposition 4.2, we have [N,.,]. In the same manner,
if [N;] holds and 7>0, we have [N,] (#>;) applying Proposition 4.2 with
v=p,+kj, £¥=k;, v¥=y,, m*=j. Thus, we get Theorem 1.

Proof of Proposition 4.2. This proposition is proved by the same method as
[2; Theorem 4.1]. (See also [1].) We assume that there exists (h, j, @’) such
that e(h, 7, @’)>0. We put

(251

_ eh, j,a) o ., -
S —— ax{m*_]._la,l,m j—la|—h>0, hz1}.

By (6), we have



NEcEssArRY ConDITIONS FOR WELL-POSEDNESS 157

4.1) 0< 01< (<.

o+2
We define

1 e(h, j, a)
E—pot2 m¥—j—|a’|

M={(h, j, a); 0= , bl | <m*, bz},

We may assume that 5{%.(0, 0)#0 for some (%, j, a’)=M, without loss of gen-
erality. (We translate the origin of R™ if necessary.) We put
Mo={(h, 7, a)EM; bj*.(0, 0)=0}.

Now, we perform the following coordinate transformation :

t=p%s,
4.2) x=p #%y; (j=1, -, n—1),

xn:p—(#o—l)ﬁyn
where 0=(r—p,+2)7".

By this transformation, P(t, x; D,, D;) is transformed into P,(s, v; Ds, D)
which is a differential operator on B=[0, 11X B'=[0, IIx{yesR"; |y| <1} for
sufficiently large p. From (1), we have

Pom(s, v; 0, 9)=Pn(p™%, p7#%y’, p= oDy = g0g, prdp’ pte-Dip.)

. 2 —-r(+la’ D+ (go-Dia’ 18
J. A'P

X p(J+,uoia'i+(,u0—1)(m—j—la'\)}Esv—:c(j+la’I)+([—lo—1)m'l
0) ’ - 1o8 —(uo-10\ a0’ ym=-j-la’;
Xbiui(sp™0, ¥/ 070, ynp~ oD giy e I

—_ 2 p((lc 2o+2) (GHla’ D+ (po-1)m=-v1d
J.a!

v-k(j+la' D+ (po-Dia’1}(0) J m-j- [al
Xs Ko biu ¥y’

We put u;=exp{iyy.p+il'(s, y)p’*} where y and [* is determined later, then
we have

4.3) ur'Po,m(s, 35 Ds, Dy)(ur)

— 2 p((x #0+2) (GHia’ D+ (o-DM-vId+m—j-1a’i+01(i+1a’)
J.a’

XSv-x(j+la'|)+(yo—l)la'|b](?)a’(p—5s’ p—yoﬁyl’ P—(yo—l)ﬁyn)
X A{y™ 71 (@501) (0, 1M +o(1)} (o—00).
Put
d§O% = {(t—po+2)(j+ &' ) F(pro—Dm—r} d+m—j—|a’ | +0.(j+ ')

={(k—po+2)0:(j+ &’ |)+me+1)—v} 4,
and

A max= {(£— o +2) o ym*+m(e+1)—v}d.
Note that when j+|a’| >m* by (4), we have
(4.4) ;0)4,(,)—63 0 [105yl 0 - (o~ 1)6y ) p—cx* K (mt-j-la’ x)af w (S, Y ,0),
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where f; o is bounded in C*(B) when p—oco.
(a) When j+|a’| <m* we have
dmax—d 0% =(&— pro+2)o:(m*—j—|a’|)6>0.
(b) When j+|a’|=m* we have
Amax—d;)0 =0.

(¢) When j+|a'| >m* by (4.1), we have

dmax—{d V0 — (&*—&)(m*—j—| '] )3}

={k—pot+2)o:+£*—k} (m*—j—1a’])0>0.
Thus, by (4.4), we have

Su—lcm*+(yo—l)la'l
J+la'j=m*

Xb%% (0, 0)7™ ™ (@1 (3. 1)%" +-0(1)}.

