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Necessary Conditions for Well-Posedness
of the Flat Cauchy Problem and the

Regularity-Loss of Solutions

By

Takeshi MANDAI*

§ 0. Introduction

It is well-known that for some weakly hyperbolic operators, the regularity-
loss of solutions depends largely on lower order terms. For example, if P has
the principal part 3|—t2kd2

x and the Cauchy problem for P with the initial
surface £=0 is well-posed, then the lower order terms have the form adt+
tk~1bdx+c where a, b, c are C°°-functions. And the regularity-loss depends on
\Reb(Q, x)\. In this paper, we pay attention to the behavior of the principal part
with respect to the time variable t, and we give a result of the following type
(cf. [2], [3] and their references).

Assume that the (flat) Cauchy problem is well-posed. Then, the lower order
terms satisfy some conditions, and the regularity-loss of solutions depends on
certain quantities, which are determined by lower order terms.

We observe another example. For the operator P=dz—tdz
x+adt+bdx+c

where a, b, c are C°°-functions, the regularity-loss of solutions does not depend
on lower order terms. But, if we consider the operator P=dz—tdz

x+adt+t~1/zbdx

+c, then the regularity-loss depends on |Re6(0, x ) \ . We want also to deal
Fuchsian operators. So, we consider the operators whose coefficients may have
fractional or negative powers of t. For these operators, we can consider the
flat Cauchy problem to which the non-characteristic Cauchy problem for operators
with C°°-coefficients can be easily reduced.

Our program is as follows. In Section 1, we state definitions, the result
and some examples. Our result consists of three theorems. In Section 2, we
consider two transformations of operators which reduce the theorems to easier
situation. In Section 3, we study an elementary fact on Newton polygons and
apply it. In Sections 4, 5 and 6, we prove the theorems.
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§ 1. The Result and Examples

First we introduce some notations.

(t, x)=(t, x', xn)=(t, xi, •••

(r, f)=(r, r, £B) = (r, &, -

dt=d/dt , d X j = d / d x j , Dt = —idt, DXj=—idXj,

DS=DSI-DS»,
where a=(alr ••• , an] is a multi-index. For an open set Q in /2n+1, put

Q+={(t, x)^Q; f^O}, fl

EM(Q+)={f(t, x); f ( t M , *)

where M is a positive integer, and

Jf>0

fi+); g is flat at f=0}

fl); ^tf, ^)=0 if ^0}.

Let P be a differential operator on [0, T^xRn (T>0) and

(1.1) p= s fl/.«tf, x}D{

where Pm-h is the homogeneous part of degree m—h.
For a positive integer M and a positive rational number ^0 where ^M is an

integer, we consider the following condition :

,
(A-M, /i0)

am .o(f, *)=! on [0, T]XJBB .

In other words,

t"P(t, x ; r, f)= 2 flj.atf, ^)arX(^of)« ,
(A-M, //o)7 ^+ I a | g m

where a'j.a^EK([0, T]X^n), fl^i0tffx)=l.

Thus, we consider the operators of Fuchsian type with C°°-coefficients with
respect to (t1/M, x).

For these operators, we can consider the flat Cauchy problem; for /eC/(/2+),
seek the solution u^Cj(Q+) of Pu=f.

Definition 1.1. We say that the flat Cauchy problem for P is (^-well-posed
at the origin in Rn+1, if there exist an open neighborhood Q of the origin and
a positive constant C0 such that the following two conditions are satisfied.

(E) For any f^Cj(Q+}, there exists u^Cj(Q+] such that Pu=f in Q+.

rFor any (£, x}^Q+ which satisfies r=r^(t, x\ C0)C^+, the conditions
( + and Pu=Q in F imply that w=0 in r.
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Here, F^0(f, x;C0)={(t,
When fjLQ=l, the condition (U) is the existence of a finite propagation speed

and when f£Q<l, (U) is a weaker condition.

Remark 1.2. (i) The non-characteristic Cauchy problem for operators with
C°°-coefficients can be reduced to the flat Cauchy problem as follows. By means
of Pu—f and D{u(Q, x)=gj(x) (/=0, ••• , m— 1), we can determine the Taylor
expansion of u with respect to t at t=Q. We take a C°°-function v with this
Taylor expansion. Then, by the definition of v, g=f—Pv is flat at t=Q. Thus,
by putting u = u—v, the Cauchy problem " Pu—f on [0, T]X#n, D3

tu(Q, oc}=

gj(x] (y=o, ••• , 77^—1) " is reduced to the flat Cauchy problem " Pu=g on [0, T]
xRn, u is flat at t=Q".

(ii) If the flat Cauchy problem for P is (//0)-well-posed at the origin, then
Pm(t, x; T, ?) is hyperbolic in a neighborhood of the origin when £>0. That is,
there exist a positive number e and a neighborhood t/ of x=Q such that the
equation Pm(t, x; T, f)=0 has only real roots with respect to T, when (£, * ; f)
e(0, e}xUxRn. This follows from the fact that for sufficiently small t0>Q,
the Cauchy problem for P with the initial surface t=t0 is C°°-well-posed.