uUT'Py, m(1h) = p*max {

By the same way, for A=1, we have

Pp,m,—h.(s, y; 0, 77)___.2 p{(lc—[.zo+2)(j+[a’l+h)+(p0—1)m-—u+s(h,j,a'))5
J.a’
v-k(j+ia’ 1+h)~h+(uo-Dlia’1-e(h, j, a’ ), (h)
XS 1 (#o~-1 (h,j )bj.a’

ol . m—h-j-la’
Xolp'® pg P,

and
Hflpp, m_n(ul)_;jz’ p((lc—,uo+2)a'1(j+ia’ D+mE+1) -v+e(h, j, @' )3
.a

XSv-ﬂ(j+|a'i+h)—h+(;10—1)la'l—s(h.j.Gl’)
Xbjl2(p™%s, p~tely’, ptebly,)
X Aymo I (@000, 1) +o(1)}
We put di® ={k—pe+2)o.(j+ |’ |)+mle+1)—v+e(h, 7, a’)}d.
(d When h+j+|a’| <m* we have
Amax—d % ={(k—pro+2)a:(m*—j—|a’|)—e(h, j, a')}6=0.
The equality holds if and only if (&, j, a’)eM.
() When h+j+|a’|=m* by (6) and (4.1), we have
dmax— Al Z {(e—po+2)0:(m*— j—| &’ | )+ (£*—£)(m*—h—j— | a’|)}
=[m*—h—j—|a'D{lt—po+2)0:+£*—£} +h(k—p1s+2)0,16>0.
Thus, we have

UT Py (u1)=plmax ™™D (s, 7; 0%, 04 1) +0(1)} (p—00).
where
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(4-5) Dy(s,7; 0, 77')=j+|aZl_m*s”“m*+<F°‘1>'“"b}?)a,((), 0)aiy’®
2 su—f:(j+|a'l+h)-h*(‘uo—1)|a’I—-s(h,j,a’)
(R, j,a’)EMp

] a’(O O)Tm.* h-j-la’ IO‘ 77

Note that m*—h—j—|a’| >0 for (h, j, a’)EM,.
By the same way as the proof of Theorem 4.1 in [2] with m* acting as r,
we have the following.

For sufficiently large N, there exist real numbers 7,, 0, H, an open set Y C
{(s, y)eR™?'; s>0}, positive integers d, g, K, functions l{(s, y)eC=(Y) (j=1,
, d), rational numbers ¢1>0,>->04>0 and differential operators L. (r=0, 1,

, N), Lysy,, such that the followings are satisfied.

D
(4.5) Im 0,/*(s, v)<—6<0 on Y.
2)
7}
1/ <
4.7) |grad,Im /*(s, )| = iCon on Y.
3)

E;I°Pp°Ep:pH{Lo+ ’é P_T/KLT+AO—(N+DIKLN+1' P} ’

d .
where E (s, y)=exp(iroy.po+1i Z) U(s, y)p?9).
4) L, (r=0, .-, N) have analytic coefficients on Y, ord. L,<m and L,=
> bjals, y)DéDy, where by, o8, y)#0 on Y.

jtialsg

5) Lu+1,, have coefficients which are bounded in C=(Y) when p—oco and
ord. LN+1, péﬂ’L.

We fix (§, 9)€Y. In a sufficiently small neighborhood Z of (8§, #), we can solve
the following equation:

{(éP"T’KLT)(g‘{,P—ﬂKUJ(S, y)):O(p-(N+1)/K) ,
v0(§; 5")21 .

We put t,,:p‘5§ X, ;=P “rdG. (j=1, -, n—1), xp,nzp"f‘o'”"ﬁn and I,=
I',,@p, x,; Co). Under the coordinate transformation (4.2), I, is transformed
into

IE={(s, 9); 19— 9"+ p% | yn— 9, |2SCH$Ho—sH0)%, 0<5=§}
CAi(s, 3); [y—9I=Ci(§—s), 0=s=8}  for p=l

For (s, y)e¥YNI'¥, we have by (4.7),
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Im IX(s, y)=Im [($, $)+0,Im ['(§, $)(s—3$)
+ 29y, Im I'(8, )= 9)—Culls=$ 1"+ 1y =51

=Im (8, 9)+0s Im I'(3, ﬁ)(s—§)—g [s—$|
—C(1+CH | s—$]2.
By (4.6), there exist a neighborhood Z; of (§, #) and a positive number ¢, such
that
4.8) Im /(s, y)=Im (8, $)+eo(§—s)  for any (s, y)eZ.N[F.