Now, for simplicity, we consider the direction (0, en)=(Q, 0, ••• , 0,
We define

; there exist a neighborhood Q of the origin and g<=EM(Q+)
such that d*rd$Pm-h(t, x\ 0, en}=t^g(tf x) in ^+}el^W{oo},

where /z=0, ••• , ?n and /+ |a7| ^m—h. We plot the points (/, ^o) (/=0, ••• , m),
and draw the Newton polygon 32 in (/, //)-plane. We will review on the Newton
polygon. We define V(K)= inf (&% — £]") for a real number /c and //(/) =

Put ;=max{/; ^%=oo for ^<j}. Then, we have

)=o0 if /<^ j"0')<°° if y^/-
We call 3Z={(y, j«)e[0, m] X (jRU {00} ) ; ^^^(;)} the Newton polygon drawn by
{(j> ^o)j 7=0» •"» ^}- The non-vertical sides fi=fjL(j) (j^j^rn) consists of a
finite number of segments Lr; ^=ur—Krj (jr^j^jr-i\ where r=l, ••• , I and

(1.3) KI<KZ<---<KI} m/c1=u1<v2<--'<ui

Note that

(1.4) M/r)=A$!o fr=0

Put mr=jr-i—jr (r=l, - • - , / ) and /cf= ••• /c
^m1+...+m^_1+i= ••• =Km-?=Ki- Then, we have

W-J xs

(j=J,

Since / and /cf, ••• , K^,-? determine 52 completely, we denote 32=32{jm, fcf, • • • ,
«:*_^}. As for the meaning of K?, see Lemma 3.1 in Section 3. Now, we can
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state our result.

Theorem 1. We assume (A—M, ^0) and that the flat Cauchy problem for P
is (^-well-posed at the origin. Then,

(1.5) (j+\a>\+h, p£l + h+(l-tJLt)\a'\)^m for any (j,a',h\

Especially, the Newton polygon 32 h drawn by {(/, /^o); j=Q, ••• , m—h} is con-
tained in the translation of 32 to the direction (—h, — h).

Next, we pay attention to one side Lr\ p—vr—Krj=v—K.j. If (1.5) holds,
then in a neighborhood Q of the origin we have

(1.6) 3#£/Wf, x ; 0, *„)=/!«' ! f-^^'

where bj»,=b™,{P; v, K}^EM(Q+\
We put

l>; ;=0, -, Tn
m-h-\a' 1

= 2 ^.(0,0)r>
J=0

and take a root TO of /OO)(T)=O with multiplicity d. Put

B^-=JBtfMr0;/2!), s=0,-,h}
1 ^ ^-s -

= -4r2 S

where /(A, s, ^)={^— (gi, ••• , £>); ^» is an integer, ge^2 and gH ----- \-gP=
h-s+fjt}.

Theorem 2. Under the assumption of Theorem 1, we have

(1.7) Sj*>,

Note that B?,>0= Jy3r
d/o(0

Finally we take the roots h, ••• , Xd of

(1.8) 25^.

The following theorem is an extention of Theorem 3.3 in [3].

Theorem 3. We assume (A—M, //„), (1.5), (1.7). Then, there exists a constant
C which depends only on M, p0, m, v and K such that the energy inequality (1.10)
implies

(1.9) max(-Im lh)^C(q+m- p) .
h

(1-10) \\u\\p,e<C'\\Pu\\q,e
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for any u^C™(Q+] and any 0e[0, T], where T>0, Q is a neighborhood of the
origin, p, q are integers, C' is a constant independent of u and 6, IHIp,0 denotes
the Sobolev norm of order p on Q^ and C™(Q+)={f<=C™(Rn+1) ; supp/dJ2+}.

Remark 1.3. (i) In Theorem 1 and 2, main interest lies in the case a'=0.
(ii) As for sufficient conditions, there exist many references. Here, we

only note [4], [5]. (See also the references of [3].) We can prove the necessity
of Sakamoto's conditions in [4] under the assumption (A— M, //0), as a corollary
of Theorem 1.

(iii) As for the meaning of By%,, see Proposition 2.4. Here, we only note
that B™,=b™,(0, 0) if r0=0. Bfc, for A=0, 1 are as follows.

(iv) In Theorem 3, if (1.10) holds, then q+m—p^l.

We will give some examples. In the following examples, n=l and KS are
rational numbers.

Example 1.

P»=P8=(r-^f)(r~ff)(r-^f)

= T3_^K1JrjK2JrjKB^2£Jr^K1+KZJrtK1+K3Jr^ ^

where K3>tc2>Ki>— 1.
Then, (1.5) claims that the lower order terms have the following forms:

where A, B, ••• , Fe£([0, T]x/2). For this operator, it is already known that
the flat Cauchy problem is (£i+l)-well-posed. (See [4].) In this case, the result
of Theorem 2 is included in Theorem 1, and the equations (1.8) are

',0)=0,

, 0)+5(0, 0)+-^-=0,
i

' ,0)=0,

-1—~+B(0, 0)+C(0, 0)=0.
\ 1

Example 2.

a-(^i+**+*ei+2**)r£8,
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where K2>rc1> — l.
Then, (1.5) claims that the lower order terms have the following forms:

where A, B, • • • , /e£([0, T]X/2). In this case, Theorem 2 claims that

4(0, 0)4-5(0, 0)+C(0, 0)+-^-=0.

And the equations (1.8) are

0, 0)=0,

*-
where a=34(0, 0)4-25(0, 0)+C(0, 0)+-^- and

=--{34(0, 0)4-5(0, 0)}+E(0, 0)+F(0, 0)+G(0, 0)- 8^

Q, 0)=0,

)+-j-=0.

Further, Theorem 2 can be applied to any x<^R, so if we put

R(t, x)=A(t, x)+B(t,

then we have R(Q, x}=0. This means that there exist a positive number e and
Se£([0, T]XE) such that

jRU, z)=^£Sa, x) .

As a matter of fact, by coordinate transformation and Theorem 1, we can prove
that the following condition is necessary for well-posedness ;

R(t, x)&'*-KixE([Q, T^xR).

And it can be also proved that this condition is safficient.

§ 2. Two Transformations of Operators

In this and the next sections, we state some preliminary results which are
necessary to prove the theorems.

First, for a positive real number p, we define Tp ; Cj(Q+}->C°f(Q+], where
)efl}, by

The next lemma is almost trivial. So the proof is omitted.
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Lemma 2.1. Tp satisfies the following properties.

( i ) 7V=7V-i.

(i i) T~j)
1°dt°Tp= — t1~pdt, where P°Q denotes the composition of operators P

and Q.
(iii) T~p-°a(t, x}°Tp=a(tp, x), where a(t, x) is considered as a multiplication

operator.
(iv) For any positive integer j, there exist constants e(

k
j:> (k = l, ••• , j) such that

e(/> = l and

For a differential operator P and a positive rational number p, we put
2-p(P)=/>™rcp-1)Tj1-PoTp.

Proposition 2.2. (i) // P satisfies (A—M9^\ then P = ffp(P) satisfies
~ ~ M ~

(A—M, P.Q] with p.Q=p{jLQ, M-=- — n, where n is a positive integer such that M

is an integer.
(ii) // the flat Cauchy problem for P is (^-well-posed at the origin, then the
flat Cauchy problem for P is (fl^-well-posed at the origin.

(iii) //

(2.1) dld$Pm-h(t, x ; 0, en)=t

where d^a,^C°[Q, T], then

(2.2) %d$Pm-h(t, x;Q, en}=t^^j+la'^h^h+^~^a^3^a,(t) ,

where a^a, eC°[0, T1/p], V=pv+(p-l}m and ic=pK+p-L Further, 3^a,(t)=
Pm-J'd™a,(t^. And for fixed af and d, if d^,(Q)=Q for h+j<d, then 3™,(Q)
=0 for h+j<d.
(iv) 3-p-i(

Proof. We compute P by means of (iii), (iv) of Lemma 2.1. If

P= S a j . a ( t , x)DiD«x,
j+\a\^m

then
P= E ak.a(t,x)D*tD'x,

k + \a\^m

where
m-\a\

(2.3) 3k,a(t,x)= S ajia(t
p,

j=k

So, (i) is trivial. If

' ' jla'l
then
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*...». fl̂ f-"-
m-la l 1

v V1

* 2-i ~^7~
3 = k J I

So, (2.2) holds and
k+h b \

7 f h \ / ,\ •«—i «v .

(iii) follows from this. To prove (ii), we have only to check the condition (£7).
If f ( t , *)=0 in />0(f1/p, x] Co), then (Tpf)(t, x)=f(t1/p, *)=0 in

{(t, *)

And conversely, if (Tpu)(t, *)=0 in /^0(^, ^; C0), we can prove that u(t, x)=0
in FfiQ(i1/p

f x ; C0). Thus, (ii) is proved, (iv) is trivial.

Remark 2.3. If 3l={(j, ^); ^JJL(J}} is the Newton polygon drawn from P,
then the Newton polygon drawn from P — ̂ P(P} is

Next, assume that P satisfies (A—M, //0) and (1.6). Define /^}, take a root
TO with multiplicity d and define B^a, as in Section 1. And perform the fol-
lowing coordinate transformation in a neighborhood Q of the origin:

s=t,

yj=xj+t^fj(t, x} (/=!, - , n-1),

where e is a positive number such that eM is an integer and/,- (; = 1, ••• , w— 1),
T^EM(Q+\ Let P(f, ̂ ; A, Z?x) be transformed into P(s, y; Ds, Dy\ Then, the
following proposition holds.

Proposition 2.4. P satisfies (A—M, /j0) and fftere ejtzs£ b^a,^EM(Q+] such
that there holds

' f (*} A.\ f^Jf^a' P fa TJ • 0 /5 >— i' \ fvf \ cv~ sCJ + I«' l + Iil-fi + tttQ-llla' l/TC/l) /'e A,Nsi w-4; c/ffO1^ rm-ti(s, y , u, en)—J l- OL \ s ™ Djta*(s, y).

We put fW*=f™{Ej*a' °, J—®> '" y m—h—\a'\}, then aQ=T0—r(0, 0) /s a rooif of
/0

(0)(<7)=0 u;rtft multiplicity d. We put BM,=B$»,{a0;fy, s=0, • • • , ft}. Tften,

Especially, if r(0, 0)=r0, fften 5jf^(0, 0) —5j^,.

Proof. By a straight computation of P we get (2.4) and
1 h h-k Z((\ r\Mi<i's-h/o c\ reft) /n n^i v* v1 v1

\/i.OJ L/^, a'(\J, U; — —rr~ 71 71 7j
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X(9>+ft-s+"/<!;)(?(0, 0)) n {*(*-!) - (K-gl>+2)}.
6=1

This shows that 5j*^.(0, 0) depends only on r(0, 0) as for the coordinate trans-
formation. Further,

, 0)),
(2.6)

\ fcj«,(0, 0) = BJ!». if f(0,0)=r..