From the assumption of (y,)-well-posedness, there exist a positive integer ¢
and positive constants J, C; such that

(4.9) lulls, ,=Cop?IPpullz,,  for any w&CH[O, TIXR"),

where [-[lg, , denotes the C%norm on [}, and p=1. We choose ¢’>0 such that
I'*n{(s, y); §—0'=s=$§}CZ, and put w,=IN{(s, y); §—0'=s=<5—0'/2}. We
take ¢(s)eC=(R) such that 0=¢(s)=<1 and

0, S=§—0’
gb(S):{ )

o= E 5, 9 S, 9

We define

Then, for sufficiently large N, there exist positive constants C,, C;, Cs such that
lleup[l;,p§C4p"‘lsIl%pl¢Epl-i—Csp”*"sat)lpplEpl
and
]Iupﬂé,pz(l/Z—Cep‘l)SIIi‘plstpl,
for sufficiently large p. So, by (4.9), there exi;ts a constant C, such that
[E (3, J‘z)lésgplst,,lé@p”*“"swliplEpl-
0

And we have
Im /A8, 9)+sup{—Im I*(s, y)} =0.
“o

This contradicts (4.8).
§5. Proof of Theorem 2

By Proposition 2.2, 2.4, we may assume that M=1, uq, v, & r=1, -+, )
are positive integers, p,=2 and z,=0, without loss of generality. We have only
to prove that

6.1 bim.(0, 0)=0 for h+j+la’|<d,
under the following assumptions:

(1) a{-a?r'Pm_h(t, x; 0, Qn):].! a’! tu—s(j+1a'I+h)~h+(ﬂo—1)la'Ib](_fl;,(t, x),
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where b{®, €C=(2+) and y, £ are positive integers.

(2) b0, 0)=0 for j<d.

(3) bP(0, 0)=0.
(2) means that there exists a positive number e such that

0lPn(t, 0; 0, e,) strred-rai C=,
So, by Proposition 3.2, we have
010g' Pp(t, 0; 0, e,) egrred-rradtia’spo=blali O
— et D+ (o-Dia’ 1+ecd=j-la’ s O |

This implies (5.1) for A=0.

Put M,={(h, 7, &); h+j+1a’|<d, bi".(0, 0)#0}. We assume that M,+0.
Put

. € d—h—j—|a’| ,
01— I£+s—;.lo+2 ax{ d ]—'la ; (h ]: )Eml};
where ¢ is a positive rational number determined later. Then, we have
)
(5.2) 0< 0‘1<m.
_ s . _ € d—h'"].""a,]
Put Wy={(h, j, @)EMs; 0,= p—— L Pl }

Now, we perform the coordinate transformation (4.2) where d=(k+4e—po+2)""
As in the proof of Theorem 4.1, P is transformed into P, and

UTP () = 3 pOCh -2 K E g
J,a

X bR (0%, p #0y’, p= o0y,
X Aym=IT1e =M@ ) (0. 1) Ho(1)}
where u;=exp{iy.yp-+il'(s, y)p}, d(h, j, a)=[{k+e—po+2)o,—c}(G+|a'])+
(k+e+1)m—y—ehld and h=0,1, -, m. Put dmax=[{t+e—po+2)o,—e}d+
(k+e-+1)m—v]0.
Note that b{™.(p"%s, p~#0%y’, p~ =13y Yy=0(p7%) if b™M.(0, 0)=0, especially
if h=0, j+la’'|<d.

(a) For sufficiently small ¢, we have
dmax—{d(h, j, &) =0} =[{(k+e—po+2)o1—e}(d—j—|a’[)+eh+116>0.
(b) When A=0, j+|a’|=d, we have
dmax—d(0, j, a’)=0.
(¢) When A=0, j+|a’'|>d or h=1, h+j+|a’|=d, we have
dmax—d(h, J, & )={(&+e—p+2)o,—e}(d—h—j—|a’|)
+(k+e—pot+2)ah>0.
(d) When (A, j, a’)€M,;, we have
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Amax—d(h, 7, a')={(k+e—pe+2)o(d—j—|a’|)—e(d—h—j—|a’|)}6=0.