Now, we consider another coordinate transformation ;

u = s (=f),

JnH ^y-S'+^To-rCO, 0))

*nH—^-tK+1(T(t, *)-r(0, O)+TO)).

Let P be transformed into P(u, w; Du, Dw] and put £j^=ftJ!^{P; ^ «}, /a*) =

faV{bj?a,; ;=0, • • • , m — A — l a / l } . Then, ^=0 is a root of 7,50)M)=0 with multi-
plicity d. Applying (2.6) for P and P, we have £j^.(0, 0)=5j^», and applying

(2.6) for P and P, we have Sj^/CO, 0)=5j^i. So, we get the desired result.

§3. Some Remarks on the Newton Polygon

We define

Fr={trf(t)', /eCTO, T], /(0)^0} (refi),

Foo={/eC°[0, T]; for any re/Z, rV(«eC°[0, T]}.

The following lemma states the meaning of the Newton polygon.
m

Lemma 3.1. We consider f(t,T}=12aj(t}Tj, where

(/— 0> "" » ̂ ) G?2^ flm(0 = l- Wig draw; f/ie Newton polygon 3li by {(/, ^-) ; /=
••• , m} and get j, K¥, ••• , K%,,? as in Section 1. Then, there exist ar^FK* (r=l, •••

m—j) and ar^F^ (r=m— y+1, ••• , in) such that
m

(3.1) /(f,r)=n(r- f f r(«).
r=l

Proof. We can determine «!<••• <«i, mtci^=v1<---<vi, m=j0>ji>-~>ji=
as in Section 1. We will prove this lemma by induction on /. If l—Q, then j=
and Gj-eFoo O'^O, ••• , ?n— 1). For any K^R, the polynomial

has continuous coefficients. On the other hand, there exist (7reC°[0, T] (r=l,
m m

— , m) such that /(f, r)= IKr— ar(0) and so, /i(f, r)= II (r— r*ar(0). Thus, we



154 TAKESHI MANDAI

have
Next, we assume that 1^1 and the lemma holds for /—I. We consider

(3.2) f±(t, T)=rv*f(t, ^r)= 2
3=0

By the definition of vl9 Kl9 we have &,eC°[0, T] (/=0, ••• , m), bm(t) = l and
6^(0)^0. So, there exist ak^FQ (k=l, ••• , m1=m—ji) and a monic polynomial
gi(£, r) of degree /i with C°-coefficients such that

fi(t, r )=n( r

So, we have
mi

(3.3) /a, r)=r*i/i(f, r*ir)= n (
^i

where g(£, r)= 2 ^XO^J is a monic polynomial of degree j\ and a^-eC°(0, T]
^=o

(/=0, ••• , /i). We claim that

(3.4) djGFpj-w (;=0, -,/i).

Set
mi mi

(3.5) n (T-fi9M= S Wi-fieMT*,
*=1 J=0

where ^eC°[0, T], eroi(i)=l and e0(0)^=0. Then, by (3.3),

(3.6),- a,(0= 2 ^c»i-"e,(0d«(0 ,
P+3=J

where y=0, ••• , jV
From (3-6)0, we have a0(t)=t^m^eQ(t)d0(t). Since e0(0)^0, we have d0(0=

Assume that 0^/z^/i— 1 and (3.4) holds for /rg/z. From (3.6)ft+1, we have

t^mie0(t}dh+1(t} = ah+1(t}- S twi-»
pT^i+1

Now, ep(Oda(Oe^fl-*imixC0[0, T] and

So, we have dh

Thus, we have proved (3.4). And this means that the Newton polygon
drawn from g is determined by j and AT^+I, ••• , /^_;. So, by induction hy-
pothesis, we get the desired result.

The following proposition will be used to prove the case h=Q in Theorem
1 and 2. We fix

Proposition 3.2. We assume (A—M, //„) and
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dlPn(t, x ; 0, Oef-'xCTO, T] (/=0, - , m).

// Pm zs hyperbolic when t>Q, then we have

yrdjPm(t, f ; 0, eJer-^'+I« l )+^o-i)i"ixC0[0, T],

where j+\a\^m.

Proof. For 7]^Sn~l—{r]^Rn', \ 77 |=1} and p^R, we consider the equation

(3.7) Pm(t, X ; T ,

For fixed (t, 77), the left-hand side is a polynomial with respect to (p, r) and
hyperbolic with respect to r. So, there exist m roots r,(£, 57 ; p)of (3.7) which
are analytic with respect to ^o. By (A—M,fjtQ), we have |rj(£, 77 ; p) \ ̂ Ct**0'1

near t=Q, p=Q. On the other hand, we draw the Newton polygon 31 1 from the
polynomial Pm(t, x] T, en). Let m^=-m{] ; A;?, ••• , £*_?}. Put jc^-jv^ •••=*£=£,
where ^ is sufficiently large. By Lemma 3.1, there exist GJ&R*I XC°[0, T]
(; = 1, ••• , m) such that

From the above two facts, we can take a,(t, j]\ p) (/=!, ••• , m) such that
m

(a) Pm(t, x ; r, ^^4-^^)=^ H (r— ̂ U, 37 ; /o)) ,

(b) for fixed (?, 57), (j^U, 77 ; /?) is analytic with respect to p,
(c) !*,(*, 57; 0)|^0-J, \a,(t, rj', p)\^CF*-\ near f=0.

By Cauchy's integral formula and (c), we have

(d) |3X& 57; ̂ i^C^o-1 for any & and j.

So, the t-order of didk
p(Pm(t} x] T, en-^-p7]}}\p=Q, r=0 is not smaller than K—

m-j-k
S K*+k(/jt0— 1). Since the line [JI=V—KJ lies below 37!, we have K^u—K(j-\-k)
h=l

+(fjt0—l)k. So, by choosing 77 in a suitable manner, we obtain the desired
result.

§ 4. Proof of Theorem 1

By Proposition 2.2, without loss of generality, we may assume that M=l
and that fjtQ, vr and KT (r=l, • • • , / ) are positive integers and /^0^2.

Remark 4.1. By the definition of 32, we have

where gr^EM(Q+) (r—ly ••• , /), Q is a neighborhood of the origin and gy(0,
^0 in any neighborhood of the origin.

Without loss of generality, we may assume the following condition:

(B) gr(Q, 0)*0, r=l, -,/.
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(The proof is given in the appendix.)

We have to prove the followings:

DVr] %d$Pm-h(t, X\ 0, g

h—Qy ••• , m

where r— 1, ••• , /, and

[A ]̂ dtd$Pm-A(t, X',0, en

h=Q, ••• , m
where K>KL.

Of course, [WJ is trivial if j=0.
For /z=0, these follows from Proposition 3.2, so we have only to prove the

following proposition.

Proposition 4.2, We assume that v, K, v*, K*, m* and e(/i, /, a') are integers
and bffi, eC°°(-Q+), where the fallowings are satisfied.

(1) d}d$'Pm(t, xi 0, en)=/!a /!^
(2) %3$Pm-h(t, x - , Q , gj=y!aM

(A = l, - ,m; y+la' lSTn-A).
(3) 0<y*<i^, fjt0—l^K*<K, 0<m*^m, i>*—K*m*=v—/cm*.
(4) 6jw fe^-*-'^nt*-/-ia'i)XCco ( f l+j //y+|a/ |>77l*

(5) 6Si.0(0, 0)^0 anrf ftj?^(0, z)^0 m an;; neighborhood of x=Q if e(h, j, a')

(6) e(A, /, aO^U-^C?^*-/!-;-!^!), A = l, •-, m; y+la ' l^m-A.

// ^/ie flat Cauchy problem for P is (^-well-posed at the origin, then

e(/i, j, aO^O» /i = l, ••• , m; y+|a r | ̂ ^~ ^ .

When ^=^0—1, [iVJ is satisfied by (A—M, /*„). When fd>/ji0— 1, we apply
Proposition 4.2 with A;=/S:I, v=^1=A:17n, yc*=^0— 1, v*=m(fjtQ— 1) and m*=m. All
the assumptions of the proposition is satisfied and so [JVJ follows. We assume
[JVr], then the assumptions of Proposition 4.2 are satisfied with ic=Kr+i, v=w+i,
K*=Krf v*=vr) m*=jr. By Proposition 4.2, we have D/Vr+J. In the same manner,
if PVJ holds and J>0, we have [JVJ (K>KI} applying Proposition 4.2 with
v=/jtj+Kj, K*=KI, v*=i>i, m*=j. Thus, we get Theorem 1.

Proof of Proposition 4.2. This proposition is proved by the same method as
[2 ; Theorem 4.1]. (See also [1].) We assume that there exists (h, j, a') such
that e(A, /, aO>0. We put

,; m*-j-\a'\-h>Q, h^

By (6), we have
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(4.1)

We define

3R={(A, ;,«'); 01= - 1 ^'^ A+y+|a/|<m* f /^l
I K— //o+2 ??i*— j— |a I J

We may assume that £j^.(0, 0)^0 for some (h, j, a')^$R, without loss of gen-
erality. (We translate the origin of Rn if necessary.) We put

3Ro={(A,y, a'JeSIR; 6^(0,0)^=0}.

Now, we perform the following coordinate transformation :

t=p~'s,
(4.2)

where d=(tc— /
By this transformation, P(£, % ; De, D^) is transformed into P|0(s, 3; ; Ds, Dy)

which is a differential operator on 5=[0, 1]XJ3'=[0, 1]X [y^Rn; \y\^l} for
sufficiently large p. From (1), we have

PP.m(s,y; a, tf=Pn(p-'s, p-wy', p'^'^yn', p8a, p^'i}', p^'^n)

X n{J + ̂ ola ' l + C

J, a'

We put u1—exp{i]'ynp
jrill(s, y'}pai} where y and I1 is determined later, then

we have

(4.3) u^Pp,m(s,y;Ds,Dy)(Ul)

—- "V /5K
^

X {r"l-/-|af|O.W3y,/1)
Put

^}a' - {U-^0+2)(/+ | a7 ! )+(/A)-l)m-p} 3+m-y- | a' |

- {(^-^0+2)^(7+ ! a7 ! )+m(js:+l)- v} d ,
and

Note that when j+\a'\>m*, by (4), we have

(4.4) bj?a,(p-°s, p-rty', p-^-vsyn) = p-^
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where f j i a , is bounded in C°°(B) when p->oo.

(a) When j-r\a'\<m*, we have

dmn-dj?a, =&c-/f0+2)a1(ro*-y- | a7

(b) When j+\a'\=m*, we have
// _ ,7(0) —A
"max "v.a' — V .