The equality holds for (A, j, a’)=M,.
Thus, if we take ¢ sufficiently small, then we have

U P y(u) = pmax {y™ 2D (s, 7; 0", 0y 1) +0(1)},

where
@1(8, 7; 0, 7]/): 2 sv—/cd+(,uo—1)la’!b}0)a,(0, 0)0-.777/&’
jHia’|1=d '
_!_ Sv—lc(j+|a’]+h)—h+(#0-l)ia’Ib},hgl’(o, 0)
(h,j,a")EMg

er-h—-j-laﬂaj”/a' .
The rest of the proof is just the same as the proof of Proposition 4.1, with d
acting as m*,

§6. Proof of Theorem 3
By Proposition 2.4, we may assume that 7,=0, without loss of generality.
So, we assume
1) Bjr.=bj(0, 0),
(2) a{aglpm_h(t, x; O, en):]-! a/ ! ty-:c(jﬂa'l+h)—h+(yo-1):a'lb](_,h;,(t, x),
where b§t, € Ey(2%),
() bM (@, 0)y=trod-i-M gt (t) for j+h=d—1,
where gieC[0, T, v, is a positive rational number,
4) bP(0, 0)=0.
We perform the following coordinate transformation :
t=p0""s,
6.1) x=p y; (=1, -, n=-1),
Xa=p “"Yn,
where w,, @', w, are positive integers determined later which depend only on

M, po, m, £, v. P is transformed into P, which is a differential operator on B
for sufficiently large p, and

Poom-n(s, 35 0, N)=Pr-n(s07%, y07°; ap®, 70°)

— pM~h @ (Mm—-h) Jwg-wp)Ha' (@ -wp)
777" P j+|a’l§m—hp
X 3108 P (s 0=, yp=?; 0, eﬂ)_.lf(i)i( 7’ )a,
Jta’t\n,/ \n,

_ pd(h,j.a’){Sv—lz(jﬂa’|+h)—h+(/10—l)la'l
Jjria’|Sm-h

X b (sp=?, 0)gip’® pp-r-i-1a’ifo(1)},

where d(h, j, )= {+1)(h+j+|a')—pola’ | —vlwt|a' |0 +(n—h—j—|a'|) 0,.
Put dnax={(g+1)d—v}wy+(m—d)w,.



NECEssARY CONDITIONS FOR WELL-POSEDNESS 163

We want to take w,, w’, w, such that

(@) dmax>d(h, 7, 0) when j+h>d,
(b) dmax>d(h, j, 0)—ve(d—j—h)w, when j+h<d,
(€ dmax>d(h, j, @) when |a’|>0.

If these are satisfied, then we have

(6.2) Py(s, v; o, n)zpdmax{H%}:ds”"‘d""b},"&(O, 0)o/pm-%+o(1)}.
Now, (a) means that
(6.3) 0, > (k+ 1w,
and (b) means that
6.4) {e+1D)+vo} wo>ws, .
We take w,=(k+1+¢)w,, where 0<e<y,. Then, (c) means that
(6.5) {(h+j+la' | —=d)etpola’ |}wy> |’ |0 if |a’{>0.
If we take s<—é% and a)'<-§— Lo, then (6.5) holds.
Thus, we can take o, o', w,, ¢ depending only on M, y,, m, v, £ such that
(6.6) Py(s, y; Dy, Dy)=pdmax{j}‘;ds”"‘d“”b}fl@(O, 0)D{Dy, ¢

. .
+ 2 p7Rs, 35 Dy D)™ VP Rovis, o5, 33 Doy Dy

Here, N is a sufficiently large integer, R;€Q(m)={R(s, y; Ds, D,); a differ-
ential operator on B, ord. R=m, and R satisfies (A—M, u,) on B} (j=1, -, N)
and Ry41,,E€Q%m)={R,(s, y; Ds, D,); a differential operator on B, ord. R,<m,
and the coefficient of D{Dj is bounded in #/*ro®''-mx F,(B) when p—oo}.
Further, R; (=1, ---, d) do not contain the terms D:D¢ where a,=m—d+1.
Put .,

L=A"1 ’g}obé"_’h,o(o, 0)s?="Dg="  A=7=%b®(0, 0).