(c) When y+|a'|>m*, by (4.1), we have

-j- I a' |

Thus, by (4.4), we have

By the same way, for /i^l, we have

P r,(<i V ' fTJ ,m-h\^) j > Ut

and
w-ip m_ f c(M1)= 2

J, ff'

-
J, «'

v x / ^ v - f f ( j + ] a ' i + ft)-7i + c^0-l) |a' |-s(7i,j, a ' )^(7i ) f

We put d^ = {(jc-/io+2)cr1(y+|a/|)+m(jc+l)-v+e(/i, j, a7)} 3.

(d) When h+j+\a'\<m*, we have

The equality holds if and only if (/i, j, a')

(e) When /2+y+la'l^^*, by (6) and (4.1), we have

Thus, we have

Ul1

where



NECESSARY CONDITIONS FOR WELL-POSEDNESS 159

(4-5) ^(s, r; <r, i}')= S sv-"n*+<tt*-1>]a'lb?>a,(Q, 0)aVa'

Note that m*—h— j— \a'\ >0 for (/*, /, a')
By the same way as the proof of Theorem 4.1 in [2] with m* acting as r,

we have the following.

For sufficiently large N, there exist real numbers YO, 6, H, an open set Yc.
{(s, y)^Rn+1; s>0}, positive integers d, g, K, functions lj(s, y)^C°°(Y) (;'=!,
••• , d), rational numbers a1>a2>'->Gd'>Q and differential operators Lr(r=Q, 1,
• • • , N), LN+i,p such that the followings are satisfied.

D

(4.6) ImdsKs, v)<-0<0 on Y.

2)

(4.7) \gradylml\s,y}\^-^ on Y.

3)

d

where Ep(s, y^expttToynp+i S lj(s,

4) Lr (r=Q, -' , N) have analytic coefficients on Y, ord. Lr^m and LQ=
S ^.«(s, y}D{Da

y, where bg,Q(s, y^Q on Y.
j+\a\<!g

5) LN+1,P have coefficients which are bounded in C°°(Y} when p— >oo and
ord. LN+i

We fix (5, j))ey. In a sufficiently small neighborhood Z of (s, 3)), we can solve
the following equation:

f( 2 p-r!KLr)( 2 /o-J/^(s,
< \ r=0 / \ j-0

1 VoW, j?) = l.

We put tp=p-'&, xp.j=p-i">'9j (/=!, -, n-1), xptn=p-«*-*>*$» and rp =
rp0(tp, xp ', C0). Under the coordinate transformation (4.2), /^ is transformed
into

C{(s, 3;); |3;-j)[^d(5-s), 0^s^5} for

For (s, 3^)eFn^*, we have by (4.7),
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-c2(i+c?)is-5T.
By (4.6), there exist a neighborhood Zx of (5, y] and a positive number e0 such
that

(4.8) Im ll(s, y)^lm l\s, y}+eQ(s—s) for any (s, y}^ZiC\Ff,

From the assumption of (^o)-well-posedness, there exist a positive integer q
and positive constants /, C3 such that

(4.9) \\u\\f
0,p^C3p

J\\Ppu\\'q,p for any MeC?([0, T]X/ZB),

where \\-\\q,p denotes the C9-norm on /"*, and ^^1. We choose ^>0 such that
rfr^{(s, y}} s—df^s^s}dZl and put a)p=r*r^{(s, y); s—d'^s^s—d'/2}. We
take ^(s)eC°°CR) such that 0^(s)gl and

f 0,

WTe define

Then, for sufficiently large N, there exist positive constants C4, C5, C6 such that

II^M^IIJ.^C4/o^-1sup
r*

and

for sufficiently large p. So, by (4.9), there exists a constant C7 such that

\EP(§, $)\^sup\<f>Ep\^(

And we have
r*

This contradicts (4.8).

§ 5. Proof of Theorem 2

By Proposition 2.2, 2.4, we may assume that M=l, /^0, vr, £r (^=1, • • • , 0
are positive integers, ^0^2 and r0=0, without loss of generality. We have only
to prove that

(5.1) &j?MO,0)=0 for h+j+\a'\<d,

under the following assumptions:

(1) d&$PM-h(t, x] 0, O=y!a /!f-^+l f l ' l+ fc
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where bjQ, eC°°CQ+) and v, K are positive integers.

(2) 65(0, 0)=0 for j<d.
(3) fcS>>0(0, 0)^0.

(2) means that there exists a positive number e such that

%Pm(f, 0; 0,

So, by Proposition 3.2, we have

d*d$Pm(t, 0; 0, g

This implies (5.1) for /i=0.
Put %={(/!, /, a'); fc+; +|a' |<d, 6j*MO, 0)^0}. We assume that

Put
—h—j—\a'\
— J '

where e is a positive rational number determined later. Then, we have

(5.2)

Put SK^ICA, y, a')eswi; gl= , £ .^T
I K+£— fjL0+2 d—j

Now, we perform the coordinate transformation (4.2) where d=
As in the proof of Theorem 4.1, P is transformed into Pp and

7y-lp f?y N_ y» nd(h,j,a') ^-K(j+\a'\ + f i ) - h +
Ul JLp,m-h\^l) — Zj *>

3, a'

where w^expfcynr/o+^Cs, ̂ O^^1}, d(/i, /, a'} = l{(fc+e-f20+2}a1-e}(j+\a'\) +
and /i=0, 1, ••• , m. Put Jmax

Note that b£l(p-*s, p-^8y', p-^»-»*yn)=0(p-*) if 6j^,(0, 0)=0, especially
if A=0, j+la 'Kd.

(a) For sufficiently small e, we have

(b) When A=0, y+ la ' l ^^ , we have

dmax-d(0, ;, aO=0.

(c) When /i=0, y+|a ' |>d or A^l, A+y+|a ' |^d, we have

(d) When (h, jf aO^^ii we have
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The equality holds for (h, j, a'}^Wz.
Thus, if we take e sufficiently small, then we have

ui1Pp(ul)=pd^{rm-A01(s9 r;
where

<Pa(s, r; *, 37')= 2 sy
'

The rest of the proof is just the same as the proof of Proposition 4.1, with d
acting as m*.

§ 6. Proof of Theorem 3

By Proposition 2.4, we may assume that r0— 0, without loss of generality.
So, we assume

(1) Bj«,=&J!»,(0,0),
(2) didj,'Pm-h(t, x;Q, eB)=y!a /!^-*^+ l f l f | +* J-*+^-1 > l a l Iftj^ff, x),

where bj™,s=EM(Q+),

(3) 6jfb}tf, 0)=f l /ocd-J-f t )^f t )(0 for y+A^d-1,

where ^jft)eC°[0, T], v0 is a positive rational number,

(4) &£%(0, 0)^0.

We perform the following coordinate transformation:

f t=p-°'s,
(6.1) xj=p-"'y, 0=1, -, n-1),

[ xn=p-a»yn,

where CDQ, co', con are positive integers determined later which depend only on
M, fjt0, m, K, v. P is transformed into Pp which is a differential operator on B
for sufficiently large p, and

PP.m-h(s, y, ff, Tj)=Pm-h(sp-m», yp-0*; ep"*, j]^}

-°>°, yp-*; 0 , e 7 > ) 7 -

where d ( h , j, a')= {(/c
Put dmax={
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We want to take a>0, a>', o)n such that

(a) dmax>d(h,j, 0) when j+h>d,
(b) dm^>d(h, j, ty—vQ(d—j—h)a)Q when j+h<d,
(c) dma*>d(h, j, a') when \a'\>Q.

If these are satisfied, then we have

(6.2) Pp(s, y\ a, 7j)=p*™*{ 2 s"-**-^}®, 0)*j+/i=d
Now, (a) means that

(6.3) (on>(K+l)a>0,

and (b) means that

(6.4) {Oc+l)+*o}a>o>a>n.

We take <wre=(A;+l+e)cwo, where 0<e<v0 . Then, (c) means that

(6.5) {(/z+/+|a' -d)s+/*o|a'|}a>o>|a'|a/ if |a ' j

If we take £<-^T and a)' < -^- fjtGa)Q, then (6.5) holds.Zu Z
Thus, we can take wa, a>', wn, e depending only on M, ju0, wz, v, K such that

(6.6) P,(s, y;^ s , £„)=/—

Here, JV is a sufficiently large integer, Rj<^Q(m)={R(s, y ; Ds, D y ) ; a differ-
ential operator on B, ord.R^jn, and R satisfies (A—M, /*<>) on ^} (/—I* "" > -W)
and RN+i.P^Q*(m)={Rp(s, y, Ds, Dy)\ a differential operator on 5, ord. Rp^m,
and the coefficient of D{D« is bounded in t j + f * Q ] a ' ] - m x E M ( B ) when ^oo}.
Further, J?^ (; = 1, ••• , d) do not contain the terms Dk

sD% where an^m—
Put

L = A-* 2 6i*_?ftl0(0, 0)sd-*0?-ft, ^=rdfri0)
0(0, 0) .

7l=0

Then, by the definition of 1L (1=1, ••• , d), we have

L
(6.7)

d+2^-^ + /0-^^^

Now,

(6.8) exp(-ipyn)°PP°exp(ipyn}

= pdma^
m-dA^-Kd'dL+ 2 p-^+p-^^S^i p} ,

where Sj^Q(m) (; — 1, ••• , AO, SN+1,p^Q^(m). We may assume that
max Rez7z. Set 0=i7i, then — Im^^Re^. We may assume that Re 0^0. By
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the fact (sd,—tti)'S0 = s0*(sd3—tti + ff), we have

"- d~dLQ+ Zi/

where L0=s-e°L°s6 = n (s3,+i>i), f*i=*i-h and T,-eQ(m) (y=l, - , JV), TN+1,P

eQ*(77?). Note that Rei> t^0 (1=1, ••• , d). Define

Ee(B)={f€=EM(lO, l]X/2»); supp/c£}.

Then, we have the following lemma.

Lemma 6.1. For complex numbers ^JL, a, a non-negative integer j and f^Ec(B),
we consider

(6.10) (s9f+i»i;=sfl(log sYf(s, y) , se[0, 1].

There exist gh^Ec(B) and Ah^C™(Bf) (h=Q, ••• , /) SMC/I tAfl^ ^ following
function is a solution of (6.10).

(6.11) v(s, y)=sa 2 ^fc(s, ^)dog sy-t+s-*" 2

Further, if R e a > — Rez//, ?/ien w;e can ^a^g ^4^=0 (/z=0, ••• , /).