Then, by the definition of 2, (I=1, ---, d), we have

L= l;ﬁl (s9,—id)),

6.7)
N
Pp:Pdm“A{svandeLDZln_d"}_ .zlquRJ+P‘(‘v+l)RN+1 p} .
F=
Now,
(6.8) exp(—ipYs)ePpoeXp(ipya)

N .
:pdmax+m—dA{su—/cd—dL+ E%P_JSJ_FP_(NH)SNTI P].? s
i= J

where S;€Q(m) (j=1, -+, N), Sy+1.,€@*m). We may assume that Reil,=
m?}% Reil,. Set 8=il,, then —Im A;=Re #. We may assume that Re §=0. By
isls
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the fact (sds—id,)os?=s%(sd,—iA,+8), we have
69) { S_ooexp(_,'pyn)efrpqexp(,'pyn),sti:pdmax+m-‘iALp,
L,=s"""%L+ ngp‘jTj—l—p“(N“’TNﬂ,p ,
where Ly=s~0e Les®= i[l(sas+z'yl), =22 and T,€Qm) (G=1, -, N, Trss.,»
e@*(m). Note that Reip; =0 (/=1, ---, d). Define
E(B)={f€Ex([0, LIXR"™); supp fCB}.

Then, we have the following lemma.

Lemma 6.1. For complex numbers y, a, a non-negative integer j and f € E(B),
we consider

(6.10) (s0s+ipv=s*(log s)’f(s, y), s€[0, 11.

There exist gn€E (B) and A,sCy(B’) (h=0, -+, j) such that the following
function is a solution of (6.10).

61D uls, 3)=s" 3 guls, )log sV P57 3 Ay(y)(log s)7Hi-R,

Further, if Re a>—Reiy, then we can take A,=0 (h=0, ---, /).
Proof. For any GeCg(B’), the function

6.12) s, y):s‘“‘Bjt“”’“l(log D, y)dt—l—G(y)]

is a solution of (6.10). We claim that this has the form of (6.11) for some G.
Note that we can expand [ in the following form;

K
(6.13) f, y)zE)f;(y)l"’”—f—t"‘“””f?}(i, ¥,
where f,eC{(B’) and f<E.(B). So, we have
(6.14) [irernip, pde=sringls, y)+Filog s—G),

where g€ E(B) and F, GEC{(B’). Further, F=0 if Re(a+iu)>0. So, the claim
is true for j=0.
We assume that the claim is true for j—1 (;=1). Then, by (6.14), we have

[zereecog s, yar
=[{t=+*# g, y)+F(y)logt}(log 1)1}
[t gt, )+ Fiylog 1 jllog =111
=s%**g(s, y)log s)’+F(y)(log s)**

. s a+ip-1 j— _ ] i+
1250 g(t, y)(tog ty-2dt—— 1 F(y)log 9.
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By induction hypothesis, the claim is true for j.

Corollary 6.2. For complex numbers pi, -+, pa, @, @ non-negative integer j
and feE(B), we consider the equation

(6.15) Lov(z ldle1 (sas+i/.tz)V)=sa(10g $)Yf(s, ¥).

There exist gn, A, nsEL(B) (h=0, -+, j+d—1; [=1, -+, d) such that the follow-
ing function is a solution of (6.15).
J )
(6.16) u(s, y)=s 2 gu(s, y)(log s)"""
d
s7U’S) Ay 4(s, y)(log sye,
leg(-Re a) h=0

where g(a)={/; Reip;=a}.
Now, we will solve
(6.17) L (ﬁu -j):O( —y-1
: P\ 5 0 o .

Take uo(s, y)=u,(y)eCg(B’), where u,(0)=1. Then, Ti(u,)es ™ X E.(B). So, by
Corollary 6.2, the equation s**¢-¢L,u,——T,(u,) has a solution

wis, ESTHEDIKEBIL 3 st S (log )P X ELB).

leg(m+v-(s+1)d)

Set d=m+v—(k+1)d+1. Then, by v—kd=d—m, we have 4=1. Define

jla+1n jd

A;={ ] s7t 3% (log s)72-"f, 4(s, ¥); a,eC, 0=Re a,=7j4, [, r€E.(B)}.

h=0
If quAj (]:1, e, k), then there holds ng(ukH_l)Es‘mXAk. SO, by Corol-

. k1 .
lary 6.2, the equation s"‘“i“dLoukH:—lZ) T.(tps1-;) has a solution U, EA,.1.
=1

Thus, we get a solution of (6.17) such that u;A;.
Take a non-decreasing C*-function X(¢) such that

0 (=1/2),
A(t)=
1 (t=1),
and put Xp(s):X(sp”W”) (p=1). Note that for y=1 there exists X,eC=(R) such
that 35%,(s)=s"X(sp®®) and suppX,C[1/2, 1]. Set
N -
{ V(s y)=j§0u;(s, e,
UV (s, 3)=expipya)sA,(s)V 0.
Then,
6.18) P, (UN)=explipyn)s’ pmaxt ™4 AL ,(X,V V)

=exp(ipy,)s? ™ p maxtm-¢
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N
X {EGJ(AU(S; Y, p)(o—j‘i"G](vAQL*(s’ y; p)p—N—-l},
where
G EB={ 3 hils, y(sp"P); h, €4, supp LCL1/2, 1T} (=0, -+, N)

and
(N+1D(d+1) (N+1Dd

GeBfL={f(s, y; 0= 2 X 3 slog )N rgy (s, 35 p)

= h=0 7; finite
XX (sp D) ; 0<Re ey, <(N+1)4, gi,5,» is bounded in E.(B)
when p—oo, supp X,C[1/2, 1] or X.=X}.
The following lemma follows from Lemma 3.10 in [3].

Lemma 6.3. If (1.10) holds for P, then there exists a constant C* such that
the following inequality holds for sufficiently large p.

(6.19) lull? =C*pa-Pen|P,ulli®  for any ueCF(B).
Here,
”“m_{ubamu ($=0)
vl » (p=0),
lvllq (¢=0)
lvllg® =
[ weCT (B*) ng}%:::lf)nlo (Q§O) ’

where |||, denotes the HP-norm on B*=[0, 1/2]X B’ and (-, ) denotes the L*-
inner product on B¥*.

Now, the desired result follows from the following lemma, which is proved in
the same way as Lemma 3.11 (case (i)) in [3] (note that 4=2(k-+1)(m—1), d=1
and dgax=4m—1 in [3]).

Lemma 6.4. There exist positive constants 8, C such that

(1) NUSPN5° =dp7,
(ii) “PpU’EN) [[éz>§cpdmax+m-d+q+<m—Re 0>/ 24

for sufficiently large p.

From the above two lemmas, we have

pé(Q“p)wn‘f‘dmax‘i‘m—d—l—q—}—m—_‘;;_e_ﬁ_o
So,

Re m

24 —(q p)<w”+1)+dmax+77l d—}—ﬂ-

Since ¢g—p+m=1, we have
Re §=Clg—p+m),
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where C depends only on M, pu,, m, v, &.

Appendix. Proof of Remark 4.1

a

For any £=R", we can consider £ as the origin and define the Newton
polygon J1; from P. For this J1;, we get a function u(j), integers m=7j,>7,>
-+>7,=7=0 and real numbers £f=--=g%-; as in Section 1. We also denote £f

=£f(x). There exist g.€E(V*) such that
OrPn(t, x; 0, e)=t*9Pg(t, x)  (r=1, -, D),

where V is a neighborhood of (0, £) and g.(0, x)%0 in any neighborhood of Z.
We consider the following condition :

(Bs) g0, £)#0  (r=1L, -, .

Note that {xeR"™; (B;) holds} is a dense set. For a Newton polygon 1=
a7 ; &F, -, £r-;} and £>£%_.. Put

Ne]=71{0; &F, -, Km-3, &, -, £} (& appears 7 times).

Then, it is clear from the definition of J1; that 97z is continuous with respect

a

to £ in the following sense:

For any 2=R™ and any l:>/cﬁ-;(fc), there exists a neighborhood U of % such
that

(A1) T3 C Tz k] for any HeU.

Now, we assume that Theorem 1 holds under the condition (B,) and consider
the Newton polygon 71=3J1,. For any /c>.‘z”,;-5(0), we take a neighborhood U of
the origin such that (A.1) holds for £=0. For any £<U and any neighborhood
V of %, we take $€V such that (Bj;) holds. Then, Theorem 1 holds at x=3%
instead of the origin. Since V is arbitrary and J1;CJ1[«], we have

Prrosratial iy =t Gro-Dia’i s COrQ, T
0208 Pr-n(t, %30, e,)€ =1, . 0,
frGYFET-EGHIal )~ R (po-DIa’ Ly CO[(), T .

Since £ and £ are arbitrary, we have (1.5).
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