Pr^/. For any GeC~(£'), the function

(6.12) V(s, y) = s-

is a solution of (6.10). We claim that this has the form of (6.11) for some G.
Note that we can expand / in the following form ;

(6.13) f ( t , 30= S f,(yW>*+t<K+»'*ft(t, y) ,
^=0

where f3^C%(Br) and f£^Ec(B). So, we have

(6.14) V+^-Ytf, y)^=sa+^g(s, ^)+F(^)log s-G(y) ,

where g^Ec(B] and F, GeC?^'). Further, F^O if Re(a+z»>0. So, the claim
is true for /— 0.

We assume that the claim is true for /—I (/^l). Then, by (6.14), we have

s)'+F(;y)(log
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By induction hypothesis, the claim is true for j.

Corollary 6.2. For complex numbers fjtlf ••• , //d, a, a non-negative integer j
and f^Ec(B), we consider the equation

(6.15) LQv(= ft (s9.+i>i)v=sf l(log sYf(s, y) .

There exist gh, AL,h^Ec(B) (A=0, ••• , j+d — 1', /=!, ••• , d) such that the follow-
ing function is a solution of (6.15).

(6.16) v(s, y}=s« ± gh(s, ;y)(log s)>-*
ft=0

+ 2 s-*"2
Z e £ ( - R e a ) 71 = 0

where g(a)={l; Rez^fga}.

Now, we will solve

(6.17)

Take u0(s, y}=uQ(y}tEC%(B'), where M0(0)=l. Then, T^e s~mxEc(B}. So, by
Corollary 6.2, the equation sv~Kd~dL0u1=—T1(uQ) has a solution

(log s}d
2
Ji=0

Set J=m+v— («:+l)d+l. Then, by v—icd^d—m, we have J^l. Define

If Uj^Aj (/=1, • • • , k)9 then there holds 2 Tl(uk+1-i)^s~mxAk. So, by Corol-
1=1

lary 6.2, the equation sv~Kd~dLQuk+1=— 2 Ti(uk+l-i) has a solution

Thus, we get a solution of (6.17) such that u^A,.
Take a non-decreasing C°°-function X(f) such that

0

1

and put Xp(s)=%(s^1/C2j)) (/o^l). Note that for i^l there exists I^C^R) such
that 9^^(s)=s-^y(sio

1/C2j)) and supp%,C[l/2, 1]. Set

Then,

(6.18)
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s> y \ /o)^~J'+G!jyr+)i,*(s, y',

where

r; finite

and
. _ ) ( JV+Dd
2 S S s"
1=1 h=0 r; finite

glth.r is bounded in £C(B)

when jO->oo, suppZrC[l/2, 1] or Zr=%}0

The following lemma follows from Lemma 3.10 in [3],

Lemma 6.3. // (1.10) holds for P, then there exists a constant C* such that
the following inequality holds for sufficiently large p.

(6.19) \\u\\p ^C*p«-*>»»\\Ppu\\™ for any

Here,

\\v\\

where \\-\\p denotes the Hp-norm on B*=[0, 1/2] x£x cnrf (-, •) denotes f/is L2-
product on B*.

Now, the desired result follows from the following lemma, which is proved in
the same way as Lemma 3.11 (case ( i ) ) in [3] (note that J=2(£+l)(m— 1), d = l
and dmax=4m— 1 in [3]).

Lemma 6.4. There exist positive constants d, C such that

(i) \\
(ii) ||

for sufficiently large p.

From the above two lemmas, we have

m-Re 0

So,
Re 0 ^,, ., , ,. , , , , , OT

Since q—p-i-m^l, we have
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where C depends only on M, fji0, in, v, K.

Appendix. Proof of Remark 4.1

For any x^Rn, we can consider x as the origin and define the Newton
polygon 32 £ from P. For this 31 $, we get a function //(/), integers m=j0>j1>
m~>ji=j"^Q and real numbers £*^---^£m-; as in Section 1. We also denote K?
=K?(X). There exist g>e£(F+) such that

3>rPn(t, x ; 0, gn)=fcyr)gr(f, x} (r=l, ••• , 0,

where V is a neighborhood of (0, x) and g>(0, z)^0 in any neighborhood of x.
We consider the following condition:

(Bf) £r(0, *)*0 (r=l, -,/) .

Note that {*e!2n; (B$) holds} is a dense set. For a Newton polygon 57 —
31 {j ; A;?, ••• , «£_;} and £>AT*_ ;. Put

32[Y] = 32{0; £?, ••• , /um-;, £, ••• , K] (K appears / times).

Then, it is clear from the definition of 32^ that 32$ is continuous with respect
to x in the following sense :

For any x^Rn and any K>Km-f(x), there exists a neighborhood U of x such
that

(A.I) SZflCSZfM for any

Now, we assume that Theorem 1 holds under the condition (B0) and consider
the Newton polygon 31— 32Q. For any £>A;£--(0), we take a neighborhood U of
the origin such that (A.I) holds for j£=0. For any x^U and any neighborhood
V of x, we take y^V such that (8$) holds. Then, Theorem 1 holds at x=y
instead of the origin. Since V is arbitrary and 3Z0C2Z[V1, we have

-*(t, x ; 0, (r=l,
J - * C / + l a ' l + ft)-ftf C^O- 1 ) !* ' ! XC0fO T] .

Since x and A: are arbitrary, we have (1.5).
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